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Model-based vs. model-free RL

o model A,
7o | e P e RISIMIXIS) < T
& ~g
/ model-based \
samples value function
(experience) policy
2. ~
e wodel-free -

Model-based approach (“plug-in”
1. build empirical estimate P for P
2. planning based on empirical P

Model-free approach

— learning w/o modeling & estimating environment explicitly
— memory-efficient, online, ...
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finite-time &
finite-sample analysis

asymptotic
analysis

1989 1992 1994 2018

Focus of this part: classical Q-learning algorithm and beyond



Model-free RL

. Basics of Q-learning

. Synchronous Q-learning and variance reduction (simulator)
. Asynchronous Q-learning (Markovian data)

. Q-learning with lower confidence bounds (offline RL)

. Q-learning with upper confidence bounds (online RL)



A starting point: Bellman optimality principle

Bellman operator

TQ)(s,0) = r(s,q) +7 E |maxQ(s,a)]
N—— s'~P(:|s,a) a’'eA

immediate reward ——

next state's value

e one-step look-ahead

5/ 58



A starting point: Bellman optimality principle

Bellman operator

TQ)(s,0) = r(s,q) +7 E |maxQ(s,a)]
N—— s'~P(:|s,a) a’'eA
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Bellman equation: Q* is unique solution to
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A starting point: Bellman optimality principle

Bellman operator

TQ)(s,0) = r(s,q) +7 E |maxQ(s,a)]
s'~P(-|s,a) La’EA
immediate reward
next state's value

e one-step look-ahead
Bellman equation: Q* is unique solution to
TQ)=0Q"

e takeaway message: it suffices to solve the
Bellman equation

. . . Richard Bellman
e challenge: how to solve it using stochastic

samples?
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A detour: stochastic approximation

e Goal: solve
G (z) =E[g(x;¢)] =0

o &: randomness in problem

e What we can query: for any given input &, we receive a
random sample g(x; £) obeying E[g(x; )] = G(x)
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Stochastic approximation (Robbins, Monro '51)

Herbert Robbins Sutton Monro

stochastic approximation

t+1 _ .’Bt _ ntg(xt;€t> (1)
where g(x!; £€!) is unbiased estimate of G(x?!), i.e.

E[g(x";¢")] = G(2')

€T
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Stochastic approximation (Robbins, Monro '51)

Herbert Robbins Sutton Monro

stochastic approximation

t+1

2t =zt — gt &) (1)

a stochastic algorithm for finding roots of G(x) := E[g(x; £)]
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Q-learning: a stochastic approximation algorithm

i

Chris Watkins Peter Dayan

Stochastic approximation for solving the Bellman equation

Robbins & Monro, 1951

TQ) -Q=0
where
@ e 1 g o)

immediate reward ;
next state’s value
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Q-learning: a stochastic approximation algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation 7(Q) —Q =0

Qui1(s,a) = Qu(s,a) + nu(Te(Q) (s, a) — Qu(s,a)), t=0

sample transition (s,a,s’
b b
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Q-learning: a stochastic approximation algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation 7(Q) — Q =0

Qir1(s,a) = (1 —n)Q4(s,a) +n:Ti(Q¢)(s,a), t>0

sample transition (s,a,s’)
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Q-learning: a stochastic approximation algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation 7(Q) — Q =0

Qir1(s,a) = (1 —n)Q4(s,a) +n:Ti(Q¢)(s,a), t>0

sample transition (s,a,s’)

Te(Q)(s,a) = 7(s,a) +ymax Q(s', a’)

T(Q)(s,a) =T(S,a)+’y E [maXQ(sl,a’)]

s'~P(-|s,a) a’
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Model-free RL

. Basics of Q-learning

. Synchronous Q-learning and variance reduction (simulator)
. Asynchronous Q-learning (Markovian data)

. Q-learning with lower confidence bounds (offline RL)

. Q-learning with upper confidence bounds (online RL)



A generative model / simulator

— Kearns, Singh '99

generative model

In each iteration, collect an independent sample (s, a, s’) for each

(s,a)
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Synchronous Q-learning

v :_
ol

Chris Watkins Peter Dayan

fort=0,1,...,7T
for each (s,a) e S x A

draw a sample (s, a,s’), run

Qu1(s,a) = (1= n)Qu(s, a) + Ut{T(S,a) +7max Qu(s, a')}

synchronous: all state-action pairs are updated simultaneously )
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Sample complexity of synchronous Q-learning

Theorem 1 (Li, Cai, Chen, Gu, Wei, Chi’21)

For any 0 < € < 1, synchronous Q-learning yields ||@ — Q"o <€
with high prob., with sample complexity (i.e., T|S||.A|) at most

),

other papers sample complexity
= _ISllAl
Even-Dar & Mansour '03 21—~
(1-)%e?
- [S|2]41%
Beck & Srikant'12 (1—7)5:2
P S|IA]
w. ht 'l |s11A
ainwright '19 (1—)5<2
. [SIA]
Chen et al.'20 (1—~)5c2

13/ 58




Sample complexity of synchronous Q-learning

Theorem 1 (Li, Cai, Chen, Gu, Wei, Chi’21)

For any 0 < € < 1, synchronous Q-learning yields ||@ — Q"o <€
with high prob., with sample complexity (i.e., T|S||.A|) at most

(s

S A] )

1 —)te?

e Covers both constant and
rescaled linear learning rates:

1

c1(1—y)T

N =
1+

log? T
1

14+ c2(1—y)t

or n =

log? T

other papers

sample complexity

1
Even-Dar & Mansour '03 2T—7 S| "2‘ 5
(1—=v)%e
kant" 1s121A1%
Beck & Srikant'12 (1-7)52
P [SIHA]
Wainwright '19 (1=~)5e2
. [SIIA]
Chen et al.'20 (1—)52
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All this requires sample size at least % e

NN
N2
A SN
sample 4

N

complexity \5\@;;&
A

(log scale) ¢
N
s@\
N

(log scale)

Question: Is Q-learning sub-optimal, or is it an analysis artifact?



. S
A numerical example: % samples seem necessary . ..
(1-7)%e

— observed in Wainwright '19

a=1
a=2 . 108
1 g
Q 1-p O ! g
—
©O—— 0 g
1- z
3]
=¥
Q
N
2 10°
4'7 - 1 E ——— Q-learning .
p frd T § , ———— Theory: N =< iy
")/ 10 10 15 20 25 30 35 40
discount complexity:
r(07 1) — O, 74(1, 1) — T.(l, 2) — 1 1scount complexity: g p
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Q-learning is NOT minimax optimal

Theorem 2 (Li, Cai, Chen, Gu, Wei, Chi, 2021)

For any 0 < € < 1, there exist an MDP such that to achieve
|Q — Q*||so < &, synchronous Q-learning needs at least

Q <(1‘f|,’;4;482> samples
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Q-learning is NOT minimax optimal

Theorem 2 (Li, Cai, Chen, Gu, Wei, Chi, 2021)

For any 0 < € < 1, there exist an MDP such that to achieve
|Q — Q*||so < &, synchronous Q-learning needs at least

Q <(1‘f|,’;4;482> samples

e Tight algorithm-dependent lower bound

e Holds for both constant and rescaled linear learning rates

a=1
a=2
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Q-learning is NOT minimax optimal

Theorem 2 (Li, Cai, Chen, Gu, Wei, Chi, 2021)

For any 0 < € < 1, there exist an MDP such that to achieve
|Q — Q*||so < &, synchronous Q-learning needs at least

Q (%) samples

s
sample
complexity

(log scale)

— (log scale)
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Why is Q-learning sub-optimal?

Over-estimation of Q-functions (Thrun & Schwartz'93; Hasselt '10)

e maxgec 4 E[X (a)] tends to be
over-estimated (high positive
bias) when E[X (a)] is replaced
by its empirical estimates using a
small sample size

e often gets worse with a large
number of actions (Hasselt, Guez,
Silver '15)

I max, Q(s,a) — V.(s)
10 l = Qs argmax, Qs,0) — Va(s)

error

%%
number of actions

Figure 1: The orange bars show the bias in a single Q-
learning update when the action values are Q(s,a) =
Vi(s) + €, and the errors {e, }7-; are independent standard
normal random variables. The second set of action values
@', used for the blue bars, was generated identically and in-
dependently. All bars are the average of 100 repetitions.
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Improving sample complexity via variance reduction



A detour: finite-sum optimization

minimize,, cgd F(x) = %Zfz(m)

e F(-): p-strongly convex
e f;: convex and L-smooth (i.e., Vf; is L-Lipschitz)

e x:= L/u: condition number
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Recall: SGD theory with fixed stepsizes

t+1 t

gt =" —n g

e g': an unbiased stochastic estimate of F'(x!)

o Elllg'l3] < o + e[ VE ()13

This SGD-type algorithm with 7, = 1 obeys

0_2
Bl (a) - F(e)) < 175+ (1 ! (Fla®) - F(e)
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Recall: SGD theory with fixed stepsizes

e vanilla SGD: gt = Vf;,(z)
2

2 is non-negligible even when ' = x*

o issue: o,

e question: it is possible to design g’ with reduced variability ag?
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A simple idea

Imagine we take some v! with E[v!] = 0 and set
gt = vflt(wt) — '

— so g’ is still an unbiased estimate of VF(z!)
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A simple idea

Imagine we take some v! with E[v!] = 0 and set
gt = vflt(wt) — '

— so g’ is still an unbiased estimate of VF(z!)

question: how to reduce variability (i.e. E[||g?|13] < E[||V f;,(x!)]|3])?
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A simple idea

Imagine we take some v! with E[v!] = 0 and set
gt = vflt(wt) — '

— so g’ is still an unbiased estimate of VF(z!)

question: how to reduce variability (i.e. E[||g?|13] < E[||V f;,(x!)]|3])?

answer: find some zero-mean v! that is positively correlated with

Vfi (') (e (v, Vi, (2')) > 0) (why?)
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Reducing variance via gradient aggregation

If the current iterate is not too far away from previous iterates, then
historical gradient info might be useful in producing such a v’ to
reduce variance

main idea of variance reduction: aggregate previous gradient info
to help improve the convergence rate
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Stochastic variance reduced gradient (SVRG)

— Johnson, Zhang '13

key idea: if we have access to a history point °¢ and VF (x°'¢),

then

Vi (xh) = Vi, (%) + VF(z)  with i, ~ Unif(1,--- ,n)

— 0 if &t~z gold — 0 if xold z *

e is an unbiased estimate of VF(x!)
Id

e converges to 0 if ! ~ x°¢ ~ x*

—_——
variability is reduced!
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Stochastic variance reduced gradient (SVRG)

e operate in epochs

e in the st epoch

o very beginning: take a snapshot x2

compute the batch gradient VF(x°)

of the current iterate, and

o inner loop: use the snapshot point to help reduce variance

a =zl —n{Vfi () — Vi, (22¢) + VF ()}

S

a hybrid approach: batch gradient is computed only once per epoch
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Remark

e constant stepsize 7
e each epoch contains 2m + n gradient computations

o the batch gradient is computed only once every m iterations

o the average per-iteration cost of SVRG is comparable to that of
SGD if m 2 n

e linear convergence
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Remark

e constant stepsize 7
e each epoch contains 2m + n gradient computations

o the batch gradient is computed only once every m iterations

o the average per-iteration cost of SVRG is comparable to that of
SGD if m 2 n

e linear convergence

e total computational cost:

1 1

(m+4+mn) logz =< (n+k)logz

N—— ~—_————

number of grad computation per epoch if m < max{n, x}
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Back to Q-learning ...

— inspired by Johnson & Zhang '13

Variance-reduced Q-learning updates (Wainwright '19)

Qu(s,0) = (1= Qi-1(5,0) + n(Ti(Qe-1) ~TH(Q) + T(Q) )(s,0)

use Q to help reduce variability

e (Q: some reference Q-estimate
e 7 empirical Bellman operator (using a batch of samples)
Ti(Q)(5.0) = r(s,a) + ymax Q(s', @)

T(Q)(s,a) = T(S,a) + v N]E [maXQ(S/7a/)j|

’
s'~P(-|s,a) @
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An epoch-based stochastic algorithm

— inspired by Johnson & Zhang '13

update variance-reduced

Q-learning
)-)-)‘)‘
epoch 1 epoch 2 epoch 3

for each epoch
1. update Q and 7(Q) (which stay fixed in the rest of the epoch)

2. run variance-reduced Q-learning updates iteratively
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Sample complexity of variance-reduced Q-learning

Theorem 3 (Wainwright '19)

For any 0 < € < 1, sample complexity for variance-reduced
synchronous Q-learning to yield ||QQ — Q*||cc < € is at most

(=)

e allows for more aggressive learning rates
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Sample complexity of variance-reduced Q-learning

Theorem 3 (Wainwright '19)

For any 0 < € < 1, sample complexity for variance-reduced
synchronous Q-learning to yield ||QQ — Q*||cc < € is at most

(=)

e allows for more aggressive learning rates

e minimax-optimal for 0 < e <1
o remains suboptimal if 1 < ¢ < ;-
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Model-free RL

. Basics of Q-learning

. Synchronous Q-learning and variance reduction (simulator)
. Asynchronous Q-learning (Markovian data)

. Q-learning with lower confidence bounds (offline RL)

. Q-learning with upper confidence bounds (online RL)



Markovian samples and behavior policy

observed: (So——+(81——>S2——>83——> 84 ——>(55
\_a’l '\_,j '\_all ’\_f” {\_II’ \_—"

ao a az as Qg as

T(-|s0) m(-[s1) mu(-[s2) mu([s3) mb(-|sa) mb(:|s5)

s

learn:  sp—— 81—~ 52— 83— 84— 85—
( ’, (\_a,, (\_I' \\_all (\_all (\ -’ !
ao aj a2 as aq as

7*(-|so) m*(ls1) m*([s2) 7*(:|ss) 7*(:|sa) 7*(:[s5)

Observed:  {s;,as,7:}+>0  generated by behavior policy
—_——

stationary Markovian trajectory

Goal: learn optimal value V* and Q* based on sample trajectory
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Markovian samples and behavior policy

observed: (So——+(81——>S2——>83——> 84 ——>(55
\_a’l '\_,j '\_all ’\_f” {\_II’ \_—"

ag aj az as ay as

T(-|s0) m(-[s1) mu(-[s2) mu([s3) mb(-|sa) mb(:|s5)

s

learn:  sp—— 81—~ 52— 83— 84— 85—
( ’, (\_a,, (\_I' \\_all (\_all (\ - !
ao ap a2 0%’, %4 as

7*(-|so) m*(ls1) m*([s2) 7*(:|ss) 7*(:|sa) 7*(:[s5)

Key quantities of sample trajectory
e minimum state-action occupancy probability (uniform coverage)
Hmin i=min  pr (s, a)
——
stationary distribution

e mixing time: tmix

31/ 58



Q-learning on Markovian samples

Chris Watkins Peter Dayan

Qt+1(st,at) = (1 —m)Qe(st, ar) + meTe(Qt) (e, ae), >0

only update (s¢,at)-th entry
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Q-learning on Markovian samples

Chris Watkins Peter Dayan

Qt+1(st,at) = (1 —m)Qe(st, ar) + meTe(Qt) (e, ae), >0

only update (s¢,at)-th entry

Te(Q)(st, at) = r(st, ar) +ymax Q(si41,a’)
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Q-learning on Markovian samples

<
»
fy

< |

(s0 aoj\\\
(s11a1

observed: (50 2SS el S| <
T 1l H J v 1 H J H 1 (

\\_a' ‘\_a’ ‘\_— ‘\_a’ ‘\_a \~_¢' (52’
ag ay az as aq as Yj I
bo) I

Qs,a

e asynchronous: only a single entry is updated each iteration
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Q-learning on Markovian samples

(s0}ao)
J,
(s1}ar)
observed: So——>81—— 82— 83— 84 ——>55 — S
(o (o (o [ (- [ (52)a2)
ag ai az as a4 as
(|
Ss,lla)
Q(s,a)

e asynchronous: only a single entry is updated each iteration
o resembles Markov-chain coordinate descent
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Q-learning on Markovian samples

observed: S1—— 82
L (\_/' \
ay

m(+1s0) mo([s1) mo(ls2) mb([s3) mo(-|sa) mu(-Is5)

83
qx_a
as

\ 4
) )

’

85— S
'\ - a’l

as

%
7
’

~ -’ qx_a
as a4
T

A

Jao)

tss, lla)
|

Q(s,a)

an)l ™

e asynchronous: only a single entry is updated each iteration

o resembles Markov-chain coordinate descent

e off-policy: target policy 7 # behavior policy
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A highly incomplete list of works

Watkins, Dayan '92

Tsitsiklis '94

Jaakkola, Jordan, Singh '94

Szepesvari '98

Borkar, Meyn '00

Even-Dar, Mansour '03

Beck, Srikant'12

Chi, Zhu, Bubeck, Jordan'18

Lee, He'18

Chen, Zhang, Doan, Maguluri, Clarke '19
Du, Lee, Mahajan, Wang '20

Chen, Maguluri, Shakkottai, Shanmugam '20
Qu, Wierman '20

Devraj, Meyn '20

Weng, Gupta, He, Ying, Srikant '20

Li, Wei, Chi, Gu, Chen'20

Li, Cai, Chen, Gu, Wei, Chi'21

Chen, Maguluri, Shakkottai, Shanmugam '21
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Sample complexity of asynchronous Q-learning

Theorem 4 (Li, Cai, Chen, Gu, Wei, Chi’21)
Fcir any 0 < e < ﬁ sample complexity of async Q-learning to yield
|Q — Q*||co < € is at most (up to log factor)
1 tmix
,umin(1 - 7)452 ,umin(1 - 7)




Sample complexity of asynchronous Q-learning

Theorem 4 (Li, Cai, Chen, Gu, Wei, Chi’21)
Fcir any 0 < e < ﬁ sample complexity of async Q-learning to yield
|Q — Q*||co < € is at most (up to log factor)
1 — + tmix
Hmin(1 - 7) € Mmin(1 - )

other papers sample complexity

Even-Dar et al.'03

Even-Dar et al.'03

° learning I’ates: Beck & Srikant '12

constant & rescaled linear Qu & Wierman '20

- - 1 b
Li et al. 20 T (=152 T i (1—7)

Chen et al.’21 W + other-term(mix)




Linear dependency on 1/imin

sample
complexity




Effect of mixing time on sample complexity

Markov Chains
and Mixing Times

1 + tmix
,“min(1 - ’7)452 Nmin(1 - 7)

e reflects cost taken to reach steady state

e one-time expense (almost independent of ¢)
— it becomes amortized as algorithm runs

e can be improved with the aid of variance reduction (Li et al. '20)

— prior art: #(tlmﬁ'xg (Qu & Wierman '20)

min
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Model-free RL

. Basics of Q-learning

. Synchronous Q-learning and variance reduction (simulator)
. Asynchronous Q-learning (Markovian data)

. Q-learning with lower confidence bounds (offline RL)

. Q-learning with upper confidence bounds (online RL)



Recap: offline RL / batch RL

Historical dataset D = {(s¥,a(", s'¥)}: N independent copies of
Sprv aNﬂ-b("s)» S,NP('|Sva)

for some state distribution p® and behavior policy 7®
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Recap: offline RL / batch RL

Historical dataset D = {(s¥,a(", s'¥)}: N independent copies of
Sprv aNﬂ-b("s)» S,NP('|87G)

for some state distribution p® and behavior policy 7®

Single-policy concentrability
* T 4 ’ \\»\\
d™ (s,a
C* := max M >1 B \
s, d” (37 CL) 7 historical dataset D //\
where d™: occupancy distribution under 7 \}\ . \
| ! T r
e captures distributional shift

e allows for partial coverage
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How to design offline model-free algorithms
with optimal sample efficiency?



How to design offline model-free algorithms
with optimal sample efficiency?

pessimism variance
(low confidence bounds) reduction

— | LCB-Q| = [LCB—Q—Advantage]




LCB-Q: Q-learning with LCB penalty

— Shi et al. '22, Yan et al. '22

QtJrl(st»at) <~ (1 - nt)Qt(Stvat) + 0Ty (Qt) (5t7 at) - ntbt(sta (lt)

———
classical Q-learning LCB penalty
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LCB-Q: Q-learning with LCB penalty

— Shi et al. '22, Yan et al. '22

QtJrl(st»at) <~ (1 - nt)Qt(Stvat) + 0Ty (Qt) (5t7 at) - ntbt(sta (lt)

———
classical Q-learning LCB penalty

e b.(s,a): Hoeffding-style confidence bound

e pessimism in the face of uncertainty
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LCB-Q: Q-learning with LCB penalty

— Shi et al. '22, Yan et al. '22

QtJrl(st»at) <~ (1 - nt)Qt(Stvat) + 0Ty (Qt) (5t7 at) - ntbt(sta (lt)

———
classical Q-learning LCB penalty

e b.(s,a): Hoeffding-style confidence bound

e pessimism in the face of uncertainty

sample size: é(ﬁ;?) =  sub-optimal by a factor of ﬁ; J

Issue: large variability in stochastic update rules

41/ 58



Q-learning with LCB and variance reduction

— Shi et al. '22, Yan et al. '22

Qit1(5¢,a1) (1 = 1)Qe(5¢,a1) — ¢ be(54,a¢)
~—_———
LCB penalty

+n(TQ) -~ T@)+ T@) ) (51, )

advantage reference
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Q-learning with LCB and variance reduction

— Shi et al. '22, Yan et al. '22

Qit1(5¢,a1) (1 = 1)Qe(5¢,a1) — ¢ be(54,a¢)
~—_———
LCB penalty

+n(TQ) -~ T@)+ T@) ) (51, )

advantage reference

e incorporates variance reduction into LCB-Q

> > >

epochm =1 epoch m =2 epoch m =3
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Q-learning with LCB and variance reduction

— Shi et al. '22, Yan et al. '22

Qit1(5¢,a1) (1 = 1)Qe(5¢,a1) — ¢ be(54,a¢)
~—_———
LCB penalty

+n(TQ) -~ T@)+ T@) ) (51, )

advantage reference

e incorporates variance reduction into LCB-Q

> > >

epochm =1 epoch m =2 epoch m =3

Theorem 5 (Yan, Li, Chen, Fan’22, Shi, Li, Wei, Chen, Chi’22)

Fore € (0,1 — ], LCB-Q-Advantage achieves V*(p) — V%(p) <e
with optimal sample complexity O(ﬁ)
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sample sample .
complexity i A complexity
W
%
G
L

infinite-horizon MDPs finite-horizon MDPs



Model-free RL

. Basics of Q-learning

. Synchronous Q-learning and variance reduction (simulator)
. Asynchronous Q-learning (Markovian data)

. Q-learning with lower confidence bounds (offline RL)

. Q-learning with upper confidence bounds (online RL)



Finite-horizon MDPs

action

| environment [« — I

¢
next state
Shi1 ~ Pu(-|sh, an)

H: horizon length

S: state space with size S e A: action space with size A
rh(Sn,ap) € [0, 1]: immediate reward in step h

= {ﬁh}lez policy (or action selection rule)

Py,(-|s,a): transition probabilities in step h
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Finite-horizon MDPs

action
ap ~ mh(:|sn)

reward

Th = 7(Sn, an I
“""" environment [« — I

next state
Shi1 ~ Pu(-|sh, an)

value function: V)" (s) =E

H

Zrh(sh,ah) | Sp = 51

t=h

H

Zrh(sh,ah) | sh =s,an = a}
=h

t

Q-function: Q}(s,a) =E

45/ 58



Online RL: interacting with real environments

Sequentially execute MDP for K episodes, each consisting of H steps

LE execute 7'

episode 1 |:> {sh»ah, 7 e
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Online RL: interacting with real environments

Sequentially execute MDP for K episodes, each consisting of H steps

LE execute 7!

episode 1 |::> {sh»ah, 7 e

[n=ane! execute 7>
\
L 2 92 2\H
episode 2 {8h> @ T =1
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Online RL: interacting with real environments

Sequentially execute MDP for K episodes, each consisting of H steps

LE execute 7'

episode 1 |::> {sh»ah, 7 e

= e ] execute 7>

Lo 2 2 2\H
episode 2 :> {8h: @k, i h=1

e execute &

episode K |:> {Sf ai{7 Tf}{j:l

46/ 58



Online RL: interacting with real environments

Sequentially execute MDP for K episodes, each consisting of H steps
— sample size: T'= KH

ik execute 7!

episode 1 |::> {sh»ah, 7 e

SRR ! LL execute 7>
35
L 2 2 2\H
episode 2 :> {8h: @k, i h=1

e execute &

episode K |:> {Sf ai{7 T}{(}hH:I

exploration (exploring unknowns) vs. exploitation (exploiting learned info)J
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Regret: gap between learned policy & optimal policy

adversary learner

A
-3/ )

initial state execute
51 = policy !

episode 1
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Regret: gap between learned policy & optimal policy

adversary learner

initial state : execute . |n|t|aI state execute
3% policy 7" . = policy 7€

episode 1 episode K
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Regret: gap between learned policy & optimal policy

adversary learner

initial state execute initial state execute
I 51 I = policy 7! = = s{{ = policy ©f

episode 1 episode K

Performance metric: given initial states {s¥}X_ | define

chosen by nature/adversary

K

Regret(T) = > (Vi(sf) — Vi (s}))
k=1
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Existing algorithms
e UCB-VI: Azar et al.'17
e UBEV: Dann et al.'17
e UCB-Q-Hoeffding: Jin et al. 18
e UCB-Q-Bernstein: Jin et al.’18
e UCB2-Q-Bernstein: Bai et al.'19
Regret(T) > VH2SAT e EULER: Zanette et al.'19
e UCB-Q-Advantage: Zhang et al.’20
o UCB-M-Q: Menard et al. 21

e Q-EarlySettled-Advantage: Li et
al.’21

Lower bound
(Domingues et al. '21)



Which model-free algorithms are sample-efficient for online RL?



Which model-free algorithms are sample-efficient for online RL?

early-settled
ucB variance variance
exploration reduction reduction

= |ucBQ| = [UCB—Q—Advantage] =

Jin et al.’18 Zhang et al. '20 Li et al. 21




Q-learning with UCB exploration (Jin et al., 2018)

Qn(sh.an) — (1 —m)Qn(Sh,an) + kT (Qnt1) (Sh, an) + nk br(sk, an)
———

classical Q-learning exploration bonus
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Q-learning with UCB exploration (Jin et al., 2018)

Qn(sh.an) — (1 —m)Qn(Sh,an) + kT (Qnt1) (Sh, an) + nk br(sk, an)
———

classical Q-learning exploration bonus

e bp(s,a): upper confidence bound; encourage exploration
— optimism in the face of uncertainty

e inspired by UCB bandit algorithm (Lai, Robbins '85)

Regret(T) < VH3SAT = sub-optimal by a factor of VH J

Issue: large variability in stochastic update rules
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Q-learning with UCB and variance reduction

— Zhang et al. 20

Incorporates variance reduction into UCB-Q:
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Q-learning with UCB and variance reduction

— Zhang et al. 20
Incorporates variance reduction into UCB-Q:

Qn(sn,an) < (1 —ne)Qn(Sh, an) + 1k b (sn, an)

N—
UCB bonus
+ (77“(@“1) = Te(@nya) + T(@h-&-l)) (5n,an)
———
advantage reference

e employ variance reduction to help acclerate convergence
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Q-learning with UCB and variance reduction

— Zhang et al. 20
Incorporates variance reduction into UCB-Q:

Qn(sn,an) < (1 —ne)Qn(Sh, an) + 1k b (sn, an)

N—
UCB bonus
+ (77“(@“1) = Te(@nya) + T(@h-&-l)) (5n,an)
———
advantage reference

e employ variance reduction to help acclerate convergence

UCB-Q-Advantage is asymptotically regret-optimal

Issue: high burn-in cost O(S%A*H?%)
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UCB-Q with variance reduction and early settlement

One additional key idea: early settlement of the reference as soon as
it reaches a reasonable quality
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UCB-Q with variance reduction and early settlement

One additional key idea: early settlement of the reference as soon as
it reaches a reasonable quality

Theorem 6 (Li, Shi, Chen, Gu, Chi’'21)
With high prob., Q-EarlySettled-Advantage achieves

Regret(T) < O(VH2SAT + HSA)
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UCB-Q with variance reduction and early settlement

One additional key idea: early settlement of the reference as soon as
it reaches a reasonable quality

Theorem 6 (Li, Shi, Chen, Gu, Chi’'21)
With high prob., Q-EarlySettled-Advantage achieves

Regret(T) < O(VH2SAT + HSA)

e regret-optimal with near-minimal burn-in cost in .S and A
SApoly(H)

e memory-efficient O(SAH)

e computationally efficient: runtime O(T")
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Comparisons of regret-optimal algorithms

memory
complexity
A

S2ZAH e @ ® UCB-VI

-4 i UCB-Q-Advantage
SAH |eeeeeeeens Yoo AR S

{ o ;
Q—Earlygettled—Advantage . burn-in cost

0 SApoly(H) S3AHS  S%AH?®



Summary of this part
memory
complexity
e \
@ UCB-M-Q
sample o S2ZAH | ‘ ........................ ® UCB-VI
complexity z
z i
5 &S U
< &
x & ™S
FE A ;
N
120 2L \S\\A\ UCB-Q-Advantage
Lietab =  GAH | .
|S|]A| Q—Ezrl)gett\ed—/\dvznuge . burn-in cost
O Sapoly(H)  SPAH®  SOA'H*

Model-free RL can achieve memory efficiency,
computational efficiency, and sample efficiency at once!
— with some burn-in cost though
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