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Emergent ability: in-context learning

In-context learning (ICL): a pretrained LLM can perform a task
from a few examples w/o fine-tuning or weight updates

arXiv
/% nttps:/arxiv.org> cs 3

[2005.14165] Language Models are Few-Shot Learners
by TB Brown - 2020 - Cited by 31178 — Specifically, we train GPT-3, an autoregressive
language model with 175 billion parameters, 10x more than any previous non-sparse languag...
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In-context learning (ICL): a pretrained LLM can perform a task
from a few examples w/o fine-tuning or weight updates

ChatGPT 40 v &, Share

BIF->ER+/\E; ERT->RENE RAFM->?
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In-context learning/inference

ChatGPT 40 v~ &, Share

WE->ERTNE; EBT->REXE RARK->?

e given any function f of interest and the prompt below

specifies a task

L1 L2 T TN LN+1

prompt : 1 l : 1 1
f@) fle2) -+ flan) 7

e predict f(xn41) on the fly (w/o weight updates)
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Transformers as algorithm approximators

A dominant approach in prior approximation theory

— construct transformers to mimic iterations of optimization algs.
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[Submitted on 15 Dec 2022 (v1), last revised 31 May 2023 (this version, v2)]

Transformers learn in-context by gradient descent

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, Jodo Sacramento, Alexander
Mordvintsev, Andrey Zhmoginov, Max Vladymyrov
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Transformers as algorithm approximators

A dominant approach in prior approximation theory

— construct transformers to mimic iterations of optimization algs.

e gradient descent (Von Oswald et al '23)
e preconditioned GD (Ahn et al '23)
e Newton method (Gianno et al '23; Fu et al '24)
[ )

e algorithm selection (Bai et al '23)
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Transformers as algorithm approximators

A dominant approach in prior approximation theory

— construct transformers to mimic iterations of optimization algs.

e gradient descent (Von Oswald et al '23)
e preconditioned GD (Ahn et al '23)
e Newton method (Gianno et al '23; Fu et al '24)
[ )

e algorithm selection (Bai et al '23)

key takeaway: transformers can implement generic optimization
algs. during inference  — in-context inference

8/ 22



Inadequacy of prior approximation theory

algorithm approximator perspective — constrained by effectiveness
of optimization algs (e.g., GD) being approximated
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Inadequacy of prior approximation theory

algorithm approximator perspective — constrained by effectiveness
of optimization algs (e.g., GD) being approximated

e GD works for convex problems; fails for nonconvex ones
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Inadequacy of prior approximation theory

algorithm approximator perspective — constrained by effectiveness
of optimization algs (e.g., GD) being approximated

Linear Regression Nonlinear Regression

e restricted to learning linear functions

e.g. linear regression
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Can we develop a universal approximation theory that
accommodates general function classes ?

nonconvex problems; beyond linear regression



Formulation: in-context learning

e function class F: a set of functions (R? — R)
o each function f € F describes a task
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e prompt: N in-context examples + 1 input for prediction
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N in-context examples to predict
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Formulation: in-context learning

e function class F: a set of functions (R? — R)
o each function f € F describes a task

e prompt: N in-context examples + 1 input for prediction

(wlvylam%y?a -+ LN, YN, mN-‘rl)
——
N in-context examples to predict

o y; ~ f(=x;) for some task f € F

e goal: construct a single transformer that works for all tasks:
given prompt produced by any f € F, outputs

Un+1 = f(eNy1)
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Assumptions: in-context examples

e input vector: &; ~ Dy, |zil2 <1,

e sub-Gaussian noise z;: E[z;] = 0, sub-Gaussian norm o
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Key Fourier parameter for function class

930 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 3, MAY 1993

Universal Approximation Bounds for Superpositions
of a Sigmoidal Function

Andrew R. Barron, Member, IEEE
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Key Fourier parameter for function class

930 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 3, MAY 1993

Universal Approximation Bounds for Superpositions E2Y
of a Sigmoidal Function \:s Q':“'
Andrew R. Barron, Member, IEEE \4

Recall: a classical Fourier quantity w.r.t. universal approx for sigmoids

Cp = [ lwllel Fy(w) dw

£1 norm of Fourier-transform(V f)

1 ,
where Ft(w) = —/ e_J“’Txf(ar;)dm

o

Fourier transform of f
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Key Fourier parameter for function class

930 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 3, MAY 1993

Universal Approximation Bounds for Superpositions 2y
of a Sigmoidal Function . 8.
g o vQ

Andrew R. Barron, Member, IEEE /ﬂ

this work: extend Cy to handle a function class

Cr 1= sup [f(O)] + [ lwll2 sup |Fy(w)]dw < o,
feF w feF
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Preliminaries: transformer architecture

input matrix: encode inputs as a sequence of NV + 1 tokens

H = [hy,...,hn,hyi1]
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input matrix: encode inputs as a sequence of NV + 1 tokens

T NN TN TNl
1 1 1

H = [hlﬂ"‘7hNah’N+1}: Y1 YN 0 ERDX(N+1)
:auxiliary info :
u YN YN+t

e unified format after tokenization, suitable for joint processing
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Preliminaries: transformer architecture

input matrix: encode inputs as a sequence of NV + 1 tokens

T NN TN TNl
1 1 1

H = [hlﬂ"‘7hNah’N+1}: Y1 YN 0 ERDX(N+1)
:auxiliary info :
u YN YN+t

e unified format after tokenization, suitable for joint processing

e auxiliary info expands feature dimension

14/ 22



Preliminaries: transformer architecture

attention mechanism: dynamically attend to different parts of input

e attention operator:

attn(H; Q, K, V) = %YHU;,M((QH)TI?H)

value query  key
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Preliminaries: transformer architecture

attention mechanism: dynamically attend to different parts of input

e attention operator:

1
attn(H: Q. K, V) = -V Houe, (QH)'KH)
¥ Y

value query  key
activation function
o—attn(x) - ot + 1
e multi-head attention layer:
Attng (H H+Z L Attn(H; Qu, Ko, Vi)

M attention heads
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Preliminaries: transformer architecture

feed-forward (a.k.a. MLP) layer: refines feature representation
through non-linear transformation

FF@(H) H+U0ff(WH)

parameters
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Preliminaries: transformer architecture

feed-forward (a.k.a. MLP) layer: refines feature representation
through non-linear transformation

parameters

activation function
of(x) =z 1(x > 0)
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Preliminaries: transformer architecture

Input . Output

multi-layer transformers:

e [ attention layers + L feed-forward layers

HO =FF o (Attngo (HITD)),  1=1,...,L,

attn

@
O

e prediction: last entry of H(L)
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Our universal approximation theory

Theorem 1 (informal; Li, Jiao, Huang, Wei, Chen ’25) |

Consider a general function class F. One can construct a multi-layer
transformer s.t.: for every f € F,

in-context-prediction-risk — 0  with high prob.
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Our universal approximation theory

Theorem 1 (informal; Li, Jiao, Huang, Wei, Chen ’25) |

Consider a general function class . One can construct a multi-layer
transformer s.t.: for every f € F,

in-context-prediction-risk — 0  with high prob.

e reliable in-context learning

e universal design (1 transformer for all tasks)
e far beyond linear functions

o not constrained by effectiveness of GD, Newton's, etc

o accommodate much broader ICL problems (far beyond convex)
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Our universal approximation theory (formal)

Theorem 1 (Li, Jiao, Huang, Wei, Chen '25) |

One can construct a transformer s.t.: for every f € F, with high prob.

E[@NH - f(wl\l+1))2} S ( longN + Z) Cr(Cr+0)+C5 (logn/\/'g|)

prediction error

as long asn 2 log [INZ|, e < \/@4_%
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Our universal approximation theory (formal)

Theorem 1 (Li, Jiao, Huang, Wei, Chen '25) |

One can construct a transformer s.t.: for every f € F, with high prob.

E[(@\NJrl - f(wzv+1))2} S ( longN + Z) Cr(Cr+0)+C% (logn/\/'g|)

prediction error
log N
eSSy E-+ T

o MN.: e-cover of F x unit-ball
e [: depth
e N: # input examples

as long as n 2 log |N:

e M = 1: # attention heads
e n: dimension of aux features

. . e o: noise level
e Cr: Fourier quantity of F
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Our universal approximation theory (formal)

Theorem 1 (Li, Jiao, Huang, Wei, Chen '25) |

One can construct a transformer s.t.: for every f € F, with high prob.

N

E[(/ZJNJrl - f(wzv+1))2} S ( log N + Z) Cr(Cr +0) +C% (logn/\/'g|) ’

prediction error

log N
eSS B+ R

as long as n 2 log ||, X

parameter choice: to yield 4-accuracy, suffices to choose

n = Cf%e;rzéz log | NVel, N 2 CH(Cr +0)’ezy
L2 CHCr +0)epes log IV
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Our universal approximation theory (formal)

Theorem 1 (Li, Jiao, Huang, Wei, Chen '25) |

One can construct a transformer s.t.: for every f € F, with high prob.

E[@NH - f(wl\l+1))2} S ( longN + Z) Cr(Cr+0)+C5 (logn/\/'g|)

prediction error

as long asn 2 log [INZ|, e < \/@4_%

prediction risk  1/v/N (up to log factor)
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Key ideas under our construction

1. construct universal features: 3 n features {qb;-eature(:li)}lgjgn
s.t.: for every f € F and x, one can express

1 n
f(@) = f(0) +— S ph o)y w/ small [|pfl
j=1

linear representation over features
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Key ideas under our construction

1. construct universal features: 3 n features {qb;eat“re(:c)}lgjgn
s.t.: for every f € F and x, one can express

1 n
f(x) ~ £(0) + > ph o) w/ small ||p%[|1
j=1

linear representation over features

o insight borrowed from Barron theory: use sigmoid functions

930 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 3, MAY 1993

Universal Approximation Bounds for Superpositions
of a Sigmoidal Function

Andrew R. Barron, Member, IEEE
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Key ideas under our construction

1. construct universal features: 3 n features {qb;-eature(:li)}lgjgn
s.t.: for every f € F and x, one can express

13 L
f(x) =~ f(0) + > p}j(/bjf-eat” ‘() w/ small ||p%[|1
j=1

linear representation over features

2. learn p’; by solving Lasso
N

L 1 feature T \2
minim il E - ~ + A
plen]ll@nge Ni:1(yZ ¢ (@) p) ol
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Key ideas under our construction

3. solve Lasso via proximal gradient methods:

77 feature feature
p soft-thresh(p N; — ¢ (z;)" p)o (x; ))
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Key ideas under our construction

3. solve Lasso via proximal gradient methods:

p <+ soft-thresh (p + — Z

(L-

¢feature(w ) )¢feature(m ))

1) layers

Input 3
HO ;

2nd and 3rd layers

4. build transformers to approximate prox grad iterations
o insight borrowed from prior ICL approximation theory (i.e.,

4th and 5th layers

transformers as algorithm approximator)

Output
y(l-)
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Concluding remarks

Barron’s classical modern
approx theory T~ . e - alg approx theory
N 7

e A universal function approximation theory for in-context learning

e Extends far beyond linear functions / convex settings
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Concluding remarks

modern
alg approx theory

e A universal function approximation theory for in-context learning

e Extends far beyond linear functions / convex settings

future direction: understand training dynamics?

“Transformers Meet In-Context Learning: A Universal Approximation Theory,” G. Li,

Y. Jiao, Y. Huang, Y. Wei, Y. Chen, arXiv:2506.05200, 2025.
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