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A case study: solving quadratic systems of equations



Solving quadratic systems of equations
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Recover * € R™ from m random quadratic measurements

ue = (afx*)? k=1,....,m
assume w.l.o.g. ||x*|2 =1
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Motivation: phase retrieval

Detectors record intensities of diffracted rays
e electric field x(t1,t2) — Fourier transform Z( f1, f2)
figure credit: Stanford SLAC

. 2
intensity of electrical field: |E(f1,f2)|2 = ‘/x(tl,b)eﬂzﬂ(fltl+f2t2)dt1dt2
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Motivation: phase retrieval

Detectors record intensities of diffracted rays
e electric field x(t1,t2) — Fourier transform Z( f1, f2)
figure credit: Stanford SLAC

. 2
intensity of electrical field: |E(f1,f2)|2 = ‘/x(tl,tg)eﬂz“(fltl+f2t2)dt1dt2’

Phase retrieval: recover signal z(t1,t2) from intensity |Z(f1, f2)|2 J
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Motivation: learning neural nets with quadratic
activation

— Soltanolkotabi, Javanmard, Lee '17, Li, Ma, Zhang '17
e x
.?\\V 2T~
a .e—»e U———++ LN
./// /—\* o~ output layer
., hidden layer

input layer
input features: a; weights: X* = [z7, -+, x}]

r

output: yzz (a'xF)
i=1
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Motivation: learning neural nets with quadratic
activation

— Soltanolkotabi, Javanmard, Lee '17, Li, Ma, Zhang '17
e x
.V\\V AT~
a .é—@f U———++ LN
.A///’\i 97 output layer
., hidden layer

input layer
input features: a; weights: X* = [z7, -+, x}]
s (Z):ZQ 7
output: y = Z (aTw*) = (axF)?
i=1 i=1
We consider simplest model when » = 1 (higher r is similar)
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An equivalent view: low-rank factorization

Introduce X = x| to linearize constraints
")

T

y = (af2) =al @z )a —  y—alXa
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An equivalent view: low-rank factorization

Introduce X = x| to linearize constraints

T T)

y = (af2) =al @z )a —  y—alXa

! -

find X
s.t. Yp = a;chak, k=1,---,m
rank(X) =1
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An equivalent view: low-rank factorization

Introduce X = x| to linearize constraints

Yk = (akTa:)2 = aZ(mmT)a = Yk = agXak
=lll HEENEEN
| |
| |
| |
B
| |
| |
B
find X
s.t. Yp = a;chak, k=1,---,m

rank(X) =1

Solving quadratic systems is essentially low-rank matrix completion J
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A natural least-squares formulation

given: e = (ajz)? 1<k<m
I
L 1 & 2 2
minimizezere  f(x) = i > [(ak x)” — yk}
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A natural least-squares formulation

given: e = (ajz)? 1<k<m
I
minimizezere  f(x) = L f: {(aTa:)2 — ykr
re dm =~ k

e pros: often exact as long as sample size is sufficiently large
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A natural least-squares formulation

given: e = (ajz)? 1<k<m
I
minimizezere  f(x) = L f: {(aTa:)2 — ykr
re dm =~ k

e pros: often exact as long as sample size is sufficiently large

e cons: f(-) is highly nonconvex
— computationally challenging!
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Wirtinger flow (Candeés, Li, Soltanolkotabi’14)

m 2
minimizeg Z [ :E - yk}

k=1
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Wirtinger flow (Candeés, Li, Soltanolkotabi’14)

minimize, f(x i[ x) _ykr

1
dm =
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PPN e spectral initialization: ° « leading
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Wirtinger flow (Candeés, Li, Soltanolkotabi’14)

minimizeg
///(—_\\\\
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f(= i[ ) _ykr

k=1
e spectral initialization: ° « leading
eigenvector of certain data matrix
e gradient descent:

J’.H_l:wt_nvf(wt)v t:()?l?
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Spectral initialization

0

x” <— leading eigenvector of

1 & -
Y =— Z?/kakak
m=

Rationale: under random Gaussian design a; g N(0,1),

1 m
E[Y]:=E lm > yraral | = ||e* |31 + 2z x*"
k=1

leading eigenvector: +ax*
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Rationale of two-stage approach

0

initial guess x

|
|
|
|
|
|
|
|
basin of attraction I

1. initialize within local basin sufficiently close to x*

(restricted) strongly convex; no saddles / spurious local mins
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Rationale of two-stage approach

0

initial guess x

~

basin of attraction

1. initialize within local basin sufficiently close to x*

(restricted) strongly convex; no saddles / spurious local mins

2. iterative refinement
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A highly incomplete list of two-stage methods

phase retrieval: other problems:
Netrapalli, Jain, Sanghavi’13 Keshavan, Montanari, Oh'09
Candgs, Li, Soltanolkotabi'14 Sun, Luo'14

Chen, Wainwright '15

Tu, Boczar, Simchowitz, Soltanolkotabi, Recht '15
Zheng, Lafferty '15

Balakrishnan, Wainwright, Yu'14
Chen, Suh’'15

Chen, Candés’16

Li, Ling, Strohmer, Wei'16

Yi, Park, Chen, Caramanis'16
Jin, Kakade, Netrapalli'16
Huang, Kakade, Kong, Valiant'16
Ling, Strohmer'17

Li, Ma, Chen, Chi’'18

Aghasi, Ahmed, Hand '17

Lee, Tian, Romberg '17

Li, Chi, Zhang, Liang'17

Cai, Wang, Wei'l7

Abbe, Bandeira, Hall '14

Chen, Kamath, Suh, Tse'16
Zhang, Zhou'17

Boumal '16

Zhong, Boumal'17

Chen, Candés’'15

Cai, Li, Ma'15

Wang, Giannakis, Eldar'16
Zhang, Zhou, Liang, Chi’'16
Kolte, Ozgur'16

Zhang, Chi, Liang'16
Soltanolkotabi '17

Vaswani, Nayer, Eldar’'16

Chi, Lu'16

Wang, Zhang, Giannakis, Akcakaya, Chen'16
Tan, Vershynin'17

Ma, Wang, Chi, Chen’17

Duchi, Ruan'17

Jeong, Gunturk '17

Yang, Yang, Fang, Zhao, Wang, Neykov'17
Qu, Zhang, Wright'17
Goldstein, Studer'16

Bahmani, Romberg '16

Hand, Voroninski'16

Wang, Giannakis, Saad, Chen'17
Barmherzig, Sun'17
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First theory of WF

dist(z!, *) := min{ ||z’ + z*||2}
Theorem 1 (Candes, Li, Soltanolkotabi’14)

Under i.i.d. Gaussian design, WF with spectral initialization achieves

t/2
dist(z!, 2*) < (1 - Z) l|2*|2,

with high prob., provided that step size n < 1/n and sample size:
m 2 nlogn.
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First theory of WF

dist(x!, £*) := min{||z! £ =*||2}

Theorem 1 (Candes, Li, Soltanolkotabi’14)

Under i.i.d. Gaussian design, WF with spectral initialization achieves
t/2
dist(a!, @) < (1 - Z) |2,

with high prob., provided that step size and sample size: .

e lteration complexity: O(nlog %)
e Sample complexity: O(nlogn)

e Derived based on (worst-case) local geometry
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Improved theory of WF

dist(z!, *) := min{ ||z’ + z*||2}
Theorem 2 (Ma, Wang, Chi, Chen’17)
Under i.i.d. Gaussian design, WF with spectral initialization achieves

t
dist(@'. ) 5 (1-7) ol

with high prob., provided that step size n = 1/logn and
sample size m 2 nlogn.

e lteration complexity: O(nlog 1) \, O(lognlog?)
e Sample complexity: O(nlogn)

e Derived based on finer analysis of GD trajectory
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What does optimization theory say about WF?

Gaussian designs: ay NS N(,I,), 1<k<m
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What does optimization theory say about WF?

Gaussian designs: ay NS N(,I,), 1<k<m

Finite-sample level (m < nlogn)

V2f(x) =0 but ill-conditioned (even locally)

condition number < n

Consequence (Candés et al '14): WF attains e-accuracy within
O(nlog ) iterations if m < nlogn

14 /60



Generic optimization theory gives pessimistic bounds

WF converges in O(n) iterations
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Generic optimization theory gives pessimistic bounds

WEF converges in O(n) iterations

i}

Step size taken to be = O(1/n)
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Generic optimization theory gives pessimistic bounds

WEF converges in O(n) iterations

i}

Step size taken to be = O(1/n)

i

This choice is suggested by worst-case optimization theory

]

Does it capture what really happens?
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Numerical efficiency with n, = 0.1

10°

10-10 L

Relative || - || error

1015 | | | I
0 100 200 300 400 500
Iteration count

Vanilla GD (WF) converges fast for a constant step size!

16 /60



A second look at gradient descent theory

Which local region enjoys both strong convexity and smoothness?

m
Z{ ajx)” — agm*)z} apa;

1
oom k=1
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A second look at gradient descent theory

Which local region enjoys both strong convexity and smoothness?

ii{ (ajx)” — aTm*)z} arpa;
m ~ k k k

e Not sufficiently smooth if « and ay are too close (coherent)
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A second look at gradient descent theory

Which local region enjoys both strong convexity and smoothness?

a;

[a] (x — 2| < logn

e x is incoherent w.r.t. sampling vectors {ay} (incoherence region)
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A second look at gradient descent theory

Which local region enjoys both strong convexity and smoothness?

az a

20

T _ a0 < )
‘az(m m)|N\/logn ol (= — )| < v/iogT

e x is incoherent w.r.t. sampling vectors {ay} (incoherence region)
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A second look at gradient descent theory

Which local region enjoys both strong convexity and smoothness?

az a

P

T _ a0 < )
“12 (x —x )| < Vlegn ol (= — )| < v/iogT
e x is incoherent w.r.t. sampling vectors {ay} (incoherence region)

Prior works suggest enforcing regularization (e.g. truncation,
projection, regularized loss) to promote incoherence

17/60



Encouraging message: GD is implicitly regularized

region of local strong convexity + smoothness
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Encouraging message: GD is implicitly regularized

region of local strong convexity + smoothness
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Encouraging message: GD is implicitly regularized

region of local strong convexity + smoothness

GD implicitly forces iterates to remain incoherent with {ay}
maxy |a] (z¢ — x*)| < Viogn||z*|2, Wt

— cannot be derived from generic optimization theory; relies on
finer statistical analysis for entire trajectory of GD
18/60



Theoretical guarantees for local refinement stage

Theorem 3 (Ma, Wang, Chi, Chen’17)
Under i.i.d. Gaussian design, WF with spectral initialization achieves
e maxy |a] z'| < logn ||x*||2 (incoherence)
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Theoretical guarantees for local refinement stage

Theorem 3 (Ma, Wang, Chi, Chen’17)

Under i.i.d. Gaussian design, WF with spectral initialization achieves
e maxy |a] z'| < logn ||x*||2 (incoherence)
o dist(z!,x*) < (1— g)t ||lx*||2 (linear convergence)

provided that step size n < 1/logn and sample size m 2 nlogn.

e Attains ¢ accuracy within O(logn log 1) iterations

19/60



Key proof idea: leave-one-out analysis

For each 1 <[ < m, introduce leave-one-out iterates b0
by dropping Ith measurement

*

A0 ADp* y® = A0z

8

—

20/60



Key proof idea: leave-one-out analysis

a;
{mt,(l)}
0--,\
AS
N
| 4

incoherence region
w.r.t. a;

e Leave-one-out iterate () is independent of a;
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Key proof idea: leave-one-out analysis

a
(i
{at} oo

3
| 4
incoherence region
w.r.t. a;
e Leave-one-out iterate () is independent of a;

e Leave-one-out iterate £t() = true iterate x!
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Key proof idea: leave-one-out analysis

22}
{wt,(l)}
==b.
{z'} \
\
N
| 4
incoherence region
w.r.t. a;

e Leave-one-out iterate () is independent of a;
e Leave-one-out iterate zt() ~ true iterate

= =z is nearly independent of a;

nearly orthogonal to

21/60



No need of sample splitting

e Several prior works use sample-splitting: require fresh samples at
each iteration; not practical but helps analysis

z! 23 5

N\
fresh samples
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No need of sample splitting

e Several prior works use sample-splitting: require fresh samples at
each iteration; not practical but helps analysis

z! 23 5
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Can we further improve sample complexity (to O(n))?



Truncated spectral initialization

To Y ax

1 m
E[Y]:=E [m > ykakaﬂ = |31 + 20*2T
k=1

2

1

1 6000

(m =6n)

k

problem: unless m > n, dangerous to use empirical average
because large observations yj, = (a; #*)? bear too

much influence

24 /60
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Truncated spectral initialization

To Y ax

1 m
E[Y]:=E [m > ykakaﬂ = |31 + 20*2T
k=1

2

1

6000

(m =6n)

1

k

problem: unless m > n, dangerous to use empirical average
because large observations yj, = (a; #*)? bear too

much influence

solution: discard high leverage samples and compute leading
eigenvector of truncated sum
1 m
il T
D UkakaL Ly, <o Ave(ly; )}
my

24/60
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Importance of truncated spectral initialization

Relative error

spectral method

\
truncated épectml method

1000 2000 3000

n: signal dimension

4000

real Gaussian m = 6n

5000

Relative error

spectral method

s fruncated spectral method
|

0.4

0.5 1 15 2 25 3 35
n : signal dimension (105)

complex CDP m = 12n

4
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Importance of truncated spectral initialization

Original image
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Importance of truncated spectral initialization

Spectral initialization
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Importance of truncated spectral initialization

Spectral initialization

Truncated spectral initialization
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Precise asymptotic characterization (Lu, Li’17)

x

om/nxl

e i.i.d. Gaussian design

Fig. credit: Lu, Li’'l7
Theorem 4 (Lu, Li’17, Mondelli, Montanari '17)

There exist analytical formulas p(-) and constants cuyin and aupax S.t.

(CB*TCCO)2 0, if m/n < Qumin
|z~ |I5]|°||3 p(m/n), ifm/n> amax

cosine similarity
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Theoretical prediction vs. simulations

image size: 64 x 64

(a:*Ta:O)2
[EAEHEE

0.8

E

06F |

0.4}

0.2 F

Rademacher
complex Gaussian

0 2 4 6 8 10 12
a=m/n
Fig. credit: Lu, Li'l7
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Improving search directions

WF (GD): z'*! = ' — % %:ka(wt)
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Improving search directions

WF (GD): a'*! =az' — % SV ()

k
g 2
AN [ ]
~ 3
R \ gt
NG
y//// \\\\\\\\
/ /| \\\ Q‘§\\
TN Ry
TR o

X -

locus o;ci{ka (2)}
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Improving search directions

WF (GD): a'*! =az' — % SV ()

WA
locus of {V fr(2)}

Problem: descent direction might have large variability

29/60



Solution: variance reduction via trimming

: C ot ot t
More adaptive rule: '™ =z’ — L5, -V fi(x')
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Solution: variance reduction via trimming
More adaptive rule:

et =t — 15 -V fr(xh)

\\\\\
Y

e 7; trims away excessively large grad components

T = {k: [VAu(@")], < typicalsize{ ||V fula") }1Sl§m}

Slight bias 4+  much reduced variance

30/60



Summary: truncated Wirtinger flow

(1) Regularized spectral initialization: x° < principal component of

1

-
— apa
mzkeﬁyk kCk

(2) Follow adaptive gradient descent

t_ ot t
==z Zlceﬁ V fe(x")

m

Adaptive and iteration-varying rules: discard high-leverage data

{yr k¢ Ti}
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Theoretical guarantees (noiseless data)

—
Q10
initial guess x° 8
! 0]
! >
| : | L2
I I - .
| | O10
| | =
| | o
| | [}
| | ;
| x* : ©
I . . -
| basin of attraction &)mso

20 . 40
Iteration

Theorem 5 (Chen, Candeés'15)

Suppose ay. Hid. N(0, I,,) and sample size m = n. With high prob.,
dist (2!, 2*) := min ||z’ £ 2*[]2 < v (1 —p)"[|=*||2

where 0 < v, p < 1 are universal constants
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Empirical success rate (noiseless data)

1| == TWF
|~ WF

Empirical success rate
o
o

[

I
5n 6n

“m: numbse"r of meagﬁrements (n=1000)

Empirical success rate vs. sample size
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Stability vis a vis noise?



Stability under noisy data

e Noisy data: yx = (a] £*)% +

e Signal-to-noise ratio:

~ Ylafz)t  3mlx*|3
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Stability under noisy data

e Noisy data: yx = (a] £*)% +

e Signal-to-noise ratio:

~ Ylafz)t  3mlx*|3

e i.i.d. Gaussian design ay Hig N(0,1I,)

Theorem 6 (Chen, Candes’15)

Relative error of TWF converges to O(

35/60



Relative MSE vs. SNR (Poisson data)

-20

-25F - m=6n

—“+- m=8n
-~ m=10n

-30F

35}

-40+

-45 V

/

Slop;e = -1

-50 F

551

Relative MSE (dB)

-60

_65 il L L L L L L L
15 20 25 30 35 40 45 50 55

SNR (dB) (n=1000)

Empirical evidence: relative MSE scales inversely with SNR
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This accuracy is nearly un-improvable (empirically)

Comparison with ideal MLE (with phase info. revealed)

ideal knowledge: y; ~ Poisson( \a;x*|2) and ¢, = sign(a, =*)

truncated WF

Little loss due to
missing phases!
" genie-aided MLE

Relative MSE (dB)

15 20 25 30 35 40 45 50 55
SNR (dB) (n=100)
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This accuracy is nearly un-improvable (theoretically)

, ind. 5 .
e Poisson data: y; '~ Poisson( |a, =*|?)
e Signal-to-noise ratio:

- Dk \a{x*]‘l

SNR =~
>k Var(yk)

~ 3|3
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This accuracy is nearly un-improvable (theoretically)

, ind. 5 .
e Poisson data: y; '~ Poisson( |a, =*|?)
e Signal-to-noise ratio:

- Dk \agac*fll

SNR =~
>k Var(yk)

~ 3|3

Theorem 7 (Chen, Candes '15)

Under i.i.d. Gaussian design, for any estimator x,

. E [dist (Z,z*) | {ax}] 1
O * 2 e
@ 24 [|a*||2>loghd m [EaIP VSNR

provided that sample size m =< n
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Other examples: low-rank matrix estimation
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Low-rank matrix completion

Problem: complete a rank-r matrix M from partial entries: M ;,
(i,j) € Q
e random sampling: (i,7) is included in € independently with
prob. p

find low-rank M st. Pq(M) = Po(M) J

40 /60



Low-rank matrix completion

Problem: complete a rank-r matrix M from partial entries: M ;,
(i,j) € Q
e random sampling: (i,7) is included in € independently with
prob. p

find low-rank M st. Pq(M) = Po(M) J

Strong convexity and smoothness do not hold in general

— need to regularize loss function by promoting incoherent
solutions

40 /60



Incoherence for matrix completion

Definition 8 (Incoherence for matrix completion)

A rank-r matrix M with eigendecomposition M = UXU | is said to

T pr
<. /= = /=
Ul oo <4/ MU Nle =4/

be p-incoherent if

O =
o O
o O

eg.,
0 00

hard p=n

1 11 1

1 11 1

111 1
easy p=1

41/60



Gradient descent for matrix completion

Let M = X*X*". Observe
Yij=M;+E;; (i,j) €

where (i,7) € Q independently with prob. p, and E; j ~ N(0,0?)?

—

minimizeHqu(]\//I — Y)H; s.t. rank(M) <r

can be relaxed to sub-Gaussian noise and the asymmetric case
42/60



Gradient descent for matrix completion

Let M = X*X*". Observe
Yij=M;+E;; (i,j) €

where (i,7) € Q independently with prob. p, and E; j ~ N(0,0?)?

o~

minimizeHqu(]\//I — Y)H; s.t. rank(M) <r

minimize x cgnxr  f(X) = Z (GIXXTek:—Yj,k)Q

(4,k)eQ

unregularized least-squares loss

can be relaxed to sub-Gaussian noise and the asymmetric case
42/60



Gradient descent for matrix completion

. spectral initialization: let U°X°U°T be rank-r

eigendecomposition of

;;T%)(}’).

and set X0 = U° (£0)/2

. gradient descent updates:

X = Xt VXY, t=0,1,---

43 /60



Gradient descent for matrix completion

Define the optimal rotation from the tth iterate X! to X* as

X'R—- X*

Q' = argmin georxr | HF

where O"*" is the set of r x 7 orthonormal matrices

e orthogonal Procrustes problem

44 /60



Gradient descent for matrix completion

Theorem 9 (Noiseless MC, Ma, Wang, Chi, Chen’17)

Suppose M = X*X*T is rank-r, incoherent and well-conditioned.
Vanilla GD (with spectral initialization) achieves

QX e S
o | X'Q'—X*| < p,ur ||X* ,

(spectral)

o | X'Q' - X",  Sp um/%HX*HQ,OO, (incoherence)
where 0 < p < 1, if the step size n < 1/0pq: and the sample
complexity n®p > p*nrlog3n

45 /60




Gradient descent for matrix completion

Theorem 9 (Noiseless MC, Ma, Wang, Chi, Chen’17)

Suppose M = X*X*T is rank-r, incoherent and well-conditioned.
Vanilla GD (with spectral initialization) achieves

QX e S
o | X'Q'—X*| < p,ur ||X* ,

(spectral)

o | X'Q' - X",  Sp um/%HX*HQ,OO, (incoherence)
where 0 < p < 1, if the step size n < 1/0pq: and the sample
complexity n®p > p*nrlog3n

e vanilla GD converges linearly for matrix completion!
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Numerical evidence for noiseless data

10° T T T T
——relative || - ||p error
relateive || - || error
relative || - || error
5L
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Relative error of X' X'T (measured by ||||lp, [|], [|-Ilo,) Vvs. iteration
count for matrix completion, where n = 1000, r = 10, p = 0.1, and
Nt = 0.2
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Related theory

minimize x cgnxr  f(X) = Z (GJ—XXTek:_Yj,k)Q
(J,k)€Q

Related theory promotes incoherence explicitly:
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Related theory promotes incoherence explicitly:

e regularized loss (solve minx f(X) + Q(X) instead)

o e.g. Keshavan, Montanari, Oh '10, Sun, Luo '14, Ge, Lee, Ma '16
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Related theory

minimizexcgnxr  f(X) = Y (e;—XXTek - Y]k)2
(4,k)eQ
Related theory promotes incoherence explicitly:

e regularized loss (solve minx f(X) + Q(X) instead)
o e.g. Keshavan, Montanari, Oh '10, Sun, Luo '14, Ge, Lee, Ma '16

e projection onto set of incoherent matrices
o e.g. Chen, Wainwright '15, Zheng, Lafferty '16

Xt =P (X' = Vf(XY)), t=0,1,---
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Are carefully-designed initialization or saddle-point escaping
schemes necessary for fast convergence?



Initialization

spectral 3
initialization|

e Spectral initialization gets us reasonably close to truth
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Initialization

saddle points

spectral
initializationf =

e Spectral initialization gets us reasonably close to truth

e Cannot initialize GD from anywhere, e.g. it might get stucked at
local stationary points (e.g. saddle points)
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Initialization

saddle points

spectral
initialization|

random
initialization
e Spectral initialization gets us reasonably close to truth

e Cannot initialize GD from anywhere, e.g. it might get stucked at
local stationary points (e.g. saddle points)

Can we initialize GD randomly, which is simpler and model—agnostic?J
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Numerical efficiency of randomly initialized GD

n = 0.1, a; ~N(0,1,), m = 10n, z° ~ N (0,n"11,)
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Numerical efficiency of randomly initialized GD

n = 0.1, a; ~N(0,1,), m = 10n, z° ~ N (0,n"11,)

Stage 1

relative {9 error
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Randomly initialized GD enters local basin within a few iterations J
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Numerical efficiency of randomly initialized GD

n = 0.1, a; ~N(0,1,), m = 10n, z° ~ N (0,n"11,)
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t : iteration count

Randomly initialized GD enters local basin within a few iterations J
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A geometric analysis

e if m > nlog®n, then (Sun et al.'16)

o there is no spurious local mins

o all saddle points are strict (i.e. associated Hessian matrices have
at least one sufficiently negative eigenvalue)
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A geometric analysis

e With such benign landscape, GD with random initialization
converges to global min almost surely (Lee et al. '16)

No convergence rate guarantees for vanilla GD!
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Exponential growth of signal strength in Stage 1

relative {5 error
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Exponential growth of signal strength in Stage 1

relative o error  |(x!,x*)| : signal component
1 1
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vl v
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—o—dist(z, 2%) (n = 500)
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t : iteration count

Numerically, O(logn) iterations are enough to enter local region J
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Linear / geometric convergence in Stage 2
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Linear / geometric convergence in Stage 2

A

linear (;onvergence

relative ¢y error

5 n = 100
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0 50 100 150 200
t : iteration count

Numerically, GD converges linearly within local region
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Theoretical guarantees for randomly initialized GD

These numerical findings can be formalized when a; "~

N(0,1I,,):

Theorem 10 (Chen, Chi, Fan, Ma’18)

Under i.i.d. Gaussian design, GD with " ~ N'(0,n~1I,,) achieves
dist(z',2) <y(1—p)" D22 2T,

for T’y < logn and some constants -y, p > 0, provided that step size
n =< 1 and sample size m 2 n polylogm
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Theoretical guarantees for randomly initialized GD

dist(x?, 2*) < y(1 — p)"" T ||x* |2, t > Ty <logn )

relative /o error
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Theoretical guarantees for randomly initialized GD

dist(x?, 2*) <v(1 — )" ||x* |2, t> T, =< logn )

O(logn)
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relative /o error
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e Stage 1: takes O(logn) iterations to reach dist(z!, z*) < v
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Theoretical guarantees for randomly initialized GD

dist(x?, 2*) <~v(1 — p)"" T ||x* |2, t>Ty <logn )

O(logn) O(log?)

10° ?

relative /o error
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1077 n = 200
—n =500
n = 800
n = 1000

0 50 100 150 200
t : iteration count

e Stage 1: takes O(logn) iterations to reach dist(z!, z*) < v
e Stage 2: linear convergence
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Theoretical guarantees for randomly initialized GD

dist(x?, 2*) < y(1 — p)"" T ||x* |2, t > Ty <logn J

O(logn) O(log?)
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relative /o error
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e near-optimal compututational cost:
— O(logn + log %) iterations to yield £ accuracy
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Theoretical guarantees for randomly initialized GD

dist(x?, 2*) < y(1 — p)"" T ||x* |2, t > Ty <logn )

O(logn) O(log?)

10° ?

relative /o error

5| —n=10
1077 n = 200
—n =500
n = 800
n = 1000

0 50 100 150 200
t : iteration count

e near-optimal compututational cost:
— O(logn + log %) iterations to yield £ accuracy

e near-optimal sample size: m 2 npoly logm
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Saddle-escaping schemes?
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Randomly initialized GD never hits saddle points in phase retrieval! J
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Other saddle-escaping schemes

iteration num of iterations needed | local iteration
complexity to escape saddles complexity
Trust-region 7 1 7 1
(Sun et al. '16) n' +loglog - n log log ¢
Perturbed GD 3 1 3 Bl
(Jin et al. '17) n° +nlog ¢ n nlog -
Perturbed accelerated
GD n%® +/nlog 1 n25 Vnlogl
(Jin et al. '17)
GD
log log 1 logn log L
(Chen et al. '18) ogn +log; g™ o8¢

Generic optimization theory yields highly suboptimal convergence
guarantees
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