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Successes of reinforcement learning (RL)

hampion

ALL syerMs GO
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Supervised learning

Given i.i.d. training data, the goal is to make prediction on unseen
data:

— pic from internet
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Reinforcement learning (RL)

In RL, an agent learns by interacting with an environment

e no training data
e maximize total rewards

trial-and-error

sequential and online

“Recalculating ... recalculating ...”
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Challenges of RL

e explore or exploit: unknown or changing environments

credit assignment problem: delayed rewards or feedback

e enormous state and action space

e nonconvex optimization
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Sample efficiency
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e prohibitively large state & action space
e collecting data samples can be expensive or time-consuming
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e prohibitively large state & action space
e collecting data samples can be expensive or time-consuming

Challenge: how to design sample-efficient RL algorithms? )|
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Statistical foundation of RL

asymptotic
analysy
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19 V1o 27520

The Contributions of Herbert Robbins to

Mathematical Statistics

Tze Leung Lai and David Siegmund

2. STOCHASTIC APPROXIMATION AND
ADAPTIVE DESIGN

In 1951, Robbins and his student, Sutton Monro,
founded the subject of stochastic approximation with
the publication of their celebrated paper [26]. Con-
sider the problem of finding the root # (assumed
unique) of an equation g(x) = 0. In the classical

4. SEQUENTIAL EXPERIMENTATION AND
OPTIMAL STOPPING

The well known “multiarmed bandit problem” in
the statistics and ing which is pro-
totypical of a wide variety of adaptive control and
design problems, was first formulated and studied by
Robbins [28]. Let A, B denote two statistical popula-
tions with finite means u4, up. How should we draw a

Herbert Robbins David Blackwell

David Blackwell, 1919-2010: An explorer in
mathematics and statistics

Peter J. Bickel*'

Blackwell channel. He also began to work in dynamic
programming, which is now called reinforcement
learning/| In a series of papers, Blackwell gave a rig-
orous foundation to the theory of dynamic program-
ming, introducing what have become known as
Blackwell optimal policies.
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Statistical foundation of RL

o (R finite-sampl
‘\ A ¢ p €
w «5’6 analysis «

asymptotic \
analys/

Understanding sample efficiency of RL requires a modern suite of
non-asymptotic statistical tools
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Outline (Part 1)

e Basics of Markov decision processes
e Basic algorithms for policy evaluation/maximization

e RL with a generative model
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Background: Markov decision processes
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Markov decision process (MDP)

state s action ay

r T
; I
I

environment |« — —J

e S: state space

e A: action space
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Markov decision process (MDP)

state s action ay

0

reward |
iy = T(St, a |

environment |« — —J

e S: state space
e A: action space

e 1(s,a) € [0,1]: immediate reward
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Markov decision process (MDP)

action

environment |« — -

S: state space
A: action space
r(s,a) € [0,1]: immediate reward

7(+|s): policy (or action selection rule)
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Markov decision process (MDP)

action

environment |« — -

next state
St41 ~ P(st, ar)
S: state space
A: action space
r(s,a) € [0,1]: immediate reward
7(+|s): policy (or action selection rule)

P(-|s,a): unknown transition probabilities
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Help the mouse!

v
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Help the mouse!

v
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e state space S: positions in the maze
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Help the mouse!

v
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e state space S: positions in the maze

e action space A: up, down, left, right
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Help the mouse!

v

ﬁf

e state space S: positions in the maze

e action space A: up, down, left, right

e immediate reward r: cheese, electricity shocks, cats
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Help the mouse!

v

ﬁf

state space S: positions in the maze
action space A: up, down, left, right

immediate reward 7: cheese, electricity shocks, cats

policy 7(-|s): the way to find cheese
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Value function

state s iction
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Value of policy m: cumulative discounted reward

VseS: V7T(s):=E Z’ytr(st,at) |so=s
=0
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Value function

state s IHon.
~r (.I|St) o r 72 rs ra
v | > e-Le-lelelal
n=T(S¢,a:% co 'y co . ’

N
S

<

- - oo - -
4=~ environment - ag a az as ay
<

Sth1 ~ P(‘|St,ae)

Value of policy m: cumulative discounted reward

VseS: V7T(s):=E Z’yt'r(st,at) |so=s
=0
e 7€ [0,1): discount factor

o take v — 1 to approximate long-horizon MDPs

o effective horizon: ﬁ
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Q-function (action-value function)

To T1 T2 T3 T4 Ts
I
Q (80, ao) ’—"I—>81—‘|—>32—‘|—'83—‘|—>84—‘|—>s5—‘|—> oo
o A A N N A
Qo a1 a2 (] (21 as

Q-function of policy 7:

V(s,a) eSxA: Q"(s,a) :=E Z'ytrt]sozs,ao =a
t=0

o (g¢7 s1,a1, S2,a2,---): induced by policy 7
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Q-function (action-value function)

To T T2 T3 T4 T5
VW(SO) . % 31_‘]_’8‘2 "I_’SS_‘I—'$4—‘L*S5—‘I—> eoe
ST
To T T2 T3 T4 Ts5
QW(So,ag) .—,‘I—*sl—,‘l—vslz—‘l—>33—‘L>34—‘|—>s5—‘|—> XY
\a ;l \Ef/ \(3]_2 o \EL'S'/ \zz:;¢ \&3‘¢
Q-function of policy 7:
oo
V(s,a) eSxA: Q"(s,a) :=E Z'ytrt]so =s,a0 =a
t=0

e (ge¢7 s1,a1,52,a2,---): induced by policy w
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Optimal policy and optimal value

%o,

-
n
4 »a
4 -
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optimal policy 7*: maximizing value function max, V™
Theorem 1 (Puterman’94)

For infinite horizon discounted MDP, there always exists a
deterministic policy ©*, such that

V™ (s) > V™(s), Vs,m.
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Optimal policy and optimal value
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optimal policy 7*: maximizing value function max, V'™

e optimal value / Q function: V* := VT Qr i=Q™
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Optimal policy and optimal value

"

/’ /ah
4 Pie
e
state s : . -~
which action a
» to take? F----—" »

~

optimal policy 7*: maximizing value function max, V'™
e optimal value / Q function: V* := VT QF = Q”*

e How to find this 7*7
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Example

Consider a deterministic MDP with 3 states & 2 actions

What is the optimal policy?

Reward: r(s1,a0) =1, 0 else where
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Example

Consider a deterministic MDP with 3 states & 2 actions

What is the optimal policy?

@ o T(s) =ap, Vs
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ao V*(
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ag ay
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Reward: r(s1,a0) =1, 0 else where

17/ 52



Example

Consider a deterministic MDP with 3 states & 2 actions

What is the optimal policy?
@ o T(s) =ap, Vs

y \ o V¥(s0) = 1.
VA1) = th, VA(s2) = 15

1— 1—v

ar
U U What is V™ for 7(s) = a1, Vs?

Reward: r(s1,a0) =1, 0 else where

2
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Example

Consider a deterministic MDP with 3 states & 2 actions

What is the optimal policy?

@ o T(s) =ap, Vs

y x ° V*(So) — f
Vi) =ty Vi(o2) =

QO —/—= O !
—_—

ar
U U What is V™ for 7(s) = a1, Vs?

a0 “ e V™(s) =0, Vs

Reward: r(s1,a0) =1, 0 else where
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Background: Basic dynamic programming algorithms

18/ 52



When the model is known . ..

[ original MDP \

| [ |
[ |
[ |
[ | : N
B planning |T——> 7
. oracle
[ |
B e.g. dynamic programming
. 1. Policy evaluation. Compute Q"*
. . 2. Policy improvement. Update the policy: Tg+1 = TQmk
r

truth: P

Planning: computing the optimal policy 7* given the MDP
specification
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Policy evaluation: Given MDP M = (S, A,r, P,) and policy
m: S — A, how good is 77 (i.e., how to compute V™, Vs7?)



Policy evaluation: Given MDP M = (S, A,r, P,) and policy
m: S — A, how good is 77 (i.e., how to compute V™, Vs7?)

Possible scheme:
e exact policy evaluation for each 7

e find the optimal one



Policy evaluation: Bellman’s consistency equation

e V™ /Q™: value / action-value function under policy 7
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Policy evaluation: Bellman’s consistency equation

e V™ /Q™: value / action-value function under policy 7

Bellman’s consistency equation

V™(8) = Eqn(s) [Q7 (5,0)]

Q(s,0)= r(s0) +v E | V() |
——r 3’~P(.|s,a) N——
immediate reward next state's value

Richard Bellman
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Policy evaluation: Bellman’s consistency equation

e V™ /Q™: value / action-value function under policy 7

Bellman’s consistency equation

V™(8) = Eqn(s) [Q7 (5,0)]

Q(s,0)= r(s0) +v E | V() |
——r 3’~P(.|s,a) N——
immediate reward next state's value

e one-step look-ahead /7 \r
| ﬁ@ ;

Richard Bellman
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Policy evaluation: Bellman’s consistency equation

e V™ /Q™: value / action-value function under policy 7

Bellman’s consistency equation

V™(8) = Eqn(s) [Q7 (5,0)]

Q(s,0)= r(s0) +v E | V() |
——r 3’~P(.|s,a) N——
immediate reward next state's value

e one-step look-ahead

e let P™ be the state-action transition matrix
induced by 7:

QT =r4P"Q" = QT =(—P")7Ir
Richard Bellman
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Bellman’s optimality principle

Bellman operator

T(Q)(s,a) = r(s,a) +7 , p]E {H}gj Q(s’,a’)}
immediate reward s/~P(ls,a) SN—

next state's value

e one-step look-ahead
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Bellman’s optimality principle

Bellman operator

T(Q)(s,a) = r(s,a) +7 , p]E {H}gj Q(s’,a/)}
immediate reward s'~P(-|s,a) A

next state's value

e one-step look-ahead

Bellman equation: Q* is unique solution to
T =Q"
~v-contraction of Bellman operator:

HT(Ql) - T(QQ)HOO < ’7“@1 - QQHOO Richard Bellman

22/ 52



Value iteration (VI)

Value iteration (VI)
Initialize at @ = 0. Fort =0,1,...,

QY = T(Q)
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Value iteration (VI)

Q(O)
Value iteration (VI) oW 7
Initialize at @ = 0. Fort =0,1,..., -
Q(t+1) _ T(Q(t)) QW .
Q

Iterative algorithm for fix-point solution:

Initialize at 0, repeat 2'*1 = f(x!). If f is a contraction mapping,
then z! — x*.

23/ 52



Policy iteration (PI)

Policy iteration (PI)
Initialize at @ = 0. Fort =0,1,...,

policy evaluation: Q) = Q™"

policy improvement: 7"V (s) = argmax Q") (s, a)

acA Q"
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Policy iteration (PI)

Policy iteration (PI)
Initialize at @ = 0. Fort =0,1,...,

policy evaluation: Q) = Q™"

policy improvement: 7"V (s) = argmax Q") (s, a)

acA Q"

Monotonic improvement:

Q" (s,0) > Q" (s,a)  V(s,a) €S x A

24/ 52



Iteration complexity

Theorem 1 (Linear convergence of policy/value iteration)

1Q® — Qoo <1Q? — Q"
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Iteration complexity

Theorem 1 (Linear convergence of policy/value iteration)

1Q® — Qoo <1Q? — Q"

Implications: to achieve |Q() — Q*| < ¢, it takes no more than

1 (\Q(O) ~ Qe

> iterations
1 -7 €
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Iteration complexity

Theorem 1 (Linear convergence of policy/value iteration)

1Q® — Qoo <1Q? — Q"

Implications: to achieve |Q() — Q*| < ¢, it takes no more than

1 (\Q(O) ~ Qe
v

iterations
1-— €

Linear convergence at a dimension-free rate! J
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When the model is unknown ...

Reinforcement | \\ Dynamic Programming
Learning \ and Optimal Control
An lntsoduction § DIMITRI P. BERTSEKAS

second edition

]
1
]
| !
7/ \ -
7
/
44
77/ (
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When the model is unknown ...

Reinforcement
Learning

A0 troduction
second edition

Dynamic Programming
and Optimal Control

DIMITRI P. BERTSEKAS

Richard S, Sutton and Andrew G. Barto /

Need to learn optimal policy from samples w/o model specification
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Two approaches

o model A
M,»’ff ,,,, " (ie. P e RISIAIXISY “\f‘\‘v@e
4 // \\
/ wodel-based :

samples value function
(experience) policy

Model-based approach (“plug-in”
1. build an empirical estimate P for P

2. planning based on the empirical P
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Two approaches

o model 2,
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(experience) policy
< b4
wodel-free

Model-based approach (“plug-in”
1. build an empirical estimate P for P

2. planning based on the empirical P

Model-free approach (e.g. Q-learning; part iii)
— learning w/o estimating the model explicitly
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Two approaches

ey model Al
W emm e e ", .
&@ﬁ& " (ie. P € RISIAIXIS)) N «‘:19
K wmodel-based )
samples value function
p
(experience) policy
N ’,
N wodel-free .-~ i

Model-based approach (“plug-in”
1. build an empirical estimate P for P

2. planning based on the empirical P

Model-free approach (e.g. Q-learning; part iii)
— learning w/o estimating the model explicitly
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Model-based RL (a “plug-in” approach)

1. Sampling from a generative model (simulator)

2. Offline RL / batch RL



A generative model / simulator

— Kearns, Singh '99

generative model

e sampling: for each (s,a), collect N samples {(S,G,S/(Z-))hgigN
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A generative model / simulator

— Kearns, Singh '99

generative model

e sampling: for each (s,a), collect N samples {(5>a75/(i))}1§i§N

e construct 7 based on samples (in total |S||.A| x N)

29/ 52



{s-sample complexity: how many samples are required to

learn an e-optimal policy ?

o~

Vs: V7 (s) > V*(s)—e



An incomplete list of works

Kearns & Singh '99

Kakade '03

Kearns, Mansour & Ng'02

Azar, Munos & Kappen '12

Azar, Munos, Ghavamzadeh & Kappen’'13
Sidford, Wang, Wu, Yang & Ye'18

Sidford, Wang, Wu & Ye'18

Wang '17

Agarwal, Kakade & Yang’'19
Wainwright '19a

Wainwright '19b

Pananjady & Wainwright '20

Yang & Wang'19

Khamaru, Pananjady, Ruan, Wainwright & Jordan'20
Mou, Li, Wainwright, Bartlett & Jordan '20
Li, Wei, Chi, Gu, Chen’'20

Cui, Yang'21
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Model-based approach (“plug-in”

o model P,
‘.waf """ | Ge. P e RISIAIXISI) ‘%,19
(? /’ \\
/ wodel-based \

samples value function
(experience) policy

1. build an empirical estimate P for P

2. planning based on empirical P
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Model estimation

Sampling: for each (s, a),
collect IV ind. samples
{(s,a, Sl(i))}lgz'gzv

generative moolel
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Model estimation

Sampling: for each (s, a),
collect IV ind. samples
{(s;a,s() h<isn

Empirical estimates

generative model /‘S a) Z 1 {S

empirical frequency
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Empirical MDP + planning

— Azar et al. '13, Agarwal et al. '19

[ empirical MDP

H E N
| [ |
| - | =
H B [ planning =%
[ BB oracle
| [ | _ .
| | | B e.g. dynamic programming
N N |
| |
T

empirical p

Find policy based on the empirical MDP (empirical maximizer)
—_—— (S —

using, e.g., policy iteration (P,r)
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Challenges in the sample-starved regime

N H N
H
H |
H
H N
H N
H
L
H_ B
| H
truth: empirical estimate:
P € RISIMAIXIS| P

e Can't recover P faithfully if sample size < |S|?|Al!

35/ 52



Challenges in the sample-starved regime

N H N
H
H |
H
H N
H N
H
L
H_ B
| H
truth: empirical estimate:
P € RISIMAIXIS| P

e Can't recover P faithfully if sample size < |S|?|Al!

e Can we trust our policy estimate when reliable model estimation
is infeasible?

35/ 52



(~-based sample complexity

Theorem 2 (Agarwal, Kakade, Yang'19)

1 . o .
Forany 0 <e < Ji the optimal policy T of empirical MDP

achieves

V™ = V¥l <&

with high prob., with sample complexity at most

o= y2)
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(~-based sample complexity

Theorem 2 (Agarwal, Kakade, Yang'19)

1 . o .
Forany 0 <e < Ji the optimal policy T of empirical MDP

achieves

V™ = V¥l <&

with high prob., with sample complexity at most

o= y2)

e matches minimax lower bound: Q((l‘fgﬁlg) when ¢ < 1177
(equivalently, when sample size exceeds (|f_“$‘2) (Azar et al.’13)
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(~-based sample complexity

Theorem 2 (Agarwal, Kakade, Yang'19)

1 . o .
Forany 0 <e < Ji the optimal policy T of empirical MDP

achieves

V™ = V¥l <&

with high prob., with sample complexity at most

o= y2)

e matches minimax lower bound: Q((l‘fgﬁlg) when ¢ < 1177
(equivalently, when sample size exceeds (|f_“$‘2) (Azar et al.’13)

e established upon leave-one-out analysis framework
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sample
complexity
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sample
complexity
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sample
complexity

N
N

S]|Al bq'f /
T-72[= ~§C — Sidford et al."18a

2%

(s}
(Ilslltj)lz jr:-/\érwal et al.'19 \)(\
?/ \«@*
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] | 1 1 >
SN @\\ @\\/ 52
7 4

Agarwal et al. 19 still requires a burn-in sample size > %
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sample

complexity
-~
‘&%A
ISIIA| N
[FEEEYEN — & — Sidford et al.'18a
(o)
------- N
B / o
Agarwal et al.’19
(1—9)2 / 0
7 \«“
sila | ®
-7 1 1 >
N AEN @\\/ g2
¢ 7
7

Agarwal et al. 19 still requires a burn-in sample size > %

Question: is it possible to break this sample size barrier?

J
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Perturbed model-based approach (Li et al.’20)

— Li, Wei, Chi, Gu, Chen '20

/" empirical MDP / N
H ENR H B
|| | H B
[ | W o | perurb | H HE
| | B | rewards || E . ~
H N || H N E planning 71—:
|| | N | :> || HE oracle
| || | |
L | C L | e.g. dynamic programming
H BN N N E
E N m H
empiricalﬁ T w

Find policy based on the empirical MDP with slightly perturbed
rewards
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Optimal /..-based sample complexity

Theorem 3 (Li, Wei, Chi, Gu, Chen 20)

Forany 0 <e < ﬁ the optimal policy 75 of perturbed empirical
MDP achieves

[V — V| < &

with high prob., with sample complexity at most

(a=ya)

39/ 52




Optimal /..-based sample complexity

Theorem 3 (Li, Wei, Chi, Gu, Chen 20)

Forany 0 <e < ﬁ the optimal policy 75 of perturbed empirical
MDP achieves

[V — V| < &

with high prob., with sample complexity at most

(a=ya)

e matches minimax lower bound: ﬁ((l‘f%'sg) (Azar et al.'13)
e full e-range: ¢ € (0, ﬁ] — no burn-in cost

e established upon more refined leave-one-analysis analysis and a
perturbation argument

39/ 52
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Model-based RL (a “plug-in” approach)

1. Sampling from a generative model (simulator)

2. Offline RL / batch RL



Offline RL / Batch RL

e Collecting new data might be expensive or time-consuming

e But we have already stored tons of historical data

THE COMING INAUTONOMOUS VEHICLES

Y H

medical records data of self-driving clicking times of ads
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Offline RL / Batch RL

e Collecting new data might be expensive or time-consuming

e But we have already stored tons of historical data

THE COMING INAUTONOMOUS VEHICLES

il h

MO IS\

i L
ent )
5 ﬂ N = = PERDALEACHOAY
& & ’ &

/a5

medical records data of self-driving clicking times of ads

Can we design algorithms based solely on historical data?
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Offline RL / Batch RL

Historical dataset D = {(s",a(", s'¥)}: N independent copies of
s~ p°, an~m(-|s), s’ ~ P(-]s,a)

for some state distribution p® and behavior policy 7®
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Offline RL / Batch RL

Historical dataset D = {(s",a(", s'¥)}: N independent copies of
s~ p°, an~m(-|s), s’ ~ P(-]s,a)

for some state distribution p® and behavior policy 7®

Goal: given some test distribution p and accuracy level ¢, find an
g-optimal policy 7 based on D obeying

Vip)=V7™(p) = E [V (s)] = E [V7(s)] <e¢

s~p Ss~p

— in a sample-efficient manner

43/ 52



Challenges of offline RL

e Distribution shift:

distribution(D) # target distribution under 7*
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Challenges of offline RL

e Distribution shift:
distribution(D) # target distribution under 7*

e Partial coverage of state-action space:

/
{

@ - -4 samples cover all (s,a) & all poI|C|es/
@ﬂ%@
>

o ~. !

“ Y

NS

Uy -

uniform coveragé/over entire space
(sufficiently explored)
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Challenges of offline RL

e Distribution shift:

distribution(D) # target distribution under 7*

¢ Partial coverage of state-action space:

e T YT
\ s ~ 13N
s \\\\ / Practically, N
i’ \ ! 1
{ \ i
icies,/ P . . A
- ”,,4 samples cover all (s,a) & all poI|C|es/\ / historical dataset D A
N AN 4 / ust
o) [N m v {
. | )
. / T2 ¥ \\\ﬂ/ | %o,
- 0 L DY N g
A N Vst R ~ P ’
uniform coverage over entire space partial coverage
(sufficiently explored)

(inadequately explored)
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How to quantify quality of historical dataset D (induced by 7°)?
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How to quantify quality of historical dataset D (induced by 7°)?

Single-policy concentrability coefficient (Rashidinejad et al. '21)

C* := max M
sa d™ (s, a)

where d"™(s,a) = (1 —7) Yoo ytIP’((st,at) = (s,a) |7r)
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How to quantify quality of historical dataset D (induced by 7°)?

Single-policy concentrability coefficient (Rashidinejad et al. '21)

C* := max d b(s,a) =
s,a d™ (s, a)

where d™(s,a) = (1 —7) Ztoio ytIP’((st,at) = (s,a) |7r)

occupancy density of 7*

: b
occupancy density of 7° ||

e captures distributional shift

e allows for partial coverage { m

45/ 52



A model-based offline algorithm: VI-LCB

Pessimism in the face of uncertainty: penalize value estimate of
those (s,a) pairs that were poorly visited
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A model-based offline algorithm: VI-LCB

Pessimism in the face of uncertainty: penalize value estimate of
those (s,a) pairs that were poorly visited

Algorithm: value iteration w/ lower confidence bounds

e compute empirical estimate Pof P

e initialize @ =0, and repeat

Q(s,a) + max {r(s,a) +4(P(-]s,a),V) — b(s,a; V), 0}

Bernstein-style confidence bound

for all (s,a), where V(s) = max, Q(s,a)
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Minimax optimality of model-based offline RL

Theorem 4 (Li, Shi, Chen, Chi, Wei’'22)
Forany 0 <e < ﬁ the policy T returned by VI-LCB achieves

o~

V¥(p)=V™(p)<e

with high prob., with sample complexity at most

o (1=y=)
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Minimax optimality of model-based offline RL

Theorem 4 (Li, Shi, Chen, Chi, Wei’'22)
Forany 0 <e < ﬁ the policy T returned by VI-LCB achieves

o~

V*(p) — V7 (p) < e

with high prob., with sample complexity at most

o (1=y=)

e matches minimax lower bound: Q(%) (Rashidinejad et
al.’21)

e depends on distribution shift (as reflected by C*)

e full e-range (no burn-in cost)

47/ 52




sample

. A

complexity o L
S /Q
<




Summary of this part

sample sample

complexity 1 complexity
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generative model offline/batch RL

Model-based RL is minimax optimal with no burn-in cost! J
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