

October 22, 2014

Near-Optimal Joint Object Matching via Convex Relaxation

Yuxin Chen, Stanford University

Joint Work with Qixing Huang (TTIC), Leonidas Guibas (Stanford)

Page 1

Assembling Fractured Pieces

Manual Assembly (Ephesus, Turkey)

Computer Assembly (Fig. credit: Huang et al 06)

Page 2

Structure from Motion from Internet Images

Data-Driven Shape Analysis

Example: Joint Segmentation

Joint Object/Graph Matching

- Given: n objects (graphs), each containing a few elements (vertices)
- Goal: consistently match all similar elements across all objects

Naive Approach: Pairwise Matching

• Naive Approach

- Compute pairwise matching across all pairs in isolation
- pairwise matching: extensively explored

Very similar objects

Less similar objects

Are Pairwise Methods Perfect?

Are Pairwise Methods Perfect?

Additional Object Helps!

Additional Object Helps!

Popular Approach: 2-Stage Method

• Stage 1: Pairwise Matching

- Compute pairwise matching across a few pairs in isolation
- Use off-the-shelf pairwise methods

Popular Approach: 2-Stage Method

• Stage 1: Pairwise Matching

- Compute pairwise matching across a few pairs in isolation
- Use off-the-shelf pairwise methods

• Stage 2: Global Refinement

- Jointly refine all provided maps
- Criterion: exploit global consistency

Object Representation

- Object
 - \circ a set of points
 - drawn from the same universe

• Map

point-to-point correspondence

Problem Formulation

• Input: a few pairwise matches computed in isolation

Problem Formulation

• Input: a few pairwise matches computed in isolation

- **Output:** a collection of maps that are
 - close to the input matches
 - globally consistent
- NP-Hard! [Huber 02]

Prior Art

spanning tree optimization [Huber'02]

detecting inconsistent cycles [Zach'10, Ngu'11]

spectral technique [Kim'12, Huang'12]

- **Pros**: empirical success
- Cons:
 - little fundamental understanding (except [HuangGuibas'13])
 - $\circ\,$ rely on hyper-parameter tuning

• Semidefinite Relaxation (HuangGuibas'13):

- theoretical guarantees under a basic setup
- tolerate 50% input errors

• Semidefinite Relaxation (HuangGuibas'13):

theoretical guarantees under a basic setup
tolerate 50% input errors

• Spectral Method (Pachauri et al'13):

 \circ recovery ability improves with # objects

• Gaussian-Wigner noise (not realistic though...)

• Semidefinite Relaxation (HuangGuibas'13):

theoretical guarantees under a basic setup
tolerate 50% input errors

• Spectral Method (Pachauri et al'13):

recovery ability improves with # objects *Gaussian-Wigner noise (not realistic though...)*

• Several important challenges remain unaddressed...

• Semidefinite Relaxation (HuangGuibas'13):

theoretical guarantees under a basic setup
tolerate 50% input errors

• Spectral Method (Pachauri et al'13):

recovery ability improves with # objects *Gaussian-Wigner noise (not realistic though...)*

- Several important challenges remain unaddressed...
- Relevant problems:

• rotation sync (Wang et al), multiway alignment (Bandeira et al)

Challenge 1: Dense Input Errors

• Input Errors

• A significant fraction of inputs are corrupted

Input Maps

Ground Truth

Challenge 1: Dense Input Errors

• Input Errors

• A significant fraction of inputs are corrupted

• Prior art:

— tolerate **50%** input errors [HuangGuibas'2013]

Input Maps

Ground Truth

Challenge 2: Partial Similarity

• Partial Similarity

• Objects might only be partially similar to each other.

— e.g. restricted views at different camera positions

Subgraph Matching

Input Maps

Challenge 3: Incomplete Input

• Partial Input Matches

 $\circ\,$ pairwise matching across all object pairs is

- computationally expensive
- sometimes inadmissible

Our Goal

• Develop an effective joint recovery method

- strong theoretical guarantee (*address the 3 challenges*)
- parameter free
- computationally feasible

tolerate dense errors

handle partial similarity

fill in missing matches

(Partial) Maps

• One-to-one maps between (sub)-sets of elements

subgraph matching / isomophism

(Partial) Maps

• One-to-one maps between (sub)-sets of elements

subgraph matching / isomophism

• Encode the maps across 2 objects by a 0-1 matrix

$$oldsymbol{X}_{12} := \left[egin{array}{ccccc} 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ 1 & 0 & 0 & 0 \end{array}
ight]$$

Matrix Representation

• Consider *n* objects

Matrix Representation

$$\boldsymbol{X}_{12} := \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

- Consider *n* objects
- Matrix representation for a collection of maps

$$oldsymbol{X} = \left[egin{array}{cccccccc} oldsymbol{I} & X_{12} & \cdots & X_{1n} \ oldsymbol{X}_{21} & oldsymbol{I} & \cdots & oldsymbol{X}_{2n} \ dots & dots & \ddots & dots \ oldsymbol{X}_{n1} & oldsymbol{X}_{n2} & \cdots & oldsymbol{I} \end{array}
ight]$$

Diagonal blocks: identity matrices (self-isomophism)
Sparse

Alternative Representation: Augmented Universe

• All objects / sets are sub-sampled from the same universe (of size m).

Alternative Representation: Augmented Universe

• All objects / sets are sub-sampled from the same universe (of size m).

• Map matrix Y_i between object i and the universe

$$\boldsymbol{Y}_{1} := \underbrace{\left[\begin{array}{cccccc} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{array}\right]}_{m \text{ columns}}, \quad \boldsymbol{Y}_{2} := \underbrace{\left[\begin{array}{ccccccccc} 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array}\right]}_{m \text{ columns}} \quad \Rightarrow \quad \boldsymbol{X}_{12} = \boldsymbol{Y}_{1} \boldsymbol{Y}_{2}^{\top}$$

P.S.D. and Low-Rank Structure

• Alternative Representation:

P.S.D. and Low-Rank Structure

• Alternative Representation:

$$\boldsymbol{X} := \begin{bmatrix} \boldsymbol{I} & \boldsymbol{X}_{12} & \cdots & \boldsymbol{X}_{1n} \\ \boldsymbol{X}_{21} & \boldsymbol{I} & \cdots & \boldsymbol{X}_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{X}_{n1} & \boldsymbol{X}_{n2} & \cdots & \boldsymbol{I} \end{bmatrix} = \underbrace{\begin{bmatrix} \boldsymbol{Y}_1 \\ \boldsymbol{Y}_2 \\ \vdots \\ \boldsymbol{Y}_n \end{bmatrix}}_{m \text{ columns}} \begin{bmatrix} \boldsymbol{Y}_1^\top & \boldsymbol{Y}_2^\top & \cdots & \boldsymbol{Y}_n^\top \end{bmatrix}$$

• positive semidefinite and low rank: $rank(X) \le m$.

 \circ *m*: universe size

Summary of Matrix Structure

Summary of Matrix Structure

A consistent map matrix \boldsymbol{X}

- 1. $\boldsymbol{X} \succeq \boldsymbol{0}$
- 2. low-rank
- 3. sparse (0-1 matrix)
- 4. $X_{ii} = I$

Input map matrix X^{in}

- a noisy version of X
 input errors
- missing entries
 incomplete inputs

Page 23

Low Rank + Sparse Matrix Separation?

+

ground truth: $oldsymbol{X}$

additive errors: $\boldsymbol{X}^{\mathsf{in}} - \boldsymbol{X}$

• Robust PCA / Matrix Completion?

- $\circ\,$ Candes et al
- Chandrasekahran et al

$$\begin{array}{ll} \mathsf{minimize}_{\boldsymbol{L},\boldsymbol{S}} & \left\|\boldsymbol{L}\right\|_{*} + \left\|\boldsymbol{S}\right\|_{1}, & \mathsf{s.t.} \quad \boldsymbol{X}_{\mathrm{in}} = & \boldsymbol{L} & +\boldsymbol{S} \\ & (\mathsf{low rank}) & (\mathsf{sparse}) & & \downarrow \\ & & \mathsf{estimate of } \boldsymbol{X} \end{array}$$

Outlier Component is Highly Biased

+

ground truth: $oldsymbol{X}$

additive errors: $\boldsymbol{X}^{\mathsf{in}} - \boldsymbol{X}$

- Robust PCA can handle dense corruption if
 - the sparse component exhibits random sign patterns

Outlier Component is Highly Biased

+

ground truth: $oldsymbol{X}$

additive errors: $\boldsymbol{X}^{\mathsf{in}} - \boldsymbol{X}$

• Robust PCA can handle dense corruption if

• the sparse component exhibits random sign patterns

• Our Case?

$$\mathbb{E}\left[\boldsymbol{X}^{\text{in}} - \boldsymbol{X}\right] = p_{\text{true}}\boldsymbol{X} + \underbrace{(1 - p_{\text{true}})}_{\text{corruption rate}} \cdot \frac{1}{m} \mathbf{1} \cdot \mathbf{1}^{\top} - \boldsymbol{X} = \underbrace{(1 - p_{\text{true}})\left(\frac{1}{m} \mathbf{1} \cdot \mathbf{1}^{\top} - \boldsymbol{X}\right)}_{(1 - p_{\text{true}})} \cdot \underbrace{(1 - p_{\text{true}})\left(\frac{1}{m} \mathbf{1} \cdot \mathbf{1}^{\top} - \boldsymbol{X}\right)}_{(1 - p_{\text{true}})}$$

highly biased spectral norm: $(1 - p_{\text{true}}) n$

Debias the Error Components

• Equivalently,

$$X - \underbrace{\frac{1}{m} \mathbf{1} \mathbf{1}^{\mathsf{T}}}_{\text{debiasing}} \succeq 0$$

Debias the Error Components

• Equivalently,

$$X - \underbrace{\frac{1}{m} \mathbf{1} \mathbf{1}^{\mathsf{T}}}_{\text{debiasing}} \succeq 0$$

• rank $\left(\boldsymbol{X} - \frac{1}{m} \mathbf{1} \mathbf{1}^{\mathsf{T}} \right)$ = rank $(\boldsymbol{X}) - 1 \Rightarrow$ one more degree of freedom

 $X \ge 0, \quad X \succeq 0$

• Ecourage consistency with provided maps

 $\langle \boldsymbol{X}, \boldsymbol{X}^{\mathsf{in}}
angle$ (to maximize)

 $X \ge 0, \quad X \succeq 0$

• Ecourage consistency with provided maps

 $\langle \boldsymbol{X}, \boldsymbol{X}^{\mathsf{in}}
angle$ (to maximize)

• Promote Sparsity

 $\|\boldsymbol{X}\|_1 = \langle \boldsymbol{X}, \boldsymbol{1}\boldsymbol{1}^\top \rangle$ (to minimize)

 $X \ge 0, \quad X \succeq 0$

• Ecourage consistency with provided maps

 $\langle \boldsymbol{X}, \boldsymbol{X}^{\mathsf{in}}
angle$ (to maximize)

• Promote Sparsity

 $\|\boldsymbol{X}\|_1 = \langle \boldsymbol{X}, \boldsymbol{1}\boldsymbol{1}^\top \rangle$ (to minimize)

• Encourage Low-Rank Structure?

 \circ minimize nuclear norm? – not necessary ($||X||_*$ is fixed)

 $X \ge 0, \quad X \succeq 0$

• Ecourage consistency with provided maps

 $\langle \boldsymbol{X}, \boldsymbol{X}^{\mathsf{in}}
angle$ (to maximize)

• Promote Sparsity

 $\|\boldsymbol{X}\|_1 = \langle \boldsymbol{X}, \boldsymbol{1}\boldsymbol{1}^\top \rangle$ (to minimize)

• Encourage Low-Rank Structure?

• minimize nuclear norm? – not necessary ($||X||_*$ is fixed)

Objective Function (to minimize)

$$f\left(oldsymbol{X}
ight) := -\left\langleoldsymbol{X},oldsymbol{X}^{\mathsf{in}}
ight
angle + \lambda\left\langleoldsymbol{X},oldsymbol{1}oldsymbol{1}^{ op}
ight
angle$$

MatchLift: tractable convex program

MatchLift	
minimize $_{\boldsymbol{X}}$	$-\left\langle oldsymbol{X},oldsymbol{X}^{in} ight angle +\lambda\left\langle oldsymbol{X},oldsymbol{1}oldsymbol{1}^{ op} ight angle$
subject to	$oldsymbol{X} \geq oldsymbol{0},$
	$\left[egin{array}{cc} m & 1^{ op} \ 1 & m{X} \end{array} ight] \succeq 0,$
	$oldsymbol{X}_{ii}=oldsymbol{I}.$

• Efficient Semidefinite Program

MatchLift: tractable convex program

MatchLift	
minimizer	$-\langle \mathbf{X} \mathbf{X}^{\text{in}} \rangle \perp \rangle \langle \mathbf{X} 1 1^{\top} \rangle$
iiiiiiiiiize _X	$-\langle \mathbf{A}, \mathbf{A} \rangle + \lambda \langle \mathbf{A}, \mathbf{H} \rangle$
subject to	$oldsymbol{X} \geq oldsymbol{0},$
	$\left[egin{array}{ccc} m{m} & m{1}^{ op} \ m{1} & m{X} \end{array} ight] \succeq m{0},$
	$oldsymbol{X}_{ii}=oldsymbol{I}.$

- Efficient Semidefinite Program
- Caveat: *m* is usually unkonwn!

Pre-Estimate *m*: **Spectral Method**

Spectral Method

- 1. Trim X^{in}
- 2. $m \leftarrow \#$ dominant eigenvalues of X^{in}
- The eigenvalues λ_i experience a sharp decrease around λ_m

Two-Step Procedure: MatchLift

1. **Pre-Estimate** *m*:

2. Joint Matching via Convex Relaxation:

- Randomized Model: n objects, universe size m
 - Each object contains a fraction

 p_{set}

of m elements

undersampling factor: partial similarity

- Randomized Model: n objects, universe size m
 - Each object contains a fraction

of m elements

undersampling factor: partial similarity

• Each pair X_{ij}^{in} is observed w.p.

 p_{obs}

observation ratio: missing entries

- Randomized Model: n objects, universe size m
- Each object contains a fraction undersampling factor: partial similarity of m elements undersampling factor: partial similarity
 Each pair Xⁱⁿ_{ij} is observed w.p. observation ratio: missing entries
 Each observed Xⁱⁿ_{ij} is randomly corrupted w.p. 1 ptrue non-corruption rate

- Randomized Model: n objects, universe size m
 - Each object contains a fraction undersampling factor: partial similarity of *m* elements undersampling factor: partial similarity
 Each pair Xⁱⁿ_{ij} is observed w.p. beservation ratio: missing entries
 Each observed Xⁱⁿ_{ij} is randomly corrupted w.p. 1 ptrue non-corruption rate

Theorem (ChenGuibasHuang'14). MatchLift with $\lambda = \sqrt{p_{obs}}$ is exact with high probability if $p_{true} \gtrsim \frac{\log^2(mn)}{p_{set}^2\sqrt{p_{obs}n}}$

$$\begin{array}{ll} \text{minimize}_{\boldsymbol{X}} & -\langle \boldsymbol{X}, \boldsymbol{X}^{\text{in}} \rangle + \lambda \langle \boldsymbol{X}, \boldsymbol{11}^{\top} \rangle, & \text{s.t. feasible} \end{array}$$

$$\begin{array}{l} \textbf{Theorem (ChenGuibasHuang'14). MatchLift with } \boldsymbol{\lambda} &= \sqrt{p_{\text{obs}}} \\ \text{is exact with high probability if} \end{array}$$

$$p_{\text{true}} \gtrsim \frac{\log^2(mn)}{p_{\text{set}}^2 \sqrt{p_{\text{obs}}n}} \end{array}$$

• Parameter-free

• MatchLift is insensitive to λ ($\lambda \in \left[\frac{p_{obs}}{m}, \sqrt{p_{obs}}\right]$)

$$\begin{array}{ll} \text{minimize}_{\boldsymbol{X}} & -\langle \boldsymbol{X}, \boldsymbol{X}^{\text{IN}} \rangle + \lambda \langle \boldsymbol{X}, \boldsymbol{11}^{\top} \rangle, & \text{s.t. feasible} \end{array}$$

$$\begin{array}{l} \textbf{Theorem (ChenGuibasHuang'14). MatchLift with } \lambda = \sqrt{p_{\text{obs}}} \text{ is} \\ \text{exact with high probability if} \end{array}$$

$$p_{\text{true}} \gtrsim \frac{\log^2(mn)}{p_{\text{set}}^2 \sqrt{p_{\text{obs}} n}}$$

• Parameter-free

- MatchLift is insensitive to λ ($\lambda \in \left[\frac{p_{obs}}{m}, \sqrt{p_{obs}}\right]$)
- Dense Error Correction

error correction ability $\approx 1 - 1/\sqrt{n}$

when p_{set} and p_{obs} are constants.

$$\begin{array}{ll} \text{minimize}_{\boldsymbol{X}} & -\langle \boldsymbol{X}, \boldsymbol{X}^{\text{in}} \rangle + \lambda \langle \boldsymbol{X}, \boldsymbol{11}^{\top} \rangle, & \text{s.t. feasible} \end{array}$$

$$\begin{array}{l} \textbf{Theorem (ChenGuibasHuang'14). MatchLift with } \boldsymbol{\lambda} = \sqrt{p_{\text{obs}}} \\ \text{s exact with high probability if} \end{array}$$

$$p_{\text{true}} \gtrsim \frac{\log^2(mn)}{p_{\text{set}}^2 \sqrt{p_{\text{obs}}n}} \end{array}$$

- Incomplete Input Matches
 - \circ Error correction ability decays at rate $1/\sqrt{p_{obs}}$

$$\begin{array}{ll} \text{minimize}_{\boldsymbol{X}} & -\langle \boldsymbol{X}, \boldsymbol{X}^{\text{in}} \rangle + \lambda \langle \boldsymbol{X}, \boldsymbol{11}^{\top} \rangle, & \text{s.t. feasible} \end{array}$$

$$\begin{array}{l} \textbf{Theorem (ChenGuibasHuang'14). MatchLift with } \lambda = \sqrt{p_{\text{obs}}} \text{ is} \\ \text{exact with high probability if} \end{array}$$

$$p_{\text{true}} \gtrsim \frac{\log^2(mn)}{p_{\text{set}}^2 \sqrt{p_{\text{obs}}n}}$$

- Incomplete Input Matches
 - \circ Error correction ability decays at rate $1/\sqrt{p_{obs}}$
- Partial Similarity
 - \circ Error correction ability decays at rate $1/p_{set}^2$

Optimality of MatchLift

Theorem (ChenGuibasHuang'14). MatchLift with $\lambda = \sqrt{p_{obs}}$ is exact with high probability if

 $p_{
m true} \gtrsim rac{\log^2{(mn)}}{p_{
m set}^2 \sqrt{p_{
m obs}n}}$

• Is MatchLift Optimal?

Optimality of MatchLift

Theorem (ChenGuibasHuang'14). MatchLift with $\lambda = \sqrt{p_{obs}}$ is exact with high probability if $p_{\rm true} \gtrsim \frac{\log^2(mn)}{p_{\rm set}^2\sqrt{p_{obs}n}}$

- Is MatchLift Optimal?
- Information Theoretic Limits under Random Measurement Graphs
 - Fano's inequality

Theorem (ChenGoldsmith'14). If the universe size
$$m$$
 is a constant, then
No method works if $p_{\text{true}} \lesssim \frac{1}{\sqrt{p_{\text{obs}}n}} (\approx \frac{1}{\sqrt{\text{avg-degree}}})$

Phase Transitions in Empirical Success Probability

• Synthetic Data (input error rate v.s. # objects)

Benchmark: Chairs

benchmark

initial maps

optimized maps

Benchmark: CMU Hotel

benchmark

initial maps

optimized maps

Input	MatchLift	RPCA	Leordeanu et al. 12
64.1%	100%	90.1%	94.8%

Page 37

Concluding Remarks

• MatchLift

- \circ Dense error correction (near-optimal when m is constant)
- Allow partial similarity
- Incomplete inputs

Concluding Remarks

• MatchLift

- \circ Dense error correction (near-optimal when m is constant)
- Allow partial similarity
- Incomplete inputs

• Future direction

- Pairwise matching and joint refinement all at once
- More scalable algorithm
 - e.g. via non-convex optimization?

Paper and Code

- Near-Optimal Joint Object Matching via Convex Relaxation
 - Yuxin Chen, Leonidas J. Guibas, and Qixing Huang
 - International Conference on Machine Learning (ICML), 2014
 - Arxiv: http://arxiv.org/abs/1402.1473
 - Code: http://web.stanford.edu/~yxchen/codes/code_MatchLift.
 zip

Thank You! Questions?