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Fourier representation of a signal:

x (t) =

r∑

i=1

die
j2π〈t,f i〉

(f i : frequencies, di : amplitudes, r: model order)

• Sparsity: nature is (approximately) sparse (small r)
• Goal: identify the underlying frequencies from time-domain samples

Spectrally Sparse Random Process

Spectrally Sparse Random Process:

A continuous-time homogenous random process
Generated by r random spectral spikes
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Sparse Fourier Representation/Approximation
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Applications in Sensing

• Multipath channels: a (relatively) small number of strong paths.

• Radar Target Identification: a (relatively) small number of strong scatters.
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• Consider a time-sparse signal (a dual
problem)

z (t) =

r∑

i=1

diδ(t− ti)

• Resolution is limited by the point
spread function of the imaging system

image = z (t) ∗ PSF(t)

Applications in Imaging
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– Continuous dictionary: f i can assume ANY value in a unit disk
– Multi-dimensional model: f i can be multi-dimensional
– Low-rate Data Acquisition: obtain partial samples of X

• Goal: Identify the frequencies from partial measurements

Data Model

• Signal Model: a mixture of K-dimensional sinusoids at r distinct frequencies

x (t) =

r∑

i=1

die
j2π〈t,f i〉

where f i ∈ [0, 1]K : frequencies; di : amplitudes.

• Observed Data:
X = [xi1,...,iK ] ∈ Cn1×···×nK
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Prior Art

• Parametric Estimation: (shift-invariance of harmonic structures)

◦ Prony’s method, ESPRIT [RoyKailath’1989], Matrix Pencil [Hua’1992],

Finite rate of innovation [DragottiVetterliBlu’2007][GedalyahuTurEldar’2011]...

◦ perfect recovery from equi-spaced O(r) samples
◦ sensitive to noise and outliers
◦ require prior knowledge on the model order.

• Compressed Sensing:

◦ Discretize the frequency and assume a sparse representation

fi ∈ F =

{
0

n1
, . . . ,

n1 − 1

n1

}
×
{

0

n2
, . . . ,

n2 − 1

n2

}
× . . .

◦ perfect recovery from O(r log n) random samples
◦ non-parametric approach
◦ robust against noise and outliers
◦ sensitive to gridding error
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Basis Mismatch / Gridding Error

• A toy example: x(t) = ej2πf0t:

◦ The success of CS relies on sparsity in the DFT basis.

◦ Basis mismatch: discrete v.s. continuous dictionary
∗ Mismtach ⇒ kernel leakage ⇒ failure of CS (basis pursuit)
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◦ Finer gridding does not help [ChiScharfPezeshkiCalderbank’2011]
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(a) Ground truth (b) Low-resolution observation (c) High-resolution reconstruction

Figure 5: A synthetic super resolution example, where the observation (b) is taken from the low-frequency
components of the ground truth in (a), and the reconstruction (c) is done via inverse Fourier transform of
the extrapolated high-frequency components.

One alternative for large-scale data is the first-order algorithms tailored for matrix completion prob-
lems, e.g. the singular value thresholding (SVT) algorithm [41]. We propose a modified SVT algorithm in
Algorithm 1 to exploit the Hankel structure.

Algorithm 1 Singular Value Thresholding for EMaC.
Input: The observed data matrix Xo on the location set Ω.
initialize: let Xo

e denote the enhanced form of PΩ (Xo); set M0 = X0
e and t = 0.

repeat
1) Qt ← Dτt (M t)
2) M t ← HX0 (Qt)
3) t ← t + 1

until convergence
output X̂ as the data matrix with enhanced form M t.

In particular, two operators are defined as follows:

• Dτt(·) in Algorithm 1 denotes the singular value shrinkage operator. Specifically, if the SVD of X is
given by X = UΣV ∗ with Σ = diag ({σi}), then

Dτt (X) := Udiag
({

(σi − τt)+
})

V ∗,

where τt > 0 is the soft-thresholding level.

• In the K-dimensional frequency model, HXo(Qt) denotes the projection of Qt onto the subspace of
enhanced matrices (i.e. K-fold Hankel matrices) that are consistent with the observed entries.

Consequently, at each iteration, a pair (Qt, M t) is produced by first performing singular value shrinkage
and then projecting the outcome onto the space of K-fold Hankel matrices that are consistent with observed
entries.

Fig. 6 illustrates the performance of Algorithm 1. We generated a true 101×101 data matrix X through a
superposition of 30 random complex sinusoids, and revealed 5.8% of the total entries (i.e. m = 600) uniformly
at random. The noise was i.i.d. Gaussian giving a signal-to-noise amplitude ratio of 10. The reconstructed
vectorized signal is superimposed on the ground truth in Fig. 6. The normalized reconstruction error was∥∥∥X̂ − X

∥∥∥
F

/ ‖X‖F = 0.1098, validating the stability of our algorithm in the presence of noise.

15

• QUESTIONS:

◦ How to deal with multi-dimensional frequencies?
◦ Robustness against outliers?

Two Recent Landmarks in Off-the-grid Harmonic Retrieval
(1-D)

• Super-Resolution (CandesFernandezGranda’2012)

◦ Low-pass measurements
◦ Total-variation norm minimization

• Compressed Sensing Off the Grid (TangBhaskarShahRecht’2012)

◦ Random measurements
◦ Atomic norm minimization
◦ Require only O(r log r log n) samples
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(a) Ground truth (b) Low-resolution observation (c) High-resolution reconstruction

Figure 5: A synthetic super resolution example, where the observation (b) is taken from the low-frequency
components of the ground truth in (a), and the reconstruction (c) is done via inverse Fourier transform of
the extrapolated high-frequency components.

One alternative for large-scale data is the first-order algorithms tailored for matrix completion prob-
lems, e.g. the singular value thresholding (SVT) algorithm [41]. We propose a modified SVT algorithm in
Algorithm 1 to exploit the Hankel structure.

Algorithm 1 Singular Value Thresholding for EMaC.
Input: The observed data matrix Xo on the location set Ω.
initialize: let Xo

e denote the enhanced form of PΩ (Xo); set M0 = X0
e and t = 0.

repeat
1) Qt ← Dτt (M t)
2) M t ← HX0 (Qt)
3) t ← t + 1

until convergence
output X̂ as the data matrix with enhanced form M t.

In particular, two operators are defined as follows:

• Dτt(·) in Algorithm 1 denotes the singular value shrinkage operator. Specifically, if the SVD of X is
given by X = UΣV ∗ with Σ = diag ({σi}), then

Dτt (X) := Udiag
({

(σi − τt)+
})

V ∗,

where τt > 0 is the soft-thresholding level.

• In the K-dimensional frequency model, HXo(Qt) denotes the projection of Qt onto the subspace of
enhanced matrices (i.e. K-fold Hankel matrices) that are consistent with the observed entries.

Consequently, at each iteration, a pair (Qt, M t) is produced by first performing singular value shrinkage
and then projecting the outcome onto the space of K-fold Hankel matrices that are consistent with observed
entries.

Fig. 6 illustrates the performance of Algorithm 1. We generated a true 101×101 data matrix X through a
superposition of 30 random complex sinusoids, and revealed 5.8% of the total entries (i.e. m = 600) uniformly
at random. The noise was i.i.d. Gaussian giving a signal-to-noise amplitude ratio of 10. The reconstructed
vectorized signal is superimposed on the ground truth in Fig. 6. The normalized reconstruction error was∥∥∥X̂ − X

∥∥∥
F

/ ‖X‖F = 0.1098, validating the stability of our algorithm in the presence of noise.
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Figure 6: Robust line spectrum estimation: .
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(a) Ground truth (b) Low Resolution Observation (c) High Resolution Reconstruction

Figure 7: A synthetic super resolution example, where the observation is taken from the low-pass components
of the scene, and the reconstruction is done via inverse Fourier transformation.

24

• Goal: seek an algorithm of the following properties

◦ non-parametric
◦ works for multi-dimensional frequency model
◦ works for off-the-grid frequencies
◦ requires a minimal number of measurements
◦ robust against noise and sparse outliers

Our Objective
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Concrete Example: 2-D Frequency Model

recall that x (t) =
∑r

i=1 die
j2π〈t,fi〉

• For 2-D frequencies, we have the Vandermonde decomposition:

X = Y · D︸︷︷︸
diagonal matrix

·ZT .

Here, D := diag {d1, · · · , dr} and

Y :=




1 1 · · · 1
y1 y2 · · · yr
...

...
...

...

y
n1−1
1 y

n1−1
2 · · · y

n1−1
r




︸ ︷︷ ︸
Vandemonde matrix

,Z :=




1 1 · · · 1
z1 z2 · · · zr
...

...
...

...

z
n2−1
1 z

n2−1
2 · · · z

n2−1
r




︸ ︷︷ ︸
Vandemonde matrix

where yi = exp(j2πf1i), zi = exp(j2πf2i).

◦ Spectral Sparsity ⇒ X may be low-rank for very small r
◦ Reduced-rate Sampling ⇒ observe partial entries of X
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Convex Relaxation




√
? ?

√ √
?

√
?

√ √
? ?

√ √
?√ √ √ √
?√ √

? ?
√




︸ ︷︷ ︸
Σ

decompose
=




√
0 0

√ √
0

√
0

√ √
0 0

√ √
0√ √ √ √
0√ √

0 0
√




︸ ︷︷ ︸
Σ0

+




0 ? ? 0 0
? 0 ? 0 0
? ? 0 0 ?
0 0 0 0 ?
0 0 ? ? 0




︸ ︷︷ ︸
H

• Applying Taylor expansion:

Σn
o = Σn

o K∗
︸︷︷︸

sparse matrix

Σn
o + H∗

︸︷︷︸
support known

+ W︸︷︷︸
residual

– Treat W as noise (BUT WHY???)
⇐ W small
⇐ H∗K∗H∗ and Σ0 − Σn

0 small

Yuxin Chen () Model Selection with Missing Data June 21, 2011 9 / 19

• Yes, but it yields sub-optimal performance.

◦ requires at least rmax{n1, n2} samples.

◦ X is no longer low-rank if r > min (n1, n2)
∗ note that r can be as large as n1n2

• Call for more effective forms.

Matrix Completion?

recall that X = Y︸︷︷︸
Vandemonde

· D︸︷︷︸
diagonal

· ZT︸︷︷︸
Vandemonde

.

where D := diag {d1, · · · , dr}, and

Y :=




1 1 · · · 1
y1 y2 · · · yr
...

...
...

...

y
n1−1
1 y

n1−1
2 · · · y

n1−1
r


,Z :=




1 1 · · · 1
z1 z2 · · · zr
...

...
...

...

z
n2−1
1 z

n2−1
2 · · · z

n2−1
r




• Question: can we apply Matrix Completion algorithms directly on X?
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Xl =




xl,0 xl,1 · · · xl,n2−k2
xl,1 xl,2 · · · xl,n2−k2+1

...
...

...
...

xl,k2−1 xl,k2 · · · xl,n2−1


 .
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35• Incentive:

◦ Lift the matrix to promote Harmonic Structure
◦ Convert Sparsity to Low Rank

Rethink Matrix Pencil: Matrix Enhancement

• An enhanced form Xe: (k1 × (n1 − k1 + 1) block Hankel matrix
[Hua’1992])

Xe =




X0 X1 · · · Xn1−k1
X1 X2 · · · Xn1−k1+1

...
...

...
...

Xk1−1 Xk1
· · · Xn1−1


 ,

where each block is a k2 × (n2 − k2 + 1) Hankel matrix as follows
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The Task

C = A* B*+

Low-rank Matrix

Unknown rank, eigenvectors

Sparse “Errors” Matrix

Unknown support, values

Given
Composite

matrix

Low-Rank Structure of the Enhanced Matrix

• The enhanced matrix can be decomposed as follows.

Xe =




ZL

ZLY d
...

ZLY
k1−1
d


D

[
ZR,Y dZR, · · · ,Y n1−k1

d ZR

]
,

◦ ZL and ZR are Vandermonde matrices specified by z1, . . . , zr,
◦ Y d = diag [y1, y2, · · · , yr].

• The enhanced form Xe is low-rank.

◦ rank (Xe) ≤ r
◦ Spectral Sparsity ⇒ Low Rank
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• existing MC result won’t apply –
requires at least O(nr) samples

• Question: How many samples do
we need?




?
√ √

?
√

?
√ √

? ?
√ √

√ √
? ? ?

√ √
? ?

√ √
?√

? ?
√ √ √

?
√ √ √

?
√

? ?
√

?
√

?
√

?
√

?
√ √

√
?

√ √
? ?

√ √ √
?

√ √
?

√ √
? ?

√ √
? ?

√ √
?√ √

?
√ √ √

?
√ √ √

?
√

√
?

√
?

√
?

√ √ √
?

√
?

? ?
√ √ √

?
√ √

? ?
√

?
?

√ √
? ?

√ √
? ?

√
? ?√ √

?
√ √ √

?
√ √

? ?
√

√
?

√ √ √
?

√
? ? ?

√
?



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Enhancement Matrix Completion (EMaC)

• Our recovery algorithm: Enhanced Matrix Completion (EMaC)

(EMaC) : minimize
M∈Cn1×n2

‖M e‖∗

subject to M i,j = Xi,j,∀(i, j) ∈ Ω

where Ω denotes the sampling set, and ‖ · ‖ denotes the nuclear norm.

◦ nuclear norm minimization (convex)
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• Notations: GL is an r × r Gram matrices such that

(GL) il :=
〈
y(i),y(l)

〉〈
z(i), z(l)

〉

where y(i) := (1, yi, y
2
i , · · · , yk1−1i ) and yi := ej2πfi.

z(i) and GR are similarly defined with different dimensions...

Dirichlet Kernel

• Incoherence property arises w.r.t. µ1 if

σmin (GL) ≥ 1

µ1
, σmin (GR) ≥ 1

µ1
.

• Examples:

◦ Randomly generated frequencies
◦ (Mild) perturbation of grid points

Coherence Measures
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Theoretical Guarantees for Noiseless Case

• Theorem 1 (Noiseless Samples) Let n = n1n2. If all measurements are
noiseless, then EMaC recovers X with high probability if:

m ∼ Θ(µ1r log3 n);

• Implications

◦ minimum sample complexity: O(r log3 n).

◦ general theoretical guarantees for Hankel (Toeplitz) matrix completion.
— see applications in control, MRI, natural languange processing, etc
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Proof Sketch: Inexact Dual + Golfing Scheme

Construct a relaxed dual certificate

• Lemma (Relaxed Duality): Let T be the tangent space w.r.t. Xe. Suppose

◦ Ω restricted to T ∩ Hankel is injective.

If there exists a matrix W ∈ Hankel⊥ ∪ Ω⊥ that satisfies

‖PT (W )‖F ≤
1

2n2
, and ‖PT⊥ (W )‖ ≤ 1

2
,

then Xe is the unique optimizer of EMaC.

• Construction of dual certificate

◦ the clever “golfing scheme” introduced by D. Gross [Gross’2011].
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Phase Transition
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Figure 1: Phase transition diagrams where spike locations are randomly
generated. The results are shown for the case where n1 = n2 = 15.
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Singular Value Thresholding (Noisy Case)

Algorithm 1 Singular Value Thresholding for EMaC
1: initialize Set M0 = Xe and t = 0.

2: repeat
3: 1) Qt ← Dτt (M t) (singular-value thresholding)

4: 2) M t ← HankelX0
(Qt) (projection onto a Hankel matrix consistent with observation)

5: 3) t← t+ 1

6: until convergence
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Figure 2: dimension: 101× 101, r = 30, m
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= 5.8%, signal-to-amplitude-ratio = 10.
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Robustness to Sparse Outliers (a brief discussion)

• What if a constant portion of measurements are arbitrarily corrupted?

◦ Robust PCA approach [CandesLiMaWright’2011]
◦ Solve instead the following algorithm:

(RobustEMaC) : minimize
M ,S∈Cn1×n2

‖M e‖∗ + λ‖Se‖1

subject to (M + S)i,l = Xcorrupted
i,l , ∀(i, l) ∈ Ω

• Theorem 2 (Sparse Outliers) Set λ = 1/
√
m log n, and outlier rate ≤ 20%.

Then RobustEMaC recovers X with high probility if

m ∼ Θ(µ2
1r

2 log3 n)

• Robust to a constant portion of outliers!
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Super Resolution (2-D)

• Obtain low pass components ⇒ Extrapolate to high frequencies
[CandesFernandezGranda’2012]

(a) spatial illustration (b) frequency extrapolation

• Might attempt 2-D super-resolution using EMaC...
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(a) Ground Truth (b) Low Resolution Image (c) Super-Resolution via EMaC
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Final Remarks

• Connect spectral compressed sensing with matrix completion

Convex Relaxation




√
? ?

√ √
?

√
?

√ √
? ?

√ √
?√ √ √ √
?√ √

? ?
√




︸ ︷︷ ︸
Σ

decompose
=




√
0 0

√ √
0

√
0

√ √
0 0

√ √
0√ √ √ √
0√ √

0 0
√




︸ ︷︷ ︸
Σ0

+




0 ? ? 0 0
? 0 ? 0 0
? ? 0 0 ?
0 0 0 0 ?
0 0 ? ? 0




︸ ︷︷ ︸
H

• Applying Taylor expansion:

Σn
o = Σn

o K∗
︸︷︷︸

sparse matrix

Σn
o + H∗

︸︷︷︸
support known

+ W︸︷︷︸
residual

– Treat W as noise (BUT WHY???)
⇐ W small
⇐ H∗K∗H∗ and Σ0 − Σn

0 small
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• Connect traditional approach (parametric harmonic retrieval) with recent
advance (MC)
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• Future work: performance guarantees for 2-D super resolution?
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Q&A

Preprints available at arXiv:

Robust Spectral Compressed Sensing via Structured Matrix Completion
http://arxiv.org/abs/1304.8126

Thank You! Questions?
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