Transformers Meet In-Context Learning: A Universal Approximation Theory

Yuxin Chen

Wharton Statistics & Data Science

Coauthors

Gen Li CUHK

Yuchen Jiao CUHK

Yu Huang UPenn

Yuting Wei UPenn

"Transformers meet in-context learning: A universal approximation theory," G. Li, Y. Jiao, Y. Huang, Y. Wei, Y. Chen, arXiv:2506.05200, 2025

Transformers:

leverage attention mechanism to capture dependencies between tokens in a sequence

"Attention is all you need", Vaswani, Shazeer, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin'17

Transformer

image generation

Emergent ability: in-context learning

In-context learning (ICL): a pretrained LLM can perform a task from a few examples w/o fine-tuning or weight updates

[2005.14165] Language Models are Few-Shot Learners

by TB Brown \cdot 2020 \cdot Cited by 31178 — Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters, 10x more than any previous non-sparse languag...

Emergent ability: in-context learning

In-context learning (ICL): a pretrained LLM can perform a task from a few examples w/o fine-tuning or weight updates

郭靖->降龙十八掌;任我行->吸星大法;东方不败->?

Emergent ability: in-context learning

In-context learning (ICL): a pretrained LLM can perform a task from a few examples w/o fine-tuning or weight updates

郭靖->降龙十八掌;任我行->吸星大法;东方不败->?

东方不败 ->《葵花宝典》

在金庸先生的小说《笑傲江湖》中,东方不败的武功源自《葵花宝典》。他以极高的代价练成了宝典中的武功,达到了近乎无敌的境界。虽然他没有专属的一招一式像"降龙十八掌"或"吸星大法"那样广为人知,但《葵花宝典》本身就是他无敌武学的根源。

所以可以这样对照:

- 郭靖 → 降龙十八掌
- 任我行 → 吸星大法
- 东方不败 → 葵花宝典

In-context learning/inference

ullet given any function f of interest and the prompt below

ullet predict $f(oldsymbol{x}_{N+1})$ on the fly (w/o weight updates)

training dynamics

approximation capability

In-context learning theory

generalization

A dominant approach in prior approximation theory

— construct transformers to mimic iterations of optimization algs.

A dominant approach in prior approximation theory

— construct transformers to mimic iterations of optimization algs.

[Submitted on 15 Dec 2022 (v1), last revised 31 May 2023 (this version, v2)]

Transformers learn in-context by gradient descent

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev, Andrey Zhmoginov, Max Vladymyrov

A dominant approach in prior approximation theory

— construct transformers to mimic iterations of optimization algs.

A dominant approach in prior approximation theory

— construct transformers to mimic iterations of optimization algs.

A dominant approach in prior approximation theory

— construct transformers to mimic iterations of optimization algs.

gradient descent

(Von Oswald et al '23)

preconditioned GD

(Ahn et al '23)

Newton method

(Gianno et al '23; Fu et al '24)

• . . .

• algorithm selection

(Bai et al '23)

A dominant approach in prior approximation theory

— construct transformers to mimic iterations of optimization algs.

gradient descent

(Von Oswald et al '23)

preconditioned GD

(Ahn et al '23)

Newton method

(Gianno et al '23; Fu et al '24)

• . . .

• algorithm selection

(Bai et al '23)

key takeaway: transformers can implement *generic* optimization algs. during inference \longrightarrow in-context inference

Inadequacy of prior approximation theory

algorithm approximator perspective \longrightarrow constrained by effectiveness of optimization algs (e.g., GD) being approximated

Inadequacy of prior approximation theory

algorithm approximator perspective \longrightarrow constrained by effectiveness of optimization algs (e.g., GD) being approximated

• GD works for convex problems; fails for nonconvex ones

Inadequacy of prior approximation theory

algorithm approximator perspective \longrightarrow constrained by effectiveness of optimization algs (e.g., GD) being approximated

• restricted to <u>learning linear functions</u>
e.g. <u>linear regression</u>

Can we develop a universal approximation theory that

accommodates general function classes?

nonconvex problems; beyond linear regression

Formulation: in-context learning

- function class \mathcal{F} : a set of functions $(\mathbb{R}^d \to \mathbb{R})$
 - $\circ \ \ \mathsf{each} \ \mathsf{function} \ f \in \mathcal{F} \ \mathsf{describes} \ \mathsf{a} \ \mathsf{task}$

Formulation: in-context learning

- function class \mathcal{F} : a set of functions $(\mathbb{R}^d \to \mathbb{R})$ • each function $f \in \mathcal{F}$ describes a task
- ullet prompt: N in-context examples + 1 input for prediction

$$(\underbrace{x_1,y_1,x_2,y_2,\ldots,x_N,y_N}_{N \text{ in-context examples}},\underbrace{x_{N+1}}_{ ext{to predict}})$$

$$\circ \ y_i pprox f(oldsymbol{x}_i)$$
 for some task $f \in \mathcal{F}$

Formulation: in-context learning

- function class \mathcal{F} : a set of functions $(\mathbb{R}^d \to \mathbb{R})$ • each function $f \in \mathcal{F}$ describes a task
- ullet prompt: N in-context examples + 1 input for prediction

$$(\underbrace{x_1,y_1,x_2,y_2,\ldots,x_N,y_N}_{N \text{ in-context examples}},\underbrace{x_{N+1}}_{ ext{to predict}})$$

- $\circ \ y_i \approx f(x_i)$ for some task $f \in \mathcal{F}$
- goal: construct a single transformer that works for all tasks: given prompt produced by any $f \in \mathcal{F}$, outputs

$$\widehat{y}_{N+1} \approx f(\boldsymbol{x}_{N+1})$$

Assumptions: in-context examples

$$y_i \stackrel{\text{i.i.d.}}{=} f(\boldsymbol{x}_i) + z_i, \qquad 1 \le i \le N$$

- input vector: $\boldsymbol{x}_i \overset{\text{i.i.d.}}{\sim} \mathcal{D}_{\mathcal{X}}$, $\|\boldsymbol{x}_i\|_2 \leq 1$,
- sub-Gaussian noise z_i : $\mathbb{E}[z_i] = 0$, sub-Gaussian norm σ

Key Fourier parameter for function class

ารถ

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 3, MAY 1993

Universal Approximation Bounds for Superpositions of a Sigmoidal Function

Andrew R. Barron, Member, IEEE

Key Fourier parameter for function class

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 3, MAY 1993

Universal Approximation Bounds for Superpositions of a Sigmoidal Function

Andrew R. Barron, Member, IEEE

Recall: a classical Fourier quantity w.r.t. universal approx for sigmoids

$$C_f := \int_{\boldsymbol{\omega}} \|\boldsymbol{\omega}\|_2 |F_f(\boldsymbol{\omega})| d\boldsymbol{\omega}$$

 ℓ_1 norm of Fourier-transform (∇f)

where
$$F_f(\boldsymbol{\omega}) = \underbrace{\frac{1}{2\pi} \int_{\boldsymbol{x}} e^{-j\boldsymbol{\omega}^{\top} \boldsymbol{x}} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}}_{\text{Fourier transform of } f}$$

Key Fourier parameter for function class

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 3, MAY 1993

Universal Approximation Bounds for Superpositions of a Sigmoidal Function

Andrew R. Barron, Member, IEEE

this work: extend C_f to handle a function class

$$C_{\mathcal{F}} := \sup_{f \in \mathcal{F}} |f(\mathbf{0})| + \int_{\omega} ||\omega||_2 \sup_{f \in \mathcal{F}} |F_f(\omega)| d\omega < \infty,$$

input matrix: encode inputs as a sequence of N+1 tokens

$$\boldsymbol{H} = [\boldsymbol{h}_1, \dots, \boldsymbol{h}_N, \boldsymbol{h}_{N+1}]$$

input matrix: encode inputs as a sequence of N+1 tokens

$$m{H} = [m{h}_1, \dots, m{h}_N, m{h}_{N+1}] = \left[egin{array}{cccc} m{x}_1 & \cdots & m{x}_N & m{x}_{N+1} \\ 1 & \cdots & 1 & 1 \\ y_1 & \cdots & y_N & 0 \\ dots & \mathsf{auxiliary} & \mathsf{info} & dots \\ \widehat{y}_1 & \cdots & \widehat{y}_N & \widehat{y}_{N+1} \end{array}
ight] \in \mathbb{R}^{D imes (N+1)}$$

• unified format after tokenization, suitable for joint processing

input matrix: encode inputs as a sequence of N+1 tokens

$$m{H} = [m{h}_1, \dots, m{h}_N, m{h}_{N+1}] = \left[egin{array}{cccc} m{x}_1 & \cdots & m{x}_N & m{x}_{N+1} \ 1 & \cdots & 1 & 1 \ y_1 & \cdots & y_N & 0 \ dots & \mathsf{auxiliary} & \mathsf{info} & dots \ \widehat{y}_1 & \cdots & \widehat{y}_N & \widehat{y}_{N+1} \end{array}
ight] \in \mathbb{R}^{D imes (N+1)}$$

- unified format after tokenization, suitable for joint processing
- auxiliary info expands feature dimension

attention mechanism: dynamically attend to different parts of input

• attention operator:

$$\mathsf{attn}(\boldsymbol{H};\boldsymbol{Q},\boldsymbol{K},\boldsymbol{V}) \coloneqq \frac{1}{N} \boldsymbol{V} \boldsymbol{H} \boldsymbol{\sigma}_{\mathsf{attn}} \big((\boldsymbol{Q}\boldsymbol{H})^{\top} \boldsymbol{K} \boldsymbol{H} \big)$$
 value query key

attention mechanism: dynamically attend to different parts of input

• attention operator:

$$\mathsf{attn}(\boldsymbol{H};\boldsymbol{Q},\boldsymbol{K},\boldsymbol{V}) \coloneqq \frac{1}{N} \boldsymbol{V} \boldsymbol{H} \boldsymbol{\sigma}_{\mathsf{attn}} \big((\boldsymbol{Q}\boldsymbol{H})^{\top} \boldsymbol{K} \boldsymbol{H} \big)$$
 value
$$\qquad \qquad \qquad \mathsf{query} \quad \mathsf{key}$$

$$\qquad \qquad \qquad \mathsf{activation} \quad \mathsf{function}$$

$$\boldsymbol{\sigma}_{\mathsf{attn}}(x) = \frac{\mathrm{e}^x}{\mathrm{e}^x + 1}$$

• multi-head attention layer:

$$\mathsf{Attn}_{m{\Theta}}(m{H}) \coloneqq m{H} + \underbrace{\sum_{m=1}^{M} \mathsf{attn}(m{H}; m{Q}_m, m{K}_m, m{V}_m)}_{M \; \mathsf{attention} \; \mathsf{heads}}$$

feed-forward (a.k.a. MLP) layer: refines feature representation through non-linear transformation

$$\mathsf{FF}_{\Theta}(H) \coloneqq H + U\sigma_{\mathsf{ff}}(WH)$$
 parameters

feed-forward (a.k.a. MLP) layer: refines feature representation through non-linear transformation

multi-layer transformers:

ullet L attention layers + L feed-forward layers

$$\boldsymbol{H}^{(l)} = \mathrm{FF}_{\boldsymbol{\Theta}_{\mathrm{ff}}^{(l)}} \Big(\mathrm{Attn}_{\boldsymbol{\Theta}_{\mathrm{attn}}^{(l)}} (\boldsymbol{H}^{(l-1)}) \Big), \qquad l = 1, \dots, L,$$

ullet prediction: last entry of $oldsymbol{H}^{(L)}$

Our universal approximation theory

Theorem 1 (informal; Li, Jiao, Huang, Wei, Chen '25)

Consider a general function class \mathcal{F} . One can construct a multi-layer transformer s.t.: for every $f \in \mathcal{F}$,

in-context-prediction-risk $\rightarrow 0$ with high prob.

Our universal approximation theory

Theorem 1 (informal; Li, Jiao, Huang, Wei, Chen '25)

Consider a general function class \mathcal{F} . One can construct a multi-layer transformer s.t.: for every $f \in \mathcal{F}$,

in-context-prediction-risk $\rightarrow 0$ with high prob.

reliable in-context learning

Our universal approximation theory

Theorem 1 (informal; Li, Jiao, Huang, Wei, Chen '25)

Consider a general function class \mathcal{F} . One can construct a multi-layer transformer s.t.: for every $f \in \mathcal{F}$,

in-context-prediction-risk $\rightarrow 0$ with high prob.

- reliable in-context learning
- universal design (1 transformer for all tasks)

Our universal approximation theory

Theorem 1 (informal; Li, Jiao, Huang, Wei, Chen '25)

Consider a general function class \mathcal{F} . One can construct a multi-layer transformer s.t.: for every $f \in \mathcal{F}$,

in-context-prediction-risk $\rightarrow 0$ with high prob.

- reliable in-context learning
- universal design (1 transformer for all tasks)
- far beyond linear functions
 - o not constrained by effectiveness of GD, Newton's, etc
 - o accommodate much broader ICL problems (far beyond convex)

Theorem 1 (Li, Jiao, Huang, Wei, Chen '25)

One can construct a transformer s.t.: for every $f \in \mathcal{F}$, with high prob.

$$\underbrace{\mathbb{E}\Big[\big(\widehat{y}_{N+1} - f(\boldsymbol{x}_{N+1})\big)^2\Big]}_{\text{prediction error}} \lesssim \left(\sqrt{\frac{\log N}{N}} + \frac{n}{L}\right) C_{\mathcal{F}}(C_{\mathcal{F}} + \sigma) + C_{\mathcal{F}}^2 \left(\frac{\log |\mathcal{N}_{\varepsilon}|}{n}\right)^{\frac{2}{3}}$$

as long as
$$n \gtrsim \log |\mathcal{N}_{arepsilon}|$$
 , $arepsilon \lesssim \sqrt{\frac{\log N}{N}} + \frac{n}{L}$

Theorem 1 (Li, Jiao, Huang, Wei, Chen '25)

One can construct a transformer s.t.: for every $f \in \mathcal{F}$, with high prob.

$$\underbrace{\mathbb{E}\Big[\big(\widehat{y}_{N+1} - f(\boldsymbol{x}_{N+1})\big)^2\Big]}_{\text{prediction error}} \lesssim \left(\sqrt{\frac{\log N}{N}} + \frac{n}{L}\right) C_{\mathcal{F}}(C_{\mathcal{F}} + \sigma) + C_{\mathcal{F}}^2 \left(\frac{\log |\mathcal{N}_{\varepsilon}|}{n}\right)^{\frac{2}{3}}$$

as long as
$$n \gtrsim \log |\mathcal{N}_{arepsilon}|$$
 , $arepsilon \lesssim \sqrt{rac{\log N}{N}} + rac{n}{L}$

- $\mathcal{N}_{\varepsilon}$: ε -cover of $\mathcal{F} \times$ unit-ball
- \bullet L: depth
- \bullet N: # input examples
- $C_{\mathcal{F}}$: Fourier quantity of \mathcal{F}

- $M \approx 1$: # attention heads
- n: dimension of aux features
- σ : noise level

Theorem 1 (Li, Jiao, Huang, Wei, Chen '25)

One can construct a transformer s.t.: for every $f \in \mathcal{F}$, with high prob.

$$\underbrace{\mathbb{E}\Big[\big(\widehat{y}_{N+1} - f(\boldsymbol{x}_{N+1})\big)^2\Big]}_{\text{prediction error}} \lesssim \left(\sqrt{\frac{\log N}{N}} + \frac{n}{L}\right) C_{\mathcal{F}}(C_{\mathcal{F}} + \sigma) + C_{\mathcal{F}}^2 \left(\frac{\log |\mathcal{N}_{\varepsilon}|}{n}\right)^{\frac{2}{3}}$$

as long as
$$n \gtrsim \log |\mathcal{N}_{arepsilon}|$$
 , $arepsilon \lesssim \sqrt{\frac{\log N}{N}} + \frac{n}{L}$

parameter choice: to yield ε_{pred} -accuracy, suffices to choose

$$n \approx C_{\mathcal{F}}^3 \varepsilon_{\mathsf{pred}}^{-3/2} \log |\mathcal{N}_{\varepsilon}|, \qquad N \gtrsim C_{\mathcal{F}}^2 (C_{\mathcal{F}} + \sigma)^2 \varepsilon_{\mathsf{pred}}^{-2}$$
$$L \gtrsim C_{\mathcal{F}}^4 (C_{\mathcal{F}} + \sigma) \varepsilon_{\mathsf{pred}}^{-5/2} \log |\mathcal{N}_{\varepsilon}|$$

Theorem 1 (Li, Jiao, Huang, Wei, Chen '25)

One can construct a transformer s.t.: for every $f \in \mathcal{F}$, with high prob.

$$\underbrace{\mathbb{E}\Big[\big(\widehat{y}_{N+1} - f(\boldsymbol{x}_{N+1})\big)^2\Big]}_{\text{prediction error}} \lesssim \left(\sqrt{\frac{\log N}{N}} + \frac{n}{L}\right) C_{\mathcal{F}}(C_{\mathcal{F}} + \sigma) + C_{\mathcal{F}}^2 \left(\frac{\log |\mathcal{N}_{\varepsilon}|}{n}\right)^{\frac{2}{3}}$$

as long as
$$n \gtrsim \log |\mathcal{N}_{arepsilon}|$$
 , $arepsilon \lesssim \sqrt{rac{\log N}{N}} + rac{n}{L}$

prediction risk $\propto 1/\sqrt{N}$ (up to log factor)

1. construct universal features: $\exists \ n \ \text{features} \ \{\phi_j^{\text{feature}}(\boldsymbol{x})\}_{1 \leq j \leq n}$ s.t.: for every $f \in \mathcal{F}$ and \boldsymbol{x} , one can express

$$f(\boldsymbol{x}) \approx f(\boldsymbol{0}) + \underbrace{\frac{1}{n} \sum_{j=1}^{n} \rho_{f,j}^{\star} \phi_{j}^{\text{feature}}(\boldsymbol{x})}_{\text{y}} \qquad \text{w/ small } \|\boldsymbol{\rho}_{f}^{\star}\|_{1}$$

linear representation over features

1. construct universal features: $\exists \ n \ \text{features} \ \{\phi_j^{\text{feature}}(\boldsymbol{x})\}_{1 \leq j \leq n}$ s.t.: for every $f \in \mathcal{F}$ and \boldsymbol{x} , one can express

$$f(\boldsymbol{x}) \approx f(\boldsymbol{0}) + \frac{1}{n} \sum_{j=1}^{n} \rho_{f,j}^{\star} \phi_{\boldsymbol{j}}^{\text{feature}}(\boldsymbol{x}) \qquad \text{ w/ small } \|\boldsymbol{\rho}_{f}^{\star}\|_{1}$$

linear representation over features

o insight borrowed from Barron theory: use sigmoid functions

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 3, MAY 1993

Universal Approximation Bounds for Superpositions of a Sigmoidal Function

Andrew R. Barron, Member, IEEE

1. construct universal features: $\exists \ n \ \text{features} \ \{\phi_j^{\text{feature}}(\boldsymbol{x})\}_{1 \leq j \leq n}$ s.t.: for every $f \in \mathcal{F}$ and \boldsymbol{x} , one can express

$$f(\boldsymbol{x}) \approx f(\boldsymbol{0}) + \underbrace{\frac{1}{n} \sum_{j=1}^{n} \rho_{f,j}^{\star} \boldsymbol{\phi}_{j}^{\text{feature}}(\boldsymbol{x})}_{\text{linear representation over features}} \quad \text{w/ small } \|\boldsymbol{\rho}_{f}^{\star}\|_{1}$$

2. learn ρ_f^{\star} by solving Lasso

$$\underset{\boldsymbol{\rho} \in \mathbb{R}^{n+1}}{\operatorname{minimize}} \quad \frac{1}{N} \sum_{i=1}^{N} (y_i - \boldsymbol{\phi}^{\mathsf{feature}}(\boldsymbol{x}_i)^{\top} \boldsymbol{\rho})^2 + \lambda \|\boldsymbol{\rho}\|_1$$

3. solve Lasso via proximal gradient methods:

$$oldsymbol{
ho} \leftarrow ext{ soft-thresh} \Big(oldsymbol{
ho} + rac{2\eta}{N} \sum_{i=1}^N \big(y_i - oldsymbol{\phi}^{ ext{feature}}(oldsymbol{x}_i)^ op oldsymbol{
ho} \Big) oldsymbol{\phi}^{ ext{feature}}(oldsymbol{x}_i) \Big)$$

3. solve Lasso via proximal gradient methods:

$$oldsymbol{
ho} \leftarrow ext{ soft-thresh} \Big(oldsymbol{
ho} + rac{2\eta}{N} \sum_{i=1}^N ig(y_i - oldsymbol{\phi}^{ ext{feature}}(oldsymbol{x}_i)^ op oldsymbol{
ho} oldsymbol{\phi}^{ ext{feature}}(oldsymbol{x}_i) \Big)$$

4. build transformers to approximate prox grad iterations

• insight borrowed from prior ICL approximation theory (i.e., transformers as algorithm approximator)

Concluding remarks

- A universal function approximation theory for in-context learning
- Extends far beyond linear functions / convex settings

Concluding remarks

- A universal function approximation theory for in-context learning
- Extends far beyond linear functions / convex settings

future direction: understand training dynamics?

"Transformers Meet In-Context Learning: A Universal Approximation Theory," G. Li, Y. Jiao, Y. Huang, Y. Wei, Y. Chen, arXiv:2506.05200, 2025.