Spectral Methods Meet Asymmetry: Two Recent Stories

Yuxin Chen Electrical Engineering, Princeton University

Spectral methods based on eigen-decomposition

Methods based on *eigen-decomposition* of a certain data matrix $M\ldots$

Spectral methods based on eigen-decomposition

Methods based on *eigen-decomposition* of a certain data matrix $M \dots$

This talk: what happens if data matrix M is non-symmetric? - 2 recent stories Asymmetry helps: eigenvalue and eigenvector analyses of asymmetrically perturbed low-rank matrices

Chen Cheng Stanford Stats

Jianqing Fan Princeton ORFE

Eigenvalue / eigenvector estimation

 M^\star : truth

• A rank-1 matrix: $M^{\star} = \lambda^{\star} u^{\star} u^{\star \top} \in \mathbb{R}^{n imes n}$

Eigenvalue / eigenvector estimation

 M^\star : truth

H: noise

- A rank-1 matrix: $M^{\star} = \lambda^{\star} u^{\star} u^{\star \top} \in \mathbb{R}^{n imes n}$
- Observed noisy data: $oldsymbol{M} = oldsymbol{M}^\star + oldsymbol{H}$

Eigenvalue / eigenvector estimation

 M^\star : truth

H: noise

- A rank-1 matrix: $M^{\star} = \lambda^{\star} u^{\star} u^{\star \top} \in \mathbb{R}^{n imes n}$
- Observed noisy data: $oldsymbol{M} = oldsymbol{M}^\star + oldsymbol{H}$
- **Goal:** estimate eigenvalue λ^{\star} and eigenvector u^{\star}

Non-symmetric noise matrix

This may arise when, e.g., we have 2 samples for each entry of M^{\star} and arrange them in an asymmetric manner

A natural estimation strategy: SVD

- Use leading singular value λ^{svd} of M to estimate λ^{\star}
- Use leading left singular vector of M to estimate u^\star

A less popular strategy: eigen-decomposition

- Use leading singular value λ^{svd} eigenvalue λ^{eigs} of M to estimate λ^{\star}
- Use leading singular vector eigenvector of M to estimate u^{\star}

For *asymmetric* matrices:

• Numerical stability

 ${\sf SVD} \quad > \quad {\sf eigen-decomposition}$

For *asymmetric* matrices:

• Numerical stability

 ${\sf SVD} \quad > \quad {\sf eigen-decomposition}$

• (Folklore?) Statistical accuracy

 SVD \asymp eigen-decomposition

For *asymmetric* matrices:

• Numerical stability

 ${\sf SVD} \quad > \quad {\sf eigen-decomposition} \quad$

• (Folklore?) Statistical accuracy

 SVD \asymp eigen-decomposition

Shall we always prefer SVD over eigen-decomposition?

Another numerical experiment: matrix completion

$$\boldsymbol{M}^{\star} = \boldsymbol{u}^{\star} \boldsymbol{u}^{\star \top}; \qquad M_{i,j} = \begin{cases} \frac{1}{p} M_{i,j}^{\star} & \text{with prob. } p, \\ 0, & \text{else,} \end{cases} \quad p = \frac{3 \log n}{n}$$

$$\begin{bmatrix} \checkmark & ? & ? & ? & \checkmark & ? & ? \\ ? & ? & \checkmark & \checkmark & ? & ? \\ \checkmark & ? & ? & \checkmark & \checkmark & ? & ? \\ ? & ? & \checkmark & ? & ? & \checkmark & \checkmark \\ \checkmark & ? & ? & ? & ? & ? & \checkmark \\ \checkmark & ? & ? & ? & ? & ? & ? \\ ? & \checkmark & ? & ? & \checkmark & ? \end{bmatrix}$$

Another numerical experiment: matrix completion

Why does eigen-decomposition work so much better than SVD?

Problem setup

$$oldsymbol{M} = \underbrace{oldsymbol{u}^{\star}oldsymbol{u}^{\star op}}_{oldsymbol{M}^{\star}} + oldsymbol{H} \in \mathbb{R}^{n imes n}$$

- *H*: noise matrix
 - independent entries: $\{H_{i,j}\}$ are independent
 - \circ zero mean: $\mathbb{E}[H_{i,j}] = 0$
 - variance: $Var(H_{i,j}) \leq \sigma^2$
 - \circ magnitudes: $\mathbb{P}\{|H_{i,j}| \geq B\} \lesssim n^{-12}$

Problem setup

$$oldsymbol{M} = \underbrace{oldsymbol{u}^{\star}oldsymbol{u}^{\star op}}_{oldsymbol{M}^{\star}} + oldsymbol{H} \in \mathbb{R}^{n imes n}$$

- *H*: noise matrix
 - independent entries: $\{H_{i,j}\}$ are independent
 - \circ zero mean: $\mathbb{E}[H_{i,j}] = 0$
 - variance: $Var(H_{i,j}) \leq \sigma^2$
 - magnitudes: $\mathbb{P}\{|H_{i,j}| \geq B\} \lesssim n^{-12}$
- $\bullet \ M^{\star}$ obeys incoherence condition

$$\max_{1 \le i \le n} |\boldsymbol{e}_i^\top \boldsymbol{u}^\star| \le \sqrt{\frac{\mu}{n}}$$

$$\begin{split} & \left|\lambda^{\mathsf{svd}} - \lambda^{\star}\right| \leq \|\boldsymbol{H}\| \qquad \text{(Weyl)} \\ & \left|\lambda^{\mathsf{eigs}} - \lambda^{\star}\right| \leq \|\boldsymbol{H}\| \qquad \text{(Bauer-Fike)} \end{split}$$

$$\begin{split} |\lambda^{\mathsf{svd}} - \lambda^{\star}| &\leq \|\boldsymbol{H}\| \qquad (\mathsf{Weyl}) \\ |\lambda^{\mathsf{eigs}} - \lambda^{\star}| &\leq \|\boldsymbol{H}\| \qquad (\mathsf{Bauer-Fike}) \end{split}$$

 \downarrow matrix Bernstein inequality

$$\begin{split} |\lambda^{\mathsf{svd}} - \lambda^{\star}| \lesssim \sigma \sqrt{n \log n} + B \log n \\ |\lambda^{\mathsf{eigs}} - \lambda^{\star}| \lesssim \sigma \sqrt{n \log n} + B \log n \end{split}$$

$$\begin{split} |\lambda^{\mathsf{svd}} - \lambda^{\star}| &\leq \|\boldsymbol{H}\| \qquad (\mathsf{Weyl}) \\ |\lambda^{\mathsf{eigs}} - \lambda^{\star}| &\leq \|\boldsymbol{H}\| \qquad (\mathsf{Bauer-Fike}) \end{split}$$

↓ matrix Bernstein inequality

$$\begin{split} |\lambda^{\mathsf{svd}} - \lambda^{\star}| &\lesssim \sigma \sqrt{n \log n} + B \log n \\ |\lambda^{\mathsf{eigs}} - \lambda^{\star}| &\lesssim \sigma \sqrt{n \log n} + B \log n \end{split}$$

(reasonably tight if $\|\boldsymbol{H}\|$ is large)

$$\begin{split} |\lambda^{\mathsf{svd}} - \lambda^{\star}| &\leq \|\boldsymbol{H}\| \qquad (\mathsf{Weyl}) \\ |\lambda^{\mathsf{eigs}} - \lambda^{\star}| &\leq \|\boldsymbol{H}\| \qquad (\mathsf{Bauer-Fike}) \end{split}$$

matrix Bernstein inequality

$$\begin{split} |\lambda^{\mathsf{svd}} - \lambda^{\star}| &\lesssim \sigma \sqrt{n \log n} + B \log n \\ |\lambda^{\mathsf{eigs}} - \lambda^{\star}| &\lesssim \sigma \sqrt{n \log n} + B \log n \end{split}$$

(reasonably tight if ||H|| is large)
(can be significantly improved)

Main results: eigenvalue perturbation

Theorem 1 (Chen, Cheng, Fan '18)

With high prob., leading eigenvalue λ^{eigs} of M obeys

$$|\lambda^{\mathsf{eigs}} - \lambda^{\star}| \lesssim \sqrt{\frac{\mu}{n}} (\sigma \sqrt{n \log n} + B \log n)$$

Main results: eigenvalue perturbation

Theorem 1 (Chen, Cheng, Fan '18)

With high prob., leading eigenvalue λ^{eigs} of M obeys

$$|\lambda^{\mathsf{eigs}} - \lambda^{\star}| \lesssim \sqrt{\frac{\mu}{n}} (\sigma \sqrt{n \log n} + B \log n)$$

• Eigen-decomposition is $\sqrt{\frac{n}{\mu}}$ times better than SVD! - recall $|\lambda^{\text{svd}} - \lambda^{\star}| \lesssim \sigma \sqrt{n \log n} + B \log n$

Theorem 2 (Chen, Cheng, Fan '18)

$$\min \left\| \boldsymbol{u} \pm \boldsymbol{u}^{\star} \right\|_{\infty} \lesssim \sqrt{\frac{\mu}{n}} (\sigma \sqrt{n \log n} + B \log n)$$

Theorem 2 (Chen, Cheng, Fan '18)

$$\min \left\| \boldsymbol{u} \pm \boldsymbol{u}^{\star} \right\|_{\infty} \lesssim \sqrt{\frac{\mu}{n}} (\sigma \sqrt{n \log n} + B \log n)$$

• if
$$\|\boldsymbol{H}\| \ll |\lambda^{\star}|$$
, then

$$\min \|\boldsymbol{u} \pm \boldsymbol{u}^{\star}\|_{2} \ll \|\boldsymbol{u}^{\star}\|_{2} \qquad (\text{classical bound})$$

Theorem 2 (Chen, Cheng, Fan '18)

$$\min \left\| \boldsymbol{u} \pm \boldsymbol{u}^{\star} \right\|_{\infty} \lesssim \sqrt{\frac{\mu}{n}} (\sigma \sqrt{n \log n} + B \log n)$$

• if
$$\|\boldsymbol{H}\| \ll |\lambda^{\star}|$$
, then

$$\min \|\boldsymbol{u} \pm \boldsymbol{u}^{\star}\|_{2} \ll \|\boldsymbol{u}^{\star}\|_{2} \qquad \text{(classical bound)}$$

$$\min \|\boldsymbol{u} \pm \boldsymbol{u}^{\star}\|_{\infty} \ll \|\boldsymbol{u}^{\star}\|_{\infty} \qquad \text{(our bound)}$$

Theorem 2 (Chen, Cheng, Fan '18)

With high prob., leading eigenvector $oldsymbol{u}$ of $oldsymbol{M}$ obeys

$$\min \left\| \boldsymbol{u} \pm \boldsymbol{u}^{\star} \right\|_{\infty} \lesssim \sqrt{\frac{\mu}{n}} (\sigma \sqrt{n \log n} + B \log n)$$

• if
$$\| oldsymbol{H} \| \ll ig| \lambda^{\star} ig|$$
, then

$$\begin{split} \min \left\| \boldsymbol{u} \pm \boldsymbol{u}^{\star} \right\|_2 &\ll \left\| \boldsymbol{u}^{\star} \right\|_2 \qquad (\text{classical bound}) \\ \min \left\| \boldsymbol{u} \pm \boldsymbol{u}^{\star} \right\|_{\infty} &\ll \left\| \boldsymbol{u}^{\star} \right\|_{\infty} \qquad (\text{our bound}) \end{split}$$

• entrywise eigenvector perturbation is well-controlled

Theorem 2 (Chen, Cheng, Fan '18)

$$\min \left\| \boldsymbol{u} \pm \boldsymbol{u}^{\star} \right\|_{\infty} \lesssim \sqrt{\frac{\mu}{n}} (\sigma \sqrt{n \log n} + B \log n)$$

Main results: perturbation of linear forms of eigenvectors

Theorem 3 (Chen, Cheng, Fan '18)

Fix any unit vector \boldsymbol{a} . With high prob., leading eigenvector \boldsymbol{u} of \boldsymbol{M} obeys

$$\min\left\{\left|\boldsymbol{a}^{\top}(\boldsymbol{u} \pm \boldsymbol{u}^{\star})\right|\right\} \lesssim \max\left\{\left|\boldsymbol{a}^{\top}\boldsymbol{u}^{\star}\right|, \sqrt{\frac{\mu}{n}}\right\} \left(\sigma\sqrt{n\log n} + B\log n\right)$$

Main results: perturbation of linear forms of eigenvectors

Theorem 3 (Chen, Cheng, Fan '18)

Fix any unit vector $oldsymbol{a}$. With high prob., leading eigenvector $oldsymbol{u}$ of $oldsymbol{M}$ obeys

$$\min\left\{\left|\boldsymbol{a}^{\top}(\boldsymbol{u} \pm \boldsymbol{u}^{\star})\right|\right\} \lesssim \max\left\{\left|\boldsymbol{a}^{\top}\boldsymbol{u}^{\star}\right|, \sqrt{\frac{\mu}{n}}\right\} \left(\sigma\sqrt{n\log n} + B\log n\right)$$

• if $\| oldsymbol{H} \| \ll ig| \lambda^{\star} ig|$, then

$$\min\left\{\left|\boldsymbol{a}^{\top}(\boldsymbol{u}\pm\boldsymbol{u}^{\star})\right|\right\}\ll\max\left\{\left|\boldsymbol{a}^{\top}\boldsymbol{u}^{\star}\right|,\|\boldsymbol{u}^{\star}\|_{\infty}\right\}$$

• perturbation of an *arbitrary* linear form of leading eigenvector is well-controlled

Intuition: asymmetry reduces bias

From <u>Neumann series</u> one can verify

some sort of Taylor expansion

$$|\lambda - \lambda^{\star}| \asymp \left| \frac{\boldsymbol{u}^{\star \top} \boldsymbol{H} \boldsymbol{u}^{\star}}{\lambda} + \frac{\boldsymbol{u}^{\star \top} \boldsymbol{H}^2 \boldsymbol{u}^{\star}}{\lambda^2} + \frac{\boldsymbol{u}^{\star \top} \boldsymbol{H}^3 \boldsymbol{u}^{\star}}{\lambda^3} + \cdots \right|$$
Intuition: asymmetry reduces bias

From <u>Neumann series</u> one can verify

some sort of Taylor expansion

$$|\lambda - \lambda^{\star}| \asymp \left| \frac{\boldsymbol{u}^{\star \top} \boldsymbol{H} \boldsymbol{u}^{\star}}{\lambda} + \frac{\boldsymbol{u}^{\star \top} \boldsymbol{H}^2 \boldsymbol{u}^{\star}}{\lambda^2} + \frac{\boldsymbol{u}^{\star \top} \boldsymbol{H}^3 \boldsymbol{u}^{\star}}{\lambda^3} + \cdots \right|$$

To develop some intuition, let's look at 2nd order term

Intuition: asymmetry reduces bias

From <u>Neumann series</u> one can verify

some sort of Taylor expansion

$$|\lambda - \lambda^{\star}| \asymp \left| \frac{\boldsymbol{u}^{\star \top} \boldsymbol{H} \boldsymbol{u}^{\star}}{\lambda} + \frac{\boldsymbol{u}^{\star \top} \boldsymbol{H}^{2} \boldsymbol{u}^{\star}}{\lambda^{2}} + \frac{\boldsymbol{u}^{\star \top} \boldsymbol{H}^{3} \boldsymbol{u}^{\star}}{\lambda^{3}} + \cdots \right|$$

To develop some intuition, let's look at 2nd order term

• if H is symmetric,

$$\mathbb{E}[\boldsymbol{u}^{\star\top}\boldsymbol{H}^2\boldsymbol{u}^{\star}] = \mathbb{E}[\|\boldsymbol{H}\boldsymbol{u}^{\star}\|_2^2] = \boldsymbol{n}\sigma^2$$

Intuition: asymmetry reduces bias

From <u>Neumann series</u> one can verify

some sort of Taylor expansion

$$|\lambda - \lambda^{\star}| \asymp \left| \frac{\boldsymbol{u}^{\star \top} \boldsymbol{H} \boldsymbol{u}^{\star}}{\lambda} + \frac{\boldsymbol{u}^{\star \top} \boldsymbol{H}^{2} \boldsymbol{u}^{\star}}{\lambda^{2}} + \frac{\boldsymbol{u}^{\star \top} \boldsymbol{H}^{3} \boldsymbol{u}^{\star}}{\lambda^{3}} + \cdots \right|$$

To develop some intuition, let's look at 2nd order term

• if H is symmetric,

$$\mathbb{E}[\boldsymbol{u}^{\star\top}\boldsymbol{H}^2\boldsymbol{u}^{\star}] = \mathbb{E}[\|\boldsymbol{H}\boldsymbol{u}^{\star}\|_2^2] = \boldsymbol{n}\sigma^2$$

• if H is asymmetric,

$$\underbrace{\mathbb{E}[\boldsymbol{u}^{\star\top}\boldsymbol{H}^{2}\boldsymbol{u}^{\star}] = \mathbb{E}[\langle \boldsymbol{H}^{\top}\boldsymbol{u}^{\star}, \boldsymbol{H}\boldsymbol{u}^{\star}\rangle] = \sigma^{2}}_{\text{much smaller than symmetric case}}$$

- A rank-1 matrix: $M^{\star} = \lambda^{\star} u^{\star} v^{\star \top} \in \mathbb{R}^{n_1 \times n_2}$
- Suppose we observe 2 independent noisy copies

$$M_1 = M^\star + H_1, \qquad M_2 = M^\star + H_2$$

• Goal: estimate λ^{\star} , u^{\star} and v^{\star}

Compute leading eigenvalue / eigenvector of

$$\left[\begin{array}{cc} \mathbf{0} & M_1 \\ M_2^\top & \mathbf{0} \end{array}\right] = \left[\begin{array}{cc} \mathbf{0} & M^\star + \boldsymbol{H}_1 \\ M^{\star \top} + \boldsymbol{H}_2^\top & \mathbf{0} \end{array}\right]$$

• Our findings (eigenvalue / eigenvector perturbation) continue to hold for this case!

Rank-r case

 M^\star : truth

- A rank-*r* and well-conditioned matrix: $M^{\star} = \sum_{i=1}^{r} \lambda_{i}^{\star} u_{i}^{\star} u_{i}^{\star \top}$
- Observed noisy data: $\boldsymbol{M} = \boldsymbol{M}^{\star} + \boldsymbol{H}$, where $\{H_{i,j}\}$ are independent
- Goal: estimate λ^{\star}

Rank-r case

 M^\star : truth

H: noise

- A rank-r and well-conditioned matrix: $M^{\star} = \sum_{i=1}^{r} \lambda_{i}^{\star} u_{i}^{\star} u_{i}^{\star \top}$
- Observed noisy data: ${m M} = {m M}^\star + {m H}$, where $\{H_{i,j}\}$ are independent
- Goal: estimate λ^{\star}

Theorem 4 (Chen, Cheng, Fan '18)

With high prob., *i*th largest eigenvalue λ_i $(1 \le i \le r)$ of M obeys

$$|\lambda_i - \lambda_j^{\star}| \lesssim \sqrt{\frac{\mu r^2}{n}} (\sigma \sqrt{n \log n} + B \log n)$$

for some $1 \leq j \leq r$

Theorem 4 (Chen, Cheng, Fan '18)

With high prob., *i*th largest eigenvalue λ_i $(1 \le i \le r)$ of M obeys

$$|\lambda_i - \lambda_j^{\star}| \lesssim \sqrt{\frac{\mu r^2}{n}} (\sigma \sqrt{n \log n} + B \log n)$$

for some $1 \leq j \leq r$

• Eigen-decomposition is $\sqrt{\frac{n}{\mu r^2}}$ times better than SVD!

Theorem 4 (Chen, Cheng, Fan '18)

With high prob., *i*th largest eigenvalue λ_i $(1 \le i \le r)$ of M obeys

$$|\lambda_i - \lambda_j^{\star}| \lesssim \sqrt{\frac{\mu r^2}{n}} (\sigma \sqrt{n \log n} + B \log n)$$

for some $1 \leq j \leq r$

- Eigen-decomposition is $\sqrt{\frac{n}{\mu r^2}}$ times better than SVD!
- Might be improvable to $\sqrt{\frac{\mu r}{n}} (\sigma \sqrt{n \log n} + B \log n)$?

Eigen-decomposition could be much more powerful than SVD when dealing with non-symmetric data matrices

Eigen-decomposition could be much more powerful than SVD when dealing with non-symmetric data matrices

Future directions:

- Eigenvector perturbation for rank-r case
- Beyond i.i.d. noise

Y. Chen, C. Cheng, J. Fan, "Asymmetry helps: Eigenvalue and eigenvector analyses of asymmetrically perturbed low-rank matrices", arXiv:1811.12804, 2018

Spectral Methods are Optimal for Top-K Ranking

Cong Ma Princeton ORFE

Kaizheng Wang Princeton ORFE

Jianqing Fan Princeton ORFE

A fundamental problem in a wide range of contexts

• web search, recommendation systems, admissions, sports competitions, voting, ...

PageRank

figure credit: Dzenan Hamzic

Rank aggregation from pairwise comparisons

pairwise comparisons for ranking top tennis players figure credit: Bozóki, Csató, Temesi

• This work: Bradley-Terry-Luce (logistic) model

 $\mathbb{P}\left\{ \text{item } j \text{ beats item } i \right\} = \frac{w_j^*}{w_i^* + w_i^*}$

• Other models: Thurstone model, low-rank model, ...

Typical ranking procedures

Estimate latent scores

 \longrightarrow $\;$ rank items based on score estimates

Estimate latent scores

 \longrightarrow $\;$ rank items based on score estimates

Goal: identify the set of top-K items under minimal sample size

Model: random sampling

Comparison graph: Erdős–Renyi graph $\mathcal{G} \sim \mathcal{G}(n,p)$

• For each $(i,j) \in \mathcal{G}$, obtain L paired comparisons

$$y_{i,j}^{(l)} \stackrel{\text{ind.}}{=} \begin{cases} 1, & \text{with prob. } \frac{w_j^*}{w_i^* + w_j^*} & 1 \leq l \leq L \\ 0, & \text{else} \end{cases}$$

Model: random sampling

Comparison graph: Erdős–Renyi graph $\mathcal{G} \sim \mathcal{G}(n,p)$

• For each $(i, j) \in \mathcal{G}$, obtain L paired comparisons

$$y_{i,j} = \frac{1}{L} \sum_{l=1}^{L} y_{i,j}^{(l)}$$
 (sufficient statistic)

Prior art

Prior art

	"meta metric" ① mean square error for estimating scores	top-K ranking accuracy	
Spectral method	~	?	Negahban et al. '12
MLE	~	?	Negahban et al. '12 Hajek et al. '14
Spectral MLE	v	v	Chen & Suh. '15

Top 3 : {15, 11, 2}

These two estimates have same ℓ_2 loss, but output different rankings

Top 3: {15, 11, 2}

Top 3: {1, 2, 3}

These two estimates have same ℓ_2 loss, but output different rankings

Need to control entrywise error!

Optimality?

Is spectral method alone optimal for top-K ranking?

Is spectral method alone optimal for top-K ranking?

Partial answer (Jang et al '16): spectral method works if comparison graph is sufficiently dense Is spectral method alone optimal for top-K ranking?

Partial answer (Jang et al '16): spectral method works if comparison graph is sufficiently dense

This work: affirmative answer + entire regime

inc. sparse graphs

Spectral method (Rank Centrality)

Negahban, Oh, Shah'12

• Construct a (highly asymmetric) probability transition matrix *P*, whose off-diagonal entries obey

$$P_{i,j} \propto \begin{cases} y_{i,j}, & \text{if } (i,j) \in \mathcal{G} \\ 0, & \text{if } (i,j) \notin \mathcal{G} \end{cases}$$

• Return score estimate as leading left eigenvector of ${m P}$

In large-sample case, $oldsymbol{P} o oldsymbol{P}^*$, whose off-diagonal entries obey

$$P_{i,j}^* \propto \begin{cases} \frac{w_j^*}{w_i^* + w_j^*}, & \text{if } (i,j) \in \mathcal{G} \\ 0, & \text{if } (i,j) \notin \mathcal{G} \end{cases}$$

• Stationary distribution of reversible P^* check detailed balance $\pi^* \propto \underbrace{[w_1^*, w_2^*, \dots, w_n^*]}_{\text{true score}}$

Main result

comparison graph $\mathcal{G}(n,p)$; sample size $\asymp pn^2L$

Theorem 5 (Chen, Fan, Ma, Wang'17)

When $p \gtrsim \frac{\log n}{n}$, spectral methods achieve optimal sample complexity for top-K ranking!

Main result

Comparison with Jang et al '16

Optimal control of entrywise error

Theorem 6

Suppose $p \gtrsim \frac{\log n}{n}$ and sample size $\gtrsim \frac{n \log n}{\Delta_K^2}$. Then with high prob., the estimates w returned by both methods obey (up to global scaling)

$$\frac{\|\boldsymbol{w} - \boldsymbol{w}^*\|_\infty}{\|\boldsymbol{w}^*\|_\infty} < \frac{1}{2}\Delta_K$$

Key ingredient: leave-one-out analysis

For each $1 \leq m \leq n$, introduce leave-one-out estimate $\boldsymbol{w}^{(m)}$

Key ingredient: leave-one-out analysis

For each $1 \leq m \leq n$, introduce leave-one-out estimate $\boldsymbol{w}^{(m)}$

Exploit statistical independence

leave-one-out estimate $w^{(m)}$ \perp all data related to mth item

leave-one-out estimate $oldsymbol{w}^{(m)}~pprox$ true estimate $oldsymbol{w}$

leave-one-out estimate $oldsymbol{w}^{(m)}~pprox$ true estimate $oldsymbol{w}$

• Spectral method: eigenvector perturbation bound

$$\|m{\pi} - \widehat{m{\pi}}\|_{m{\pi}^*} \lesssim rac{\|m{\pi}(m{P} - \widehat{m{P}})\|_{m{\pi}^*}}{ ext{spectral-gap}}$$

o new Davis-Kahan bound for probability transition matrices

asymmetric

A small sample of related works

• Parametric models

- Ford '57
- Hunter '04
- Negahban, Oh, Shah'12
- Rajkumar, Agarwal '14
- Hajek, Oh, Xu'14
- o Chen, Suh'15
- Rajkumar, Agarwal '16
- Jang, Kim, Suh, Oh '16
- o Suh, Tan, Zhao'17

• Non-parametric models

- Shah, Wainwright '15
- o Shah, Balakrishnan, Guntuboyina, Wainwright '16
- o Chen, Gopi, Mao, Schneider '17

• Leave-one-out analysis

- El Karoui, Bean, Bickel, Lim, Yu'13
- Zhong, Boumal '17
- Abbe, Fan, Wang, Zhong '17
- o Ma, Wang, Chi, Chen '17
- Chen, Chi, Fan, Ma'18
- o Chen, Chi, Fan, Ma, Yan '19
- o Chen, Fan, Ma, Yan '19

Summary for this part

	Optimal sample complexity	Linear-time computational complexity
Spectral method	v	v
Regularized MLE	v	v

Novel entrywise perturbation analysis for spectral method and convex optimization

Paper: "Spectral method and regularized MLE are both optimal for top-K ranking", Y. Chen, J. Fan, C. Ma, K. Wang, Annals of Statistics, vol. 47, 2019