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Solving quadratic systems of equations
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Motivation: a missing phase problem in imaging science

Detectors record intensities of diffracted rays

e x(t1,t2) — Fourier transform Z(f1, f2)

sample

diffraction pattern
recorded in the far field

. 2
intensity of electrical field: |&(f1, f2)|* = ‘/a:(thtz)6_22”(f1t1+f2t2)dt1dt2

Phase retrieval: recover true signal x(¢;,t2) from intensity measurements
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Motivation: learning neural nets with quadratic activation

— Soltanolkotabi, Javanmard, Lee '17, Li, Ma, Zhang '17
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Solving quadratic systems is NP-complete in general ...
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"I can't find an efficient algorithm, but neither can all these people.”

Fig credit: coding horror



Statistical models come to rescue

statistical models
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tractable algorithms

When data are generated by certain statistical / randomized models, problems are

eg. ar ~ N(0,I,)
often much nicer than worst-case instances



Convex relaxation

Lifting: introduce X = @™ to linearize constraints

e = |larz|’ = aj(xzz")ay = yr = apXay
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Convex relaxation

Lifting: introduce X = @™ to linearize constraints

e = |ajx|® = aj(xx)as = Yk = apXayg
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Convex relaxation

Lifting: introduce X = @™ to linearize constraints

e = |ajx|® = aj(xx)as = Yk = apXayg
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| | [ |
||
[ |
find X*>0
s.t yr = apXay, k=1,---,m

Works well if {ay} are random, but huge increase in dimensions




Prior art (before our work)
n: # unknowns; m: sample size (# eqns); y = |Az|?, A € R™*"

sample complexity
4

infeasible

comput. cost



Prior art (before our work)
n: # unknowns; m: sample size (# eqns); y = |Az|?, A € R™*"

sample complexity
4

3(qisvajul

infeasible

mn comput. cost



Prior art (before our work)

n: # unknowns; m: sample size (# eqns); y = |Az|?, A € R™*"
sample complexity
4
_______ |
|
|
|
|
|
|
- |
=1 |
Py |
o | .
a | cvx relaxation
L e
N y L4
|
| 9 .
| infeasible |
|
|
\ : -
2

mn mn comput. cost



Prior art (before our work)

n: # unknowns; m: sample size (# eqns); y = |Az|?, A € R™*"
sample complexity
A
_______ |
|
|
|
|
- Wirtinger flow
=1 |
nlogn |—edpeecb - [ ]
| .
a } cvx relaxation
L S = R e
N - o
|
| 9 .
| infeasible |
|
|
\ f -
2

mn mn comput. cost



Prior art (before our work)
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A glimpse of our results
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A glimpse of our results
n: # unknowns; m: sample size (# eqns); y = |Az|?, A € R™*"

sample complexity
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This work: random quadratic systems are solvable in linear time!

v' minimal sample size
v optimal statistical accuracy



A first impulse: maximum likelihood estimate
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A first impulse: maximum likelihood estimate

minimize, f(z) = %Z:;lfk(z)

e Gaussian data:  y ~ |aiz|” + N(0,02) \

fu(2) = (g — lajz)”

e Poisson data: yx ~ Poisson(|ajz|*) ‘}
L

fe(2) = lajz]* — yilog|agz[”

Problem: f(-) nonconvex, many local stationary points




A plausible nonconvex paradigm
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A plausible nonconvex paradigm

minimize, f(z) = Z:L:lfk(z)

initial guess z°

1
i
4

Zr
basin of attraction
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l basin of attraction

1. initialize within local basin sufficiently close to x

(hopefully) nicer landscape

2. iterative refinement



Wirtinger flow (Candes, Li, Soltanolkotabi'14)
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Performance guarantees for WF
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lterative refinement stage: search directions
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lterative refinement stage: search directions

m
irti He Tt
Wirtinger flow: zt1 = 2t — E — |a} 2t[*)ara; z
g m Yk — |ay, ) k@

=V fu(z*)

Even in a local region around x (e.g. {z | ||z — x||2 < 0.1||x||2}):

o f(-) is NOT strongly convex unless m > n

e f(-) has huge smoothness parameter



Iterative refinement stage: search directions
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Problem: descent direction has large variability




Our solution: variance reduction via proper trimming

More adaptive rule:
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Our solution: variance reduction via proper trimming
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2
tHl ot Ht Yi — | 1 )
= Z a, zt T Filejenneiey

2h|ly—A(zz " a] z
where i(z) = {a < lefl < b e4(0) = {Ji — o] 2P| < 2 o=t D =7
~— )

) []
< 3
Q%\ \
TN
L7 N T
4 W\ <
/1 X\
| /I \\\ P \&E}&\
\ J l \ \ \j,’/ ‘\\

}



Our solution: variance reduction via proper trimming
More adaptive rule:
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Our solution: variance reduction via proper trimming
More adaptive rule:

2
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Slight bias 4+  much reduced variance




Larger step size y; is feasible

=0

with trimming:

(1/n)

=0

without trimming:

With better-controlled descent directions, one proceeds far more aggressively J
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Initialization stage

Spectral initialization (e.g. alt-min, WF):  2° < leading eigenvector of

1 m
Y = — apa;
m};ykk k

e Rationale: E[Y] = ||z||3 I + 2zx* under i.i.d. Gaussian design

e Would succeed if Y — E[Y]
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Improving initialization

1
Y = _Z yraray, — E[Y] unlessm>n
m N——

heavy-tailed

1 *
Tz %Y Ok

------------ — 2*Yx

6000 12000

k (m=6n)

Problem large outliers yx = |ajx|? bear too much influence

Solution discard large samples and run PCA for % ZykakaZI{m‘gAvg{‘y”}}
k



Summary of proposed algorithm

1. Regularized spectral initialization: z° < principal component of

1 *
— E ara
m keTo Yk Ak,

2. Regularized gradient descent

1t Mt
2 =2 - Zkeﬂ Vfe(2z)

Adaptive and iteration-varying rules: discard high-leverage data {y; : k ¢ 7§}J




Theoretical guarantees (noiseless data)
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Theorem (Chen & Candes) When ay b N(0,I,) and m 2> n, with high
probability our algorithm attains £ accuracy in O(log %) iterations

~~
dimension-free linear convergence




Computational complexity
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Computational complexity

A= {a}}i<k<m

o Initialization: leading eigenvector — a few applications of A and A*

Z Yk akaz = A" diag{yk . 1/667’0} A
keTo

o lterations: one application of A and A* per iteration
Vfu(zt) = A*v
t2
v = 27\A1\Zt—y 17

Approximate runtime: several tens of applications of A and A*




Numerical performance
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Numerical performance

e CG: solve y = Ax e Our algorithm: solve y = |Ax|?

proposed algorithm ]

Relative error (log scale)

5 10 15
* Jteration * *0
For random quadratic systems (m = 8n)

comput. cost of our algo. =& 4 X comput. cost of least squares




Empirical performance (m = 12n)

Ground truth & € R#09600



Empirical performance (m = 12n)

Spectral initialization



Empirical performance (m = 12n)

Spectral initialization

Proposed: regularized spectral initialization



Empirical performance (m = 12n)

After regularized spectral initialization



Empirical performance (m = 12n)

After regularized spectral initialization

After 50 proposed iterations
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Stability under noisy data

Comparison with genie-aided MLE (with phase info. revealed)

yi ~ Poisson( |ajz|> ) and e, =sign (az) (revealed by a genie)

Theorem

/
I genie-aided MLE

Relative MSE (dB)

trungated WF

/
4

little empirical loss
due to missing signs

15 20 25 30 35 40 45 50 55
SNR (dB) (n =100)

(Chen & Candés) Our algorithm achieves optimal statistical accuracy!J
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Deal with complicated dependencies across iterations

Several prior approaches: require fresh samples at each iteration

z! 23 5

N
fresh samples

0 z*
z 2
z

This approach: reuse all samples in all iterations

z! 23 5

samamples \/\/\/\

0 z*
z 2
z



A small sample of more recent works

e other optimal algorithms

o reshaped WF (Zhang et al.), truncated AF (Wang et al.), median-TWF (Zhang et al.)
o alt-min w/o resampling (Waldspurger)

o composite optimization (Duchi et al., Charisopoulos et al.)

o approximate message passing (Ma et al.)

o block coordinate descent (Barmherzig et al.)

o PhaseMax (Goldstein et al., Bahmani et al., Salehi et al., Dhifallah et al., Hand et al.)

e stochastic algorithms (Kolte et al., Zhang et al., Lu et al., Tan et al., Jeong et al.)

e improved WF theory: iteration complexity — O(lognlogl) (Ma et al.)

e improved initialization (Lu et al., Wang et al., Mondelli et al.)

e random initialization (Chen et al.)

e structured quadratic systems (Cai et al., Soltanolkotabi, Wang et al., Yang et al.,
Qu et al.)

e geometric analysis (Sun et al., Davis et al.)

e low-rank generalization (White et al., Li et al., Vaswani et al.)



Concluding remarks

Achieves optimal bias-variance tradeoff by adaptively discarding high-leverage data

| comput. cost | sample size | statistical accuracy
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our non-cvx algo.
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