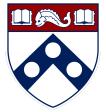
Sparse Representation



Yuxin Chen
Wharton Statistics & Data Science, Spring 2022

Outline

- Sparse representation in pairs of bases
- Uncertainty principles for basis pairs
 - Uncertainty principles for time-frequency bases
 - Uncertainty principles for general basis pairs
- Sparse representation via ℓ_1 minimization
- Sparse representation for general dictionaries

Basic problem

Find
$$oldsymbol{x} \in \mathbb{C}^p$$
 s.t. $oldsymbol{A} oldsymbol{x} = oldsymbol{y}$

where $oldsymbol{A} = [oldsymbol{a}_1, \cdots, oldsymbol{a}_p] \in \mathbb{C}^{n imes p}$ obeys

- ullet underdetermined system: n < p
- full-rank: $rank(\mathbf{A}) = n$

 $m{A}$: an over-complete basis / dictionary; $m{a}_i$: atom;

 $oldsymbol{x}$: representation in this basis / dictionary

Sparse representation in pairs of bases

A special type of dictionary: two-ortho case

Motivation for over-complete dictionary: many signals are mixtures of diverse phenomena; no single basis can describe them well

Two-ortho case: A is a concatenation of 2 orthonormal matrices

$$oldsymbol{A} = [oldsymbol{\Psi}, oldsymbol{\Phi}] \hspace{0.5cm} ext{where} \hspace{0.1cm} oldsymbol{\Psi} oldsymbol{\Psi}^* = oldsymbol{\Psi}^* oldsymbol{\Psi} oldsymbol{\Phi} = oldsymbol{\Phi} oldsymbol{\Phi}^* = oldsymbol{\Phi}^* oldsymbol{\Phi} oldsymbol{\Phi} = oldsymbol{I}$$

- ullet A classical example: $oldsymbol{A} = [oldsymbol{I}, oldsymbol{F}]$ $(oldsymbol{F}$: Fourier matrix)
 - \circ representing a signal $oldsymbol{y}$ as a superposition of spikes and sinusoids

Sparse representation

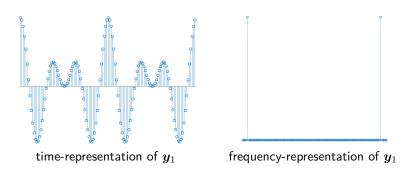
Clearly, there exist infinitely many feasible solutions to $Ax=y\,...$

• Solution set: $A^*(AA^*)^{-1}y + \text{null}(A)$

How many "sparse" solutions are there?

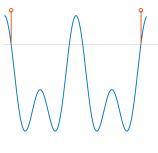
Example 1

The following signal $oldsymbol{y}_1$ is dense in the time domain, but sparse in the frequency domain

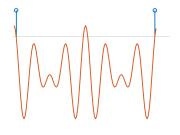


Example 2

The following signal y_2 is dense in both the time and the frequency domains, but sparse in the overcomplete basis [I, F]



time representation of $oldsymbol{y}_2$



frequency representation of $oldsymbol{y}_2$

Example 2

The following signal y_2 is dense in both the time and the frequency domains, but sparse in the overcomplete basis [I,F]

representation of y_2 in overcomplete basis (time + frequency)

Uniqueness of sparse representation

A natural strategy to promote sparsity:

— seek *sparsest* solution to a linear system

$$(P_0)$$
 minimize $_{oldsymbol{x} \in \mathbb{C}^p} \|oldsymbol{x}\|_0$ s.t. $oldsymbol{A} oldsymbol{x} = oldsymbol{y}$

- When is the solution unique?
- How to test whether a candidate solution is the sparsest possible?

Application: multiuser private communications

- 2 (or more) users wish to communicate to the same receiver over a shared wireless medium
- ullet the jth user transmits s_j ; the receiver sees $s=\sum_j s_j$
- ullet for the sake of privacy, the jth user adopts its own codebook

$$oldsymbol{s}_j = oldsymbol{A}_j oldsymbol{x}_j$$

where x_j is the message (typically sparse), and A_j is the dictionary (known to the receiver; unknown to other users)

It comes down to whether the receiver can recover all messages unambiguously

Connection to null space of A

Suppose x and x+h are both solutions to the linear system, then

$$Ah = A(x+h) - Ax = y - y = 0$$

Write $m{h}=\left[egin{array}{c} m{h}_{m{\Phi}} \ m{h}_{m{\Phi}} \end{array}
ight]$ with $m{h}_{m{\Psi}},m{h}_{m{\Phi}}\in\mathbb{C}^n$, then

$$\Psi h_{\Psi} = -\Phi h_{\Phi}$$

- ullet h_{Ψ} and $-h_{\Phi}$ are representations of the same vector in different bases
- (Non-rigorously) In order for x to be the sparsest solution, we hope h is much denser, i.e. we don't want h_Ψ and $-h_\Phi$ to be simultaneously sparse

Detour: uncertainty principles for basis pairs

Heisenberg's uncertainty principle

A pair of **complementary variables** cannot both be highly **concentrated**

• Quantum mechanics

$$\underbrace{\mathsf{Var}[x]}_{\mathsf{position}} \cdot \underbrace{\mathsf{Var}[p]}_{\mathsf{momentum}} \ge \hbar^2/4$$

ħ: Planck constant

Heisenberg's uncertainty principle

A pair of **complementary variables** cannot both be highly **concentrated**

• Quantum mechanics

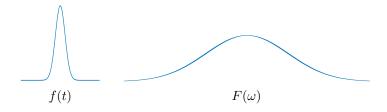
$$\underbrace{\mathsf{Var}[x]}_{\mathsf{position}} \cdot \underbrace{\mathsf{Var}[p]}_{\mathsf{momentum}} \geq \hbar^2/4$$

- ħ: Planck constant
- Signal processing

$$\underbrace{\int_{-\infty}^{\infty} t^2 |f(t)|^2 \mathrm{d}t}_{\text{concentration level of } f(t)} \int_{-\infty}^{\infty} \omega^2 |F(\omega)|^2 \mathrm{d}\omega \geq 1/4$$

- f(t): a signal obeying $\int_{-\infty}^{\infty} |f(t)|^2 dt = 1$
- \circ $F(\omega)$: Fourier transform of f(t)

Heisenberg's uncertainty principle



Roughly speaking, if f(t) vanishes outside an interval of length Δt , and its Fourier transform vanishes outside an interval of length $\Delta \omega$, then

$$\Delta t \cdot \Delta \omega \ge \text{const}$$

Proof of Heisenberg's uncertainty principle

(assuming f is real-valued and $tf^2(t) \to 0$ as $|t| \to \infty$)

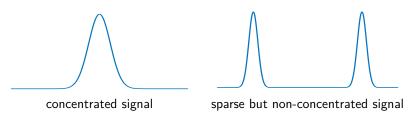
Quantize $\int \omega^2 |F(\omega)|^2 d\omega$ in terms of f. Since $f'(t) \xrightarrow{\mathcal{F}} i\omega F(\omega)$, Parseval's theorem yields

$$\int \omega^2 |F(\omega)|^2 d\omega = \int |i\omega F(\omega)|^2 d\omega = \int |f'(t)|^2 dt$$

Invoke Cauchy-Schwarz:

$$\begin{split} \left(\int t^2 |f(t)|^2 \mathrm{d}t\right)^{1/2} \left(\int |f'(t)|^2 \mathrm{d}t\right)^{1/2} &\geq -\int t f(t) f'(t) \mathrm{d}t \\ &= -0.5 \int t \frac{\mathrm{d}f^2(t)}{\mathrm{d}t} \mathrm{d}t \\ &= -0.5 t f^2(t)\big|_{-\infty}^{\infty} + 0.5 \int f^2(t) \mathrm{d}t \qquad \text{(integration by part)} \\ &= 0.5 \qquad \qquad \text{(by our assumptions)} \end{split}$$

Uncertainty principle for time-frequency bases



More general case: concentrated signals \rightarrow sparse signals

 \bullet f(t) and $F(\omega)$ are not necessarily concentrated on intervals

Question: is there a signal that can be sparsely represented both in time and in frequency?

ullet formally, for an arbitrary $oldsymbol{x}$, suppose $\hat{oldsymbol{x}} = oldsymbol{F} oldsymbol{x}$.

How small can
$$\|\hat{x}\|_0 + \|x\|_0$$
 be ?

Uncertainty principle for time-frequency bases

Theorem 7.1 (Donoho & Stark '89)

Consider any nonzero $x \in \mathbb{C}^n$, and let $\hat{x} := Fx$. Then

$$\underbrace{\|\boldsymbol{x}\|_0 \cdot \|\hat{\boldsymbol{x}}\|_0}_{\geq n} \geq n$$

time-bandwidth product

- ullet x and \hat{x} cannot be highly sparse simultaneously
- ullet does not rely on the kind of sets where x and \hat{x} are nonzero
- sanity check: if $\boldsymbol{x} = [1,0,\cdots,0]^{\top}$ with $\|\boldsymbol{x}\|_0 = 1$, then $\|\hat{\boldsymbol{x}}\|_0 = n$ and hence $\|\boldsymbol{x}\|_0 \cdot \|\hat{\boldsymbol{x}}\|_0 = n$

Corollary 7.2 (Donoho & Stark '89)

$$\|\boldsymbol{x}\|_0 + \|\hat{\boldsymbol{x}}\|_0 \ge 2\sqrt{n}$$
 (by AM-GM inequality)

Proof of Theorem 7.1: a key lemma

The key to proving Theorem 7.1 is to establish the following lemma:

Lemma 7.3 (Donoho & Stark '89)

If $x \in \mathbb{C}^n$ has k nonzero entries, then $\hat{x} := Fx$ cannot have k consecutive 0's.

Proof of Theorem 7.1

Suppose \boldsymbol{x} is k-sparse, and suppose $n/k \in \mathbb{Z}$

- 1. Partition $\{1, \dots, n\}$ into n/k intervals of length k each
- 2. By Lemma 7.3, none of these intervals of \hat{x} can vanish. Since each interval contains at least 1 non-zero entry, one has

$$\|\hat{\boldsymbol{x}}\|_0 \ge \frac{n}{k}$$

$$\iff \|\boldsymbol{x}\|_0 \cdot \|\hat{\boldsymbol{x}}\|_0 \ge n$$

Exercise: fill in the proof for the case where k does not divide n

Proof of Lemma 7.3

Suppose $x_{\tau_1}, \dots, x_{\tau_k}$ are the nonzero entries, and let $z = e^{-\frac{2\pi i}{n}}$.

 \bullet For any consecutive frequency interval $(s,\cdots,s+k-1)$, the $(s+l)^{\rm th}$ frequency component is

$$\hat{x}_{s+l} = \frac{1}{\sqrt{n}} \sum_{j=1}^{k} x_{\tau_j} z^{\tau_j(s+l)}, \quad l = 0, \dots, k-1$$

One can thus write

$$\boldsymbol{g} := [\hat{x}_{s+l}]_{0 \le l < k} = \frac{1}{\sqrt{n}} \boldsymbol{Z} \boldsymbol{x}_{\tau},$$

Proof of Lemma 7.3 (cont.)

2. Recognizing that Z is a Vandermonde matrix yields

$$\det(\mathbf{Z}) = \prod_{1 \le i < j \le k} (z^{\tau_j} - z^{\tau_i}) \neq 0,$$

and hence Z is invertible. Therefore, $x_{ au}
eq 0 \ \Rightarrow \ g
eq 0$ as claimed

Tightness of uncertainty principle

Lower bounds in Theorem 7.1 and Corollary 7.2 are achieved by the picket-fence signal x (a signal with uniform spacing \sqrt{n})

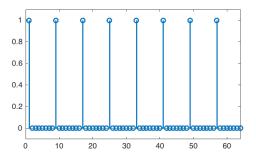


Figure 7.1: The picket-fence signal for n=64, which obeys $\boldsymbol{F}\boldsymbol{x}=\boldsymbol{x}$

Uncertainty principle for general basis pairs

There are many other bases beyond time-frequency pairs

- Wavelets
- Ridgelets
- Hadamard
- ...

Generally, for an arbitrary $m{y}\in\mathbb{C}^n$ and arbitrary bases $m{\Psi}$ and $m{\Phi}$, suppose $m{y}=m{\Psi}m{lpha}=m{\Phi}m{eta}$:

How small can $\|\alpha\|_0 + \|\beta\|_0$ be ?

Uncertainty principle for general basis pairs

The degree of "uncertainty" depends on the basis pair

• Example: suppose $\phi_1,\phi_2\in\Psi$ and $\frac{1}{\sqrt{2}}(\phi_1+\phi_2),$ $\frac{1}{\sqrt{2}}(\phi_1-\phi_2)\in\Psi$ (so two bases share similarity). Then ${m y}=\phi_1+0.5\phi_2$ can be sparsely represented in both ${m \Psi}$ and ${m \Phi}$ (i.e. we have multiple sparse representations)

The uncertainty principle depends on how "different" Ψ and Φ are

Mutual coherence

A rough way to characterize how "similar" Ψ and Φ are:

Definition 7.4 (Mutual coherence)

For any pair of orthonormal bases $\Psi=[\psi_1,\cdots,\psi_n]$ and $\Phi=[\phi_1,\cdots,\phi_n]$, the mutual coherence of these two bases is defined by

$$\mu(\mathbf{\Psi}, \mathbf{\Phi}) = \max_{1 \le i, j \le n} |\boldsymbol{\psi}_i^* \boldsymbol{\phi}_j|$$

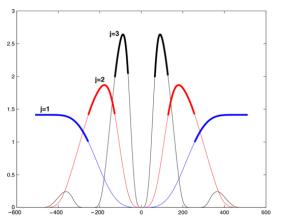
- $1/\sqrt{n} \le \mu(\Psi, \Phi) \le 1$ (homework)
- ullet For $\mu(oldsymbol{\Psi}, oldsymbol{\Phi})$ to be small, each $oldsymbol{\psi}_i$ needs to be "spread out" in the $oldsymbol{\Phi}$ domain

Examples

- $\mu(I, F) = 1/\sqrt{n}$
 - Spikes and sinusoids are most mutually incoherent

• Other extreme basis pair obeying $\mu(\Phi,\Psi)=1/\sqrt{n}$: $\Psi=I$ and $\Phi=H$ (Hadamard matrix)

Fourier basis vs. wavelet basis (n = 1024)



Magnitudes of Daubechies-8 wavelets in the Fourier domain (j labels the scales of the wavelet transform with j=1 the finest scale)

Fig. credit: Candes & Romberg '07

Uncertainty principle for general bases

Theorem 7.5 (Donoho & Huo '01, Elad & Bruckstein '02)

Consider any nonzero $m{b}\in\mathbb{C}^n$ and any pair of orthonormal bases $m{\Psi}, m{\Phi}\in\mathbb{C}^n$. Suppose $m{b}=m{\Psi}m{lpha}=m{\Phi}m{eta}$. Then

$$\|\boldsymbol{lpha}\|_0 \cdot \|\boldsymbol{eta}\|_0 \geq rac{1}{\mu^2(\boldsymbol{\Psi}, \boldsymbol{\Phi})}$$

Corollary 7.6 (Donoho & Huo '01, Elad & Bruckstein '02)

$$\|oldsymbol{lpha}\|_0 + \|oldsymbol{eta}\|_0 \geq rac{2}{\mu(oldsymbol{\Psi}, oldsymbol{\Phi})}$$
 (by AM-GM inequality)

Implications

- If two bases are "mutually incoherent", then we cannot have highly sparse representations in two bases simultaneously
- ullet If $oldsymbol{\Psi}=oldsymbol{I}$ and $oldsymbol{\Phi}=oldsymbol{F}$, Theorem 7.5 reduces to

$$\|\boldsymbol{\alpha}\|_0 \cdot \|\boldsymbol{\beta}\|_0 \ge n$$

since $\mu(\Psi, \Phi) = 1/\sqrt{n}$, which coincides with Theorem 7.1

Proof of Theorem 7.5

1. WLOG, assume $\|\boldsymbol{b}\|_2 = 1$. This gives

$$1 = \boldsymbol{b}^* \boldsymbol{b} = \boldsymbol{\alpha}^* \boldsymbol{\Psi}^* \boldsymbol{\Phi} \boldsymbol{\beta}$$

$$= \sum_{i,j=1}^p \alpha_i \langle \boldsymbol{\psi}_i, \boldsymbol{\phi}_j \rangle \beta_j$$

$$\leq \sum_{i,j=1}^p |\alpha_i| \cdot \mu(\boldsymbol{\Psi}, \boldsymbol{\Phi}) \cdot |\beta_j|$$

$$\leq \mu(\boldsymbol{\Psi}, \boldsymbol{\Phi}) \left(\sum_{i=1}^p |\alpha_i| \right) \left(\sum_{j=1}^p |\beta_j| \right)$$
(7.1)

Aside: this shows $\|\alpha\|_1 \cdot \|\beta\|_1 \geq \frac{1}{\mu(\Psi,\Phi)}$

Proof of Theorem 7.5 (cont.)

2. The assumption $\|\boldsymbol{b}\|_2=1$ implies $\|\boldsymbol{\alpha}\|_2=\|\boldsymbol{\beta}\|_2=1$. This together with elementary inequality $\sum_{i=1}^k x_i \leq \sqrt{k\sum_{i=1}^k x_i^2}$ yields

$$\sum\nolimits_{i=1}^p |\alpha_i| \leq \sqrt{\|\boldsymbol{\alpha}\|_0 \sum\nolimits_{i=1}^p |\alpha_i|^2} = \sqrt{\|\boldsymbol{\alpha}\|_0}$$

Similarly, $\sum_{i=1}^{p} |\beta_i| \leq \sqrt{\|\boldsymbol{\beta}\|_0}$.

3. Substitution into (7.1) concludes the proof

Back to the uniqueness of ℓ_0 minimization

Uncertainty principle suggests the possibility of ideal sparse representation

$$y = [\Psi, \Phi]x \tag{7.2}$$

Theorem 7.7 (Donoho & Huo '01, Elad & Bruckstein '02)

Any two distinct solutions $oldsymbol{x}^{(1)}$ and $oldsymbol{x}^{(2)}$ to (7.2) must satisfy

$$\|\boldsymbol{x}^{(1)}\|_0 + \|\boldsymbol{x}^{(2)}\|_0 \ge \frac{2}{\mu(\boldsymbol{\Psi}, \boldsymbol{\Phi})}$$

Corollary 7.8 (Donoho & Huo '01, Elad & Bruckstein '02)

If a solution x obeys $\|x\|_0 < \frac{1}{\mu(\Psi,\Phi)}$, then it is necessarily the unique sparsest solution

Proof of Theorem 7.7

Define
$$m{h}=m{x}^{(1)}-m{x}^{(2)}$$
, and write $m{h}=egin{array}{c|c} m{h}_{\Psi} \\ m{h}_{\Phi} \end{array}$ with $m{h}_{\Psi},m{h}_{\Phi}\in\mathbb{C}^n$

lacksquare Since $oldsymbol{y} = [oldsymbol{\Psi}, oldsymbol{\Phi}] oldsymbol{x}^{(1)} = [oldsymbol{\Psi}, oldsymbol{\Phi}] oldsymbol{x}^{(2)}$, one has

$$[\Psi,\Phi]h=0 \quad\Longleftrightarrow\quad \Psi h_\Psi=-\Phi h_\Phi$$

By Corollary 7.6,

$$\|m{h}\|_0 = \|m{h}_{\Psi}\|_0 + \|m{h}_{\Phi}\|_0 \ge rac{2}{\mu(m{\Psi},m{\Phi})}$$

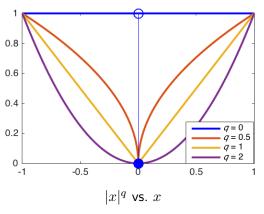
 $\|m{x}^{(1)}\|_0 + \|m{x}^{(2)}\|_0 \geq \|m{h}\|_0 \geq rac{2}{\mu(m{\Psi},m{\Phi})}$ as claimed

Sparse representation via ℓ_1 minimization

Relaxation of the highly discontinuous ℓ_0 norm

Unfortunately, ℓ_0 minimization is computationally intractable ...

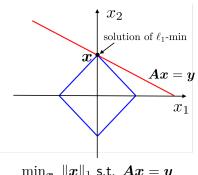
Simple heuristic: replacing ℓ_0 norm with continuous (or even smooth) approximation

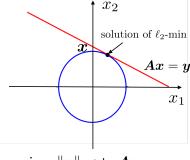


Convexification: ℓ_1 minimization (basis pursuit)

- |x| is the largest convex function less than $\mathbf{1}\{x \neq 0\}$ over $\{x: |x| \leq 1\}$
- ℓ_1 minimization is a linear program (homework)
- ℓ_1 minimization is non-smooth optimization (since $\|\cdot\|_1$ is non-smooth)
- ullet ℓ_1 minimization does not rely on prior knowledge on sparsity level

Geometry





$$\min_{oldsymbol{x}} \|oldsymbol{x}\|_1$$
 s.t. $oldsymbol{A}oldsymbol{x} = oldsymbol{y}$

$$\min_{oldsymbol{x}} \|oldsymbol{x}\|_2$$
 s.t. $oldsymbol{A}oldsymbol{x} = oldsymbol{y}$

- Level sets of $\|\cdot\|_1$ are pointed, enabling it to promote sparsity
- Level sets of $\|\cdot\|_2$ are smooth, often leading to dense solutions

7-37 Sparse representation

Effectiveness of ℓ_1 minimization

Theorem 7.9 (Donoho & Huo '01, Elad & Bruckstein '02)

 $oldsymbol{x} \in \mathbb{C}^p$ is the unique solution to ℓ_1 minimization (7.3) if

$$\|\boldsymbol{x}\|_{0} < \frac{1}{2} \left(1 + \frac{1}{\mu(\boldsymbol{\Psi}, \boldsymbol{\Phi})} \right) \tag{7.4}$$

- ℓ_1 minimization yields the sparse solution too!
- recovery condition (7.4) can be improved to, e.g.,

$$\|oldsymbol{x}\|_0 < rac{0.914}{\mu(oldsymbol{\Psi},oldsymbol{\Phi})}$$
 [Elad & Bruckstein '02]

Effectiveness of ℓ_1 minimization

$$\|m{x}\|_0 < rac{1}{\mu(m{\Psi},m{\Phi})} \quad \Longrightarrow \quad \ell_0$$
 minimization works $\|m{x}\|_0 < rac{0.914}{\mu(m{\Psi},m{\Phi})} \quad \Longrightarrow \quad \ell_1$ minimization works

Recovery condition for ℓ_1 miniization is within a factor of $1/0.914 \approx 1.094$ of the condition derived for ℓ_0 minimization

Proof of Theorem 7.9

We need to show that $||x + h||_1 > ||x||_1$ holds for any other feasible solution x + h. To this end, we proceed as follows

$$\begin{aligned} \|\boldsymbol{x} + \boldsymbol{h}\|_{1} > \|\boldsymbol{x}\|_{1} \\ & \longleftarrow \sum_{i \notin \operatorname{supp}(\boldsymbol{x})} |h_{i}| + \sum_{i \in \operatorname{supp}(\boldsymbol{x})} (|x_{i} + h_{i}| - |x_{i}|) > 0 \\ & \longleftarrow \sum_{i \notin \operatorname{supp}(\boldsymbol{x})} |h_{i}| - \sum_{i \in \operatorname{supp}(\boldsymbol{x})} |h_{i}| > 0 \quad (\operatorname{since} |a + b| - |a| \ge -|b|) \\ & \longleftarrow \|\boldsymbol{h}\|_{1} > 2 \sum_{i \in \operatorname{supp}(\boldsymbol{x})} |h_{i}| \\ & \longleftarrow \sum_{i \in \operatorname{supp}(\boldsymbol{x})} \frac{|h_{i}|}{\|\boldsymbol{h}\|_{1}} < \frac{1}{2} \\ & \longleftarrow \|\boldsymbol{x}\|_{0} \frac{\|\boldsymbol{h}\|_{\infty}}{\|\boldsymbol{h}\|_{1}} < \frac{1}{2} \end{aligned}$$

$$\tag{7.5}$$

Proof of Theorem 7.9 (cont.)

It remains to control $\frac{\|h\|_\infty}{\|h\|_1}$. As usual, due to the feasibility constraint we have $[\Psi,\Phi]h=0$, or

$$m{\Psi}m{h}_{\psi} = -m{\Phi}m{h}_{\phi} \quad \Longleftrightarrow \quad m{h}_{\psi} = -m{\Psi}^*m{\Phi}m{h}_{\phi} \qquad ext{where } m{h} = \left[egin{array}{c} m{h}_{\psi} \ m{h}_{\phi} \end{array}
ight].$$

For any i, the inequality $|{m a}^*{m b}| \leq \|{m a}\|_{\infty} \|{m b}\|_1$ gives

$$|(\boldsymbol{h}_{\psi})_i| = |(\boldsymbol{\Psi}^*\boldsymbol{\Phi})_{\mathsf{row}\ i} \cdot \boldsymbol{h}_{\phi}| \leq \|\boldsymbol{\Psi}^*\boldsymbol{\Phi}\|_{\infty} \cdot \|\boldsymbol{h}_{\phi}\|_1 = \mu(\boldsymbol{\Psi}, \boldsymbol{\Phi}) \cdot \|\boldsymbol{h}_{\phi}\|_1$$

In addition, $\|m{h}_{\psi}\|_1 \geq |(m{h}_{\psi})_i|$. Putting them together yields

$$\|\boldsymbol{h}\|_{1} = \|\boldsymbol{h}_{\phi}\|_{1} + \|\boldsymbol{h}_{\psi}\|_{1} \ge |(\boldsymbol{h}_{\psi})_{i}| \left(1 + \frac{1}{\mu(\boldsymbol{\Psi}, \boldsymbol{\Phi})}\right)$$
 (7.6)

Proof of Theorem 7.9 (cont.)

Similarly, this inequality (7.6) holds if we replace $(h_{\psi})_i$ by $(h_{\phi})_i$. As a consequence,

$$\frac{\|\boldsymbol{h}\|_{\infty}}{\|\boldsymbol{h}\|_{1}} \le \frac{1}{1 + \frac{1}{\mu(\boldsymbol{\Psi}, \boldsymbol{\Phi})}}$$
(7.7)

Finally, if $\|x\|_0 < \frac{1}{2} \left(1 + \frac{1}{\mu(\Psi, \Phi)}\right)$, then this together with (7.7) yields

$$\|m{x}\|_0 \cdot \frac{\|m{h}\|_{\infty}}{\|m{h}\|_1} < \frac{1}{2}$$

as claimed in (7.5), thus concluding the proof

Sparse representation for general dictionaries

Beyond two-ortho case

$$\mathsf{minimize}_{m{x}} \; \| m{x} \|_0 \quad \mathsf{s.t.} \; m{y} = m{A} m{x}$$

What if $A \in \mathbb{C}^{n \times p}$ is a general overcomplete dictionary?

Mutual coherence for arbitrary dictionaries

Definition 7.10 (Mutual coherence)

For any $m{A} = [m{a}_1, \cdots, m{a}_p] \in \mathbb{C}^{n imes p}$, the mutual coherence of $m{A}$ is defined by

$$\mu(\boldsymbol{A}) = \max_{1 \leq i, j \leq p, \ i \neq j} \frac{|\boldsymbol{a}_i^* \boldsymbol{a}_j|}{\|\boldsymbol{a}_i\| \|\boldsymbol{a}_j\|}$$

- If $\|a_i\|_2=1$ for all i, then $\mu(A)$ is the maximum off-diagonal entry (in absolute value) of the Gram matrix $G=A^*A$
- \bullet $\mu(\boldsymbol{A})$ characterizes "second-order" dependency across the atoms $\{\boldsymbol{a}_i\}$
- (Welch bound) $\mu(A) \ge \sqrt{\frac{p-n}{n(p-1)}}$, with equality attained by a family called *Grassmannian frames*

Uniqueness of sparse representation via $\mu(A)$

A theoretical guarantee similar to the two-ortho case

Theorem 7.11 (Donoho & Elad '03, Gribonval & Nielsen '03, Fuchs '04)

If x is a feasible solution that obeys $\|x\|_0 < \frac{1}{2} \left(1 + \frac{1}{\mu(A)}\right)$, then x is the unique solution to both ℓ_0 and ℓ_1 minimization

Tightness?

Suppose p=cn for some constant c>2, then Welch bound gives

$$\mu(\mathbf{A}) \ge 1/\sqrt{2n}$$
.

⇒ for the "most incoherent" (and hence the best possible) dictionary, the recovery condition reads

$$\|\boldsymbol{x}\|_0 = O(\sqrt{n})$$

This says: to recover a \sqrt{n} -sparse signal (and hence \sqrt{n} degrees of freedom), we need an order of n samples

- the measurement burden is way too high!
- mutual coherence might not capture information bottleneck!

Summary

 For many dictionaries, if a signal is representable in a highly sparse manner, then it is often guaranteed to be unique sparse solution

 Seeking a sparse solution often becomes a well-posed question with interesting properties

Reference

- "Sparse and redundant representations: from theory to applications in signal and image processing," M. Elad, Springer, 2010.
- "Uncertainty principles and signal recovery," D. Donoho and P. Stark, SIAM Journal on Applied Mathematics, 1989.
- "Uncertainty principles and ideal atomic decomposition," D. Donoho and X. Huo, IEEE Trans. on Info. Theory, 2001.
- "A generalized uncertainty principle and sparse representation in pairs of bases," M. Elad and A. Bruckstein, IEEE Trans. on Info. Theory, 2002.
- "Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ_1 minimization," D. Donoho, and M. Elad, Proceedings of the National Academy of Sciences, 2003.

Reference

- "High-dimensional data analysis with sparse models: Theory, algorithms, and applications," J. Wright, Y. Ma, and A. Yang, 2018.
- "Sparsity and incoherence in compressive sampling," E. Candes, and J. Romberg, Inverse Problems, 2007.
- "Atomic decomposition by basis pursuit," S. Chen, D. Donoho,
 M. A. Saunders, SIAM review, 2001.
- "On sparse representations in arbitrary redundant bases," J. Fuchs, IEEE Trans. on Info. Theory, 2004.
- "Sparse representations in unions of bases," R. Gribonval, and M. Nielsen, IEEE Trans. on Info. Theory, 2003.