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Sparse Fourier Representation/Approximation

Fourier representation of a signal:

z(t) = Z dieﬂﬁ(tafﬁ
1 =1

(f., : frequencies, d; : amplitudes, : model order)

e Sparsity: nature is (approximately) sparse (small r)
e Goal: identify the underlying frequencies from time-domain samples
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Applications in Sensing

e Multipath channels: a (relatively) small number of strong paths.

e Radar Target |dentification: a (relatively) small number of strong scatters.
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Applications in Imaging

e Consider a time-sparse signal (a dual i TheFolntSpreac Function
problem)
— 0.8 -
2(t) =) did(t —t;) ™
1=1 S 04-
2
e Resolution is limited by the point g,
spread function of the imaging system
2..:
¥ Position (pm) -2

X Position (prm)

image = z (t) x PSF(t)

Page 4



Data Model

e Signal Model: a mixture of K-dimensional sinusoids at r distinct frequencies

z(t) = Z de32m(t:Fi)
i=1
where f, € [0,1]% : frequencies; d; : amplitudes.
e Observed Data:

X = [@iy,.ip] € C770E

— Continuous dictionary: f,; can assume ANY value in a unit disk
— Multi-dimensional model: f,; can be multi-dimensional
— Low-rate Data Acquisition:  obtain partial samples of X

e Goal: Identify the frequencies from partial measurements
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Prior Art

e Parametric Estimation: (shift-invariance of harmonic structures)
o Prony's method, ESPRIT [RoyKailath'1989], Matrix Pencil [Hua'1992],
Finite rate of innovation [DragottiVetterliBlu'2007][GedalyahuTurEldar'2011]...

o perfect recovery from equi-spaced O(r) samples
o sensitive to noise and outliers
o require prior knowledge on the model order.

e Compressed Sensing:

o Discretize the frequency and assume a sparse representation

0 ny — 1 0 ny — 1
f’LEF: T e X Ty e e ey X ...
ni nq no n9

o perfect recovery from O(rlogn) random samples
o non-parametric approach
@)
@)

robust against noise and outliers
sensitive to gridding error
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Basis Mismatch / Gridding Error

e A toy example

. x(t) = el?m ot

o The success of CS relies on sparsity in the DFT basis.

o Basis mismatch: discrete v.s. continuous dictionary
x Mismtach = kernel leakage = failure of CS (basis pursuit)

(o] 200 400

Mismatch A6=0.177/N

(o] 200 400
Mismatch A6=0.577/N

(o] 200 400
Mismatch A6=7/N

N \/\/\/\/\/\/\/\/\/
(o] 200 400
Normalized recovery error=0.0816

(o] 200 400
ormalized recovery error=0.3461

(o] 200 400
Normalized recovery error=1.0873

o Finer gridding does not help [ChiScharfPezeshkiCalderbank’2011]
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Two Recent Landmarks in Off-the-grid Harmonic Retrieval
(1-D)

e Super-Resolution (CandesFernandezGranda'2012)

o Low-pass measurements
o Total-variation norm minimization

e Compressed Sensing Off the Grid (TangBhaskarShahRecht'2012)

o Random measurements
o Atomic norm minimization
o Require only O(rlogrlogn) samples

e QUESTIONS:

o How to deal with multi-dimensional frequencies?
o Robustness against outliers?
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Our Objective
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e Goal: seek an algorithm of the following properties

non-parametric

works for multi-dimensional frequency model
works for off-the-grid frequencies

requires a minimal number of measurements
robust against noise and sparse outliers

O O O O O

Page 9



Concrete Example: 2-D Frequency Model

recall that x (t) = > ., d;ed?™(t:5i)
e For 2-D frequencies, we have the Vandermonde decomposition:

— . . T
X=Y D, Z" .
diagonal matrix

Here, D := diag{dy,--- ,d,} and

Y1 Y2 s Y z1 z9 e z
Y = . . s Zr Y Z = B B . Zr
ni1—1 ni—1 ni—1 no—1 no—1 no—1
1o Yo ooyt ] | = 202 g2t
Vandemonde matrix Vandemonde matrix

where y; = exp(j27 f1;), 2z; = exp(j2mfo;).

o Spectral Sparsity = X may be low-rank for very small r
o Reduced-rate Sampling = observe partial entries of X
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Matrix Completion?

recall that X =

where D := diag {d1, - -

1
Y1

n1—1
Y1

-, dr}, and
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e Question: can we apply Matrix Completion algorithms directly on X7
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e Yes, but it yields sub-optimal performance.

o requires at least 7 max{ni,no} samples.

o X is no longer low-rank if > min (nq, no)
x note that r can be as large as nins

e Call for more effective forms.

Page 11



Rethink Matrix Pencil: Matrix Enhancement

e An enhanced form X.:

[Hua'1992])

Xe:

(k1 X (n1 —k1+1) block Hankel matrix

X0 X1
X1 X9
i Xkl—l Xk‘l

Xni—k
an—k‘l—l—l

an—l

where each block is a k3 X (ny — ko + 1) Hankel matrix as follows

x7.0
x.1

| Tlky—1

¢ Incentive:

x] 1
T 2

Tl ko

xl,n2—k2—|—l

Llng—koy

xhn2—1

o Lift the matrix to promote Harmonic Structure
o Convert Sparsity to Low Rank
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Low-Rank Structure of the Enhanced Matrix

e The enhanced matrix can be decomposed as follows.

VAl
Z\Y _
Xe=| 0 | D|ZrYaZe, o YT Z0],
| ZY
o Z| and Zg are Vandermonde matrices specified by z1,..., 2z,

o Y4 =diag [y1,y2, e 7y7“]'

e The enhanced form X. is low-rank.

o rank (X,) <r

o Spectral Sparsity = Low Rank
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Enhancement Matrix Completion (EMaC)

e Our recovery algorithm: Enhanced Matrix Completion (EMaC)

(EMaC): minimize |[M.|,
MeCn1><n2

subject to Mz',j — Xi’j,\V/(’i,j) e )

where ) denotes the sampling set, and || - || denotes the nuclear norm.

o nuclear norm minimization (convex)

AR ARG
VAR SRR BVEANIE SR SVANE.
o existing MC result won't apply — {Z;{&X;{yf;\j
requires at least O(nr) samples N VAV S YA SN
AVANE IV B IAE
GV Iy
e Question: How many samples do ?Vf, é%j” jj{? é{?
we need? VARV I SN AN S SV S
VAR EVAVENIR SEVENAR S B
RR Y2 SR VAV AV SV S SR SRRV

Page 14



Coherence Measures

e Notations: G| is an r X » Gram matrices such that

(GO a = (y,y®) (200, 20) 5

where y@ := (1,y;, 92, -,y ") and y; := /2773,

2z and G are similarly defined with different dimensions...

Dirichlet Kernel

|T T T. ,T C ¢ Incoherence property arises w.r.t. i if

L | | | 1 1 >

AT 1 1
Omin (GL) > —, Omin (Gr) > —.

i’ H1

:T I . E ! e Examples:

T I 1 W >

| | I |

o Randomly generated frequencies
o (Mild) perturbation of grid points

==t -
==t -
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Theoretical Guarantees for Noiseless Case

e Theorem 1 (Noiseless Samples) Let n = nino. If all measurements are
noiseless, then EMaC recovers X with high probability if:

m ~ O(pyrlog® n);

e Implications
o minimum sample complexity: O(rlog?’ n).

o general theoretical guarantees for Hankel (Toeplitz) matrix completion.
— see applications in control, MRI, natural languange processing, etc
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Proof Sketch: Inexact Dual + Golfing Scheme

Construct a relaxed dual certificate

e Lemma (Relaxed Duality): Let T be the tangent space w.r.t. X.. Suppose
o () restricted to ' M Hankel is injective.
If there exists a matrix W € Hankel™ U Q- that satisfies

1 1
|Pr(W)lle < 5 and  [[Pro (W) <3,

then X, is the unique optimizer of EMaC.

e Construction of dual certificate

o the clever “golfing scheme” introduced by D. Gross [Gross'2011].
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Phase Transition

r: sparsity level

2‘0 4‘0 éO 8‘0 1 60 1 éO 1 A‘fO 1 éO 1 éO 260
m: number of samples

Figure 1: Phase transition diagrams where spike locations are randomly
generated. The results are shown for the case where n; = ny = 15.

Page 18



Singular Value Thresholding (Noisy Case)

Algorithm 1 Singular Value Thresholding for EMaC

1
2
3
4:
5
6

- initialize Set My = X.and t = 0.
. repeat

1) Q; < D;, (M) (singular-value thresholding)
2) M < Hankelx,(Q;) (projection onto a Hankel matrix consistent with observation)

3)t<+—t+1

. until convergence

Figure 2:
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dimension: 101 x 101, r = 30, =2 = 5.8%, signal-to-amplitude-ratio = 10.

nin2
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Robustness to Sparse Outliers (a brief discussion)

e What if a constant portion of measurements are arbitrarily corrupted?

o Robust PCA approach [CandesLiMaWright'2011]
o Solve instead the following algorithm:

(RobustEMaC) : minimize || M|, + A||Sellx
M ,ScCn1xn2
subject to (M + §),, = X7 V(i,1) € Q

e Theorem 2 (Sparse Outliers) Set A = 1/y/mlogn, and outlier rate < 20%.
Then RobustEMaC recovers X with high probility if

m ~ O(ur?log®n)

e Robust to a constant portion of outliers!
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Super Resolution (2-D)

e Obtain low pass components = Extrapolate to high frequencies
[CandesFernandezGranda’2012]

N mww

(a) spatial illustration b) frequency extrapolation

e Might attempt 2-D super-resolution using EMaC...

(a) Ground Truth (b) Low Resolution Image (c) Super-Resolution via EMaC
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Final Remarks

e Connect spectral compressed sensing with matrix completion

(I T I I1]
1

RSO

?
?
\/
v
?

SRR

e Connect traditional approach (parametric harmonic retrieval) with recent
advance (MC)

VAR SV BN B BN
ARV S SR SV AV A S SRRV ARV AN
VS B BEVANVANAR SENVANVANEE S
VAR SVAR SV SVAR VAN
VAR ARYARVAR B SEVARVARER SRV
EVANEE SESVANVEE B SIS
VAR BRVARVARNAR SEVANENER S
VIV vy
R AVANVANEE SNV SR IS
[V Y A G GV ARV A S VA S
VAV VYV Ty
vivvvrvrrr oyt

e Future work: performance guarantees for 2-D super resolution?
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Q&A

Preprints available at arXiv:

Robust Spectral Compressed Sensing via Structured Matrix Completion
http://arxiv.org/abs/1304.8126

Thank You! Questions?
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