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Outline

e Power method

e Lanczos algorithm
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Eigendecomposition

Consider a symmetric matrix A € R"*", where n is large

How to compute the eigenvalues and eigenvectors of A efficiently?

e hopefully accomplished via a few matrix-vector products
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Power method



Power iteration

1
|Aq;—1]l2
————

re-normalization

qi = AQt—la t:1525

e cach iteration consists of a matrix-vector product

e equivalently,
1

= A
[ Aqoll2

qt
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Example

ConsiderA:l2 1 ] and qp = [ 1 ],then

2t
t _
A’qo = [ 1 ]
1 2 1
f— Qt = tiAth = 2211—"_1 — as t — 0
HA q0||2 22t 41 0

leading eigenvector of A
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Power method

Algorithm 4.1 Power method

1: initialize g¢ < random unit vector
2. fort=1,2,--- do

. _ 1

3 q: = ||Aqt,1H2Aqt—1

N

)‘g) = Q;FAQt

bl

(power iteration)

e ¢;: estimate of the leading eigenvector of A

o th): estimate of the leading eigenvalue of A
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Convergence of power method

o A c R™™: eigenvalues Ay > Ay > --- > \,; eigenvectors
U, -+ ,Up

Theorem 4.1 (Convergence of power method)

If A1 > Ao > |\,| and set vy = qa—ul, then

R 1— 1/2 )\2 2t
D — A < (= M) —2 <A1>

S
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Proof of Theorem 4.1

Write go = Y .-, viu;, then

n n
o o T ¢
= E Ajuu; o = g A Vil
i=1 i=1

n
= [A'qll2= H PORVZTH
i=1 2
Since q; = mAtqo and A is symmetric, we get
NGO 1 2t+1
>\1 - qt Aqt ||Af H2 qO A s q0
1 < i
T 241, T
=< a2t 2% Z)‘i u;u; ) qo0
i AV i=1
A20H1,2
)\215 2 Z
Vi i=1
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Proof of Theorem 4.1 (cont.)

As a consequence,

A | =

B Z’,L_ i Vi

M-

as claimed
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1
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Z)\2t 2

)\1 9
N2 AtZV

)\2t 2

SN (1= v))

3t 2
YRz

SN2 L3 a2
DA -

i=1

v}

(since Ay — N\ <A1 — \p)

(since » w7 =1 (as ||qoll2 = 1))

i
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Block power method

Computing the top-r eigen-subspace:

Algorithm 4.2 Power method

1: initialize Qg € R™ " < random orthonormal matrix

2. fort=1,2,--- do

3 Zy=AQ

4 compute QR decomposition Z; = Q;R;, where Q; € R™"*" has
orthonormal columns and R; € R"™" is upper-triangular

e use QR decomposition to reorthogonalize power iterates
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Lanczos algorithm



Key idea 1: reduction to a tridiagonal form

Intermediate step

[} [} [ ] [ ] [ ] [ ] [ ]
e o o o o o o
find orthonormal Q
[} [ ] [ ] [ ] [ ] — [ ]
e o o o o °
[} [ ] [ ] [ ] [ ] [ ]
A

T=QT AQ (tridiagonal)

e motivation: eigendecomposition of a tridiagonal matrix can be
performed efficiently (via a number of specialized algorithms),
due to its special structure
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Key idea 2: tridiagonalization and Krylov subspaces

One way to tridiagonalize A is to compute an orthonormal basis of
certain subspaces, defined as follows

e Krylov subspaces generated by A € R™*™ and b € R" are
defined as

K; = span{b, Ab,--- , A" 'b}, t=1,---,n

e Krylov matrices

Kt:: [b,Ab7-~-,At_1b}€RnXt, t:L...’n
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Key idea 2: tridiagonalization and Krylov subspaces

Lemma 4.2

IfQ: = [q1, - ,q) € R"™ forms an orthonormal basis of K; for all
1 <t<n. Then

T, = Q] AQ; is tridiagonal, 1<t<n

e tridiagonalization can be carried out by successively computing
the orthonormal basis of Krylov subspaces {/C;}1=12....
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Proof of Lemma 4.2

For any i > j + 1,
(Ty)i; = (ai, Agj)

Since Q; is orthonormal basis of span{b, Ab,--- , A7~1b}, we have
q; € span{b, Ab, - - AT 1p)

= Aq; € span{Ab,--- , A’b} C span{qi, - ,qj+1}
Since i > j + 1, one has g; L {q1,---,qj+1} and hence

(T1)ij = (@i, Agj) =0

Similarly, (T;);; = 0 if j > i + 1. This completes the proof
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A simple formula: 3-term recurrence

Denote
a1 B

T = Q;LFAQn = b .Otz or AQn = QnT
. : /anl

since Qn R X" is orthonormal
Bn—l On

Exploiting the tridiagonal structure yields

(031 ,31

B1 oo
Algi, - = g, 5 Gl o s
Q1 Qt+1 Bi—1 o
Bt

— Aq: = Pi—19i—1 + 0uqi + Brqi+1
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Lanczos iterations

Aq; = Bi—1qi—1 + ouqi + Biqi+1

This 3-term recurrence says Aq; € span{qi—1,q:, qi+1}
e this means o; = thAqt , since {q¢—1, 4, qi+1} are orthonormal
——

projection of Ag; onto span(g;)
Since @441 needs to have unit norm, one has

e g;y1 < normalize(Aq; — Si—19i—1 — a:qq) (direction of residual)

o Bt =|lAg — Bi—1qi-1 — w2 (size of residual)
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Lanczos algorithm

Algorithm 4.3 Lanczos algorithm

1: initialize 5y =0, gy = 0, q1 < random unit vector
2. fort=1,2,--- do

3 = thAQt

B = |Aqr — Bi—1qt—1 — @4y |2

qi+1 = i(AQt — Bro1qi—1 — uqy)

A

e cach iteration only requires a matrix-vector product

e systematic construction of the orthonormal bases for successive
Krylov subspaces
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Convergence of the Lanczos algorithm

e A c R™™: eigenvalues A\ > --- > \,, eigenvectors w1, , Uy
ar B
_ B1 a2 L
o T} = . eigenvalues 0 > --- > 0,
' ’ Bi—1
5t—1 O

Theorem 4.3 (Kaniel-Paige convergence theory)

Let vy = qf uy, p = i;:iz and Cy_1(x) be the Chebyshev

polynomial of degreet — 1. Then

1—v? 1
2 2
Vi (Ce—1(1+2p))

AL >0 > — (M —Ay)
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Convergence of the Lanczos algorithm

Corollary 4.4
Let R=1+2p+ 2\/p?+ p with p = i;:ii We have

401 — v (-
A1 — 61| < (1/21)()\1 — X)) RD

1 convergence rate

prefactor

e this follows immediately from the following fact

(Rt—l + R—(t—l))2 R2(t-1)
>
4 - 4

properties of Chebyshev polynomials

CEi(1+2p) =
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Power method vs. Lanczos algorithm

A=A _ Mi—Xs
2 2X2

Consider a case where Ao = —\,,. Recall that p = re

e power method: convergence rate

()\2>2t_ 1
M) (1+2p)*

e Lanczos algorithm: convergence rate

1

(1+2p+2yp?+p)?

o ifp>1,then 14+2p+2y/p>+p=1+4p=~2(1+2p)
oif p 1, then 1+2p+2\/p2+p=1+2/p>1+2p

o outperforms the power method
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Proof of Theorem 4.3

It sufficies to prove the 2nd inequality. Recalling that T} = Q] AQ;, we
have

0 o v Tyv o (Qiv)T A(Qyv) o w' Aw
— max ——— — MmaX —————————— = max - =
P o0 vTo w0 (Q)T (Quu)  wekiwzo w ! w
For any w € K; := {q1, Aqy,--- , A'"1q;}, one can write it as P(A)q; for
some polynomial P(-) of degree ¢t — 1. This means
L (P(A)g)TAP(A)g))
PePi (P(A)qr) T (P(A)q:)
where P;_1 is set of polynomials of degree t — 1. If g1 = Z?zl v;u;, then

(P(A)a1)"AP(A)qr) _ 31, viP? (N
(P(A)q1) " (P(A)q1) > i1 ViPA(N)
Yoy vi (A = A)P?(\)
iP2(M) + X, PP (N)
Do ViPA (M)
2 /\1 - ()\1 - >\n) 1/127)2(>\1) + Z?:Q V$P2()\z)
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Proof of Theorem 4.3 (cont.)

— Cow) — Cifw) — Cow) — Calx) = Ca()

Pick a polynomial P(z) that is large at © = ;. One choice is

20 — o — Ay,
'P(SU) =Ci1 (/\22>\>

where C;_1(-) is the (¢t — 1)-th Chebyshev polynomial generated by
Ci(z) =22Ci_1(x) — Ci_a(x), Co(xr)=1, Ci(zx)==x
These polynomials are bounded by 1 on [—1, 1], but grow rapidly outside
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Proof of Theorem 4.3 (cont.)

Using boundedness of Chebyshev polynomial in [—1,1], we have

27;2 Vz‘zpz()\i) Zﬂzz sz

Y 7An ) - S by 7An r=s T
=) )+ 5o, PR ) = M T A ey
= A

S TEPR ()

where the last identity follows since Y, v = 1 (given ||gi||2 = 1). This
yields

1—12 1
01> A — (M — A\ L
R 7 A I (R T)

as claimed

Eigenvalue problems

4-25



Warning: numerical instability

The vanilla Lanczos algorithm (which is efficient with exact
arithmetic) is very sensitive to round-off issues

e orthogonality of {q1,--- , g} might be lost quickly

e eigenvalues might be duplicated

Many variations have been proposed to prevent loss of orthogonality,
and to remove spurious eigenvalues
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