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Ubiquity of high-dimensional tensor data

Cell Type Factors

Genomic N
Position Factors

Assay Factors

computational genomics dynamic MRI
— fig. credit: Schreiber et al. 19 — fig. credit: Liu et al. 17
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Imperfect data acquisition

a tensor of interest

missing data noise
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Key to enabling reliable reconstruction from incomplete data
— exploiting low CP-rank structure
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Setup

y T

T T

e unknown rank-r tensor T™*:

s
T =) ul ®u} @u € R
i=1

e incomplete & noisy observations over a random sampling set €

T je = T3 1, + noise, (4,7,k) € Q

)

Goal: recover {u}}!_, and T* J
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Statistical-computational gap (r = O(1))

statistical computation
limit limit sample
d dte complexity
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this talk

"I can't find an efficient algorithm, but neither can all these people.”
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Prior art

e Gandy, Recht, Yamada'll
o Liu, Musialski, Wonka, Ye'12

o Kressner, Steinlechner,
Vandereycken '13

e Xu, Hao, Yin, Su’'l3

o Romera-Paredes, Pontil '13

e Jain, Oh'14

= e Huang, Mu, Goldfarb, Wright '15
convex relaxation  sum-of-squares hierarchy e Barak, Moitra'l6

e Zhang, Aeron’l16

e Yuan, Zhang'16

e Montanari, Sun'16

~ e Kasai, Mishra'16
] e Potechin, Steurer'17
spectral methods nonconvex optimization ¢ Dong, Yuan, Zhang'17

e Xia, Yuan'19
e Zhang'l9
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. sample comput. recovery type
algorithm size cost (noiseless)
Yuan, Zhang'16 tensor nuclear norm d NP-hard exact
. s spectral method + 3/2

Xia, Yuan'17 GD on manifold d slow exact
Montanari, Sun’'18 spectral method d3/? a3 inexact
Barak, Moitra '16 sum-of-squares d3/2 slow (d1%) exact
Potechin et al.’17 sum-of-squares d3/? slow (d10) exact
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Prior art (r

»
v/
. sample comput. recovery type
algorithm size cost (noiseless)
Yuan, Zhang'16 tensor nuclear norm d NP-hard exact
Xia, Yuan'17 spectral metl-!od + d3/2 slow exact
GD on manifold
Montanari, Sun’'18 spectral method d3/? a3 inexact
Barak, Moitra '16 sum-of-squares d3/2 slow (d1%) exact
Potechin et al.’17 sum-of-squares d3/? slow (d10) exact

algorithm

Lo error (noisy)

£ error (noisy)

Xia, Yuan, Zhang'17
Barak, Moitra'16

spectral method +

tensor power method

sum-of-squares

suboptimal

suboptimal

n/a
n/a




Can we design an algorithm that is simultaneously
sample-efficient, computationally fast, & minimax-optimal?




A nonconvex least squares formulation

minimize fU):= Z {(Z::1u§3)i7]~7k—ﬂ’j’k}2

— dxr
U=[ui,,ur] €R (i) EQ

squared loss over observed entries
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A nonconvex least squares formulation

minimize fU):= Z {(Z:Zlui?g)i,j,k_ﬂfj’kf

— dxr
U=[u1,ur]€R (i,j,k)€Q

squared loss over observed entries

e pros: statistically efficient if we can find global solutions

e cons: highly nonconvex — computationally challenging
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Gradient descent (GD) with random initialization?

minimize flU):= Z {(Z:lu;“)i,j’k—ﬂ,j,kf

_ dxr
U=[ui,,ur] €R (7)€

- N - .-y . -
L0 AN e initialize U° randomly
/
i
| ! T~ ~ .
VLS, NN e gradient descent: fort=0,1,---,

¢ \\I NI {I’ Ut+1 — Ut _ ntvf(Ut)
— succeeds for phase retrieval (Chen et al. '18)
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A negative conjecture

Randomly initialized GD does NOT work unless sample size > d?

Eﬁ[search‘s‘fdirecti‘:)n}
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A negative conjecture

Randomly initialized GD does NOT work unless sample size > d?

When sample size = d'°:

e [E[searchdirection] is desirable

e issue: variance 2> v/d mean?
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A negative conjecture

Randomly initialized GD does NOT work unless sample size > d?

statistical computation
limit limit sample
d L) d? complexity
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Our proposal: a two-stage nonconvex algorithm

e

estimating subspace spanned \

by low-rank tensor factors

— unfolding + spectral methods

O-CC0=1
U

2. successive retrieval of tensor factors

from subspace estimates
LB

__________ ==

o

N

[3

gradient descent (nonconvex)
— constant learning rates

)
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1. initialization: UY
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e disentangle individual factors

{u}} from subspace estimate
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Our proposal: a two-stage nonconvex algorithm

ﬂ estimating subspace spanned \

by low-rank tensor factors
— unfolding + spectral methods

O-CC0=1

2. successive retrieval of tensor factors
from subspace estimates

— random pro](‘(‘tlon + spectral methods

[& gradient descent (nonconvex) ]

— constant learning rates

1. initialization: UY

e estimate span{u;} via spectral

method

e disentangle individual factors

{u}} from subspace estimate

2. gradient descent: for t =0,1,---

Ut+1 Ut nvf<Ut)
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Rationale of two-stage approach

0

initial guess
1

Saan
~—
~
>~

basin of attraction

|
|
|
|
|
|
|
|
basin of attraction I

1. initialize within a local basin sufficiently close to global min

(restricted) strongly convex

2. iterative refinement
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A bit more details about initialization

Step 1.1: estimate span{u}1<i<,r — U

e matricizition: A = unfold(T’)

e estimate rank-r subspace of Py d,ag AA ) (diagonal deletion)

- = -
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A bit more details about initialization

Step 1.2: retrieve tensor factors from subspace estimate

e generate a random vector g from Uy,

e compute leading eigenvector of T ® g = Z(uz*, g)uz*uf—rjL noise

)

e repeat ...
find the w} most aligned with g
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Assumptions

.
T =) uf @ u} @ u} € R
i=1

e random sampling: each entry is observed independently with
prob. p
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Assumptions

.
T =) uf @ u} @ u} € R
i=1

e random sampling: each entry is observed independently with
prob. p

e random noise: independent zero-mean sub-Gaussian noise with
variance O(c?)

e ground truth: low-rank (r = O(1)), well-conditioned,
incoherent ({u}} are de-localized and not aligned)
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¢ and /., theoretical guarantees

Theorem 1 (Cai, Li, Poor, Chen '19)

There exists some constant p < 1 and some permutation matrix
IT € R"™*" s.t. with high prob., the t-th iterate satisfies

UL - U*[| < (p" + oy/d/p) IU* ]l
IT* =Ty < (b" +o/d/p) I T* ||
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¢ and /., theoretical guarantees

Theorem 1 (Cai, Li, Poor, Chen '19)

There exists some constant p < 1 and some permutation matrix
IT € R"™*" s.t. with high prob., the t-th iterate satisfies

IU'T = U™l < (o' + 0y/d/p) U™

)

IT — T S (o +0/d/p) I T
Um-uv*| < (o +a¢%) U]
d/p)

IT" =T 5 (' +0 [

provided that sample size > d'->poly log(d)

e linear/geometric convergence — linear-time algorithm
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¢ and /., theoretical guarantees

Theorem 1 (Cai, Li, Poor, Chen '19)

There exists some constant p < 1 and some permutation matrix
IT € R"™*" s.t. with high prob., the t-th iterate satisfies

IU'TT = U*||,. < (6" + 0y/d/p) U™

)

IT — T S (o +0/d/p) T
U -uv*| < (o +a¢%) U]
d/p)

IT"=T"| o 5 (o +0 [

provided that sample size > d'->poly log(d)

e near-optimal sample complexity (among poly-time algorithms)
19/ 35




¢ and /., theoretical guarantees

Theorem 1 (Cai, Li, Poor, Chen '19)

There exists some constant p < 1 and some permutation matrix
IT € R"™*" s.t. with high prob., the t-th iterate satisfies

U~ U™ S (6 + 0/d/0) 11Ul
I~ T||, S (o + o/ d/p) [T g

U -u*| < (o +0M> (Leadl
|7t~ T S (o + o dfp)

o

1T

provided that sample size > d'->poly log(d)

e near-optimal statistical accuracy (both ¢5 and /)

19/ 35



Numerical experiments

Relative error

10°

N

—o-Relative || - ||p error for U*

——Relative || - ||« error for U*
Relative || - ||y error for T*

—+Relative || - || error for T*

10 15 20 25 30
t: Iteration count

d=100, r=4, p=0.1

Squared relative error
3
)

—e—Squared relative || - | error for U
——Squared relative || - ||z, error for U
Squared relative || - || error for T'

—A—Squared relative || - || error for T'

<
s
=)
>
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No need of sample splitting

Sample-splitting (fresh samples at each iteration)?

— helps analysis but waste data

U! U3

\
fresh samples

U’ u?
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No need of sample splitting

Sample-splitting (fresh samples at each iteration)?

— helps analysis but waste data

U! U3
/Icsh\sém‘l\)v \ \/ A \/\
U’ U

Our results: reusing all samples in all iterations

U! U3

AVAZA %

U4

saméNgamples

U2

UO
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No need of sample splitting

Sample-splitting (fresh samples at each iteration)?

— helps analysis but waste data

U! U3
frcsh\sé;m\ﬂib/ \ \’ \ \/\
U’ U

Our results: reusing all samples in all iterations

U! U3

AVAZA %

U4

saméNgamples
2
U’ v

How to deal with complicated statistical dependency across iterations?J
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A little analysis



Gradient descent theory revisited

Standard conditions that enable fast convergence of GD
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Gradient descent theory revisited

Standard conditions that enable fast convergence of GD

e «q-strong convexity within fo ball
e [-Lipschitz gradients within £y ball

error contraction: ||z’ — &*||y < (1 - g) let — z*||2
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Local optimization landscape

e Bad news: f is NOT strongly convex in local /2 ball (unless the
radius is exceedingly small)
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Local optimization landscape

region of local strong convexity + smoothness

e Bad news: f is NOT strongly convex in local /2 ball (unless the
radius is exceedingly small)

e f is strongly convex and well-conditioned in (restricted) ¢, ball

24/ 35



Our findings: GD controls entrywise error

region of local strong convexity + smoothness

U*.

Good news: GD implicitly controls ¢, error |
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Our findings: GD controls entrywise error

region of local strong convexity + smoothness

U*.

Good news: GD implicitly controls ¢, error |

— cannot be derived from generic optimization theory
— requires fine-grained statistical analysis for entire trajectory

25/ 35



Key proof idea: leave-one-out decoupling

Leave out a small amount of randomness and re-run the algorithm
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Key proof idea: leave-one-out decoupling

Leave out a small amount of randomness and re-run the algorithm

e El Karoui, Bean, Bickel, Lim, Yu'1l3

El Karoui'15

Javanmard, Montanari '15
Zhong, Boumal '17

Lei, Bickel, El Karoui'l7
Sur, Chen, Candés'17
Abbe, Fan, Wang, Zhong '17
Chen, Fan, Ma, Wang'17
Ma, Wang, Chi, Chen'17
Chen, Chi, Fan, Ma'18
Ding, Chen'18

Dong, Shi'l8

Sur, Candés'18

Chen, Liu, Li'19

Chen, Fan, Ma, Yan'19
Pananjady, Wainwright '19
Ling '20

Chen, Fan, Ma, Yan'20
Agarwal, Kakade, Yang'20
Abbe, Fan, Wang '20

Li, Wei, Chi, Gu, Chen '20

Foundations and Trends® in Machine Learning

Spectral Methods for Data
Science: A Statistical Perspective

Suggested Citation: Yuxin Chen, Yuejie Chi, Jianging Fan and Cong Ma (2020), “Spec-
tral Methods for Data Science: A Statistical Perspective”, Foundations and Trends® in

4 Fine-grained analysis: /., and /5, perturbation theory 126
4.1 Leave-one-out-analysis: An illustrative example . . . . .. 127
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generate leave-one-out auxiliary iterates {U*()}

by replacing It slice with true values

Key proof idea: leave-one-out decoupling

Foreach 1 <[ <d,
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Key proof idea: leave-one-out decoupling

For each 1 <[ < d, generate leave-one-out auxiliary iterates {Ut’(l)}
by replacing It slice with true values

e exploit partial statistical independence
e exploit leave-one-out stability

e enable optimal £, error control
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Inference and uncertainty quantification



One step further: uncertainty quantification?
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One step further: uncertainty quantification?

Z
‘ tensor
‘ completion

How to assess uncertainty, or “confidence”, of nonconvex estimates
due to imperfect data acquisition?

® noise

e missing data
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Challenges

minimize f(U) = | Z {(Z:Zl u‘?g)i,j,k - Tz’,j,k}Q

U=[ui, ,u,]€RIX"

squared loss

e How to pin down distributions of nonconvex solutions?
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Challenges

minimize f(U) = | Z {(Z:Zl u‘?g)i,j’k - Tz’,j,k}Z

U=[ui, ,u,]€RIX"

squared loss

e How to pin down distributions of nonconvex solutions?

e How to adapt to unknown noise distributions and
heteroscedasticity (i.e. location-varying noise variance)?

e Existing estimation guarantees are highly insufficient
— Overly wide confidence intervals
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Distributional theory

w

N

Empirical quantiles of R}

e random sampling
e independent Gaussian noise

e ground truth: low-rank, incoherent,
well-conditioned

0

&

&

-2 -1 0 1 2 3
Standard normal quantiles

Theorem 2 (Cai, Poor, Chen ’20)

Consider any (i, j, k) s.t. the corresponding “SNR" is not exceedingly
small. Then with high prob.,

ﬁ',j,k —T7 5 ~ N (0, Cramér-Rao) + negligible term

— asymptotically optimal
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Distributional theory
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e random sampling

e independent Gaussian noise

e ground truth: low-rank, incoherent,
well-conditioned

0
<

&

&

-2 -1 0 1 2 3
Standard normal quantiles

Theorem 2 (Cai, Poor, Chen ’20)

Consider any (i, j, k) s.t. the corresponding “SNR" is not exceedingly
small. Then with high prob.,

ﬁ',j,k —T7 5 ~ N (0, Cramér-Rao) + negligible term

— asymptotically optimal
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o

N

o
o
o
o

_%’ 0.2 %’ 0.2
g 2
< o015 Lots
ol £ o
2 2
/5 005 5 0.05

o
o

-3 -2 -1 0 1 2 3 -2 -1 0 1 2 3
(w11 —uiy)/+/(En)a (Tr10 = Ti11) /o100
tensor factor entry tensor entry

e approximate Gaussianality: estimation error of our nonconvex
approach is zero-mean Gaussian
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2 2
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01 £ o
= 2
/5 005 LﬂE 0.05

o
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-3 -2 -1 0 1 2 3 -2 -1 0 1 2 3
(u11 —uip)/v/(Z1)11 (Trpa — Ty )/ /v
tensor factor entry tensor entry

e approximate Gaussianality: estimation error of our nonconvex
approach is zero-mean Gaussian

e confidence intervals: error (co)-variance can be accurately
estimated, leading to valid Cl construction
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N

o
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o
o

_JE’ 0.2 E’ 0.2
2 2
< 015 < 015
H o1 E 0.1
= a2
/5 005 5 0.05

o
o

4 0 1 2 3
(ury —ui )/ /(B (Trpa — Ty )/ /v

2 4 0 12 3 2 A

-3

tensor factor entry tensor entry

e approximate Gaussianality: estimation error of our nonconvex
approach is zero-mean Gaussian

e confidence intervals: error (co)-variance can be accurately
estimated, leading to valid Cl construction

e adaptivity: our procedure is data-driven, and adaptive to
unknown and heteroscedastic noise levels
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Back to estimation: /, optimality

Distributional theory in turn allows us to track estimation accuracy

Theorem 3 (Cai, Poor, Chen 20)

Suppose noise is i.i.d. N'(0,0%). Then one has

(6 + o(1))ord
p

Cramér-Rao lower bound

1T -7 =
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Back to estimation: /, optimality

Distributional theory in turn allows us to track estimation accuracy

Theorem 3 (Cai, Poor, Chen 20)

Suppose noise is i.i.d. N'(0,0%). Then one has

(6 + o(1))ord
p

Cramér-Rao lower bound

1T -7 =

e precise characterization of estimation accuracy

e achieves full statistical efficiency (including pre-constant)
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Summary

_.---=+ optimal estimation guarantees

l”
y
linear-time algorithm

l’
e

~-e-——» Minimal sample size

nonconvex \
optimization el . _ _ o
==-» fine-grained uncertainty quantification
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Summary

_.---=+ optimal estimation guarantees

’
_.—-=-==* linear-time algorithm

\ ~~=eeecp Minimal sample size

nonconvex \
optimization el . _ _ o
==-» fine-grained uncertainty quantification
phase matrix ranking blind reinforcement
retrieval completion deconvolution learning
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Papers

“Nonconvex low-rank tensor completion from noisy data” C. Cai, G. Li,
H. V. Poor, Y. Chen, Operation Research, 2021+

“Subspace estimation from unbalanced and incomplete data matrices: {2 oo
statistical guarantees,” C. Cai, G. Li, Y. Chi, H. V. Poor, Y. Chen, Annals of
Statistics, 2021+

“Uncertainty quantification for nonconvex tensor completion: Confidence intervals,
heteroscedasticity and optimality,” C. Cai, H. V. Poor, Y. Chen, ICML 2020
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