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Recap: matrix Bernstein inequality

Consider a sequence of independent random matrices { X; € R%1*d2}
e E[X;]=0 e | X;|| < B for each [

e variance statistic:

v := max {HE {Zl XleT} E [Zl XZTXZ} H}

)

Theorem 3.1 (Matrix Bernstein inequality)

For all 7 > 0,

p{|S | 2 7} < (dh + da)eso (13/2/3>
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Recap: matrix Bernstein inequality

exponential tail exponential tail

1 Gaussian tail
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This lecture: detailed introduction of matrix Bernstein

An introduction to matrix concentration inequalities
— Joel Tropp '15
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Matrix theory background



Matrix function

Suppose the eigendecomposition of a symmetric matrix A € R4*? is

A1
A=U U’
Ad

Then we can define

f(A):=U U’
f(Aa)
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Examples of matrix functions

e Let f(a) =co+ >3, cxak, then
f(A) == col + ) cp A
k=1

e matrix exponential: e/ := T+ 3%, LA*  (why?)
o monotonicity: if A < H, then tre? < treH

e matrix logarithm: log(e?) := A
o monotonicity: if 0 < A < H, then log A < log(H)
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Matrix moments and cumulants

Let X be a random symmetric matrix. Then

e matrix moment generating function (MGF):
Mx (0) := E[eX]
e matrix cumulant generating function (CGF):

Ex(0) := log E[e?X]
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Matrix Laplace transform method



Matrix Laplace transform

A key step for a scalar random variable Y: by Markov's inequality,

P{Y >t} < infe ' E[?Y
(Y=t} < inf ™" E[e™]

This can be generalized to the matrix case
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Matrix Laplace transform

Lemma 3.2

Let'Y be a random symmetric matrix. For allt € R,

P{A\max(Y) >t} < inf e M E[trefY]
>

e can control the extreme eigenvalues of Y via the trace of the
matrix MGF
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Proof of Lemma 3.2

For any 6 > 0,

P{Amax(Y) Z t} ) {egAmax(Y) Z e@t}
E[ee)\max(Y)]
e@t
E[e)\max(eY)]
e@t

IE/\max eGY
I R

< (Markov's inequality)

E[trefY]

<
=T 0

This completes the proof since it holds for any 8 > 0
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Issues of the matrix MGF

The Laplace transform method is effective for controlling an
independent sum when MGF decomposes

e in the scalar case where X = X; + .- + X,, with independent

{Xu}:
My (6) = B[+ 0%0] = B[] . B[e?] H My, (6
%,_/
look at each X separately

Issues in the matrix settings:

eX1+X2 ?é 6X16X2 unless X7 and X5 commute

Xn

tr X1t Xn % treXteX1.. ¢
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Subadditivity of the matrix CGF

Fortunately, the matrix CGF satisfies certain subadditivity rules,
allowing us to decompose independent matrix components

Lemma 3.3

Consider a finite sequence { X;}1<;<, of independent random
symmetric matrices. Then for any 0 € R,

E[tr of Ez Xl] < trexp (Zl 10gE[eeXl])

tr exp (E‘.glxl (9)) tr exp (Zz Ex, (9))

e this is a deep result — based on Lieb’s Theorem!
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Lieb’s Theorem

Theorem 3.4 (Lieb’73)

Fix a symmetric matrix H. Then

A — trexp(H +log A)

is concave on positive-semidefinite cone

v

Elliott Lieb

Lieb's Theorem immediately implies (exercise: Jensen's inequality)

Etrexp(H + X)] < trexp (H + log E[eX]) (3.1)
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Proof of Lemma 3.3

E[tre? %) = Eftrexp (03 X +0X,)]
<Eftrexp (031" X +logE["])]  (by (3.1))
<Eftrexp (03" " X; +log E[e”X-1] + log E[e"X"] )|
<
<

trexp ( 27:1 log I [e?%1] )
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Master bounds

Combining the Laplace transform method with the subadditivity of
CGF vyields:

Theorem 3.5 (Master bounds for sum of independent matrices)

Consider a finite sequence { X} of independent random symmetric
matrices. Then

_, trexp (3, log E[e?X1))
P Qo (32, X0 2 1 < jof ===

e this is a general result underlying the proofs of the matrix
Bernstein inequality and beyond (e.g. matrix Chernoff)
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Matrix Bernstein inequality



Matrix CGF

trexp (57 log B[X1)
P D32, 1) 2 8} < jut ==

To invoke the master bound, one needs to control the matrix CGF

main step for proving matrix Bernstein
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Symmetric case

Consider a sequence of independent random symmetric matrices
{Xl € RdXd}

e E[X;]=0 ® \nax(X;) < B for each [
e variance statistic: v := ||E [>; X7]||

Theorem 3.6 (Matrix Bernstein inequality: symmetric case)

For all 7 > 0,

_72
P{/\max (Zl Xl) > T} < dexp (HB/f/:%)
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Bounding matrix CGF

For bounded random matrices, one can control the matrix CGF as
follows:

Lemma 3.7
Suppose E[X] = 0 and Apax(X) < B. Then for 0 < 0 < 3/B,
62/2
0X1 2
logE[e"*] < 1703/3E[X ]
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Proof of Theorem 3.6

Let g(0) := 5 991/9/3, then it follows from the master bound that

trexp (X1 log B!
P (1, X0 = 1} < juf

Lemma 3.7 n RE[X?2
< inf trexp (9(9) - i=1 [ ) D
0<6<3/B et
d 0
< e GO (g( )v)
0<6<3/B e

Taking 6 = +Bt/
matrix Bernstein

3 and simplifying the above expression, we establish
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Proof of Lemma 3.7

Define f(z) = G’GTZ%@”” then for any X with A\ (X) < B:

X =T +0X+ (" —T-0X)=T+0X+X - f(X) - X
<I+6X+ f(B) - X?

In addition, we note an elementary inequality: for any 0 < 6 < 3/B,

T 1-60B/3

H(B) = e’ —1-0B _ ii (6B)* - gi (9;)2—2 6%/2

k=2 ’ k=2

0%/2

_ . 2
=083~

= X <T+0X+
Since X is zero-mean, one further has
62/2 6%/2
0X] <14 12 _RmIXx? < — = E[X?
B[] 2 T+ 5kl ]—eXp<1—eB/3 X7
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Application: random features



Kernel trick

A modern idea in machine learning: replace the inner product by
kernel evaluation (i.e. certain similarity measure)

Advantage: work beyond the Euclidean domain via task-specific
similarity measures
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Similarity measure

Define the similarity measure ®
o O(x,x)=1
o [O(z,y)| <1
o O(z,y) = 0(y, )

Example: angular similarity

(zy) _

2
®(x,y) = — arcsin =
m 1(2]ly ]2 m

Matrix concentration
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Kernel matrix

Consider N data points x1,--- ,xx € R Then the kernel matrix
G € RVXN s

Gij=®(®pzj) 1<i,j<N
e Kernel @ is said to be positive semidefinite if G = 0 for any {x;}

Challenge: kernel matrices are usually large
e cost of constructing G is O(dN?)

Question: can we approximate G more efficiently?
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Random features

Introduce a random variable w and a feature map v such that

d(z,y) = Ep[t(z; w) - Y (y; w)]

decouple « and y

e example (angular similarity)

a(e.y) =1 2OV g (e, w) -sgnly.w)

Grothendieck'’s identity

with w uniformly drawn from the unit sphere

Matrix concentration
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Random features

Introduce a random variable w and a feature map v such that

d(z,y) = Ep[t(z; w) - Y (y; w)]

decouple « and y

e this results in a random feature vector
21 P(x1; w)
ZN (N, w)

o zz' is an unbiased estimate of G, i.e. G = E[zz]
k1
ran
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Example

Angular similarity:

2/(z,y)
= Eu [sign(z, w) sign(y, w)]

(I)(w7y) =1-

where w is uniformly drawn from the unit sphere

As a result, the random feature map is ¢ (x, w) = sign(x, w)
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Random feature approximation

Generate n independent copies of R = 2z, i.e. {R;}1<1<n

Estimator of the kernel matrix G

Question: how many random features are needed to guarantee
accurate estimation?
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Statistical guarantees for random feature
approximation

Consider the angular similarity example (3.2):
e To begin with,

E[R}] =E[zz"22"] = NE[22"] = NG

1 n

LY ER| = el

— |
 Next, L|R| = ¥z} = ¥ = B

e Applying the matrix Bernstein inequality yields: with high prob.

A N N
|G — G| < VvlogN + BlogN < (/| —||G|log N + — log N
n n
N - -
S | —lIGllog N (for sufficiently large n)
N~~~
>1
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Sample complexity

Define the intrinsic dimension of G as

trG N

intdim(@) = 11T = 161

If n > e~ 2intdim(G) log N, then we have

IG-G __
el =
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