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Spectral methods for data science: a statistical perspective
— Y. Chen, Y. Chi, J. Fan, C. Ma 21



A motivating application: graph clustering



Graph clustering / community detection

Community structures are common in many social networks

figure credit: The Future Buzz figure credit: S. Papadopoulos

Goal: partition users into several clusters based on their
friendships / similarities
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A simple model: stochastic block model (SBM)

z; = 1. 15t community x; = —1: 2" community

e n nodes {1,--- ,n}
e 2 communities

e n unknown variables: z,--- ,z, € {1,—1}
o encode community memberships
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A simple model: stochastic block model (SBM)

e observe a graph G

(i,7) € G with prob. {

p, if i and j are from same community
q, else

Here, p > ¢ and p,q 2 logn/n
e Goal: recover community memberships of all nodes, i.e. {z;}
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Adjacency matrix

if (1,7)€g
else

e WLOG, suppose 1 =+ =Ty, )0 =1; Tpjop1 =+ =2 = —1
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Adjacency matrix

+  A-E[A]

rank 2

[ p12T 1T ] p+q. T —q 1 T 4T
E[A]_[an prat | T Tt +5 2 oy |t
uninformative bias

=z=(z;|1<i<n
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Spectral clustering

= E[A] + A—-E[A]

rank 2
1. computing the leading eigenvector @ = [i;]1<i<p of A — ’%llT
1, if 4; >0

2. rounding: output Z; =
& oI {—1, if 4; <0
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Spectral clustering

Rationale: recovery is reliable if A — E[A] is sufficiently small
—_———
perturbation

o if A—TE[A] =0, then

1

7 +
U X 1

] —>  perfect clustering

Question: how to quantify the effect of perturbation A —E[A] on ﬁ?J
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Distance and angles between two subspaces



Setup and notation

Consider 2 symmetric matrices M, M = M + H € R™ ™ with
eigen-decompositions

Here, UU = [ula"' ,ur]v AO :dlag([)‘lﬂ 7)‘7’])'
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Setup and notation

Spectral methods

Uy Uy ur+1 Uy,
Uop U,
[ A 1 -
Ar
N———’
Ao
)\rJrl
An
| — L
Ay i

u ]
: T
3 U;
u'f‘
T
ur+1 T
. Ul
T
un J
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Setup and notation

e || M]||: spectral norm (largest singular value of M)

o |M]|5: Frobenius norm (|| M |lp = /tr(MTM) = VI ME)
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Eigen-space perturbation theory

Main focus: how does the perturbation H affect the distance
between U and U?

Question #0: how to define distance between two subspaces?

e |[U—-U| and |U —U]|| are not appropriate, since they fall short
of accounting for global orthonormal transformation

V orthonormal RER" X" U and U R represent same subspace

Spectral methods 2-16



Distance between two eigen-spaces

One metric that takes care of global orthonormal transformation is
dist(Xo, Zo) == | X0 X, — ZoZ, || (2.1)
This metric has several equivalent expressions:

Lemma 2.1

Suppose X = [Xo, X1 | and Z := [Zy, Z, | are square orthonormal
~ —~

complement subspace complement subspace
matrices. Then

dist(Xo, Zo) = | Xq Z1]| = [1Zy Xa|

e sanity check: if Xo = Zy, then dist(Xo, Zo) = || X Z1]| =0
e proof: see Slide 2-22
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Principal angles between two eigen-spaces

In addition to “distance”, one might also be interested in “angles”

0;

D
Sl

We can quantify the similarity between two lines (represented resp. by
unit vectors &y and zp) by an angle between them

0 = arccos(xg, zq)
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Principal angles between two eigen-spaces

For r-dimensional subspaces, one needs 7 angles

Specifically, given || X, Zo|| < 1, we write the singular value
decomposition (SVD) of X Zy € R™*" as

cos 64
XJZy=U Vi=UcosOV'

cos 0,

=:cos ®

where {01, ,0,} are called the principal angles between X and Z
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Relations between principal angles and dist(-, )

As expected, principal angles and distances are closely related

Lemma 2.2

Suppose X := [ Xy, X1] and Z := [Zy, Z] are square orthonormal
matrices. Then

IXJ Zy|| = | sin ©|| = max{|sin 6y, -, |sin 6|}

Lemmas 2.1 and 2.2 taken collectively give

dist(Xo, Zp) = max{] sin 6,

oy | sinfy |} (2.2)
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Proof of Lemma 2.2

1

1X0 Z1]| = | Xy 212, Xo|*
N——
=I-ZyZ]

1
= | Xg Xo — X¢ ZoZy Xol*

—[I-Ucos?@UT||?  (since X] Zo=Ucos®VT)

=||I- C082®||%
= [|sin ©°2

— [sin®)|
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Proof of Lemma 2.1

We first claim that the SVD of X' Z; can be written as
X,/ Zy,=Usin®V' (2.3)

for some orthonormal U (to be proved later). With this claim in place, one
has

xT Ucos®VT
Zy = [Xo, X1] { X(l)T }Zo [X07X1}[ Usn®VT }

2 T L@ 7T T
N ZOZJZ[XO,Xl][ Ucos“®U Ucos®sin®U }{XO }

Ucos®sin®UT Usin2@UT XI'—
As a consequence,
XoX, — ZoZ,

_ [Xo,Xﬂ[ I-Ucos?0UT ~Ucos®sin®@U" } { XOT }

~Ucos®sin@U " ~Usin?@U" b el
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Proof of Lemma 2.1 (cont.)

This further gives

||X0XOT — ZoZ, ||
- U sin? @ —cos®sin ® U’ R
o —cos ®sin ® —sin? ® U’

(|l - || is rotationally invariant)

_ sin? © —cos Osin®
||| —cosOsin® —sin? ©

each block is a diagonal matrix
{ sin? 6; —cos 6, sin 0, ] H

= max . .
—cos 6; sin 0; —sin? 6,

1<i<lr

= Imax
1<i<r

sin 6; [ sinf); —cosb; }

—cosf; —sinb;

= max [siné;| = | sinO|
1<i<r
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Proof of Lemma 2.1 (cont.)

It remains to justify (2.3). To this end, observe that
Z, X\ X[ 2y=2] 2y - Z] X0 X, Zy
=I-Vcos’OV'
=Vsn?@V'

and hence the right singular space (resp. singular values) of X' Z, is given
by V' (resp. sin ®). This immediately implies (2.3).
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Eigen-space perturbation theory



Davis-Kahan sin ® Theorem: a simple case

— recall the setup in Page 2-13

Chandler Davis William Kahan
Theorem 2.3

Suppose M > 0 and has rank r. If | H|| < \.(M), then

. |EU | |E]
et (U0, U0) < 50y — ] = X, () — [

e depends on smallest non-zero eigenvalue of M and perturbation size

Spectral methods eigen-gap between A, (M) and X, 41 (M) 2-26



Proof of Theorem 2.3

We intend to control IleUO by studying their interactions through H:
|07 HU || = |07 (CAUT - UAUT Uy |
——— N —
M+H M
= HAlﬁl—on — ﬁlTUvoH (since UlTUO = lj—lle—o = 0)

> ||U1TU0A0|| — ||A1U1TUO|| (triangle inequality)
> [0 Us|| Ar = [0 U || 1 A4] (2.4)

A < | H

In view of Weyl's Theorem, , which combined with (2.4) gives

[UTHUo|| _ O] - [[HUo|| _ [|HUo|

U, U <! -
|0, Uol| < N —H| = A [H] A — H|

This together with Lemma 2.1 completes the proof
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Davis-Kahan sin ® Theorem: more general case

Theorem 2.4 (Davis-Kahan sin ® Theorem)

~

Suppose A\ (M) > a and A\p41 (M) < a — A for some A > 0. Then

1HGo| _ [ H]|
A T A

dist(ﬁo, Uo) <

e immediate consequence: if A\.(M) > \.11(M) + ||H]|, then

IH]|
Ar(M) = A1 (M) — | H|

spectral gap

diSt(ﬁo, Uo) <

(2.5)
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Back to stochastic block model ...

Let M = E[A}—Z%HTM:A—L;‘IHT andu:\/lﬁ[

=z 4[]

Then the Davis-Kahan sin @ Theorem yields

1M — M| __ [[A-E[A]]

M(M) — | M- M| 0 A —E[A

dist(a, u) <

Question: how to bound ||A — E[A]||?

1
-1

2.

|

6)
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A hammer: matrix Bernstein inequality

Consider a sequence of independent random matrices { X; € R4 *d2}
e E[X;]=0 e | X;|| < B for each [

e variance statistic:

v := max {HE {Zl XleT} )

B[y, x|}

Theorem 2.5 (Matrix Bernstein inequality)

For all 7 > 0,

{52, ] > o} < e (22 )
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A hammer: matrix Bernstein inequality

PSS X 2 ) <+ ) e (13/2/3)

e moderate-deviation regime (7 is small):
— sub-Gaussian tail behavior exp(—72/2v)

e large-deviation regime (7 is large):
— sub-exponential tail behavior exp(—37/2B) (slower decay)

e user-friendly form (exercise): with prob. 1 — O((d; + dg)~'0)
IS, X < \Jvlog(dr + da) + Blog(dr + da) (2.7)
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Bounding ||A — E[A]|

The matrix Bernstein inequality yields
Lemma 2.6

Consider SBM with p > q 2 k’%. Then with high prob.

A —E[A]| S vnplogn
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Statistical accuracy of spectral clustering

Substitute (2.8) into (2.6) to reach

dist(it,u) < - |A — E[A]] S\/W
pin A -E[A]| T (P—an

provided that (p — ¢)n > /nplogn

log n

Thus, under condition =4 >> , with high prob. one has

V)

dist(a,u) < 1 = nearly perfect clustering

Spectral methods
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Statistical accuracy of spectral clustering

D — logn
ye q > 2
VP

e dense regime: if p < ¢ < 1, then this condition reads

logn
pP—q>
n

alogn

= nearly perfect clustering

and ¢ = bl‘;g” for a,b =<1, then

a—b>+a

e “sparse” regime: if p =

This condition is information-theoretically optimal (up to log factor)
— Mossel, Neeman, Sly ‘15, Abbe '18
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Proof of Lemma 2.6

To simplify presentation, assume A; ; and A;; are independent

(check: why this assumption does not change our bounds)
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Proof of Lemma 2.6

Write A — E[A} as Zi,j Xi’j, where Xi’j = (Al"j — ]E[Am])eie;r

e Since Var(A4; ;) <p, one has E [X”XZTJ} = pe;e; , which gives
Zi,j E [Xi,inTj] = Z” pee] <npl
Similarly, 3, ; E [XZ-TJ-X,-J-] <npI. As a result,
e[, AT, BT <

e In addition, || X; ;|| <1=B

e Take the matrix Bernstein inequality to conclude that with high prob.,

1
|A —E[A]|| £ Vvlogn+ Blogn < v/nplogn  (since p 2, %)
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Extension: singular subspaces



Singular value decomposition

Consider two matrices M, M = M + H € R™*"2 with SVD

0 O VT
M = [Uy, U] > l 0 ]

0 T
0 0 Vi
S 0 T
. v,
M=[00,Th] | 0 3 [ T ]
0 O !

where Uy (resp. Uy) and V; (resp. V;) represent the top-r singular

subspaces of M (resp. M)
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Wedin sin ® Theorem

The Davis-Kahan Theorem generalizes to singular subspace
perturbation:

Theorem 2.7 (Wedin sin ® Theorem)

~

Suppose o,(M) > a and 0,41 (M) < a— A for some A > 0. Then
——
rth singular value
max {|HVy||, [ H "Uol|}
A
two-sided interactions
| H ||
A

max { dist(U, Uy), dist(V, Vo) } <

<
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Example: low-rank matrix completion

Xy ﬁf;; Em jcy o %

o A‘ - "
2 m : bR

X 3 2 A Ty
Yedoleikr ? Yetrlolty ? ? ?

? ?

e Netflix challenge: Netflix provides highly incomplete ratings from
0.5 million users for & 17,770 movies

e How to predict unseen user ratings for movies?

Spectral methods
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Example: low-rank matrix completion

In general, we cannot infer missing ratings

VO S VAR
7 v Y
VO I VAR B
(A A
v 7?7 7 7 2
VAR B VA
IV

— this is an underdetermined system (more unknowns than
observations)

Spectral methods 2-41



Example: low-rank matrix completion

. unless rating matrix has other structure

RS Y s A=
3 ! 5N eee
Uit P dokt P ? ?

7t ? ik 2 eee

EmEm
|
i

A few factors explain most of the data

Spectral methods
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Example: low-rank matrix completion

. unless rating matrix has other structure

Mg EHE
_kh- 4 [ |
Sririele ? Sririle ? ? ?
ﬂ ? w9 ? oot ese

0

K3
\F 7 o e 7 vk ese

A few factors explain most of the data — low-rank approximation

How to exploit (approx.) low-rank structure in prediction?
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Model for low-rank matrix completion

N R NN

v
?
?
?
?

v
?

PR N NI

- \ D D ) ) )

e consider a low-rank matrix M

N o)

-

?

eoe

R 2 M oo

? 7 Yo A ) .o

R 7 ik eee
. . . . . .

. . . . .

. . . . .

" 3 e
)| % ¥ =

: ; L. eee
die P it ? ? ?

figure credit: Candés

e each entry M, ; is observed independently with prob. p

e goal: fill in missing entries
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Spectral estimate for matrix completion

1. set M € R™*" a5

p

. le— if M; ; is observed
7:7.]‘ =
0, else

~

o rationale for rescaling: ensures E[M| = M

A

2. compute the rank-r SVD UV " of M, and return (U, 3, V)

Spectral methods 2-44



Statistical accuracy of spectral estimate

Let's analyze a simple case where M = uv " with

1 1
u=—a, v=-—m=m, @,9~N(0,I,)
]2

From Wedin's Theorem: if p > log®n/n, then with high prob.

or(M) —||M - M| ~——

controlled by Bernstein

max {dist(@, u), dist(v,v)} <

< 1 (nearly accurate estimates) (2.9)
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Sample complexity

For rank-1 matrix completion,

= nearly accurate estimates

Sample complexity needed to yield reliable spectral estimates is

n?p < nlog®n

optimal up to log factor

Spectral methods
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Proof of (2.9)

Write M — M = Z . X j, where X; ; = (Mz] — M,-J')eiejT

o First,
logn

n
o Next, IE[X”XZTJ] = Var(M; j)e;e; and hence
ox T 2
E[Y", Xi;X[;] = {Hllngar( )}nI ~< {p ma M, }I

2
= IE[ Z X” Ll < = mz;foJ < 105771 (check)

1
1 X5l < ;H;%X|M”| < = B (check)

Similar bounds hold for HE[Z” i,j X ;] H Therefore,

log®n
= E[ X, ;X X, X }
v maX{H Z R Z” J H np
e Take the matrix Bernstein inequality to yield: if p > log® n/n, then
|M — M| < \/vlogn + Blogn < 1
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Extension: eigen-space for asymmetric
transition matrices



Eigen-decomposition for asymmetric matrices

Eigen-decomposition for asymmetric matrices is much more tricky:

1. both eigenvalues and eigenvectors might be complex-valued

2. eigenvectors might not be orthogonal to each other

This lecture focuses on a special case: probability transition
matrices

Spectral methods 2-49



Probability transition matrices

Consider a Markov chain {X;}:>0
e 1 states

P

e transition probability P{X;;1 =j | Xy =i} =P,

e transition matrix P = [P; j]1<i j<n

e stationary distribution 7 = [7,--- ,m,] is lst eigenvector of P
T4+ =1
P =7

o {X;}i>0 is said to be reversible if m;P; j = w;P;; for all i, j
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Eigenvector perturbation for transition matrices

Define |la||x := \/ﬂla% + -+ ma

Theorem 2.8 (Chen, Fan, Ma, Wang '17)

Suppose P, P are transition matrices with stationary distributions T,
7, respectively. Assume P induces a reversible Markov chain. If
1 > max {Xa2(P), =\, (P)} + | P — PHﬂ_, then

| H
1~ max {\o(P > P)) [P P|,

spectral gap

17— 7l[x <

perturbation

e P does not need to induce a reversible Markov chain
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Example: ranking from pairwise comparisons

Dijokovic N
Nadal p o
. Connd
Roddick X .
Bor
.
Federer
.4
X M
N .
X :
Howitt \ /
. 3
Lend
[]
N\
.
® Wil
&
L]
J Ea
.
Kuerten
L]
Bec
.
.
Mo
[
Rios

pairwise comparisons for ranking tennis players

figure credit: Bozdki, Csatd, Temesi
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Bradley-Terry-Luce (logistic) model

t

wWj - preference score

HHH"m{HHHMWHWHmmm

e assign a latent score {w;}1<i<y to each item, so that

>

e 7 items to be ranked

item 4 = item j if w; > w;
e cach pair of items (4, j) is compared independently
wy

P {item j beats item i} = P
w; + w;

Spectral methods
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Bradley-Terry-Luce (logistic) model
t

wWj - preference score

HHH"m{HHHMWHWHmmm

e assign a latent score {w;}1<i<y to each item, so that

>

e 7 items to be ranked

item 4 = item j if w; > w;
e cach pair of items (4, j) is compared independently

ind. {1, with prob. w:ijwj
y’l,] -

0, else
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Spectral ranking method

e construct a probability transition matrix p obeying

- _{;nyi,j, if i #
V=2 0 Pigy ifi=

(/A

e return the score estimate as the leading left eigenvector 7 of P

— closely related to PageRank!
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Rationale behind spectral method

N 1 w;
EIP: .| = . J ; ;
[ z,j] m w, +wj, 1

o P :=E[P] obeys
wi P j = w;jPj; (detailed balance)

e Thus, the stationary distribution 7 of P obeys

1

T = w
lel

(reveals true scores)

Spectral methods
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Statistical guarantees for spectral ranking

— Negahban, Oh, Shah'16, Chen, Fan, Ma, Wang'19

Suppose max; j =+ < 1. Then with high prob.

Wy

| =7l 7 —7lle . 1

Iwlle = lwll Y Vn

| ——
nearly perfect estimate

e a consequence of Theorem 2.8 and matrix Bernstein (exercise)
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