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Reinforcement
Learning

—_ Dynamic Programming
-I and Optimal Control

In RL, we need to collect data to learn unknown environments

1. simulator
2. online RL
3. offline RL

(Li, Wei, Chi, Chen 24, Operations Research)
(Zhang, Chen, Lee, Du’24, COLT)
(Li, Shi, Chen, Chi, Wei’24, Annals. Stats)
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Key takeaway of this talk: insights from offline RL can inspire
online RL algorithms
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Key takeaway of this talk: insights from offline RL can inspire
(reward-agnostic) online RL algorithms
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e H: horizon length (large)
o S={1,...,5}: state space (large)
o A={1,...,A}: action space (large)
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sequentially execute MDP for K episodes, each containing H steps

initial state choose & execute

= . |n|t|a| state choose & execute
s% ~p policy 7! |::> ~p |::> policy 7€

episode 1 episode K
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Reward-agnostic exploration?

The learner is unaware of the rewards during exploration ...
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Reward-agnostic exploration?

The learner is unaware of the rewards during exploration ...

Motivation

e (significantly) delayed feedback
e reward functions keep changing

e many reward functions of interest
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Reward-agnostic exploration?

The learner is unaware of the rewards during exploration ...

Motivation

e (significantly) delayed feedback
e reward functions keep changing

e many reward functions of interest

Question: can we perform pure exploration just once but
achieve efficiency for many unseen reward functions at once? J
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Prior art: sample complexity upper bounds

Suppose there is one fixed (but unseen) reward function of interest ...
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Prior art: sample complexity upper bounds

Suppose there is one fixed (but unseen) reward function of interest ...

horizon
A
Zhang et al. 20 Jin et al.’20
H® . ®
) Menard et al. '21
i fe ¢
£

S S?  #states

Question: can we simultaneously optimize dependency on S & H? J
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data samples

exploration stage
(w/o rewards) :>




data samples

exploration stage
(w/o rewards) :>

reward function
policy learning stage

(w/ rewards) C—— %



data samples
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A mathematical model for offline RL

A historical dataset D containing K episodes generated by 7°:
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A mathematical model for offline RL

A historical dataset D containing K episodes generated by 7°:

episode 1 {9hvahurh}h 1
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L
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beha\/mr ‘PDLLGEj 7P episode K =
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e single-policy concentrability coefficient: C* == ‘ o
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Theorem 1 (Li, Shi, Chen, Chi, Wei’'24)

For any 0 < e < H, we can design a pessimistic model-based
algorithm that achieves Vi*(p) — V" (p) < € with

- 3 * _ 4 *
O(Hgo) episodes or O <H:21C) samples
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isolate & optimize
reward-independent quantity
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isolate & optimize
reward-independent quantity

lessons learned from offline RL: offline model-based alg. gives

Varh s a(V,*Jrl)
Vi (p) — < E dy, (s,a)min —_— T H
1 ( ) / h’ { dELehaV|or(s7a)

hsa
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isolate & optimize
reward-independent quantity

(gé\ l

dELehavior (87 a)
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isolate & optimize
reward-independent quantity

lessons learned from offline RL: offline model-based alg. gives

Varn s.a(Vy' 1)
Vi (p) — < dh s,a) min e H o H
' f Z dreher (s, )

1
2

dp(s,a
< f(mdx — Jer(ehaer(s o) ) (Z dh s,a)Varp .o (Viy1) +H>

a KH h,s,a

reward-independent reward-dependent

key: find behavior policy to optimize reward-independent quantity
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Our algorithm

forh=1,....H

draw samples to estimate
occupancy distributions dj for all 7

exploration stage

(W/ o rewards) - — execute 7 to
compute behavior policy 7 |:> draw sample episodes

(azimize | 5% log (g + E [di(s,a)])

via Frank-Wolfe

empirical MDP
N |

reward function
policy learning N

(w/ rewards)

B
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Main results

Theorem 2 (Li, Yan, Chen, Fan’23)

Suppose there are N fixed reward functions of interest, and suppose
is small enough. Using the same batch of samples w/

~ (H3SAlog N
O(SEQOg) episodes,

our algorithm can find, for each reward function, a policy T obeying

Vi(p) — Vit (p) < &
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Main results

Theorem 2 (Li, Yan, Chen, Fan’23)

Suppose there are N fixed reward functions of interest, and suppose
is small enough. Using the same batch of samples w/

~ (H3SAlog N
O(SEQOg) episodes,

our algorithm can find, for each reward function, a policy T obeying

Vi(p) — Vit (p) < &

e optimal sample complexity

e collect data once — work for poly(H, S, A) reward functions
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The studies of offline RL inspire optimal reward-agnostic exploration! )




Concluding remarks

Theoretical studies of offline RL shed light on data-efficient algorithm
designs for other RL scenarios:

e online exploration
e hybrid RL

“Minimax-optimal reward-agnostic exploration in reinforcement learning,” G. Li, Y. Yan,
Y. Chen, J. Fan, COLT 2024

“Settling the sample complexity of model-based offline reinforcement learning,” G. Li,
L. Shi, Y. Chen, Y. Chi, Y. Wei, Annals of Statistics, 2024

“Reward-agnostic fine-tuning: provable statistical benefits of hybrid reinforcement
learning,” G. Li, W. Zhan, J. Lee, Y. Chi, Y. Chen, NeurlPS 2023
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