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Nonconvex problems are everywhere

Empirical risk minimization is usually nonconvex

minimize,  f(x;data)
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Nonconvex problems are everywhere

Empirical risk minimization is usually nonconvex

minimize,  f(x;data)

low-rank matrix completion

blind deconvolution

dictionary learning

e mixture models

deep neural nets
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Nonconvex optimization may be super scary

There may be bumps everywhere and exponentially many local optima

e.g. 1-layer neural net (Auer, Herbster, Warmuth '96; Vu '98)
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Nonconvex optimization may be super scary

But they are solved on a daily basis via simple algorithms like
(stochastic) gradient descent
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Statistical models come to rescue

statistical models

benign
landscape

tractable algorithms

When data are generated by certain statistical models, problems are
often much nicer than worst-case instances

— Nonconvex Optimization Meets Low-Rank Matrix Factorization: An Overview
Chi, Lu, Chen'18
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Example: low-rank matrix recovery

e U) = Az UUT _ A'L U*U*T 2

where entries of A; are i.i.d. Gaussian
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Example: low-rank matrix recovery

e U — Ai, UUT _ Ai, U*U*T 2
minimize  f(U) ; (¢ ) —{ )
where entries of A; are i.i.d. Gaussian

e no spurious local minima under large enough sample size
(Bhojanapalli et al. '16)

global minimum saddle point
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Separation of landscape analysis and
generic algorithm design

landscape analysis
(statistics)
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Separation of landscape analysis and
generic algorithm design

landscape analysisJ

generic algorithms
(statistics)

(optimization)
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Separation of landscape analysis and
generic algorithm design

landscape analysis
(statistics)

e 2-layer linear neural network (Baldi, Hornik '89)

e dictionary learning (Sun et al.'15)

® phase retrieval (Sun et al. 16, Davis et al.'17)

e matrix completion (Ge et al.’16, Chen et al.’17)
e matrix sensing (Bhojanapalli et al."16, Li et al.'16)
e empirical risk mininimization (Mei et al.'16)

e synchronization (Bandeira et al.'16)

e robust PCA (Ge et al.'17)

e inverting deep neural nets (Hand et al.'17)

e 1-hidden-layer neural nets (Ge et al.’17)

e blind deconvolution (Zhang et al. 18, Li et al. '18)

generic algorithms
(optimization)

cubic regularization (Nesterov, Polyak '06)
gradient descent (Lee et al.’16)

trust region method (Sun et al.'16)
Carmon et al.'16

perturbed GD (Jin et al.'17)

perturbed accelerated GD (Jin et al.’17)
Agarwal et al.'17

Natasha (Allen-Zhu'17)
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Separation of landscape analysis and
generic algorithm design

(statistics)

landscape analysis
J (optimization)

generic aIgorithmsJ

e 2-layer linear neural network (Baldi, Hornik '89)

e dictionary learning (Sun et al.'15)
e cubic regularization (Nesterov, Polyak '06)
® phase retrieval (Sun et al. 16, Davis et al.'17) .
e gradient descent (Lee et al.’16)
e matrix completion (Ge et al.’16, Chen et al.’17)
e trust region method (Sun et al.'16)
e matrix sensing (Bhojanapalli et al."16, Li et al.'16)
e Carmon et al.'16

e perturbed GD (Jin et al.'17)
e perturbed accelerated GD (Jin et al.’17)

e empirical risk mininimization (Mei et al.'16)
e synchronization (Bandeira et al.'16)
e robust PCA (Ge et al.'17)

o Agarwal et al.'17
e inverting deep neural nets (Hand et al.'17)

e Natasha (Allen-Zhu'17)
e 1-hidden-layer neural nets (Ge et al.’17)

e blind deconvolution (Zhang et al. 18, Li et al. '18)

Issue: conservative computational guarantees for specific problems
(e.g. solving quadratic systems, matrix completion)
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This talk: blending landscape and convergence analysis



This talk: blending landscape and convergence analysis

{4

Even simplest possible nonconvex methods
can be remarkably efficient under suitable statistical models

A case study: solving random quadratic systems of equations



Solving quadratic systems of equations

A - Azt y = Az
(EEE "E N H H
N B [ | [ |
EE E B __ B [ |
"W | = = —> w
. N | [ | [ | [ |
m 2 -
[ T B |
H B [ | [ |
[ B[ [ ] || |
] [ | [ |
o B N | B

3

Estimate * € R™ from m random quadratic measurements

Yp = (agcc*)2—i—noise7 k=1,...,m

assume w.l.o.g. ||lx*|2 =1
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Motivation: phase retrieval

Detectors record intensities of diffracted rays
e electric field x(¢1,t2) — Fourier transform Z( f1, f2)

Fig credit: Stanford SLAC

. 2
intensity of electrical field: |E(f1,f2)|2 = ‘/x(tl,tg)eﬂz“(fltl+f2t2)dt1dt2
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Motivation: phase retrieval

Detectors record intensities of diffracted rays
e electric field x(¢1,t2) — Fourier transform Z( f1, f2)

Fig credit: Stanford SLAC

. 2
intensity of electrical field: |E(f1,f2)|2 = ‘/x(tl,tg)e*ﬁ“(fltl+f2t2)dt1dt2’

Phase retrieval: recover signal z(t1,t2) from intensity |Z(f1, f2)|2 J
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Motivation: learning neural nets with quadratic
activation

— Soltanolkotabi, Javanmard, Lee '17, Li, Ma, Zhang '17
e x
‘V\\V) I~
a .é—@f 0———-¢+ LN
.ﬁ///’ \'* o - output layer

‘/, hidden layer

input layer
input features: a; weights: X* = [z], -+, x}]
T
output: y = Za(aTm*)
i=1
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i=1 i=1
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Motivation: learning neural nets with quadratic
activation

— Soltanolkotabi, Javanmard, Lee '17, Li, Ma, Zhang '17
e x
‘V\\V) I~
a .é—@f 0———-¢+ LN
.ﬁ///’ \'% o - output layer

‘/, hidden layer

input layer
input features: a; weights: X* = [z], -+, x}]
" o(z)=22 "
output: y = Za(aTm*) = Z(aTmf)Q
i=1 i=1

We consider simplest model when r =1
11/ 44



A natural least squares formulation

minimizegern  f(x) = — Z {(a;—a:)2 - yk}
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A natural least squares formulation

minimizegern  f(x) = — Z {(a;—a:)2 - yk}

e issue: f(-) is highly nonconvex
— computationally challenging!
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Wirtinger flow (Candeés, Li, Soltanolkotabi '14)

m 2
minimize, Z [ aka: — yk}

1
dm =
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Wirtinger flow (Candeés, Li, Soltanolkotabi '14)

1 & 2
minimize, f(x — E [ ak,a: —yk}
4m =
PR e spectral initialization: = leadi
VNN pectral initialization: x© < leading
/ // \\\\ . . .
N NN eigenvector of certain data matrix
! I, // ——=~ \\ \\\
AN / NN \\
! \ ! I \\ Ny
T R B
Lol RN \ N
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N N \\\\\\\\:\:/,// /1 /I/,
NN~
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Wirtinger flow (Candeés, Li, Soltanolkotabi '14)

ks 2
minimize; f(x Z[akm —yk}

1
dm =

s N - .y . - - .
TSN e spectral initialization: z° <« leading
’ ’ \\ . . .

/ ,/ ,/—\\\\\\ eigenvector of certain data matrix
| / N A
\) I\ I, // \\\\\\ \\\\
i \ .
PHS U0\ e gradient descent:
\ A \ ‘\ CNY ll {/’
NI \ \ |l] | |
NNy !t =t — 1, Vf(xh), t=0,1,---
NN ==L
S S ==
~—_ ~="7
=
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Rationale of two-stage approach

initial guess x”

|
|
|
|
|
|
|
x |
|
1

basin of attraction

1. initialize within local basin sufficiently close to x*

(restricted) strongly convex; no saddles / spurious local mins
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Rationale of two-stage approach

initial guess x”
1

~~
~
~~e

basin of attraction basin of attraction

1. initialize within local basin sufficiently close to x*

(restricted) strongly convex; no saddles / spurious local mins

2. iterative refinement
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A highly incomplete list of two-stage methods

phase retrieval: other problems:

Keshavan, Montanari, Oh '09
Sun, Luo'14

Chen, Wainwright '15

Tu, Boczar, Simchowitz, Soltanolkotabi, Recht '15
Zheng, Lafferty '15

Balakrishnan, Wainwright, Yu'14
Chen, Suh’'15

Chen, Candeés'16

Li, Ling, Strohmer, Wei'16

Yi, Park, Chen, Caramanis’'16
Jin, Kakade, Netrapalli'16
Huang, Kakade, Kong, Valiant'16
Ling, Strohmer'17

Li, Ma, Chen, Chi'18

Aghasi, Ahmed, Hand '17

Lee, Tian, Romberg '17

Li, Chi, Zhang, Liang'17

Cai, Wang, Wei'l7

Abbe, Bandeira, Hall '14

Chen, Kamath, Suh, Tse'16
Zhang, Zhou'17

Boumal '16

Zhong, Boumal '17

Netrapalli, Jain, Sanghavi’'13
Candes, Li, Soltanolkotabi'14
Chen, Candés’'15

Cai, Li, Ma'15

Wang, Giannakis, Eldar'16
Zhang, Zhou, Liang, Chi’'16
Kolte, Ozgur'16

Zhang, Chi, Liang'16
Soltanolkotabi '17

Vaswani, Nayer, Eldar’'16

Chi, Lu'16

Wang, Zhang, Giannakis, Akcakaya, Chen'16
Tan, Vershynin'17

Ma, Wang, Chi, Chen’17

Duchi, Ruan'17

Jeong, Gunturk '17

Yang, Yang, Fang, Zhao, Wang, Neykov'17
Qu, Zhang, Wright'17
Goldstein, Studer'16

Bahmani, Romberg '16

Hand, Voroninski'16

Wang, Giannakis, Saad, Chen'17
Barmherzig, Sun'17
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Is carefully-designed initialization necessary
for fast convergence?



Initialization

spectral |
initialization.

e spectral initialization gets us to (restricted) strongly cvx region
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Initialization

saddle points

spectral
initializationf

e spectral initialization gets us to (restricted) strongly cvx region

e cannot initialize GD anywhere, e.g. might get stuck at saddles
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Initialization

saddle points

spectral |
initialization}

T | G
initialization [

e spectral initialization gets us to (restricted) strongly cvx region

e cannot initialize GD anywhere, e.g. might get stuck at saddles

Can we initialize GD randomly, which is simpler and model—agnostic?J
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What does prior theory say?

e landscape: no spurious local mins (Sun, Qu, Wright '16)
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What does prior theory say?

e landscape: no spurious local mins (Sun, Qu, Wright '16)

e randomly initialized GD converges almost surely (Lee et al.'16)
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What does prior theory say?

Loading...

//77/!

e landscape: no spurious local mins (Sun, Qu, Wright '16)

e randomly initialized GD converges almost surely (Lee et al.'16)

“almost surely” might mean “take forever”

18/ 44



Numerical efficiency of randomly initialized GD

n=0.1,a; ~N(0,1,), m = 10n, 2° ~ N (0,n"'1,)

100 \

relative ¢y error

5| —n=100 N
1071 n = 200
—n =500

n = 800

n = 1000

0 50 100 150 200
t : iteration count

19/ 44



Numerical efficiency of randomly initialized GD

n=0.1,a; ~N(0,1,), m = 10n, 2° ~ N (0,n"'1,)

Stage 1
—
0L 1
10°F !
. \
o
—
= 1
(<5} 1
~ 1
< i
>
5
=
& 5| —n=100 N
1071 n = 200
—n = 500
n = 800
n = 1000
0 50 100 150 200

t : iteration count

Randomly initialized GD enters local basin within tens of iterations
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Numerical efficiency of randomly initialized GD

n=0.1,a; ~N(0,1,), m = 10n, 2° ~ N (0,n"'1,)

Stage 1 Stage 2

T
100 \i\
1
]
1
1
1

relative ¢y error

5| —n=100
1071 n = 200
——n =500

n = 800

n = 1000

0 50 100 150 200
t : iteration count

Randomly initialized GD enters local basin within tens of iterations

19/ 44



Exponential growth of signal strength in Stage 1

relative /o error
1

100F°

:

—o—dist(z!,z%) (n = 500)

50 100 150
t : iteration count
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Exponential growth of signal strength in Stage 1

relative ¢y error  |(x',x*)| : signal component
1 1

102 ¢
—a— (2!, 2%)| (n = 500)

107 ¢
—e—dist(z!, 2%) (n = 500)

0 50 100 150
t : iteration count

Numerically, a few iterations suffice for entering local region
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Our theory: noiseless case

These numerical findings can be formalized when a; Hg N(0,I,):
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Our theory: noiseless case

These numerical findings can be formalized when a; Hg N(0,I,):

dist(z!, *) := min{ ||z’ + z*|]2}

Theorem 1 (Chen, Chi, Fan, Ma'18)
Under i.i.d. Gaussian design, GD with £° ~ N'(0,n~'1,,) achieves
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Our theory: noiseless case

These numerical findings can be formalized when a; Hg N(0,I,):

dist(z!, *) := min{ ||z’ + z*|]2}
Theorem 1 (Chen, Chi, Fan, Ma'18)
Under i.i.d. Gaussian design, GD with £° ~ N'(0,n~'1,,) achieves

dist(a!, ") < 7(1—p) Trlla o, t2 T,

with high prob. for T, < logn and some constants v, p > 0, provided
that step size n < 1 and sample size m = n polylog m

21/ 44




Our theory: noiseless case

dist(x!, 2*) < ~v(1 — p)" D ||l&* |2, t> T, <logn J
i
10°F i
-
2
3
g
o
=
2
=
Fros itk
—n = 500
n = 800
n = 1000
0 50 100 150 200

t : iteration count
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Our theory: noiseless case

dist(x?, 2*) <~v(1 — p)"" |||, t > T, =< logn |

relative ¢y error

n = 1000

0 50 100 150 200
t : iteration count

e Stage 1: takes O(logn) iterations to reach dist(z!, z*) < v
(e.g. v=0.1)
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Our theory: noiseless case

dist(x?, 2*) <~v(1 — p)"" T ||x*||l2, t> Ty < logn |

O(logn) O(log 1)

relative ¢y error

n = 1000

0 50 100 150 200
t : iteration count

e Stage 1: takes O(logn) iterations to reach dist(z!, z*) < v
(e.g. v=0.1)

e Stage 2: linear (geometric) convergence 2/ 44



Our theory: noiseless case

dist(x?, 2*) < ~v(1 — p)"" || |2, t > Ty < logn J

O(logn) O(log 1)

relative ¢y error

n = 1000

0 50 100 150 200
t : iteration count

e near-optimal computational cost:
1\ - . .
— O(logn + log g) iterations to yield £ accuracy
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Our theory: noiseless case

dist(x?, 2*) < ~v(1 — p)"" || |2, t > Ty < logn |

O(logn) O(log 1)

relative ¢y error

n = 1000

0 50 100 150 200
t : iteration count

e near-optimal computational cost:
1N - . .
— O(logn + log g) iterations to yield £ accuracy

e near-optimal sample size: m 2 npoly logm )
22/ 44



Stability vis-a-vis noise

Yk

|aj, @ + e,

€L ~ N(0> 0-2)

E=1,...
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Stability vis-a-vis noise

ue = lajz P +en, e ~N(0,0%) k=1,...,m

e randomly initialized GD converges to maximum likelihood
estimate in O(logn + log 1) iterations
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Stability vis-a-vis noise

ue = lajz P +en, e ~N(0,0%) k=1,...,m

e randomly initialized GD converges to maximum likelihood
estimate in O(logn + log 1) iterations

e minimax optimal
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Experiments on images

B
" e coded diffraction patterns

y P = R256%256
‘ 4 e m/n=12
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GD with random initialization

GD iterate

use Adobe to see animation
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GD with random initialization

T (x!, z*)* x! — (xt, x*)x*
GD iterate signal component perpendicular component

use Adobe to see animation
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Stage 1: random initialization — local region

prior theory based on
our theory
global landscape
. . : Imost I
iteration complexity &(]Lr:eo:t asl,.u’rle;)/ O(logn)




What if we have infinite samples?

Gaussian designs: ay N N, I,), 1<k<m
Population level (infinite samples)
! = ! — nVF(x!),
where

VF(z) =E[Vf(z)] = B|[3 - Dz - 2(z* z)a”

28/ 44



Population-level state evolution
10° /——
f’ml
1072
—
B
3
10 0 10 20

30
t : iteration count

Let oy := [(z',z*)| and B, = ||z’ — (z',*)x*||2, then
——
signal strength

40 50

size of residual component
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Population-level state evolution

10%F /——
310l
<
:
10
—
Bt
10
0 10 20 30 40 50
t : iteration count
Let oy := [(z',z*)| and B, = ||z’ — (z',*)x*||2, then
———
signal strength

size of residual component
a1 = {1+ 301 — (of + B)]}ew
Berr = {1+ n[l — 3(af + 8]} 5

2-parameter dynamics
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Back to finite-sample analysis

thrl — :Iit _ 77Vf(£13t)
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Back to finite-sample analysis

2l — ot an(J?t) — gt 77VF<213t) _ n(vf(xt) _ VF(wt))

residual
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Back to finite-sample analysis

2l — ot an(J?t) — gt 77VF<213t) _ n(vf(xt) _ VF(wt))

residual

— take one term in z*" (Vf(z') — VF(x!)) as example:
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Back to finite-sample analysis

2l — ot an(:Et) — gt ﬁVF(:Bt) _ n(vf(xt) _ VF(wt))

residual

— take one term in z*" (Vf(z') — VF(x!)) as example:

AA

" e population-level analysis holds
approximately if ! is independent of {a;}

¥y

a region with
well-controlled residual 30/ 44



Back to finite-sample analysis

2l — ot an(:Et) — gt ﬁVF(:Bt) _ n(vf(xt) _ VF(wt))

residual

— take one term in z*" (Vf(z') — VF(x!)) as example:

AA

¥y

a region with
well-controlled residual

e population-level analysis holds
approximately if ! is independent of {a;}

e key analysis ingredient: show x! is

“nearly-independent” of each a;

30/ 44



Stage 2: local refinement (implicit regularization)

prior theory our theory
. I

iteration complexity e Od(\n lig |€)'14) O(log?)
anades et al.




Gradient descent theory revisited

Two standard conditions that enable geometric convergence of GD
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Gradient descent theory revisited

Two standard conditions that enable geometric convergence of GD

e (local) restricted strong convexity
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Gradient descent theory revisited

Two standard conditions that enable geometric convergence of GD

e (local) restricted strong convexity

e (local) smoothness
32/ 44



Gradient descent theory revisited

f is said to be a-strongly convex and S-smooth if

0 <X ol < VQf(m) = pBI, Ve
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Gradient descent theory revisited

f is said to be a-strongly convex and S-smooth if

0 <X ol < VQf(w) = pBI, Ve

{5 error contraction: GD with 7 = 1//3 obeys

o~ 2"l < (1= 5) e’ = ol

e Condition number 3/« determines rate of convergence
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Gradient descent theory revisited

f is said to be a-strongly convex and S-smooth if

0 < ol < V3f(z) < I, V=

{5 error contraction: GD with 7 = 1//3 obeys

o~ 2"l < (1= 5) e’ = ol

e Condition number 3/« determines rate of convergence
e Attains e-accuracy within O(Z log 1) iterations

«

33/ 44



What does this optimization theory say about GD?

Gaussian designs: aj, iLd. N, I,), 1<k<m
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What does this optimization theory say about GD?

Gaussian designs: aj, iLd. N, I,), 1<k<m

Finite-sample level (m =< nlogn)

V2f(x) = 0.5
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What does this optimization theory say about GD?

Gaussian designs: aj, iLd. N, I,), 1<k<m

Finite-sample level (m =< nlogn)

V2f(x) = 0.5I but ill-conditioned (even locally)

condition number < n

Consequence (Candes et al. '14): WF attains e-accuracy within
O(nlog?t) iterations if m < nlogn
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What does this optimization theory say about GD?

Gaussian designs: aj, iLd. N, I,), 1<k<m

Finite-sample level (m =< nlogn)

V2f(x) = 0.5I but ill-conditioned (even locally)

condition number < n

Consequence (Candes et al. '14): WF attains e-accuracy within
O(nlog 1) iterations if m =< nlogn

— optimization theory based on generic landscape conditions
implies slow convergence ...

34/ 44



A second look at gradient descent theory

Which local region enjoys both strong convexity and smoothness?
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A second look at gradient descent theory

Which local region enjoys both strong convexity and smoothness?

Vif(x) = p. Z S(ak akak - = Z x*) akak.
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A second look at gradient descent theory

Which local region enjoys both strong convexity and smoothness?

1 1 & .
Vif(x) = — > S(Gka)Qaka; — =Y (aj=z )Qakag

k=1 m=

e Not sufficiently smooth if & and a; are too close
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A second look at gradient descent theory

Which local region enjoys both strong convexity and smoothness?

a

{a;rz a* ‘ Vlogn

e x is incoherent w.r.t. sampling vectors {ay} (incoherence region)
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A second look at gradient descent theory

Which local region enjoys both strong convexity and smoothness?

as aq

T — M| < Vogn
‘az (@—=z >‘ ~ o8 {a;r(z—zt)‘g Viogn

e x is incoherent w.r.t. sampling vectors {ay} (incoherence region)
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A second look at gradient descent theory

Which local region enjoys both strong convexity and smoothness?

as aq

T — M| < Vogn
‘az (@—=z >‘ ~ o8 {a;r(z—zt)‘g Viogn

e x is incoherent w.r.t. sampling vectors {ay} (incoherence region)

Prior works suggest enforcing regularization (e.g. truncation,
projection, regularized loss) to promote incoherence

35/ 44



Aside: regularized methods

phase
retrieval

1
1
II
regularizgd
1
1

1
1

4
trimming

matrix
completion

1
1

1
regulariz;'d
1

1
I
1

v

regularized cost

projection

blind

deconvolution

1
1

1
regulari'z'ed
'I
1
1
v
regularized cost
projection
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Aside: regularized vs. unregularized methods

phase matrix blind
retrieval completion deconvolution
',' \ ,,' \ ,Il \
regularizg’d um‘e\gularized regularizp’d um§€ularized regularifled unrdgularized
1 1 1
1 1
/ / \ ’I, \
< 4 < v <
trimming  suboptimal  regularized cost ? regularized cost ?
comput. cost projection projection
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Aside: regularized vs. unregularized methods

phase matrix blind
retrieval completion deconvolution
',' \ ,,' \ ,Il \
regularizg’d um‘e\gularized regularizp’d um§€ularized regularifled unrdgularized
1 1 1
1 1
/ / \ ’I, \
<« 4 < v <
trimming  suboptimal  regularized cost ? regularized cost ?
comput. cost projection projection

Are unregularized methods suboptimal for nonconvex estimation? J
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Our findings: GD is implicitly regularized

region of local strong convexity + smoothness
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Our findings: GD is implicitly regularized

region of local strong convexity + smoothness

GD implicitly forces iterates to remain incoherent with {a;}
max; |a] 2’| < viegm x']|2, V¢
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Our findings: GD is implicitly regularized

region of local strong convexity + smoothness

GD implicitly forces iterates to remain incoherent with {a;}
max; |a] 2’| < viegm x']|2, V¢

— cannot be derived from generic optimization theory; relies on
finer statistical analysis for entire trajectory of GD

37/ 44



Key proof idea: leave-one-out analysis

Leave out a small amount of information from data and run GD
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Key proof idea: leave-one-out analysis

Leave out a small amount of information from data and run GD

e Stein'72

e El Karoui, Bean, Bickel, Lim, Yu'l3
e El Karoui'l5

e Javanmard, Montanari '15

e Zhong, Boumal '17

o Lei, Bickel, El Karoui'l7

e Sur, Chen, Candés'17

e Abbe, Fan, Wang, Zhong '17

e Chen, Fan, Ma, Wang'17
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Key proof idea: leave-one-out analysis

Leave out a small amount of information from data and run GD

AD z* AD g y® =1 ADOg*?
| [ | [ | |
auf f_E :
EE E=8 —>
L, EmT 1 N 1

1
| [ | [ |
HEN u -
] [ | [ |
HE | |
e.g. introduce leave-one-out iterates () by running GD without /th

sample
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Key proof idea: leave-one-out analysis

e {mt,(l)}
\\ al
“N
*\\
'Y

N\,
N\,
Y
4

incoherence region
w.r.t. a;

e Leave-one-out iterate z*() is independent of a;
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Key proof idea: leave-one-out analysis

e {a" )} a
N
A 1
t ‘\
(='} \
)
| 4
incoherence region
w.r.t. a;

e Leave-one-out iterate z*() is independent of a;

e Leave-one-out iterate b)) ~ true iterate x!

t

=—> a' is nearly independent of a;

nearly orthogonal to
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Key proof ingredient: random-sign sequences

Asgn y— |Asg“az*‘2 Asgn y= ‘Asgnw*|2
H U E BN |
H'E B [ |
HE B [ |
H N [ | [ |
|| [ | . [ |
HEE B @
HE B [ |
] [ | [ |
|| [ | [ |
HE BN [ |
2?%8": indep. of sign info of 28" () indep. of both sign
{a;1} info of {a; 1} and q

e randomly flip signs of a; * and re-run GD
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Key proof ingredient: random-sign sequences

Asgn y— |Asgnaz*‘2 Asgn y= ‘Asgnw*|2
H U E BN |
H'E B [ |
HE B [ |
H N [ | [ |
|| [ | . [ |
HEE B a
HE B [ |
] [ | [ |
|| [ | [ |
HE BN [ |
2?%8": indep. of sign info of 28" () indep. of both sign
{a;1} info of {a; 1} and q

e randomly flip signs of a; * and re-run GD

Tt

e crucial in controlling £ "7, (a/ = ) a; z*

a! z*|sgn(a x*
la; =*|sgn(a; =*) w0 4



Automatic saddle avoidance

E H
8 0.7 [ o aama

. Q::,w*M o
0 GL ; 0 0.05 0,

- . AN // \
A 04 saddle points %,
——n =0.01 \\‘iﬁ
02 . 5 =0.05 y
n =0.1 3
0 o)
0 02 04 06 08 1 k\
O

WV
global minimizer

Randomly initialized GD never hits saddle points!
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Other saddle-escaping schemes based on
generic landscape analysis

iteration complexity

trust-region

7 oo L
(Sun et al. 16) n'+loglog 2

perturbed GD n® 4 nlog !

(Jin et al."17)
perturbed accelerated
GD n*® + /nlogl
(Jin et al."17)
GD (ours) 1

logn + log =

€

(Chen et al. 18)

Generic optimization theory yields highly suboptimal convergence
guarantees
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No need of sample splitting

e Several prior works use sample-splitting: require fresh samples at
each iteration; not practical but helps analysis

2! 3 5

N\
fresh samples

43/ 44



No need of sample splitting

e Several prior works use sample-splitting: require fresh samples at
each iteration; not practical but helps analysis

z! 23 5

N\
fresh samples

z
22

e This work: reuses all samples in all iterations
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Concluding remarks

Even simplest nonconvex methods

are remarkably efficient under suitable statistical models

smart extra sample saddle
initialization | regularization splitting escaping
NEED NEED NEED NEED
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Mathematical Programming, vol. 176, no. 1-2, pp. 5-37, July 2019
2. “Implicit regularization in nonconvex statistical estimation: ..."”, C. Ma, K. Wang,

Y. Chi, Y. Chen, accepted to Foundations of Computational Mathematics, 2019

3. “Nonconvex optimization meets low-rank matrix factorization: An overview”, Y. Chi,

Y. Lu, Y. Chen, accepted to IEEE Trans. Signal Processing, 2019
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