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Motivation: wastefulness of data acquisition

Conventional paradigms for data acquisition:
• Measure full data

• Compress (by discarding a large fraction of coefficients)

Problem: data are often highly compressible
• Most of acquired data can be thrown away without any

perceptual loss
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Blind sensing

Ideally, if we know a priori which coefficients are worth estimating,
then we can simply measure these coefficients
• Unfortunately, we often have no idea which coefficients are

relevant

Compressed sensing: compression on the fly
• mimic the behavior of the above ideal situation without

pre-computing all coefficients

• often achieved by random sensing mechanism
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Why go to so much effort to acquire all the data when most of
what we get will be thrown away?

Can’t we just directly measure the part that won’t end up being
thrown away?

— David Donoho
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Setup: sparse recovery

=

Recover x ∈ Rp given y = Ax

where A = [a1, · · · ,an]> ∈ Rn×p (n� p): sampling matrix;
ai: sampling vector; x: sparse signal
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Restricted isometry properties



Optimality for `0 minimization

minimizex∈Rp ‖x‖0 s.t. Ax = y

If instead ∃ a sparser feasible x̃ 6= x s.t. ‖x̃‖0 ≤ ‖x‖0 = k, then

A (x− x̃) = 0. (9.1)

We don’t want (9.1) to happen, so we hope

A
(
x− x̃︸ ︷︷ ︸

2k-sparse

)
6= 0, ∀x̃ with ‖x̃‖0 ≤ k

To simultaneously account for all k-sparse x, we hope AT (|T | ≤ 2k)
to have full rank, where AT consists of all columns of A at indices
from T
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Restricted isometry property (RIP)

Definition 9.1 (Restricted isometry constant
(Candès & Tao ’06))
Restricted isometry constant δk of A is the smallest
quantity s.t.

(1− δk)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δk)‖x‖2
2 (9.2)

holds for all k-sparse vector x ∈ Rp

• (check) equivalently, (9.2) says

max
S:|S|=k

‖A>SAS − Ik‖︸ ︷︷ ︸
near orthonormality

= δk

where AS consists of all columns of A at indices
from S

• (Homework) For any x1, x2 that are supported on
disjoint subsets S1, S2 with |S1| ≤ s1 and |S2| ≤ s2:

|〈Ax1,Ax2〉| ≤ δs1+s2‖x1‖2‖x2‖2︸ ︷︷ ︸
approximately preserves the inner product

(9.3)
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RIP and `0 minimization

minimizex∈Rp ‖x‖0 s.t. Ax = y

Fact 9.2
(Exercise) Suppose a feasible x is k-sparse. If δ2k < 1, then x is the
unique solution to `0 minimization
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RIP and `1 minimization

minimizex∈Rp ‖x‖1 s.t. Ax = y

Theorem 9.3 (Candès & Tao ’06, Candès ’08)

Suppose a feasible x is k-sparse. If δ2k <
√

2− 1, then x is the
unique solution to `1 minimization

• RIP implies the success of `1 minimization

• A universal result: works simultaneously for all k-sparse signals

• As we will see later, many random designs satisfy this condition
with near-optimal sample complexity
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Proof of Theorem 9.3
Suppose x+h is feasible and obeys ‖x+h‖1 ≤ ‖x‖1. The goal is to
show that h = 0 under RIP.

The key is to decompose h into hT0 + hT1 + . . .

• T0: locations of the k largest entries of x
• T1: locations of the k largest entries of h in T0

c

• T2: locations of the k largest entries of h in (T0 ∪ T1)c

• ...
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Proof of Theorem 9.3

Informally, the proof proceeds by showing that

1. hT0∪T1 “dominates” h(T0∪T1)c (by objective function)
— see Step 1

2. (converse) h(T0∪T1)c “dominates” hT0∪T1 (by RIP + feasibility)
— see Step 2

These cannot happen simultaneously unless h vanishes

Compressed sensing 9-13



Proof of Theorem 9.3
Step 1 (depending only on the objective function). Show that∑

j≥2
‖hTj‖2 ≤

1√
k
‖hT0‖1 (9.4)

This follows immediately by combining the following 2 observations:
(i) Since x+ h is assumed to be a better estimate:

‖x‖1 ≥ ‖x+ h‖1 = ‖x+ hT0‖1 + ‖hT c
0
‖1︸ ︷︷ ︸

since T0 is support of x

≥ ‖x‖1 − ‖hT0‖1︸ ︷︷ ︸
triangle inequality

+ ‖hT c
0
‖1

=⇒ ‖hT c
0
‖1 ≤ ‖hT0‖1 (9.5)

(ii) Since entries of hTj−1 uniformly dominate those of hTj (j ≥ 2):

‖hTj
‖2 ≤

√
k‖hTj

‖∞ ≤
√
k
‖hTj−1‖1

k
= 1√

k
‖hTj−1‖1

=⇒
∑
j≥2
‖hTj‖2 ≤

1√
k

∑
j≥2
‖hTj−1‖1 = 1√

k
‖hT c

0
‖1 (9.6)



Proof of Theorem 9.3

Step 2 (using feasibility + RIP). Show that ∃ρ < 1 s.t.

‖hT0∪T1‖2 ≤ ρ
∑

j≥2
‖hTj‖2 (9.7)

If this claim holds, then

‖hT0∪T1‖2 ≤ ρ
∑

j≥2
‖hTj

‖2
(9.4)
≤ ρ

1√
k
‖hT0‖1

≤ ρ 1√
k

(√
k‖hT0‖2

)
= ρ‖hT0‖2 ≤ ρ‖hT0∪T1‖2 (9.8)

Since ρ < 1, we necessarily have hT0∪T1 = 0, which together with (9.5)
yields h = 0
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Proof of Theorem 9.3
We now prove (9.7). To connect hT0∪T1 with h(T0∪T1)c , we use feasibility:

Ah = 0 ⇐⇒ AhT0∪T1 = −
∑

j≥2
AhTj ,

which taken collectively with RIP yields

(1− δ2k)‖hT0∪T1‖2
2 ≤ ‖AhT0∪T1‖2

2 =
∣∣〈AhT0∪T1 ,

∑
j≥2

AhTj
〉
∣∣

It follows from (9.3) that for all j ≥ 2,
|〈AhT0∪T1 ,AhTj 〉| ≤ |〈AhT0 ,AhTj 〉|+ |〈AhT1 ,AhTj 〉|

(9.3)
≤ δ2k(‖hT0‖2 + ‖hT1‖2)‖hTj

‖2 ≤ δ2k
√

2‖hT0∪T1‖2 · ‖hTj
‖2,

which gives

(1− δ2k)‖hT0∪T1‖2
2 ≤

∑
j≥2
|〈AhT0∪T1 ,AhTj

〉|

≤
√

2δ2k‖hT0∪T1‖2
∑

j≥2
‖hTj‖2

This establishes (9.7) if ρ :=
√

2δ2k

1−δ2k
< 1 (or equivalently, δ2k <

√
2− 1).
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Robustness for compressible signals

Theorem 9.4 (Candès & Tao ’06, Candès ’08)

If δ2k <
√

2− 1, then the solution x̂ to `1 minimization obeys

‖x̂− x‖2 .
‖x− xk‖1√

k
,

where xk is the best k-term approximation of x

• Suppose the lth largest entry of x is 1/lα for some α > 1, then

1√
k
‖x− xk‖1 ≈

1√
k

∑
l>k

l−α ≈ k−α+0.5 � 1

• `1-min works well in recovering compressible signals

• Follows similar arguments as in the proof of Theorem 9.3
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Proof of Theorem 9.4

Step 1 (depending only on objective function). Show that∑
j≥2
‖hTj‖2 ≤

1√
k
‖hT0‖1 + 2√

k
‖x− xT0‖1 (9.9)

This follows immediately by combining the following 2 observations:

(i) Since x+ h is assumed to be a better estimate:

‖xT0‖1 + ‖xT c
0
‖1 = ‖x‖1 ≥ ‖x+ h‖1 = ‖xT0 + hT0‖1 + ‖xT c

0
+ hT c

0
‖1

≥ ‖xT0‖1 − ‖hT0‖1 + ‖hT c
0
‖1 − ‖xT c

0
‖1

=⇒ ‖hT c
0
‖1 ≤ ‖hT0‖1 + 2‖xT c

0
‖1 (9.10)

(ii) Recall from (9.6) that
∑
j≥2 ‖hTj

‖2 ≤ 1√
k
‖hT c

0
‖1

We highlight in red the part different from the proof of Theorem 9.3.
Compressed sensing 9-18



Proof of Theorem 9.4
Step 2 (using feasibility + RIP). Recall from (9.7) that ∃ρ < 1 s.t.

‖hT0∪T1‖2 ≤ ρ
∑

j≥2
‖hTj

‖2 (9.11)

If this claim holds, then

‖hT0∪T1‖2 ≤ ρ
∑

j≥2
‖hTj

‖2
(9.10) and (9.6)

≤ ρ
1√
k
{‖hT0‖1 + 2‖xT c

0
‖1}

≤ ρ 1√
k

(√
k‖hT0‖2 + 2‖xT c

0
‖1

)
= ρ‖hT0‖2 + 2ρ√

k
‖xT c

0
‖1

≤ ρ‖hT0∪T1‖2 + 2ρ√
k
‖xT c

0
‖1

=⇒ ‖hT0∪T1‖2 ≤
2ρ

1− ρ
‖xT c

0
‖1√
k

(9.12)

We highlight in red the part different from the proof of Theorem 9.3.
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Proof of Theorem 9.4

Finally, putting the above together yields

‖h‖2 ≤ ‖hT0∪T1‖2 + ‖h(T0∪T1)c‖2
(9.9)
≤ ‖hT0∪T1‖2 + 1√

k
‖hT0‖1 + 2√

k
‖x− xT0‖1

≤ ‖hT0∪T1‖2 + ‖hT0‖2 + 2√
k
‖x− xT0‖1

≤ 2‖hT0∪T1‖2 + 2√
k
‖x− xT0‖1

(9.12)
≤ 2(1 + ρ)

1− ρ
‖x− xT0‖1√

k

We highlight in red the part different from the proof of Theorem 9.3.
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Which design matrix satisfies RIP?

First example: i.i.d. Gaussian design

Lemma 9.5

A random matrix A ∈ Rn×p with i.i.d. N
(
0, 1

n

)
entries satisfies

δk < δ with high prob., as long as

n &
1
δ2k log p

k

• This is where non-asymptotic random matrix theory comes into
play

Compressed sensing 9-21



Gaussian random matrices

Lemma 9.6 (See Vershynin ’10)

Suppose B ∈ Rn×k is composed of i.i.d. N (0, 1) entries. Then
P
(

1√
n
σmax(B) > 1 +

√
k
n + t

)
≤ e−nt2/2

P
(

1√
n
σmin(B) < 1−

√
k
n − t

)
≤ e−nt2/2

• When n� k, one has 1
nB
>B ≈ Ik

• Similar results (up to different constants) hold for
i.i.d. sub-Gaussian matrices
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Proof of Lemma 9.5

1. Fix any index subset S ⊆ {1, · · · , }, |S| = k, then AS

(submatrix of A consisting of columns at indices from S) obeys

∥∥A>SAS − Ik
∥∥ ≤ O(√k/n)+ t

with prob. exceeding 1− 2e−c1nt2 , where c1 > 0 is constant.

2. Taking a union bound over all S ⊆ {1, · · · , p}, |S| = k yields

δk = max
S:|S|=k

∥∥A>SAS − Ik
∥∥ ≤ O(√k/n)+ t

with prob. exceeding 1− 2
(p
k

)
e−c1nt2 ≥ 1− 2ek log(ep/k)−c1nt2 .

Thus, δk < δ with high prob. as long as n & δ−2k log(p/k).
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Other design matrices that satisfy RIP

• Random matrices with i.i.d. sub-Gaussian entries, as long as

n & k log(p/k)

• Random partial DFT matrices with

n & k log4 p,

where the rows of A are independently sampled from the rows of
the DFT matrix F (Rudelson & Vershynin ’08)
◦ If you have learned entropy methods or generic chaining, check

out Rudelson & Vershynin ’08 and Candès & Plan ’11
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Other design matrices that satisfy RIP

• Random convolution matrices with

n & k log4 p,

where the rows of A are independently sampled from the rows of

G =


g0 g1 g2 · · · gp−1
gp−1 g0 g1 · · · gp−2
gp−2 gp−1 g0 · · · gp−3

...
...

... . . . ...
g1 g2 g3 · · · g0


with P(gi = ±1) = 0.5 (Krahmer, Mendelson, & Rauhut ’14)
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RIP guarantees success of many other methods

Example: projected gradient descent (iterative hard
thresholding)

alternates between

• gradient descent:

zt ← xt − µt A>(Axt − y)︸ ︷︷ ︸
gradient of 1

2‖y−Ax‖
2
2

• projection: keep only the k largest (in magnitude) entries
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Iterative hard thresholding (IHT)

Algorithm 9.1 Projected gradient descent / iterative hard thresholding

for t = 0, 1, · · · :

xt+1 = Pk
(
xt − µtA>(Axt − y)

)
where Pk(x) := arg min

‖z‖0=k
‖z − x‖2 is the best k-term approximation

of x
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Geometric convergence of IHT under RIP

Theorem 9.7 (Blumensath & Davies ’09)

Suppose x is k-sparse, and the RIP constant δ3k < 1/2. Then taking
µt ≡ 1 gives

‖xt − x‖2 ≤ (2δ3k)t ‖x0 − x‖2

• Under RIP, IHT attains ε-accuracy within O
(

log 1
ε

)
iterations

• Each iteration takes time proportional to a matrix-vector product

• Drawback: need prior knowledge on k
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Numerical performance of IHT

Relative error ‖x
t−x‖2
‖x‖2

vs. iteration count t
(n = 100, k = 5, p = 1000, Ai,j ∼ N (0, 1/n))
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Proof of Theorem 9.7
Let z := xt −A>(Axt − y) = xt −A>A(xt − x). By definition of Pk,

‖ x︸︷︷︸
k-sparse

− z‖2
2 ≥ ‖ xt+1︸︷︷︸

best k-sparse

− z‖2
2 = ‖xt+1 − x− (z − x)‖2

2

= ‖xt+1 − x‖2
2 − 2〈xt+1 − x, z − x〉+ ‖z − x‖2

2

=⇒ ‖xt+1 − x‖2
2 ≤ 2〈xt+1 − x, z − x〉

= 2
〈
xt+1 − x, (I −A>A)(xt − x)

〉
≤ 2δ3k‖xt+1 − x‖2 · ‖xt − x‖2 (9.13)

which gives
‖xt+1 − x‖2 ≤ 2δ3k‖xt − x‖2

as claimed. Here, (9.13) follows from the following fact (homework)

|〈u, (I −A>A)v〉| ≤ δs‖u‖2 · ‖v‖2 with s = |supp (u) ∪ supp (v)|
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A RIPless theory



Is RIP necessary?

• RIP leads to a universal result holding simultaneously for all
k-sparse x
◦ Universality is often not needed as we might only care about a

particular x

• There may be a gap between the regime where RIP holds and
the regime in which one has minimal measurements

• Certifying RIP is hard

Can we develop a non-universal RIPless theory?
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A standard recipe

1. Write out Karush-Kuhn-Tucker (KKT) optimality conditions

◦ typically involves certain dual variables

2. Construct dual variables satisfying KKT conditions
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Karush-Kuhn-Tucker (KKT) conditions

Consider a convex problem

minimizex f(x)
s.t. Ax− y = 0

Lagrangian:

L (x,ν) := f(x) + ν>(Ax− y) (ν : Lagrangian multiplier)

If x is the optimizer, then the KKT optimality conditions read
0 = ∇vL(x,v)
0 ∈ ∂xL(x,v)︸ ︷︷ ︸

subdifferential

{
Ax− y = 0

0 ∈ ∂f(x) +A>ν (no constraint on ν)
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KKT condition for `1 minimization

minimizex ‖x‖1
s.t. Ax− y = 0

If x is the optimizer, then KKT optimality condition reads{
Ax− y = 0, (naturally satisfied as x is the truth)
0 ∈ ∂‖x‖1 +A>ν (no constraint on ν)

⇐⇒ ∃u ∈ range(A>) s.t.
{
ui = sign(xi), if xi 6= 0
ui ∈ [−1, 1], else︸ ︷︷ ︸

subgradient of ‖x‖1

Depends only on the signs of xi’s, irrespective of their magnitudes
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Uniqueness

Theorem 9.8 (A sufficient — and almost necessary — condition)

Let T := supp(x). Suppose AT has full rank. If

∃u = A>ν for some ν ∈ Rn s.t.
{
ui = sign(xi), if xi 6= 0
ui ∈ (−1, 1), else

,

then x is the unique solution to `1 minimization

• Only slightly stronger than KKT!
• ν is said to be a dual certificate

◦ recall that ν is the Lagrangian multiplier

• Finding ν comes down to solving another convex problem

Compressed sensing 9-36



Geometric interpretation of the dual certificate

When |u1| < 1, solution is unique When |u1| = 1, solution is non-unique

When we are able to find u ∈ range(A>) s.t. u2 = sign(x2) and
|u1| < 1, then x (with x1 = 0) is the unique solution to `1-min
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Proof of Theorem 9.8

Suppose that x+ h is the optimizer. Let w ∈ ∂‖x‖1 be{
wi = sign(xi), if i ∈ T (support of x);
wi = sign(hi), else.

If x+ h obeys hT c 6= 0, then

‖x‖1 ≥ ‖x+ h‖1
by convexity
≥ ‖x‖1 + 〈w,h〉 = ‖x‖1 + 〈u,h〉+ 〈w − u,h〉
= ‖x‖1 + 〈 A>ν︸ ︷︷ ︸

assumption on u

,h〉+
∑
i/∈T

(sign(hi)hi − uihi)

= ‖x‖1 + 〈ν, Ah︸︷︷︸
=0 (feasibility)

〉+
∑
i/∈T

(|hi| − uihi)

≥ ‖x‖1 +
∑

i/∈T
(1− |ui|) |hi| > ‖x‖1,

resulting in contradiction. Therefore, hT c = 0.
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Proof of Theorem 9.8 (cont.)

Further, hT c = 0 and Ax = ATxT = y imply that AT (xT + hT ) = y, and
hence

AThT = 0

From left-invertibility of AT , one must have hT = 0.

As a result, h = hT + hT c = 0. This concludes the proof.
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Constructing dual certificates under Gaussian design

We illustrate how to construct dual certificates for the following setup

• x ∈ Rp is k-sparse

• Entries of A ∈ Rn×p are i.i.d. standard Gaussian

• The sample size n obeys

n & k log p
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Constructing dual certificates under Gaussian design

Find ν ∈ Rn

s.t. (A>ν)T = sign(xT ) (9.14)
|(A>ν)i| < 1, i /∈ T (9.15)
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Constructing dual certificates under Gaussian design

Step 1: propose a ν compatible with linear constraints (9.14). One
candidate is the least squares (LS) solution:

ν = AT (A>TAT )−1sign(xT ) (explicit expression)

• The LS solution minimizes ‖ν‖2, which will also be helpful when
bounding |(A>ν)i|

• From Lemma 9.6, A>TAT is invertible with high prob. when
n & k log p
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Constructing dual certificates under Gaussian design
Step 2: verify (9.15), which amounts to controlling

max
i/∈T

∣∣∣〈 A:,i︸︷︷︸
ith column of A

, AT (A>TAT )−1sign(xT )︸ ︷︷ ︸
ν

〉∣∣∣
• Since A:,i ∼ N (0, In) and ν are independent for any i /∈ T ,

max
i/∈T
|〈A:,i, ν〉| . ‖ν‖2

√
log p with high prob.

• ‖ν‖2 can be bounded by

‖ν‖2 ≤ ‖AT (A>TAT )−1‖ · ‖sgn(xT )‖2

= ‖( A>TAT︸ ︷︷ ︸
eigenvalues �n (Lemma 9.6)

)−1/2‖ ·
√
k .

√
k/n

• When n/(k log p) is sufficiently large, maxi/∈T |〈A:,i, ν〉| < 1
• Exerciese: fill in missing details
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More general random sampling

Consider a random design: each sampling vector ai is independently
drawn from a distribution F

ai ∼ F

Incoherence sampling:
• Isotropy:

E[aa>] = I, a ∼ F

◦ components of a: (i) unit variance; (ii) uncorrelated

• Incoherence: let µ(F ) be the smallest quantity s.t. for a ∼ F ,

‖a‖2∞ ≤ µ(F ) with high prob.
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Incoherence

We want µ(F ) (resp. A) to be small (resp. dense)!

What happen if sampling vectors ai are sparse?
• Example: ai ∼ Uniform({√p e1, · · · ,

√
p ep})


0
0
0
0


︸︷︷︸
y

no information

= √p


1

1
1

1


︸ ︷︷ ︸

A



0
0
0
3
0
0
0
5
0
0


︸︷︷︸
x
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Incoherent random sampling
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A general RIPless theory

Theorem 9.9 (Candès & Plan ’11)

Suppose x ∈ Rp is k-sparse, and ai
ind.∼ F is isotropic. Then `1

minimization is exact and unique with high prob., provided that

n & µ(F )k log p

• Near-optimal even for highly structured sampling matrices

• Proof idea: produce an (approximate) dual certificate by a clever
golfing scheme pioneered by David Gross
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Examples of incoherent sampling

• Binary sensing: P(a[i] = ±1) = 0.5:

E[aa>] = I, ‖a‖2∞ = 1, µ = 1

=⇒ `1-min succeeds if n & k log p

• Partial Fourier transform: pick a random frequency
f ∼ Unif

{
0, 1

p , · · · ,
p−1
p

}
or f ∼ Unif[0, 1] and set a[i] = ej2πfi:

E[aa>] = I, ‖a‖2∞ = 1, µ = 1

=⇒ `1-min succeeds if n & k log p

◦ Improves upon the RIP-based result (n & k log4 p)
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Examples of incoherent sampling

• Random convolution matrices: rows of A are independently
sampled from rows of

G =


g0 g1 g2 · · · gp−1
gp−1 g0 g1 · · · gp−2
gp−2 gp−1 g0 · · · gp−3

...
...

... . . . ...
g1 g2 g3 · · · g0


with P(gi = ±1) = 0.5. One has

E[aa>] = I, ‖a‖2∞ = 1, µ = 1

=⇒ `1-min succeeds if n & k log p

◦ Improves upon RIP-based result (n & k log4 p)
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A general scheme for dual construction (optional)

Find ν ∈ Rn

s.t. A>T ν = sign(xT ) (9.16)
‖A>T cν‖∞ < 1 (9.17)

A candidate: the least squares solution w.r.t. (9.16)

ν = AT (A>TAT )−1sign(xT ) (explicit expression)

To verify (9.17), we need to control A>T cAT (A>TAT )−1sign(xT )
• Issue 1: in general, AT c and AT are dependent

• Issue 2: (A>TAT )−1 is hard to deal with

Key idea 1: use iterative scheme (e.g. gradient descent) to solve
minimizeν 1

2‖A
>
T ν − sign(xT )‖22

for t = 1, 2, · · ·

ν(t) = ν(t−1) −AT

(
A>T ν

(t−1) − sign(xT )
)

︸ ︷︷ ︸
grad of 1

2‖A
>
T v−sign(xT )‖2

2

• Converges to a solution obeying (9.16); no inversion involved

• Issue: complicated dependency across iterations
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Golfing scheme (Gross ’11) (optional)

Key idea 2: sample splitting — use independent samples for each
iteration to decouple statistical dependency

• Partition A into L row blocks A(1) ∈ Rn1×p, · · · ,A(L) ∈ RnL×p︸ ︷︷ ︸
independent

• for t = 1, 2, · · · (stochastic gradient)

ν(t) = ν(t−1) − µtA(t)
T

(
A

(t)>
T ν(t−1) − sign(xT )

)
︸ ︷︷ ︸

∈Rnt (but we need it in ∈Rn)

ν(t) = ν(t−1) − µtÃ(t)
T

(
A

(t)>
T ν(t−1) − sign(xT )

)

where Ã(t) =

 0

A(t)

0

 ∈ Rn×p is obtained by zero-padding
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where Ã(t) =

 0

A(t)

0

 ∈ Rn×p is obtained by zero-padding

Compressed sensing 9-51



Golfing scheme (Gross ’11) (optional)

ν(t) = ν(t−1) − µtÃ(t)
T

(
A

(t)>
T ν(t−1)︸ ︷︷ ︸

depends only on A(1),··· ,A(t−1)

− sign(xT )
)

• Statistical independence (fresh samples) across
iterations, which significantly simplifies analysis

• Each iteration brings us closer to the target (like
each golf shot brings us closer to the hole)
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