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Part 1: Introduction

e Motivating applications

o community detection
o matrix/tensor completion
o ranking

e A general recipe for spectral methods



Motivating application: community detection



Graph clustering / community detection

Community structures are common in many social networks

figure credit: The Future Buzz figure credit: S. Papadopoulos

Goal: partition users into several clusters based on their
friendships / similarities
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An idealistic model: stochastic block model (SBM)

z; = 1. 15t community x; = —1: 2" community

e n nodes {1,--- ,n}
e 2 communities

e n unknown variables: z,--- ,z, € {1,—1}
o encode community memberships
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An idealistic model: stochastic block model (SBM)

e observation: a (random) graph G

, if ¢ and j are from same communit
(i,4) € G with prob. p ! J Hnity
q, else

o p > q (i.e. more within-cluster edges than between-cluster edges)
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An idealistic model: stochastic block model (SBM)

e observation: a (random) graph G

if 2 and j are from same communit

(i,7) € G with prob. {p, J y
q, else

o p > q (i.e. more within-cluster edges than between-cluster edges)

e goal: recover community memberships of all nodes, i.e. {z}}
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Key structure of adjacency matrix

Ay = {1, if (i,7) € G

0, else
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Key structure of adjacency matrix

Spectral methods
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Key structure of adjacency matrix

rank 2

WLOG, supposea:{:---:gpjb/2 1, xn/2+1_ o=z

[ p1at g1t ] p+q.+  p—q 1 T 4T
IE[A]_{qll—'— p117T | T T2 ——11 - 1’ -17]

uninformative bias .
=a*=[z{]lici<n
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Spectral clustering

= E[A] + A—-E[A]
rank 2

1. computing leading eigenvector u = [u;]1<i<pn of A — Z#IIT

1, if u; >0

2. rounding: output x; =
& P ! {—1, if u; <0
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Empirical clustering accuracy

Spectral methods

empirical success rate

1.04

0.94

0.8+

0.71

0.6

0 0.1 0.2 0.3 0.4
mean difference : ¢

n=100,p="12 q=13°

0.5
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Rationale: spectral clustering is reliable if A —E[A] is “small”
————
perturbation

o if A—TE[A] =0, then

1

u x *+ 1

] = perfect clustering

What we'll demonstrate: effect of perturbation A —E[A] on u J
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Motivating application: matrix/tensor completion



E?WW? 2 MAMAA eee

figure credit: Candes et al.
e Netflix challenge: Netflix provides highly incomplete ratings from
0.5 million users for & 17,770 movies
e How to predict unseen user ratings for movies?
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Matrix completion

In general, we cannot infer missing ratings

N O S VA
T v v
A Y VA G
[ R A S
A O Y O
FO VA G SRV
FO S A

— an underdetermined system (more unknowns than observations)
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Matrix completion

. unless rating matrix has other structure
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A few factors explain most of the data
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Matrix completion

. unless rating matrix has other structure

Hl" EEN EENEN
Aitick 7 dohdoe ? ..

7 wmmr 7 w3 =..

S

> 2 2 7w Mk

’ 7 Yunnr femmt 7 Mok eee ...

A few factors explain most of the data — low-rank approximation

Spectral methods 1-14



Matrix completion

. unless rating matrix has other structure

e Hl" EEN EENEN
Aitick 7 dohdoe ? ..

[ 0 E

ﬂ 7 vanwsr 7 e ..

.

© 2 2 7 v fdd

’ 7 ey w3 2 ik eee ...

A few factors explain most of the data — low-rank approximation

How to exploit (approx.) low-rank structure in prediction? J
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Model:

low-rank matrix completion

R NECRN

LIRS
E R

REEESN
O N R RN R

et 7 oo ?

NV ECEN
N N v\w N N

- E

e ground truth: rank-r matrix M* = U*S*V*T ¢ Rmxn2
—_———

rank-r SVD

e cach entry MZ*J is observed independently with prob. p

e goal: fill in unseen entries of M*

Spectral methods
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Model:

low-rank matrix completion

R NECRN

LIRS
E R

REEESN
O N R RN R

Spectral methods

et 7 oo ?

NV ECEN
N N v\w N N

- E

ground truth: rank-r matrix M* = U*S*V*T ¢ Rmxn2
—_———

rank-r SVD

each entry MZ*J is observed independently with prob. p
goal: fill in unseen entries of M*

intermediate step: estimate U*, V*, X*

, EBENEE -

P wwwwm 7 A
? ? 2 e e
P o A 7 e eee

1-15



Spectral method for matrix completion

1. construct a rescaled zero-filled matrix M = [M; ;] € R™*"2 as

V(i,j) M;; = {p i ! ij s observe

0, else
o rationale: ensures E[M]| = M*

2. compute rank-r SVD USV T of M, and return M = UEV "
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Empirical matrix estimation accuracy

Spectral methods

relative estimation error
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n=200,r=5

T
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Empirical matrix estimation accuracy

1.75 1 —&— Euclidean error
Entrywise error

1.00 4
0.75 1
0.50 1

0.25 1

relative estimation error

0.00 1

OTZ 013 0?4 OTS DTG 017 Oj8 019 le
sampling rate : p

n=200,r=5

What we'll see: effect of sampling rate p upon estimation accuracy J
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Extension: tensor data

o
Cell Type Factors

Genomic N
Position Factors

Assay Factors

computational genomics dynamic MRI
— fig. credit: Schreiber et al. 19 — fig. credit: Liu et al. 17
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Extension: low-rank tensor completion

;| <&
J J

observed true tensor T

e ground truth: rank-1 tensor T* € R™*"x"
e cach entry Tl*jk is observed independently with prob. p

e goal: fill in unseen entries of T

Spectral methods
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Extension: low-rank tensor completion

;| <&
J J

observed true tensor T rank-1 tensor

e ground truth: rank-1 tensor T*= u* ® u* ® u* € R™*"*"
e cach entry Tl*jk is observed independently with prob. p

e goal: fill in unseen entries of T
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Extension: low-rank tensor completion

;| <&
J J

observed true tensor T rank-1 tensor

e ground truth: rank-1 tensor T*= u* ® u* ® u* € R™*"*"
e cach entry Tl*jk is observed independently with prob. p

e goal: fill in unseen entries of T

Can we exploit low-rank tensor structure in prediction?

Spectral methods

1-19



Spectral method for low-rank tensor completion

unfold

—

T A

1. construct a rescaled zero-filled tensor T = [ka] € RXnXn og
1 e
)3T T, is observed
i3,k —
07 else

o rescaling ensures E[T] = T*

2. matricizition: A = unfold(T')
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Spectral method for low-rank tensor completion

unfold

—

T A

3. compute spectral estimates (after diagonal deletion):

u < leading eigenvector

A leading eigenvalue of Poff_diag(AAT) (remove diagonal)

4. returnffz)«u@u@u

We will explain special treatments for diagonals )i
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Motivating application: ranking



Ranking

A fundamental problem in a wide range of contexts
e web search, recommendation systems, admissions, sports
competitions, voting, ...

n21 n12

PageRank

figure credit: Dzenan Hamzic
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Ranking from pairwise comparisons
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pairwise comparisons for ranking tennis players

figure credit: Bozoki, Csatd, Temesi
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Parametric models

wj - preference score

e 7 items to be ranked

e assign a latent score {w}}i<i<p to each item, so that
item 4 = item j if w] > w]

e rank items in accordance with score estimates
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Bradley-Terry-Luce (logistic) model

e each pair of items (i, j) is compared independently

P {item j beats item ¢} = J
{ J } w; + wj*-

Spectral methods
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Bradley-Terry-Luce (logistic) model

&/ ’/S
HHHHHHWHHHWHHWWHHHHmm: / ’ R

e each pair of items (7, j) is compared independently

w>
P {item j beats item ¢} = J
{ J } w; + w]*-
w*
; 1, with prob. ——2=
— Yi e ’ P Wi
0, else
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Spectral ranking

Key idea: consider a probability transition matrix P* € R™*":

w*

1 o .
* ﬁ'w;—‘rjwj*ﬁ If7,7éj
L= By, ifi=

Spectral methods

1-25



Spectral ranking

Key idea: consider a probability transition matrix P* € R™*":

1 wy

. E'iww:w;? ifi#£j
R M N
1- Zl:l;ﬁi Pifl? if i = J
e stationary distribution 7* of P*: m* = < —w*
Zl w

leading left eigenvector of P*

o can be seen from detailed balance property: w; P;}; = w; P},

Spectral methods



Spectral ranking

Key idea: consider a probability transition matrix P* € R™*":

1 wy

1.7 i g ;

S R S o

i-j e e

L= s By, ifi=

e stationary distribution 7* of P*; 7* = —<—w*
Zl wy
leading left eigenvector of P*
o can be seen from detailed balance property: w; P;; = wj P},

True ranks are revealed by leading left eigenvector of P*

Spectral methods



Spectral ranking

1. construct a surrogate matrix P obeying

P,,_{,iyz-,j, ifi # j
1, — . .
V=20 Pigy ifi=7
2. compute leading left eigenvector 7t of P as score estimate

3. rank in accordance with 7«

— closely related to PageRank
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Empirical accuracy in finding top-ranked item

score separation : A

: latent score
empirical success rate

*
w;

HIHHHHHHWHHH i,

rank

.20 025 030 0.35 040 0.
score separation : A

n = 200
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Empirical accuracy in finding top-ranked item

g

(MM

rank

empirical success rate

1.01

0.8

0.6 1

0.4+

0.2+

0.01

010 015 020 025 030 035 040 045 050

score separation : A

n = 200

What we will demonstrate: efficacy of spectral ranking

Spectral methods
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A unified recipe for spectral methods



A unified recipe

key matrix
M™ (unobserved)

1. identify a key matrix M* — typically unobserved — whose
eigenvectors or singular vectors encode crucial information

Spectral methods
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A unified recipe

inspire

key matrix :> surrogage matrix
M™ (unobserved) M = M* + E (observed)

1. identify a key matrix M* — typically unobserved — whose
eigenvectors or singular vectors encode crucial information

2. construct a surrogate matrix M of M™ using data samples

Spectral methods
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A unified recipe

inspire compute

key matrix :> surrogage matrix :> eigenvectors of M
M™ (unobserved) M = M* + E (observed) singular vectors
N estimate /

1. identify a key matrix M* — typically unobserved — whose
eigenvectors or singular vectors encode crucial information

2. construct a surrogate matrix M of M™* using data samples

3. compute corresponding eigenvectors or singular vectors of M

Spectral methods



Key factors

A few factors that dictate the performance of spectral methods:
e proximity of M and M* (e.g. |M — M™*||)
e spectrum (e.g. eigenvalues, singular values) of M*
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Key factors

A few factors that dictate the performance of spectral methods:

e proximity of M and M* (e.g. |M — M™*||)
e spectrum (e.g. eigenvalues, singular values) of M*

Aim of this tutorial: quantify influences of these factors

Spectral methods
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MATRIX ANALYSIS TORTRNC o
. s Probability

statistics
probability

matrix perturbation theory high-dimensional

e algebraic tools: matrix perturbation theory (Part 2)

e statistical & probabilistic tools:

o matrix concentration bounds (Part 3: /3 analysis)

o leave-one-out analysis (Part 4: fine-grained analysis)
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Asymptotic notation used in this tutorial

e f(n) S g(n) or f(n) = O(g(n)) means

o <
 J(n) Z g(n) means
o 2
o () = g(n) means
const; < lim_ ||§ EZ;' < const,
o (n) = ofg(n)) means
Fm)| _

oo Jg(n)|

Spectral methods
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Part 2: Matrix perturbation theory

e Eigen-space perturbation theory

o Distances and angles between two subspaces
o The Davis-Kahan sin ® theorem

e Singular subspace perturbation theory (Wedin's theorem)

e Eigenvector perturbation for probability transition matrices



Eigen-space perturbation theory



Setup and notation

Consider 2 symmetric matrices M*, M = M* + E € R™*" with
eigen-decompositions

. * * *T * A~ U*T
M* ;A = [U™, Uﬂ[ A || o

.
M = Z)\ul UUL][AALHZI]

e eigenvalues: A\T > - > A5, A1 > - >\,

o U=[uy, - ,u] € R A =diag ([A1, -, \]) ER™", -+

Spectral methods
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Setup and notation

M= u Uy  Upgq Up
U =U,
Y
Ar
—_———
= A
)\7'+1
An

Spectral methods

T
ur+1

Sy

= UT

I
=
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Setup and notation

o (O"*T: set of all r x r orthonormal matrices

e || M||: spectral norm (largest singular value of M)

e |M]|lp: Frobenius norm (| M|lp = \/tr(MTM) = /3, ; ij)

Spectral methods 2-5



Eigen-space perturbation theory

Main focus: how does perturbation matrix FE affect “distance”
between U* and U?

Question #0: how to define distance between two subspaces?

Spectral methods
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Eigen-space perturbation theory

Main focus: how does perturbation matrix FE affect “distance”
between U* and U?

Question #0: how to define distance between two subspaces?

e |U —U"*||r and ||U — U*|| are not appropriate, since they fall
short of accounting for global orthonormal transformation

V orthonormal RER"*" U and U R represent same subspace

Spectral methods 2-6



Distances and angles between two subspaces



Two valid choices of distance metrics

Key: taking care of global orthonormal transformation

e Distance modulo optimal rotation: adjust for rotation before
computing distance:

dist(U,U*) = min
E X7

UR-U"| (2.1)

Spectral methods 2-8



Two valid choices of distance metrics

Key: taking care of global orthonormal transformation

e Distance modulo optimal rotation: adjust for rotation before
computing distance:

dist(U,U*) = min
E X7

UR-U"| (2.1)

e Distance using projection matrices: replace U (resp. U*)
with its associated projection matrix before computing distance:

dist,(U,U*) = || UU" —U*U*| (2.2)

projection onto subspace U

Spectral methods 2-8



(Near)-equivalence of two distance metrics

dist(U,U”) == Rngn |
c X7

dist, (U, U*) = |[UUT —U*U*"||

UR-U"|

Lemma 2.1

Suppose [U,U, |, [U*,U*] are square orthonormal matrices. Then

dist, (U, U*) < dist(U,U*) < v2dist, (U, U*)

e dist(-,-) and distp(-,-) are orderwise equivalent
e proof: see Section 2.6.3 of Chen et al.21
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An alternative expression for dist,(-,-)

As it turns out, disty(+, ) has several equivalent expressions:

Lemma 2.2
Recall that [U,U |, [U*,U7] are square orthonormal matrices. Then

disto(U,U”) = |U UL = |U""UL|

Spectral methods 2-10



An alternative expression for dist,(-,-)

As it turns out, disty(+, ) has several equivalent expressions:

Lemma 2.2
Recall that [U,U |, [U*,U7] are square orthonormal matrices. Then

disto(U,U”) = |U UL = |U""UL|

e sanity check: if U = U*, then dist(U,U*) = |[U'U*|| =0
e proof: see Slide 2-15

Spectral methods 2-10



Principal angles between two subspaces

In addition to “distance”, one might also be interested in “angles”

0;

D
Sl

We can quantify the similarity between two lines (represented resp. by
unit vectors u and u*) by an angle between them

6 = arccos(u, u*)

Spectral methods 2-11



Principal angles between two eigen-spaces

For r-dimensional subspaces, one needs 7 angles

Specifically, given |[UTU*|| < 1, write the SVD of UTU* € R™*" as

cos 0
U'ur=X Y= Xcos®Y'

cos 0,

=:cos ®

e XY € R"™": square orthonormal matrices

e {01,---,0,} are called the principal angles between U and U*

Spectral methods 2-12



Relations between principal angles and distance

As expected, principal angles and distances are closely related

Lemma 2.3

Suppose [U,U |, [U*,U7] are square orthonormal matrices. Then

[UTU?|| = | sin ®| = max{|sin6|,---,|sinb,|}

Lemmas 2.2 and 2.3 taken collectively give

disty(U,U*) = max{|sin 6|, - ,|siné,|} (2.3)
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Proof of Lemma 2.3

1
lu'uill=|ut vt uj
———
=I-U*U*T
— vTU -UTUUTU|?
= ||[T — X cos® G)XTH% (since U'U* = X cos®Y ")
= ||T — cos? C-')||%
= || sin©?||2

= || sin @

Spectral methods 2-14



Proof of Lemma 2.2

We first claim that the SVD of U] U* can be written as
UU =Xsin®Y " (2.4)
for some orthonormal X (to be proved later). Armed w/ this claim, one has

UT

Ul

o = w0 Koy

]U*_[U,Uﬂ{Xcos@Y—r]

2 T ; YT T
— U*U*T:[U,Ul][ Xcos*®X X cos®sin ® X ] {U

X cos@sin® X Xsin2@®@ X UI
As a consequence,

UUT o U* U*T

_U,U.] [ I—Xcos?20@XT ~ X cos®sin® X | ] [ Ut ]

~ X cos®sin®X T _Xsin2@ X ' UI
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Proof of Lemma 2.2 (cont.)

This further gives

||UUT _ U*U*TH
X sin? © —cos®sin ® T N

o —cos®Osin® —sin? ©® X7

H sin? © —cos © sin ©® H

— cos O sin © 2@ (]| - || is rotationally invariant)

each block is a diagonal matrix
{ sin? 6; — cos 6; sin0; ] H

= max . .
—cos 6; sin 0; —sin? 6,

1<i<lr

= Imax
1<i<r

sin 0 [ sinf); —cos#b; }

—cosf; —sinb;

= max [siné;| = | sinO|
1<i<r
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Proof of Lemma 2.2 (cont.)

It remains to justify (2.4). To this end, observe that
U*TUJ_UIU* — U*TU* _ U*TUUTU*
—I—-Ycos’®@Y "
=Ysin’@Y "

and hence the right singular space (resp. singular values) of U*T U, is given
by Y (resp. sin ®). This immediately implies (2.4).
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Summary: four (almost) equivalent distance metrics

1) |vUuT -UuurT|
2) |sin@]

3) |ulvr|=|uuif
)

4 min |[UR - U*||
ReOT‘Xr
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Summary: four (almost) equivalent distance metrics

N uuT - vUrT|
2) |sin@|
3) |ulvr|=|uuif
4)  min |[UR-U"|
REOT‘X’I‘
Near-equivalence of these metrics continue to hold if || - || is replaced

by || - [lr
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The Davis-Kahan sin © theorem



Warm-up example (0 < e < 1):

s | 1+e 0 o
M_[ 0 1—¢ , B=

Spectral methods
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Warm-up example (0 < e < 1):
« | 1+e 0 N B |1 e
M” = l 0 1—€}|’ E= e €|’ M = e 1

e leading eigenvectors of M* and M:

1
ufzm, m:M R S

0 V2|1 V2

— eigenvector distance is large regardless of size of € (or size of | E||)
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Warm-up example (0 < e < 1):
« | 1+e 0O N B |1 e
M_l() 1—6’E_66’M_61
e leading eigenvectors of M* and M:

1
u’{:lll,ulzlll — HululT—u’fu’{THQ:

1
0 V2|1 V2

— eigenvector distance is large regardless of size of € (or size of | E||)

Diagonsis: eigen-gap A} — A5 = 2¢ also small (proportional to || E||)

— both perturbation size and eigen-gap might play important roles
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Davis-Kahan sin ® Theorem: a simple case

— recall the setup in Page 2-3

&7

Chandler Davis William Kahan
Theorem 2.4

Suppose M* = 0 and has rank r. If | E|| < (1 — 1/\/2)\%, then

V2| EU*| _ V2| E|
A*

dist, (U, U*) = |[U/U*|| = ||sin®|| < <.
x
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Interpretations

Suppose M* = 0 and has rank 7. If |E|| < (1 —1/v/2))%, then
V2|BU*| _ V2B

dist, (U, U*) <

AT X
Key factors: 1. eigen-gap: A\x = A7 — AL
=0

2. perturbation size: || E||

3. signal-to-noise ratio (SNR): H)}EH

e the bound w/ [|[EU™|| is sometimes useful (e.g. for £, analysis)
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Proof of Theorem 2.4

We intend to control UIU* by studying their interactions through E:

|uTEU*| = |ul (VAUT +UALU] - UuratuT U
M*

M*+E
= |[ALUJU* —UTUA| (since UT'U* =U U = 0)
> HUIU*A*H — HALUIU*H (triangle inequality)
> [UTT*)| % — [lUTo* ALl 25)

Weyl's Theorem gives ||A 1| < ||E||, which combined with (2.5) yields

U[EU*| _|[U.|-|BU*| _ |EU|
UTU* < H L < = ==
e 1 [ v - vy 7

This together with assumption || E| < (1 — /2/2)\% and Lemmas 2.2-2.3
completes the proof

Spectral methods 2-23



Davis-Kahan’s sin ® theorem: general case

— eigenvalues(A): set of eigenvalues of A
Theorem 2.5 (Davis-Kahan's sin® theorem: general version)

Assume that
eigenvalues(A™) C (—oo, a0 — AJU [B + A, 00); (2.6a)
eigenvalues(AY)) C [, A]. (2.6b)

for some eigengap A > 0. Suppose ||E|| < (1 —+/2/2)A. Then

2| BT _ 2| E
A - A

dist(U,U*) < V2dist, (U, U*) = V2| sin ®|| <
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Davis-Kahan’s sin ® theorem: general case

— eigenvalues(A): set of eigenvalues of A
Theorem 2.5 (Davis-Kahan's sin® theorem: general version)

Assume that
eigenvalues(A™) C (—oo, a0 — AJU [B + A, 00); (2.6a)
eigenvalues(AY)) C [, A]. (2.6b)

for some eigengap A > 0. Suppose ||E|| < (1 —+/2/2)A. Then

2| BT _ 2| E
A - A

dist(U,U*) < V2dist, (U, U*) = V2| sin ®|| <

e conclusion remains valid if Assumption (2.6) is reversed
e proof: see Section 2.3.4 of Chen et al.’21
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Singular subspace perturbation theory



Setup and notation

Consider 2 matrices M*, M = M*+ E € R™*"2 (n; < ny) w/ SVD

.
***T U* U* E* 0 [V* ]
ZG = LH 0o = o||vT

> 0 0 vT

M=yl = [0 e ][3520 ]|V

® 01 > .-+ > op,: singular values of M
e 07 > .-+ > oy : singular values of M*

o U=luy,...,u] € R"*" 3 =diag(A\1,..., \,) €R™", ...
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Wedin’s sin ® theorem

Davis-Kahan's theorem generalizes to singular subspace perturbation:

Theorem 2.6 (Wedin’s sin® theorem)
If|E| < (1 —1/v2)(o} — 0},1), then one has
—_——
spectral gap
max {dist(U,U*),dist(V,V*)} < v2max {dist, (U, U*), dist, (V,V*)}
_ 2max {|ETU|, BV} _ 2B

R — = ok _ %
Or = 0rp1 Op —0ry1

e both EV* and ETU* matter
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Proof of Theorem 2.6

Similar to proof of Davis-Kahan theorem, we concentrate on UIU*:
UIU* — UI (U*E*V*T)V*E*_l
U] (M- E-Us v )vie!
=M~

U] (U=VT+US, V] - E- Uy ) vis!

=M
=, Vvl _U]Ev*E-!

Applying triangle inequality and Weyls' inequality yields
[wio| < =) -V vl ||2*‘1|| + HUIII BV =

o VIV 2 v L
<+ ||E L |BV*
< T HIBl ey 1EVZ @7)

Spectral methods 2-28



Proof of Theorem 2.6 (cont.)

Repeating the same argument yields

IETU~|
*

* E
jvive) < 2 B g o (29

Combine inequalities (2.7) and (2.8) to obtain

max {|| ETU*|, [ EV*|}

*
O-'I‘

max {[|U U], [V V*} <

| o+ 1B

*
O-’r‘

max {[[UL O[], [V, v*[}

Rearrange terms and utilize || E| < (1 — v/2/2)(o} — 07,;) and
Lemma 2.1 to arrive at desired result
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Eigenvector perturbation for
probability transition matrices



Eigen-decomposition for asymmetric matrices

Eigen-decomposition for asymmetric matrices is more tricky:
1. both eigenvalues & eigenvectors might be complex-valued

2. eigenvectors might not be orthogonal to each other
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Eigen-decomposition for asymmetric matrices

Eigen-decomposition for asymmetric matrices is more tricky:
1. both eigenvalues & eigenvectors might be complex-valued

2. eigenvectors might not be orthogonal to each other

Let us look at a special case: probability transition matrices
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Probability transition matrices

Consider a Markov chain {X;}+>0
e 1 states
e transition probability P{X; 1 =j | Xy =i} = P,
e transition matrix P = [P, j|1<i j<n

e stationary distribution 7 = [m;]1<i<y, Obeys

T >0, 17w =1, and m P=x'

o leading left eigenvector of P with eigenvalue 1
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Reversible Markov chains

Markov chain {X;};>0 with transition matrix P and stationary
distribution 7 is said to be reversible if

7T¢Pi7j = 71’ij7,‘ for all i,j

— detailed balance condition

o If P represents reversible chain, then all eigenvalues of P are real
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Setup and notation

e P*: probability transition matrix of a reversible Markov chain
e P = P* + E: (perturbed) probability transition matrix

e 7* (resp. m): leading left eigenvectors of P* (resp. P)

Question: how does perturbation E affect leading left eigenvector?
Additional notation: for any probability vector m = [m;]1<i<p > 0:
e vector norm: ||| = /> ; mix? with & = [z;]1<i<n

e matrix norm: [|Al|x = supiz||, =1 [[Az|lx with A = [A; jl1<ij<n
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Eigenvector perturbation for transition matrices

Theorem 2.7 (Chen, Fan, Ma, Wang '19)

Suppose P* represents a reversible Markov chain, whose stationary
distribution vector w* is strictly positive. Assume

| Bl < (1= 1/V2)(1 = max {Ao(P*), =2, (P*)})

Then one has

- V2||7* T E|| v
|70 — 7| 7x <
1 — max {Ao(P*), =\, (P*)}

e similar to Davis-Kahan theorem
e cigengap: 1 — max {X2(P*), =\, (P*)} since 1 = \{(P*)
e perturbation size: H7r*TEH7r*

Spectral methods 2-35




Part 3: Application of {5 perturbation theory

Matrix tail bounds
Community detection
Matrix completion

Ranking from pairwise comparisons



Matrix tail bounds



A hammer: matrix Bernstein inequality

Consider a sequence of independent random matrices { X; € R4 *d2}
e E[X;]=0 e | X;|| < B for each [

e variance statistic:

v := max {HE {Zl XleT} )

B[y, x|}

Theorem 3.8 (Matrix Bernstein inequality)

For all 7 > 0,

{52, ] > o} < e (22 )
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A hammer: matrix Bernstein inequality

PSS X 2 ) <+ ) e (13/2/3)

e moderate-deviation regime (7 is small):
— sub-Gaussian tail behavior exp(—72/2v)

e large-deviation regime (7 is large):
— sub-exponential tail behavior exp(—37/2B) (slower decay)

o user-friendly form (exercise): with prob. 1 — O((dy + do)~1°)
IS, X < \Jvlog(dr + da) + Blog(dr + da) (3.9)
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Another hammer: spectral norm of random matrices
w/ independent entries

Consider a symmetric random matrix X = [Xj j]1<; j<n with
independent entries s.t. V(i,7):

e E[X;;]=0 o Var(X; ;) < o? e |X;;|<B

Theorem 3.9 (Bandeira, van Handel '16)

With probability exceeding 1 — O(n~10),
| X|| < 40vn+ O(B+/logn)

e often tighter than matrix Bernstein by some log factor
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Community detection



Recap: spectral clustering for SBMs

x; = 1: 15 community x; = —1: 2" community
e n nodes {1,--- ,n} e 2 communities
e community memberships to recover: x = [z;]1<i<n € {1,—1}"
e observed: an adjacency matrix A of a random graph s.t.
P(A; = 1) = p, ifx;=ux;
q, else

Spectral methods
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Recap: spectral clustering for SBMs

A = E[A] + A —E[A]
=11 T+ e
1. computing leading eigenvector u = [u;]1<i<pn of A — p#llT
1, if u; >0

2. rounding: output x; =
& P ! {—1, if u; <0
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Analysis via Davis-Kahan's theorem

Let us apply Davis-Kahan to analyze accuracy of spectral clustering:

o take M* —E[A] - 29917

2
= lxxT
o leading eigenvector (resp. value) u* = ﬁx* (resp. \* = 7(”_2‘1)")
o take M = A — 29117 w/ leading eigenvector u
e Theorem 2.4 yields
: 2[|M — M*|| _ 2||A-E[A]|
*
< =
dist(u,u”) < N (p_Zq)n (3.10)
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Analysis via Davis-Kahan's theorem

Let us apply Davis-Kahan to analyze accuracy of spectral clustering:

o take M* —E[A] - 29917

2
= lxxT
o leading eigenvector (resp. value) u* = ﬁx* (resp. \* = 7(”_2‘1)")
o take M = A — 29117 w/ leading eigenvector u
e Theorem 2.4 yields
: 2[|M — M*|| _ 2||A-E[A]|
*
< =
dist(u,u”) < N (p_Zq)n (3.10)

Question: how to bound ||A — E[A]||?
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Bounding ||A — E[A]|

Lemma 3.10

Consider SBM with p > q = 8™ Then with prob. 1 — O(n~19),

|A —E[A]]| < v/np (3.11)

1- if v; = x;
proof: note that e Var(4; ;) = {p( p) ifai= <p= o2
[} Ai,j S 1=B

Applying Theorem 3.9 and using p 2> 10% conclude the proof
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Statistical accuracy of spectral clustering

Substitute (3.11) into (3.10) to reach

_2A-EA) _ P

dist *
IS (uau ) = (p}q)n ~ (p_ q)n

provided that (p — ¢)n > /np

Thus, under condition I%pq > ﬁ with high prob. one has

dist(u, u*) < 1 == almost exact clustering

Spectral methods
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Statistical accuracy of spectral clustering

— 1
P29y —  —  almost exact clustering (3.12)

VP ToVn

e dense regime: if p < ¢ < 1, then this condition reads

1
P—qg>—=

NZD

e “sparse” regime: if p = alog” and ¢ = Blzg” for o, 3 < 1, then

This condition is information-theoretically optimal (up to log factor)
— Mossel, Neeman, Sly '15, Abbe '18
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Matrix completion



Recap: spectral method for matrix completion

BN

R NN
A N R RERCER SRR
B ECIRCRNCENEIE N
S R R I N  BEECREEN)

ENRCIPICIE \IRRCIE N
E R

-BEEs

e ground truth: M* = w*v*" € R™*" (a simple case)

N 1

= 7= u VUV = = —
l[all2 [v]l2

Eﬁ'ﬂlﬁ

it 7 oo ?

FIE = T SR

27 7 e e 9

? e e D

7 tnnnt eee

@, " N(0, 1)

e each entry M/, is observed independently with prob. p

e goal: fill in unseen entries of M*

Spectral methods
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Recap: spectral method for matrix completion

1. construct a rescaled zero-filled matrix M = [M; ;] € R™*"2 as

1arx . *
o =M:r., if M*. is observed
V(i,j): M;; = {g B e 0]

o rationale: ensures E[M| = M*

2. compute rank-1 SVD ouv ! of M, and return M = ouv’

How does sampling rate p affect estimation accuracy?
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Statistical accuracy of spectral estimate

From Wedin's Theorem: if |[M — M*|| < (1— \/5)01 =1- \/5, then

2||M — M*
max {dist(u, u*), dist(v, v*)} < H—*H | M — M~
91
1 2
<2 (3.13)
np
where last inequality is a consequence of:
Lemma 3.11
Suppose p > 10%. Then with high prob.,
N log? n
|M — M*|| 5 =o(1) (3.14)
np
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Sample complexity

For rank-1 matrix completion, (3.13) implies

logZn *

P> — nearly accurate estimates of u* & v

— nearly accurate estimates of M*
To yield reliable spectral estimates, it suffices to have sample size

n?p < nlog®n
—_———

optimal up to log factor
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Proof of inequality (3.14)

e First, based on Gaussianity, we have

1 1
—max | M| S %" _ B (check)
P g pn
o Next,
1-— log?
maXVar( ij) Jmax(M*]) < og2 n g2
.7 p %] ’ n p

Applying Theorem 3.9 w/ dilation trick |A[| = |[[ o+ “ ]| gives

logn log?’/2 n _ logn

V B NG

|M — M*|| < ov/n+ By/logn =
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Ranking from pairwise comparisons



Recap: spectral ranking for BTL model

Wi+ preference score

e n items with latent scores w7, ..., w
e each pair of items (7, j) is compared independently

*
w
J

i ind. 1, with prob. e
— i =
0, else

e estimate w* = [w]]i<i<p (and rank items)
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Recap: spectral ranking for BTL model

A key probability transition matrix P* € R™"*™:
1 w . .
P ﬁ'iw;#w;’ if i £ j

Z7‘7 . . .
L= s Py, ifi=

1. construct a surrogate matrix P obeying
”_{nyw, if i # j
) — o - .
V=20 Pigy ifi=7
2. compute leading left eigenvector w of P as score estimate

3. rank in accordance with 7

Can we characterize the accuracy of spectral estimates?

Spectral methods



Analysis of spectral ranking

Apply Theorem 2.7 to yield

| TE|
7 — 7|l < -
~ 1 —max {\(P*), =\, (P*)}

with E = P — P*, provided that

| Bl < (1= 1/v2)(1 = max {Ao(P*), =Aa(P*)})
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Analysis of spectral ranking

Apply Theorem 2.7 to yield

[ |7 B,
T~ 1 —max { Ao (P*), -\, (P*)}

with E = P — P*, provided that

| Bl < (1= 1/V2)(1 = max {Ao(P*), =2, (P*)})
— need to understand spectral gap and noise size
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Analysis of spectral ranking (cont.)

*
2

maXxj<i<n W
*

condition number: K = —
minj <;<n W;

Lemma 3.12 (spectral gap)

1
1 — max {\o(P*), =\ (P*)} > 32

e proof is based on comparison between two reversible Markov
chains; see Section 3.6.4 of Chen et al. 21

Lemma 3.13 (noise size)

With probability at least 1 — O(n=%),
1
|Bllae < VEIE| S /=

Spectral methods
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Analysis of spectral ranking (cont.)

Recall perturbation bound

I — e < = Bl
T 71— max {A(P*), =M\ (P*)} — || E|| .

< 4r?|7* T E| (provided that n > x”logn)

T

Note that for any v, one has

1
][z < Vhax V]2, and  [[v]l2 £ —==[v[lx
7I-min
As a result, one has
1 4K?
7 = 72 < — 7 = 7 ||r < — |7 E s
7Tmin

V 71—17;1111

< 4k T E|ly < 46| E| |72
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Analysis of spectral ranking (cont.)

Assuming x = O(1), we arrive at

logn
I — 72 S\~ ¥
n

e vanishingly small error as n — oo

e optimal error up to log factor

— Negahban, Oh, Shah 16, Chen, Fan, Ma, Wang '19
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Proof of Lemma 3.13

By construction of P and P*, we see that

1
Eij="PF;— P,y (yw - E[?Ju])

for any ¢ # j. In addition, for all 1 < ¢ < n, it follows that

1,0 Z Ev] i Z Yij — yt,j])

Ji#i J JF

Ezz—Pzz_

We shall decompose E into three parts: upper triangular, diagonal,
and lower triangular parts:

1E| < [ Eupper|| + [ Ediag | + || Eiowerll

— we will upper bound || Eypper ||
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Proof of Lemma 3.13 (controlling || Eqixl|)

Observe that

1
| Eisgl| = max |Eii| = max | Z; (vig — Elyia))|
VR E=

::Xj

To invoke Bernstein's inequality, note that
[ ‘XJ’ S 1=08B
Bernstein’s inequality + union bound reveal that: with high prob.

logn

1
max |E; ;| S —(y/vlogn + Blogn) =<
) n n
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Proof of Lemma 3.13 (controlling || E\ppe|)

1 1 .
o lyij| <, =208

° Var(%yi’j) < n—lz = g2

Applying Theorem 3.9 w/ dilation trick [|A[| = ||[ o= “ ]| gives

1 Vviegn

—~

1
i T m

||EupperH ,S U\/ﬁ—l—B\/@x

— same bound holds for || Ejoper||
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Part 4: {~, and {5 o, perturbation theory

Motivation

o exact community recovery
o top-K ranking

Leave-one-out analysis: an illustrative example
l~, eigenvector perturbation theory (rank-1)
Application: exact recovery in community detection

!5 o eigen-space perturbation theory (rank-r)



Motivation: exact community recovery



Revisiting spectral clustering for SBMs

1. computing the leading eigenvector u = [u;]1<i<p of A — ’%llT
1, if Ui > 0

2. rounding: output x; =
& OPETTA L1 ifw <0
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Revisiting spectral clustering for SBMs

It has been shown in (3.12) that: if p < log" , then
Vlogn
d=p—q> & = almost exact recovery
n

e Almost exact recovery means

mln{ Zﬂ{xﬁéx Zﬂ{xz# :E*}}
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Exact recovery of all community memberships?

When § := p — q increases, exact recovery becomes possible:
—_————

. l L N S, l n o - _
mm{ﬁ E i1 Hzi Az}, o E i1 1{,1,,,75—.1,:}}—0

o 1.04

3

)

c

n 0.94

V2]

4]

S

S os

(2]

©

.0 0.71

=

a

€ 061

5]

0 0.1 0.2 0.3 0.4 0.5

mean difference : ¢
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Exact recovery of all community memberships?

When § := p — q increases, exact recovery becomes possible:
—_————

min {% Z:;l ]1{.’1;,,;7&1:;},% Z:':l ]l{:l;,;;é—:l;:}}:O

—_

©

e
~

empirical success rate
(=] o
= )

0 0.1 0.2 03 0.4 0.5
mean difference : ¢

£y perturbation theory alone falls short of explaining exact recovery

— calls for more fine-grained analysis
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Exact recovery < /. theory

exact recovery means u;u; > 0, Vi (or w;uf < 0, Vi)

Spectral methods
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Exact recovery < /. theory

exact recovery means u;u; > 0, Vi (or w;uf < 0, Vi)

i}

lu — u o < 1/v/n or |Ju+u*|e <1/v/n
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Exact recovery < /. theory

exact recovery means u;u; > 0, Vi (or w;uf < 0, Vi)

i}

lu — u o < 1/v/n or |Ju+u*|e <1/v/n

i}

£+ eigenvector perturbation theory
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Motivation: top-K ranking



Top- K ranking

Goal: identify the set of top-K ranked items

Typical ranking procedure:

e estimate latent scores

e return top-K items in accordance with score estimates

Spectral methods
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Top-K ranking for BTL model

Scores: W

. © ground truth
0es .  estimates
° .
[ .

Top3: {1,2,3}

. construct a surrogate matrix P obeying

P '_{iyz‘,ja ifi#j
1, — - .
’ L =2z Py, ifi=j

. compute leading left eigenvector 7w of P as score estimate

3. return K items associated with largest score estimate T;

Spectral

methods
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Controlling entrywise estimation error

AK
—_—~
LTS T i1
true scores
T T T score estimates
T o ce TK TK+1 .
——

1
<3Ax < iAg

exact top-K ranking

i}

2 — 7|0 < Ag = 71'&() — WZ(K_H)

i}

{~ eigenvector perturbation theory

Spectral methods
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Leave-one-out analysis: an illustrative example

from random matrix theory, stat. physics, etc



Setup and algorithm

e Ground truth: M* = Mu*u*" € R™", with \* > 0
o |lu*ll2 =1, |u*]|ec = v/1t/n (p: incoherence parameter)
e Observationn M = M*+ E

o FE: symmetric, entries in upper triangular part are i.i.d. N(O,02)

e Estimate u* using leading eigenvector u of M

Question: can we characterize entrywise estimation error of u, i.e.

distoo (u, w*) = min {||u — u*||cc, || + v }
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{5 guarantees

Davis-Kahan's sin ® theorem together with Theorem 3.9 gives

2/[E|| _ 100y
¥ ¥

dist(u, u*) <

. . 1-1/V2
with high prob., as long as oy/n < —=)\*

e as an immediate (but very crude) consequence

avn

distoo (u, w*) < dist(u, u*) < e

Spectral methods
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(~ guarantees for matrix denoising

Theorem 4.14

Suppose that o\/n < co\* for some sufficiently small constant
co > 0. Then with high prob.,

distoo (u, u*) < o

e When p < logn (i.e. energy of u* is spread out):

o+/logn
)\*

distoo (u, u*) <

e Much sharper (i.e. \/n/logn times better) than (4.15)
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Technical hurdle: statistical dependency

Let's take close inspection of I-th entry u; of u:

e Given that u is an eigenvector of M, we have

Mu = \u,

1 1 .
— = X[M]l,;u = X[M + E]l,:u

e challenge: w is statistically dependent on E (in a complicated
way)!

How to decouple complicated dependency between w and E?
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Decomposition w/ the aid of an independent proxy

Suppose we have access to a proxy u") independent of E; ., then

El;u = El,:u(l) + El,: (u - u(l))
—— —_— ——
a term of interest =71 = T2

e Ji: controllable using independence btw u(®) & E;.

o Jo: smallif ul ~u

How to construct a useful proxy? |
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Leave-one-out auxiliary estimates

For each 1 < I < n, construct an auxiliary matrix M®
M(l) — /\*U*U*T + E(l),

where the noise matrix E() is generated according to

(removing [-th row/col)

g0 . E;j, ifi#landj#l
Y R

0, else

123 -1 - n

H H EN H N EN
leave one . . .. ;

ve on
row/column out .... . . 3
—> ;
NN [
| [ | [
N -
MO
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Leave-one-out auxiliary estimates

For each 1 <1 < n, construct an auxiliary matrix M®)
M(l) — )\*U*U*T + E(l),

where the noise matrix E() is generated according to

(removing I-th row/col)

g0 ._ JBig, ifi#landj#l
" 0, else

leave-one-out estimates: u") (resp. A\() is leading eigenvalue
(resp. eigenvector) of M®)

e key property: uV is independent of E;.

Spectral methods
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Intuition

WLOG, suppose u' u* > 0 and uPTur >0 ...
e proximity of (V) and w: since u") is obtained by dropping only
a tiny fraction of data, we expect u ~ u("

(@)

e proximity of «;’ and u;: by construction,

m_ 10 ) = A T
) _WMI” ull) = )\(l)Ml )\(l)ul*u* ul
SETH
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Proof of Theorem 4.14



What we have learned from /5 analysis

|E|| < 50vn
- 100+/n
Y

A=\ < 5ovn
max [\; (M) < 50/
J:j=2

dist(u, u*)

Spectral methods

IEV| < |E| < 50vn

10
dist(uV, u*) < iyﬁ

IAO —X*| < 5ov/n

max |\;(MY)| < 50/n
Jij=2
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Addressing ambiguity

WLOG, assume

|lu — uw*||e = dist(u, u*),

Hu(l) — u*||2 = dist(u(l),u*), 1<1I<n
A useful byproduct: if coo\/n < A* for some small constant ¢y > 0,
then one necessarily has (exercise)

|lu— u(l)||2 = dist(u,u(l)), 1<1<n

Spectral methods
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Key steps

To bound u; — uj (1 <1< n), we see from triangle inequality that

= | < oy =i+ = a® < g = |+ u—u®,
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Key steps

To bound u; — uj (1 <1< n), we see from triangle inequality that

= | < oy =i+ = a® < g = |+ u—u®,

e control |lu — u(l)H2 (Davis-Kahan)

o control |u") — u| (u" is independent from E;.,)
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Bounding proximity [|u — u’||

Key: view M as perturbation of M), apply Davis-Kahan

20(M — MO)ully _ 4)(M — MO)u],

Ops (M) = .
A — max |A; (MO)] A

= u], <

as long as
10— MO < (1= 1/V2) (A — max |2 (MV)]),

W _ (MDY >
AV —max A (M) 2 X*/2
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Bounding ||(M — M®M)u®|],

By design,
(M — M(l))u(l) = elEL.u(l) + ul(l)(E.jl — El,lel)a
which together with triangle inequality yields
|(M = MO)ulz < | B | + | B, - ||
——
E; . and u(®) are independent

< 5o /logn + [[ Bl (fua] + [l = w]l..)
< 50\/logn + 5o v/n[ullx + 50 v/nl|u — ul,
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Bounding ||u — u"||; (cont.)

Combining previous bounds, we arrive at

|| o) 200y/Tog 1t + 200 /1| w0 + 200y/n||u — ulV)|,
u—u
2 J—

)\*

200+/logn + 200 v/n||u||so
< e

provided that 400/n < \*

1
+ 3l =,

Rearranging terms and taking union bound give: with high prob.

400+/logn + 400 /n| [t/
*

l
s~ V], < .

1<i<n

Spectral methods
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Analyzing leave-one-out iterates

Recall that
o _ L @, 0 _ i * (1 L s, x T, (1)

YOO Aot
This implies

0 * * ¥ *T,.(1) *T %

Ul —UZZUI(W’U, u —Uu ’LL)
A — A0
= ul*( N0 u*Tu(l)> +uiu’ (u(l) —u”)
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Analyzing leave-one-out iterates (cont.)

Triangle inequality gives
A — O]
0]

S G T PR g

< fut] - 202V 4 ] 200V
20”“ =N

) — up| < |uf] - et - [u® s
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Putting all pieces together

Now we come to conclude that

o = ] < e { o ]+ — w0 )
200\fH I 400\/logn+400\/5\\11,”0o
)\*

One more triangle inequality gives

- 400+/logn + 600+/n ||u* ||

_a*
o~ < >

1
+ ol

provided that 800/n < A*. Rearranging terms yields

< 800+/logn + 1200+/n [|[u*]|cc  800+/logn + 1200/
- 2* o 2\*

from definition of u

(e
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(~ eigenvector perturbation theory (rank-1)



Setup and algorithm

e Ground truth: M* = Mu*u*" € R™", with A* > 0
o |lu*ll2 =1, ||u*]|ec = v/1t/n (p: incoherence parameter)
e Observation: M = M* + E with symmetric E

e Estimate u* using leading eigenvector u of M

Question: can we accommodate more general noise distributions
beyond Gaussian?

Spectral methods
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Noise assumptions

Entries in lower triangular part of E = [E; j]i<i j<n are independently
generated obeying

E[E; ;] =0, E[E;{j] <o? |Eij|<B, foralli>j

Further, assume that

B

iy y/ s e B

e in general, B is allowed to be significantly larger than o
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(~, perturbation theory

Theorem 4.15
With high prob, there exists z € {1,—1} such that

V1
Jew — w5 TYETTVOET (4.18a)
g\f o2y/nlogn + oBy/plogdn
qu — —M . s e 2 (4.18b)

provided ov/nlogn < c,\* for some small enough constant c, > 0

e estimation error is delocalized (recall that dist(u, u*) < ov/n)
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First-order expansion

Theorem 4.15 reveals tightness of first-order approximation

Mu = Mu* = M*u* N
X T T T

u =

e (4.18b) often leads to tighter approximation than (4.18a)

e important in certain applications such as SBM

Spectral methods 4-33



Application: exact recovery in community detection



Exact recovery using spectral methods

Consider the case where

alogn Blogn
) q=

n n

Theorem 4.16

Fix any constant € > 0. Suppose o > 3 > 0 are large enough?® and

(f—f) >2(1+¢)

With probability 1 — o(1), spectral method achieves exact recovery

“this assumption can be removed
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Optimality of spectral method

Lower bound: if

(Va—+B)?<2(1-¢) (4.19)

for any constant € > 0, then no method can achieve exact recovery

e taking this w/ Theorem 4.16 reveals information-theoretic
optimality of spectral method

What is the operational meaning of (/o — \/3)2 or (y/p— \/6)2? J
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Squared Hellinger distance

Definition 4.17

Consider two distributions P and @ over a finite alphabet ). The
squared Hellinger distance H?(P, Q) between P and @ is

H(P,Q) =1 Y (VP -~ Jaw)’

e squared Hellinger distance between Bern(p) and Bern(q):

HQ(Bern(p), Bern(q)) == %(\/]5— \/6)2 + %(\/1 —p—+/1- q)2
= (14 0(1))5 (V7 - va)

when p =0(1) and ¢ = o(1)

Spectral methods 4-37



Optimality of spectral method (cont.)

Theorem 4.16 and lower bound (4.19) reveal sharp phase transition:

1
spectral method works if H?(Bern(p), Bern(q)) > (1 +¢) Oin
1
no algorithm works if H?(Bern(p), Bern(q)) < (1 —¢) oen
n

for arbitrarily small constant ¢ > 0
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Fine-grained analysis of spectral clustering

WLOG, assume 2] = ... = x;/g =1 and $;/2+1 =...=x) =—1,
and recall that
M* = E[A] — PHaym_P ; 9T
These imply
)\* — n(P2—Q)7 = 1’
B=1, o? <max{p,q} =p
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Applying /., perturbation theory

ls perturbation bound (4.18b) yields: for some constant C' > 0,

o%\/nlog n oB logi)’/2 n
)\* )\*
( p\/logn \/ﬁlog3/2n> _A

Vn(p — q) n(p —q)

23w — Mu* H +

(4.20)

It boils down to characterizing entrywise behavior of Mu*
— what happens at phase transition point (/o — v/B)? = 27
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Bounding entries in Mu”*

Lemma 4.18

Suppose that (y/a — 6)2 > 2(1+¢€) for some constant € > 0.
Then with prob. 1 — o(1),

nlogn n nlogn n
M; u* > foralll < —, M, u* < — for all —
1w > T or a 1_2, u” < T or a l>2

where 1 > 0 obeys (y/a —+/B)? —nlog(a/B) > 2

key message: entries of Mu* are bounded away from 0 with correct

signs if (va —v/B)% > 2
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Completing the picture

Combine Lemma 4.18 with (4.20) leads to a claim: if

nlogn
Vn

> A (4.21)

then it follows that

zuyuf >0 forall1<l<n = exact recovery
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Proof of relation (4.21)

Lemma 4.18 and (4.20) tell us that: it suffices to show

nlogn pVlogn | /plog®?n
Vn ZC(\/fwx/ﬁ(p—q)Jr n(p—q))

. - logn nlogn
e lst term: /p =< < o

n
e 2nd term: p\/logn) logn < nlogn
Vap—q) —V
e 3rd term: divide dlscu55|on into two cases a/f3 < 2, and o/ > 2
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Comparing two sets of Bernoulli r.v.s

Lemma 4.19

Suppose o > 3, {Wi}i<i<n/o are iid. Bern(o‘log”), and {Zi}1<i<n/2

,Blogn)

are i.i.d. Bern( , which are independent of W;. For any t > 0,

n/2 n/2
(ZW ZZ <tlogn) < n~ (Ve VB)? 2+t 10g(a/B)/2

i=1 =1
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Comparing two sets of Bernoulli r.v.s

Lemma 4.19

Suppose o > 3, {Wi}i<i<n/o are iid. Bern(o‘log”), and {Zi}1<i<n/2

,Blogn)

are i.i.d. Bern( , which are independent of W;. For any t > 0,

n/2 n/2
(ZW ZZ <tlogn) < n~ (Ve VB)? 2+t 10g(a/B)/2

i=1 =1

e roughly speaking,

n/2 n/2
(ZW >z <0)<n (Voa—/B)?/

1=1

Spectral methods 4-44



Comparing two sets of Bernoulli r.v.s

Lemma 4.19

Suppose o > 3, {Wi}i<i<n/o are iid. Bern(o‘log”), and {Zi}1<i<n/2
are i.i.d. Bern(ﬁlog"), which are independent of W;. For any t > 0,

n/2 n/2
P (Z W; — Y Z; < tlog n) < n~(Va—\/B)?/2+tlog(a/B) /2
i=1

1=1

e (y/a—+/B)? > 2 guarantees IP’(Z”/QW Z”/QZ <0)<n!

o probability of error o(n™!) is crucial, since in Mu* we have n
independent groups of {W;} and {Z;} (need union bound)
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Proof of Lemma 4.18

Note that Mu* = (A — 21911 T)u* = Au*. Hence

n/2 n
1
. * = . * = — . — A -
ML.U AL.U \/’ﬁ (]__E ‘ Al?] E 17J>

j=n/2+1

Apply Lemma 4.19 to obtain with probability at least
1 — n~(Va=Vb)?/24nlog(a/b)/2 — 1 _ o(p—1)

nlogn
M, v > —2=—
17.u p, ﬁ

Invoke union bound to complete proof
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Proof of Lemma 4.19

We apply the Laplace transform method: for any A < 0

n/2 n/2
IP’(Z i—ZZiStlogn)
i=1 j

%%
oo (082 )
lexp (A (T Wi - 1 2) )|

exp (Atlogn)

=P
E
<

By independence, one has

n/2 n/2 n/2
{eXp ( (Z Wi — Z Z; )) = [1E[exp AWQ)] E [exp (—AZ:))]
i=1
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Proof of Lemma 4.19 (cont.)

By definition and using 1 + =z < e*, one has

I I
E oxp (AW)] = T8 exp (1) + (1 _a Zg">
< exp (alo n exp (\) — al(:lgn)

Similarly, for Z; one has

E [exp (—AW;)] < exp <ﬂlzgn exp (=) — Blogn>

Combine these two to see that
E [exp (A\W})] E [exp (—AZ;)]
1
< exp (Oin (vexp (\) + Bexp (=) —a — 5))
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Proof of Lemma 4.19 (cont.)

Combine previous two pages to see

n/2 n/2
log P (Z W; — ZZi < tlogn)
i=1 i=1
1
< —Mtlogn + gﬂ(aexp (A) + Bexp (=) —a—f)
n

Set A = —log (/) /2 to obtain

OéeXp()\)—i-ﬁeXp(—)\)—a—ﬁ_a\/§+ﬁ\/g_a_6__(\/a_\/B)2

thus concluding the proof
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(s~ eigen-space perturbation theory (rank-r)



Setup and algorithm

Ground truth: M* = U*E*V*T € R™*"2 with singular values
ot > 05> >0 >0 (assume ny < na)

Observation: M = M*+ E

e Convenient notation:

K= —, n:=mni+ng

Estimate U™ (resp. V*) using rank-r leading left (resp. right)
singular subspace U (resp. V') of M

Question: can we characterize entrywise estimation error of U, i.e.

dists (U, U*) = RH})in IUR—U*||2,00
e X7
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Assumptions

Noise assumptions: entries of E = [E; j]1<i<n,,1<j<n, are
independent obeying

E[E; ;] =0, E[Egj] <o? |E j|<B, foralli,j

and it is assumed that

toim — P — O(1)

o/ (alog )
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Assumptions

Noise assumptions: entries of E = [E; j]1<i<n,,1<j<n, are
independent obeying

E[E; ;] =0, E[Eﬁj] <o? |E j|<B, foralli,j

and it is assumed that

Cp = B =0(1)

ov/n1/(plogn)

Incoherence parameter of orthonormal matrix U* € R™*" is

U* 2
,U(U*) — TLH r||2,oo

and for M* = U*S*V*T we define p := max{u(U*), u(V*)}
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{5 ~, distance between U and U*

Need to take into account rotational ambiguity

— which rotation matrix to use?
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{5 ~, distance between U and U*

Need to take into account rotational ambiguity

— which rotation matrix to use?

Definition 4.20
For any square matrix Z with SVD Z = UZZ]ZVZT, define

sgn(Z) :=U,V, (4.22)

to be matrix sign function of Z (solution to Procrustes problem)

Let us employ sgn(U TU*) and look at

|Usgn(UTU*) — U*||2,00
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{5 ~, eigen-space perturbation theory

Theorem 4.21

With probability at least 1 — O(n=°), one has

max {||Usgn(UTU*) = U* o0, [Vsgn(V V*) = V¥p.00}

ny
- o\/1(k\/ 72+ /logn)

provided that oy/nlogn < cio} for some small constant ¢; > 0
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Entrywise matrix reconstruction error

Recal M = USV' +U X2, V]
——

rank r approx.

Corollary 4.22

In addition, if ck/nlogn < coo for some small enough constant
co > 0, then the following holds with probability at least 1 — O(n=°):

(n2/n1)logn

UV — M*| o < orur
n

Spectral methods 4-54




De-localization of estimation error

For simplicity, let us consider the case where p, k,n2/n; = O(1).
Davis-Kahan theorem results in the following /o estimation guarantees

5 ags\/nr

*
r

distp (U, U*) < /rdist(U,U*)

In comparison, the {3 o, bound derived in Theorem 4.21 simplifies to

min [|[UR - U* < ovriogn
O-T'

R o < UsER@TUY) T,
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De-localization of estimation error (cont.)

For the matrix reconstruction error, one has
IUSVT — M*|| <2|M — M*|| < ov/n,

which implies |[USV T — M*||p < oy/nr

In comparison, one has

N1
IUSVT — M*|e < o7 %

Spectral methods 4-56



Concluding remarks



Concluding remarks: spectral methods

e A powerful family that permeates data science applications

o community detection

o

matrix/tensor completion
o ranking
o phase retrieval

o

(joint) graph matching
o robust PCA
clustering in mixture models

[¢]

e Simple yet efficient; sometimes optimal (in some weak sense)

e Commonly used to initialize nonconvex optimization algorithms

— see overview article Chi, Lu, Chen 19
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Concluding remarks: leave-one-out analysis

A power fine-grained analysis framework that proves effective for
problems far beyond spectral methods

e robust M-estimation (e.g. El Karoui et al. 13, El Karoui'18)
e generalized power methods (e.g. Zhong, Boumal '18)
e likelihood ratio test in logistic regression (e.g. Sur et al.'19)

e nonconvex optimization (e.g. Ma et al. 20, Chen et al.'19, Cai
et al. '22)

e convex relaxation (e.g. Chen et al.'19, 20, '21)

e reinforcement learning (e.g. Agarwal et al.'19, Pananjady et
al. '20, Li et al.'23)
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