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Recap: matrix Bernstein inequality

Consider a sequence of independent random matrices
{
Xl ∈ Rd1×d2

}
• E[Xl] = 0 • ‖Xl‖ ≤ B for each l

• variance statistic:

v := max
{∥∥∥E [∑

l
XlX

>
l

]∥∥∥ , ∥∥∥E [∑
l
X>l Xl

]∥∥∥}

Theorem 3.1 (Matrix Bernstein inequality)

For all τ ≥ 0,

P
{∥∥∥∑

l
Xl

∥∥∥ ≥ τ} ≤ (d1 + d2) exp
(
−τ2/2

v +Bτ/3

)
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Recap: matrix Bernstein inequality
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This lecture: detailed introduction of matrix Bernstein

An introduction to matrix concentration inequalities
— Joel Tropp ’15



Outline

• Matrix theory background

• Matrix Laplace transform method

• Matrix Bernstein inequality

• Application: random features
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Matrix theory background



Matrix function

Suppose the eigendecomposition of a symmetric matrix A ∈ Rd×d is

A = U

 λ1
. . .

λd

U>

Then we can define

f(A) := U

 f(λ1)
. . .

f(λd)

U>
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Examples of matrix functions

• Let f(a) = c0 +
∑∞
k=1 cka

k, then

f(A) := c0I +
∞∑
k=1

ckA
k

• matrix exponential: eA := I +
∑∞
k=1

1
k!A

k (why?)
◦ monotonicity: if A �H, then tr eA ≤ tr eH

• matrix logarithm: log(eA) := A

◦ monotonicity: if 0 � A �H, then logA � log(H)
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Matrix moments and cumulants

Let X be a random symmetric matrix. Then
• matrix moment generating function (MGF):

MX(θ) := E[eθX ]

• matrix cumulant generating function (CGF):

ΞX(θ) := logE[eθX ]
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Matrix Laplace transform method



Matrix Laplace transform

A key step for a scalar random variable Y : by Markov’s inequality,

P {Y ≥ t} ≤ inf
θ>0

e−θt E
[
eθY

]

This can be generalized to the matrix case
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Matrix Laplace transform

Lemma 3.2

Let Y be a random symmetric matrix. For all t ∈ R,

P {λmax(Y ) ≥ t} ≤ inf
θ>0

e−θt E
[
tr eθY

]
• can control the extreme eigenvalues of Y via the trace of the

matrix MGF
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Proof of Lemma 3.2

For any θ > 0,

P {λmax(Y ) ≥ t} = P
{

eθλmax(Y ) ≥ eθt
}

≤ E[eθλmax(Y )]
eθt (Markov’s inequality)

= E[eλmax(θY )]
eθt

= E[λmax(eθY )]
eθt (eλmax(Z) = λmax(eZ))

≤ E[tr eθY ]
eθt

This completes the proof since it holds for any θ > 0
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Issues of the matrix MGF

The Laplace transform method is effective for controlling an
independent sum when MGF decomposes
• in the scalar case where X = X1 + · · ·+Xn with independent
{Xl}:

MX(θ) = E[eθX1+···+θXn ] = E[eθX1 ] · · ·E[eθXn ] =
n∏
l=1

MXl
(θ)︸ ︷︷ ︸

look at each Xl separately

Issues in the matrix settings:

eX1+X2 6= eX1eX2 unless X1 and X2 commute

tr eX1+···+Xn � tr eX1eX1 · · · eXn
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Subadditivity of the matrix CGF

Fortunately, the matrix CGF satisfies certain subadditivity rules,
allowing us to decompose independent matrix components

Lemma 3.3

Consider a finite sequence {Xl}1≤l≤n of independent random
symmetric matrices. Then for any θ ∈ R,

E
[
tr eθ

∑
l
Xl

]
︸ ︷︷ ︸
tr exp

(
ΞΣlXl

(θ)
) ≤ tr exp

(∑
l
logE

[
eθXl

])
︸ ︷︷ ︸

tr exp
(∑

l
ΞXl

(θ)
)

• this is a deep result — based on Lieb’s Theorem!
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Lieb’s Theorem

Elliott Lieb

Theorem 3.4 (Lieb ’73)

Fix a symmetric matrix H. Then

A 7→ tr exp(H + logA)

is concave on positive-semidefinite cone

Lieb’s Theorem immediately implies (exercise: Jensen’s inequality)

E
[
tr exp(H + X)

]
≤ tr exp

(
H + logE

[
eX
])

(3.1)
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Proof of Lemma 3.3

E
[
tr eθ

∑
l
Xl
]

= E
[
tr exp

(
θ
∑n−1

l=1
Xl + θXn

)]
≤ E

[
tr exp

(
θ
∑n−1

l=1
Xl + logE

[
eθXn

])]
(by (3.1))

≤ E
[
tr exp

(
θ
∑n−2

l=1
Xl + logE

[
eθXn−1

]
+ logE

[
eθXn

])]
≤ · · ·

≤ tr exp
(∑n

l=1
logE

[
eθXl

])
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Master bounds

Combining the Laplace transform method with the subadditivity of
CGF yields:

Theorem 3.5 (Master bounds for sum of independent matrices)

Consider a finite sequence {Xl} of independent random symmetric
matrices. Then

P
{
λmax

(∑
l
Xl

)
≥ t
}
≤ inf

θ>0

tr exp
(∑

l logE[eθXl ]
)

eθt

• this is a general result underlying the proofs of the matrix
Bernstein inequality and beyond (e.g. matrix Chernoff)
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Matrix Bernstein inequality



Matrix CGF

P
{
λmax

(∑
l
Xl

)
≥ t
}
≤ inf

θ>0

tr exp
(∑

l logE[eθXl ]
)

eθt

To invoke the master bound, one needs to control the matrix CGF︸ ︷︷ ︸
main step for proving matrix Bernstein
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Symmetric case

Consider a sequence of independent random symmetric matrices{
Xl ∈ Rd×d

}
• E[Xl] = 0 • λmax(Xl) ≤ B for each l

• variance statistic: v :=
∥∥E [∑lX

2
l

]∥∥
Theorem 3.6 (Matrix Bernstein inequality: symmetric case)

For all τ ≥ 0,

P
{
λmax

(∑
l
Xl

)
≥ τ

}
≤ d exp

(
−τ2/2

v +Bτ/3

)
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Bounding matrix CGF

For bounded random matrices, one can control the matrix CGF as
follows:

Lemma 3.7

Suppose E[X] = 0 and λmax(X) ≤ B. Then for 0 < θ < 3/B,

logE
[
eθX

]
� θ2/2

1− θB/3E[X2]
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Proof of Theorem 3.6

Let g(θ) := θ2/2
1−θB/3 , then it follows from the master bound that

P
{
λmax

(∑
i
Xi
)
≥ t
}
≤ inf

θ>0

tr exp
(∑n

i=1 logE[eθXi ]
)

eθt
Lemma 3.7
≤ inf

0<θ<3/B

tr exp
(
g(θ)

∑n
i=1 E[X2

i ]
)

eθt

≤ inf
0<θ<3/B

d exp
(
g(θ)v

)
eθt

Taking θ = t
v+Bt/3 and simplifying the above expression, we establish

matrix Bernstein
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Proof of Lemma 3.7
Define f(x) = eθx−1−θx

x2 , then for any X with λmax(X) ≤ B:

eθX = I + θX +
(
eθX − I − θX

)
= I + θX + X · f(X) ·X

� I + θX + f(B) ·X2

In addition, we note an elementary inequality: for any 0 < θ < 3/B,

f(B) = eθB − 1− θB
B2 = 1

B2

∞∑
k=2

(θB)k

k! ≤ θ2

2

∞∑
k=2

(θB)k−2

3k−2 = θ2/2
1− θB/3

=⇒ eθX � I + θX + θ2/2
1− θB/3 ·X

2

Since X is zero-mean, one further has

E
[
eθX

]
� I + θ2/2

1− θB/3E[X2] � exp
(

θ2/2
1− θB/3E[X2]

)
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Application: random features



Kernel trick

A modern idea in machine learning: replace the inner product by
kernel evaluation (i.e. certain similarity measure)

Advantage: work beyond the Euclidean domain via task-specific
similarity measures
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Similarity measure

Define the similarity measure Φ
• Φ(x,x) = 1

• |Φ(x,y)| ≤ 1

• Φ(x,y) = Φ(y,x)

Example: angular similarity

Φ(x,y) = 2
π

arcsin 〈x,y〉
‖x‖2‖y‖2

= 1− 2∠(x,y)
π
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Kernel matrix

Consider N data points x1, · · · ,xN ∈ Rd. Then the kernel matrix
G ∈ RN×N is

Gi,j = Φ(xi,xj) 1 ≤ i, j ≤ N

• Kernel Φ is said to be positive semidefinite if G � 0 for any {xi}

Challenge: kernel matrices are usually large
• cost of constructing G is O(dN2)

Question: can we approximate G more efficiently?
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Random features

Introduce a random variable w and a feature map ψ such that

Φ(x,y) = Ew[ψ(x;w) · ψ(y;w)︸ ︷︷ ︸
decouple x and y

]

• example (angular similarity)

Φ(x,y) = 1− 2∠(x,y)
π

= Ew[sgn〈x,w〉 · sgn〈y,w〉]︸ ︷︷ ︸
Grothendieck’s identity

(3.2)

with w uniformly drawn from the unit sphere

• this results in a random feature vector

z =

 z1
...
zN

 =

 ψ(x1;w)
...

ψ(xN ;w)


◦ zz>︸︷︷︸

rank 1

is an unbiased estimate of G, i.e. G = E[zz>]
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Example

Angular similarity:

Φ(x,y) = 1− 2∠(x,y)
π

= Ew [sign〈x,w〉 sign〈y,w〉]

where w is uniformly drawn from the unit sphere

As a result, the random feature map is ψ(x,w) = sign〈x,w〉
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Random feature approximation

Generate n independent copies of R = zz>, i.e. {Rl}1≤l≤n

Estimator of the kernel matrix G:

Ĝ = 1
n

n∑
l=1

Rl

Question: how many random features are needed to guarantee
accurate estimation?
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Statistical guarantees for random feature
approximation

Consider the angular similarity example (3.2):
• To begin with,

E[R2
l ] = E[zz>zz>] = NE[zz>] = NG

=⇒ v =
∥∥∥ 1
n2

∑n

l=1
E[R2

l ]
∥∥∥ = N

n
‖G‖

• Next, 1
n‖R‖ = 1

n‖z‖
2
2 = N

n =: B

• Applying the matrix Bernstein inequality yields: with high prob.

‖Ĝ−G‖ .
√
v logN +B logN .

√
N

n
‖G‖ logN + N

n
logN

.

√√√√N

n
‖G‖︸︷︷︸
≥1

logN (for sufficiently large n)
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Sample complexity

Define the intrinsic dimension of G as

intdim(G) = trG
‖G‖

= N

‖G‖

If n & ε−2intdim(G) logN , then we have

‖Ĝ−G‖
‖G‖

≤ ε
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