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Nonconvex estimation problems are everywhere

Empirical risk minimization is usually nonconvex

minimize;,  f(x;data) —  loss function may be nonconvex
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Nonconvex estimation problems are everywhere

Empirical risk minimization is usually nonconvex

minimize;  f(ax;data) —  loss function may be nonconvex

low-rank matrix completion

blind deconvolution

dictionary learning

e mixture models

deep learning
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Nonconvex optimization may be super scary

e.g. 1-layer neural net (Auer, Herbster, Warmuth '96; Vu '98)
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Example: solving quadratic programs is hard

Finding maximum cut in a graph is about solving a quadratic program

maximize ' Wz

subj. to x?zl, i=1,---,n
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Example: solving quadratic programs is hard
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"I can't find an efficient algorithm, but neither can all these people.”

figure credit: coding horror
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One strategy: convex relaxation

Can relax into convex problems by

e finding convex surrogates (e.g. matrix completion)

e lifting into higher dimensions (e.g. Max-Cut)
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Example of convex surrogate: matrix completion
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figure credit: Candés et al.

Netflix challenge

Predict unseen
ratings
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Low-rank modeling
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A few factors explain most of the data
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Low-rank modeling
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figure credit: E. Candés
A few factors explain most of the data —— low-rank approximation

How to exploit (approx.) low-rank structure in prediction?
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Example of convex surrogate: matrix completion

— Fazel '02, Recht, Parrilo, Fazel '10, Candes, Recht'09

minimizeps rank(M) subj. to data constraints

ﬂ CvX surrogate
minimizeps nuc-norm (M) subj. to data constraints
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Example of convex surrogate: matrix completion

— Fazel '02, Recht, Parrilo, Fazel '10, Candes, Recht'09

minimizeps rank(M) subj. to data constraints

@ CvX surrogate
minimizeps nuc-norm (M) subj. to data constraints

robust variation used by Netflix
— Candes, Li, Ma, Wright '10
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Example of convex surrogate: matrix completion

— Fazel '02, Recht, Parrilo, Fazel '10, Candes, Recht'09

minimizeps rank(M) subj. to data constraints

ﬂ CvX surrogate
minimizeps nuc-norm (M) subj. to data constraints

robust variation used by Netflix
— Candes, Li, Ma, Wright '10

Problem: operate in full matrix space even though X is low-rank J
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Example of lifting: Max-Cut

— Goemans, Williamson '95

maximize, ' Wz

subj. to  2?=1, i=1,---,n
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Example of lifting: Max-Cut

maximize,,

subj. to

maximize x

subj. to

— Goemans, Williamson '95
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Example of lifting: Max-Cut

maximize,,

subj. to

maximize x

subj. to

— Goemans, Williamson '95

@ let X be zx '

(X,w)

X;=1, i=1,,n
X >0

rank(X )=t
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Example of lifting: Max-Cut

— Goemans, Williamson '95

maximize, ' Wz

subj. to 2=1 i=1,--,n

@ let X be zx '

maximize x (X, W)
subj. to X;i=1 i=1---,n
X >0
rank(X )=t

Problem: explosion in dimensions (R"” — R"*") J
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How about optimizing nonconvex problems directly
without lifting?

10/33



Nonconvex problems are solved on a daily basis via simple algorithms
like (stochastic) gradient descent

How come simple nonconvex algorithms work so well in practice?
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Statistical models come to rescue

statistical models

\ 4

benign
landscape

§

tractable algorithms

When data are generated by certain statistical models, problems are
often much nicer than worst-case instances
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Sometimes they are much nicer than we think

Under certain statistical models,
we see benign global geometry: no spurious local optima

global minimum saddle point
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Even the simplest possible nonconvex methods
might be remarkably efficient under suitable statistical models
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Nonconvex optimization with guarantees
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“Nonconvex Optimization Meets Low-Rank Matrix Factorization: An
Overview,” Y. Chi, Y. M. Lu, and Y. Chen, IEEE Trans. on Signal
Processing, vol. 67, no. 20, pp. 5239-5269, 2019.
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Some preliminaries of optimization



Unconstrained optimization

Consider an unconstrained optimization problem
minimize, f(x)

Definition 1 (first-order critical points)

A first-order critical point of f satisfies

Vf(x)=0
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Unconstrained optimization

Consider an unconstrained optimization problem

minimize, f(x)

Definition 2 (second-order critical points)

A second-order critical point @ satisfies

Vi(x)=0 and VZf(z)>=0
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Several types of critical points

For any first-order critical point :

o V2f(x) <0 —  local maximum
o Vif(x) -0 —  local minimum
e \uin(V2f(x)) <0 —  strict saddle point
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(a) strict saddle (b) local minimum (c) global minimum

figure credit: Li et al. '16
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Gradient descent theory

Two standard conditions that enable geometric convergence of GD
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Gradient descent theory

Two standard conditions that enable geometric convergence of GD

e (local) restricted strong convexity (or regularity condition)
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Gradient descent theory

Two standard conditions that enable geometric convergence of GD

e (local) restricted strong convexity (or regularity condition)

e (local) smoothness

V2f(z) =0 and is well-conditioned
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Gradient descent theory revisited

f is said to be a-strongly convex and $-smooth if

0 < ol = V3f(x) < BI, Vax
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Gradient descent theory revisited

f is said to be a-strongly convex and B-smooth if

0 < ol < V3f(x) < BI, Vx

{5 error contraction: GD (z'*! =z — nV f(2')) with n =1/
obeys “
o~ anlle < (1= 5) l12' = @onel

e Condition number 3/« determines rate of convergence
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Gradient descent theory revisited

f is said to be a-strongly convex and B-smooth if

0 < ol < V3f(x) < BI, Vx

{5 error contraction: GD (z'*! =z — nV f(2')) with n =1/
obeys “
o~ anlle < (1= 5) l12' = @onel

e Condition number 3/« determines rate of convergence

e Attains e-accuracy within O(Z log 1) iterations

«
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Regularity Condition (RC)

f(=)

Topt =0

Definition 3 (Regularity Condition (RC))
g(-) is said to obey RC(u, A, ¢) for some p, A\, > 0 if

2(g(x),x — $0pt> > MHQ(CB)H% + Az — 330pt||§ Va
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Convergence under RC

e g(-): more general search directions
o example: in vanilla GD, g(x) = Vf(x)
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Convergence under RC

/5 error contraction: The update rule (‘! = 2! — ng(x!)) with
1 = p obeys

it — Topt|l2 < (1 — p) |2" — Topt|2

e g(-): more general search directions
o example: in vanilla GD, g(z) = V f(x)

e The product p\ determines the rate of convergence
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Convergence under RC

/5 error contraction: The update rule (‘! = 2! — ng(x!)) with
1 = p obeys

it — Topt|l2 < (1 — p) |2" — Topt|2

e g(-): more general search directions
o example: in vanilla GD, g(z) = V f(x)

e The product p\ determines the rate of convergence

e Attains e-accuracy within O(M log 1) iterations
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RC = one-point strong convexity + smoothness

e One-point a-strong convexity:

f (@opt) = (@) 2 (VF (@), wopr — @) + 5 [l — wopel3 (1)

e [-smoothness:

f(oam) — (@) < f(2 = 5VI(@)) - f(@)

< (9760, Lo} + 2l dvseo]

1
Ry IV £ ()3 (2)
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RC = one-point strong convexity + smoothness

Combining (1) and (2) yields

1
(Vf(®), 2 = 2opt) > gHw—fﬂopt\lgﬂL%HVf(f'J)Hg (3)

2
— RC holds with ;1 =1/ and A\ = «
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A toy example: rank-1 matrix factorization
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Revisiting PCA
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Given M > 0 € R™*™ (not necessarily low-rank), find its best rank-r
approximation:

M = argming ||Z — M|% st rank(Z)<r

nonconvex optimization!
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Revisiting PCA
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This problem admits a closed-form solution

o let M =537, )\,u,ulT be eigen-decomposition of M
(A1 =+ > A\p), then

r
M =>" Nuu,
i=1

— nonconvex, but tractable
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Optimization viewpoint

If we factorize Z = X X | with X € R™ ", then it leads to a
nonconvex problem:

1
minimize x cgnxr  f(X) = i||XX—r — M|}

To simplify exposition, set r = 1:

1
minimize, f(x) = 1||:chac—r — M]3
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Questions

1
minimize, f(x) = 1||a:a:—r — M|}

e Where /what are the critical points?

e What does the curvature behave like, at least locally around the
global minimizer?
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Critical points of f(-)

x is a critical point, i.e. Vf(z) = (zx' — M)z =0

)

Mz = ||z|3=

)

x aligns with an eigenvectorof M or x =0

Since Mu; = \;u;, the set of critical points is given by

{oyu{tvNu;, i=1,...,n}
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Categorization of critical points

The critical points can be further categorized based on the Hessians:
V2f(z) :=2zz' +|z|3] - M
e For any non-zero critical point o, = £/ Apuy:

VQf(ack) = 2)\kuku; + /\kI - M

n n
= 2)\kukug + Ak <Z um?) — Z )\ZuzulT
i=1 i=1

= Z ()\k — )\l)uzu: + 2)\kuku;
ik
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Categorization of critical points

The critical points can be further categorized based on the Hessians:

Vif(x) = 2zxx" + ||x|3] — M

e lf Ay >Xo>...> )\, >0, then
o Vif(z1) =0 —  local minima

o l<k<n: )\min(VQf(mk)) <0, )\maX(VQf(mk)) >0
—  strict saddle

ox=0: V2f(0)=—-M <0 — local maxima
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Good news: benign landscape

2
For example, for 2-dimensional case f(x) =

x| — E ﬂ
F
169 = e - 117

<2

0
1 -

-1

— No “spurious” local minima!

global minima: = = + E] strict saddles: © = {8] and + [ 1 ]
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Local strong convexity and local linear convergence

e The global minimizers: xop: = v/ A1uq

e For all « obeying ||z one has

~ Tl < 222
opt||2 > 15@.

basin of attraction

0.25(A\1 — M) I, < V2f(x) < 4.5M1,
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Local strong convexity and local linear convergence

e The global minimizers: xop: = v/ A1uq
Al — Ao
x < ——=, one has
o2 < 15v/ 0

basin of attraction

e For all « obeying ||z —

0.25(A\1 — M) I, < V2f(x) < 4.5M1,

fo error contraction: The GD iterates obey

o~ Vvl < (1= 2222) o — R, 02

18\

as long as [|£° — v Ajuq |2 < ﬁ
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Two vignettes

Two-stage approach:

2

basin of attraction

smart initialization

_/_
local refinement
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basin of attraction

smart initialization

_/_
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benign landscape
_/_
saddle-point escaping
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Two vignettes

Two-stage approach: Global landscape:

2d -7
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basin of attraction

smart initialization

_/_
local refinement

benign landscape
_/_
saddle-point escaping

This lecture focuses mainly on the two-stage approach
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Global landscape

Benign landscape:

e all local minima = global minima

e other critical points = strict saddle points

Saddle-point escaping algorithms:

e trust-region methods

perturbed gradient descent
perturbed SGD

cubic-regularization

Check the recent overview: Zhang, Qu, Wright “From Symmetry to
Geometry: Tractable Nonconvex Problems”
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