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A triad of RL approaches

— Figure credit: D. Silver



Policy optimization in practice

maximizey value(policy(6))

e directly optimize the policy, which is the quantity of interest;
® allow flexible differentiable parameterizations of the policy;

® work with both continuous and discrete problems.
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Theoretical challenges: non-concavity

Little understanding on the global convergence of policy gradient
methods until very recently, €.g. (Fazel et al., 2018; Bhandari and Russo,
2019; Agarwal et al., 2019; Mei et al. 2020), and many more.

Our goal:
® understand finite-time convergence rates of popular heuristics;

® design fast-convergent algorithms that scale for finding
policies with desirable properties.



Outline

® Backgrounds and basics
® policy gradient method

e Convergence guarantees of single-agent policy optimization
® (natural) policy gradient methods
® finite-time rate of global convergence
® entropy regularization and beyond

e Multi-agent policy optimization: two-player zero-sum games
® Matrix game
® Markov game
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Concluding remarks and further pointers



Backgrounds: policy optimization in tabular
Markov decision processes



Searching for the optimal policy

fl [ e
Reinforcement ||\ —_— Dynamic Programming
Learning \ [ and Optimal Control

A9 Introduction f
Second edition /
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Goal: find the optimal policy 7* that maximize V™ (s)

® optimal value / Q function: V*:= V"™, Q* := Q™



Policy gradient methods

Given an initial state distribution s ~ p, find policy 7 such that

maximizer V7™ (p) := Es)p [V (5)]

Parameterization:
T = Ty J

maximizeg  V7"(p) := Eqsup [V (5)]

Policy gradient method (Sutton et al., 2000)
Fort=0,1,---
i+l — g(t) anV”‘(*t) (p)

where 1 is the learning rate.




Softmax policy gradient methods

Given an initial state distribution s ~ p, find policy 7 such that

maximizer V7™ (p) := Es)p [V (5)]
softmax parameterization:
mp(als) o< exp(6(s,a)) J

maximizeg  V7"(p) := Eqsup [V (5)]

Policy gradient method (Sutton et al., 2000)
Fort=0,1,---
i+l — g(t) anV”‘(*t) (p)

where 1 is the learning rate.




Finite-time global convergence guarantees



Global convergence of the PG method?

Loading...

7

¢ (Agarwal et al., 2019) showed that softmax PG converges
asymptotically to the global optimal policy.

¢ (Mei et al., 2020) Softmax PG converges to global opt in

c(ISl, 1A]

T v"' )O(%) iterations

Is the rate of PG good, bad or ugly? J
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A negative message

Theorem (Li, Wei, Chi, Chen, 2021)
There exists an MDP s.t. it takes softmax PG at least

1 o(ry) . )
—|S|> 7 iterations

to achieve |V — V*||o < 0.15.

¢ Softmax PG can take (super)-exponential time to converge
(in problems w/ large state space & long effective horizon)!

e Also hold for average sub-opt gap \8% Y oscs [V(t)(s) - V*(s)].
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MDP construction for our lower bound
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Key ingredients: for 3 < s < H < %

o 7 (agpt | 5) keeps decreasing until () (aopt |5 —2) ~ 1
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What is happening in our constructed MDP?

v

Convergence time for state s grows geometrically as s increases

convergence-time(s) 2 (convergence-time(s — 2))1'5
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“Seriously, lady, at this hour you'd make a
lot better time taking the subway.”



Booster #1: natural policy gradient

Natural Gradient

Natural policy gradient (NPG) method (Kakade, 2002)
Fort=0,1,---

0D = 90 4 n(FO) Vv (p)

where 1 is the learning rate and ]—'g is the Fisher information matrix

]-"p‘9 =E {(Vg log mo(als)) (Vg log 7T9(a|5))T]
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Connection with TRPO/PPO

TRPO/PPO (Schulman et al., 2015; 2017) are popular heuristics in
training RL algorithms, with KL regularization

KL o) = 5 (6 — 010)T (6 — 6)
via constrained or proximal terms:
0D = argmax V4 (p) + (0= 09) TV () — KL, 7o)
~ 00+ n(F) VoV (o),
leading to exactly NPG!

NPG ~ TRPO/PPO! J
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NPG in the tabular setting

Natural policy gradient (NPG) method (Tabular setting)
Fort=0,1,---, NPG updates the policy via

D (s) oc 7B (]s) exp (nQ(t)(s,-))
N—— 1-— Y

current policy
soft greedy

where Q) := Q’Tm is the Q-function of #®), and n > 0.

® invariant with the choice of p

® Reduces to policy iteration (Pl) when 1 = cc.
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Global convergence of NPG

Theorem (Agarwal et al., 2019)

Set (9 as a uniform policy. For allt > 0, we have

log | A| n 1 > 1
no (1-9)?

VO (p) > V¥ (o) - ( L

Implication: set 7 > (1 — v)%log|.A|, we find an e-optimal policy
within at most

m iterations.

Global convergence at a sublinear rate independent of |S|, |A! J
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Booster #2: entropy regularization

action 0 1 T2 T3 T4
state s ap ~ 77("515)

------- N L S I
0— 81— 82— S 8

reward | |:> P ) G G A .
Ty = 7‘(St, N ap aiy as as Q4

<-=- environment 4= —J 2 4 2 2 2
— w(lso)  wCls)  w(Clsa)  wClss)  mls)

sén ~ P(se,ar)

To encourage exploration, promote the stochasticity of the policy
using the “soft” value function (Williams and Peng, 1991):

Z’yt(rt + TH(W(-\st)) | S9 =5

t=0

VseS: Vi(s):=E

T

where H is the Shannon entropy, and 7 > 0 is the reg. parameter.

maximizey V?(p) := Esnp [VO(5)] J
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Entropy-regularized natural gradient helps!

Toy example: a bandit with 3 arms of rewards 1, 0.9 and 0.1.

Policy Gradient

) =8
L

20—
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log m(ay)

Natural Policy Gradient

Can we justify the efficacy of entropy-regularized NPG?
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Entropy-regularized NPG in the tabular setting

Entropy-regularized NPG (Tabular setting)
Fort=0,1,---, the policy is updated via
_nT_

D ([s) oc 7O (]s) 17T exp(QW(s, ) /) T
——— S——

current policy soft greedy

where Q(Tt) = Q’;m is the soft Q-function of 7, and 0 < n< 1_77

® invariant with the choice of p

® Reduces to soft policy iteration (SPI) when n = 1_77



Linear convergence with exact gradient

Exact oracle: perfect evaluation of QZM given 7(0);

—Read the paper for the inexact case

Theorem (Cen, Cheng, Chen, Wei, Chi, 2020)

For any learning rate 0 < n < (1 — ~)/, the entropy-regularized
NPG updates satisfy

® Linear convergence of soft Q-functions:

1Q% — QY| < Cry (1 — 1)

for all t > 0, where Q% is the optimal soft Q-function, and

* T
€1 = 10: = QP+ 27 (1= 1™ ) o2 — logn ¥

v
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Implications

To reach [|Q% — Q"|| < ¢, the iteration complexity is at most

¢ General learning rates (0 <7 < 1_77)

1 <Cl’)/>
— log | ——
nT €

® Soft policy iteration (n = —7)

L (ucg:—c;@uoov)
0g
11— €

Global linear convergence of entropy-regularized NPG
at a rate independent of |S], |A|! J
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Comparisons with entropy-regularized PG

Log Policy Difference

Natural Policy Gradient

Policy Gradient
WS/

---= Natural Policy Gradient
Policy Gradient

0 1000 2000 3000 1000 5000
#iterations

(Mei et al., 2020) showed entropy-regularized PG achieves

V(o) = Vi (o) < (Vi () = V% ()

P

p (oo}

(1—7)*
(8/7 + 4+ 8log [A])[S]

2
~exp | — min p(s) ( inf minﬂ(k)(a|s))

0<k<t—1 s,a

can be exponential in |S| and ﬁ

Much faster convergence of entropy-regularized NPG
at a dimension-free rate! J
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Comparison with unregularized NPG

Regularized NPG

Vanilla NPG
7 =0.001

T=0

B

QY

Q

e =¥l

0 1000 2000 3000 4000
#iterations

5000

0 1000 2000 3000

4000 5000
#iterations

Linear rate: niT log (1) Sublinear rate: W
Ours (Agarwal et al. 2019)

Entropy regularization enables fast convergence! )
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A key operator: soft Bellman operator

Soft Bellman operator

Tr(Q)(s,a) = r(s,a)

immediate reward

+7 E
s'~P(|s,a) [W('|5’)a’wﬂ'(‘|5/)

next state's value

Soft Bellman equation: QX is unique solution to
T-(QF) = Q7
~-contraction of soft Bellman operator:

|77(Q1) — Tr(Q2)|lo <Y[Q1 — Q2o

max [ Q(s',a") —r7log 7r(a'|s’)}] ,
——— ————

entropy

Richard

Bellman

26



Analysis of soft policy iteration (n = 1=2)

T

Policy iteration Soft policy iteration

7 70

Bellman operator Soft Bellman operator
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A key linear system: general learning rates

NN D)
Qs — Q| and y = QY — 710g £
@ = Tlog €M 0

where £ o () is an auxiliary sequence, then

Let x; := [

777_ t+1
$t+1<A$t+7<1— ) Y,

where

is a rank-1 matrix with a non-zero eigenvalue 1 —n7
——

contraction rate!

|
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Beyond entropy regularization

Leverage regularization to promote structural properties of the
learned policy.

cost-sensitive RL sparse exploration constrained and safe RL

weighted 1-norm Tsallis entropy log-barrier
For further details, see: (Lan, PMD 2021) and (Zhan et al, GPMD 2021)
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Policy optimization for games



Policy optimization: saddle-point optimization

Given an initial state distribution s ~ p, find policy © such that

in  VHY(p) := Egu, [V
i (p) oV (s)]
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Entropy regularization in MARL

action

state Sh ap ~ pup(- | sn)

______ 7 | max-player —
r reward 7, Th Th+1 Th+2 TH
1 fat actlon
I state Sp b ~ v (-

. S e

e R 2 @l @rl@nls - By
1 reward -7, o/ ' [ ~_' h 1e_s
1 h \\a_h,/l ‘ah“/ ‘\af:al ‘\(iH_/I
L . 2 by bh+1 bny2 b

H environment wn(an|sn)?

" next state vn(bnlsn)

Shi1 ~ Pu(- | snyan, bn)

Promote the stochasticity of the policy pair using the “soft” value
function (Williams and Peng, 1991; Cen et al., 2020):

H

VEY(s):=E Z (rn + 7H(pn(-|5n)) — TH(wa(|sn))) ‘ so=5|,
h=1

where H is the Shannon entropy, and 7 > 0 is the reg. parameter.

max min VH*Y
pEA(A)ISI ueA(lB)|5| () J
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Quantal response equilibrium (QRE)

Quantal response equilibrium (McKelvey and
Palfrey, 1995)

reprrrrersers BLOVE
The quantal response equilibrium (QRE) is the policy =

ek . . .

pair (uk,vr) that is the unique solution to QuANTAL
EQUILIBRIUM
max min _ VH"(p).
LEA(A)IS| LEA(B)IS]

v

® Unlike NE, QRE assumes bounded rationality: action
probability follows the logit function.

Translating to an e-NE: setting 7 =< O (¢/H).
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Soft value iteration

Soft value iteration: for h=H,... 1
Qn(s,a,b) <ry(s,a,b)+

: maxmin u(s') " Q1 (s)v(s') + TH(u(s") — TH((s) |,
s'~Pp(+]s,a,b) = v

Entropy-regularized matrix game

where Qn(s) = [Qn(s, )] € RAXE,

Entropy-regularized matrix game

. T
A H —T7H
(e o Av o+ rH(p) — TH(Y)
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Failure of NPG/MWU methods

o Multiplicative Weights Update
(MWU):

p ) (a) o p® (a) =7 exp (n[Av1],)
V) (8) o 10 (01 exp (—n{AT ),

® > (0: step size;

® The trajectory may cycle/diverge!
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Motivation: an implicit update method

Implicit update (IU) method
Fort=0,1,---,

pD) o [uO=77 exp ([AV(HI)]/T)”T
p(t+1) o [V(t)]lfm' exp (_[ATM(t+1)]/7_)777

Theorem (Cen, Wei, Chi, 2021)
Suppose that 0 < n < 1/7, then for all t > 0,

KL(CE 1 ¢W) < (1 —nm)tKL(¢E ] ¢™),

where KL(¢* || ¢®)) = KL (pt]|n®) + KL (v£||[v®).

4

Can we make this practical?
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From implicit updates to policy extragradient methods

Optimistic multiplicative weights update (OMWU) method
(Related to OMD, Rakhlin and Sridharan, 2013): for t =0,1,---,

predict : ) o [uO]E exp ([ AV“) /T)m
D) o [pO]1=n Texp (—[A /T)nT
(t+1) t)1— At/

B (e P
D) o [pOP=1T excp (—[AT a+D] /7)™

Theorem (Cen, Wei, Chi, 2021)

Suppose that n < min{2 +2hA”w, 4“2“ } then for all t > 0, the

last-iterate converges to e-QRE within 9) ( log = ) iterations.

Linear, last-iterate convergence to the QRE!



Soft value iteration via nested-loop OMWU
Soft value iteration: for h=H,... 1

Qn(s,a,b) <rp(s,a,b)+

. E lmaxminu(S')TQhH(5’)1/(8/)+TH(M(S'))TH(V(S’)),
s'~Pp(+|s,a,b) © v

Entropy-regularized matrix game
where Qy,(s) = [Qnu(s, -, )] € RA*B,

® _®

Nested-loop approach: (k1,5 vp, ) ¢ OMWU(Qp)
-
Periodic value update Policy update via
\ - OMWU

Qn + SVI(Qn+1)

However, not easy to use in online settings...
38



A two-timescale single-loop approach?

Soft value iteration: for h = H,...,1

Qn(s,a,b) <rp(s,a,b)+

+ E [maxminM(S')TQhH(S')V(S') + 7 H(u(s) - TH(V(S'))]’
s'~Pp(+]s,a,b) H v

Entropy-regularized matrix game
where Qy,(s) = [Qnu(s, -, )] € RA*B,

Single-loop, two-timescale approach:

QU « (1 - a)Q® + a - lookahead ;L(HD DY amwu(Q®)
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Main result: episodic setting

Theorem (Cen, Chi, Du, Xiao, 2022)

The last-iterate of the two-timescale single-loop algorithm finds an
e-QRE in ,
~(H 1
0] < log )
T €

iterations, corresponding to 0] (H?S) iterations for finding an e-NE.

® First last-iterate convergence result for the episodic setting.

® Almost dimension-free: independent of the size of the
state-action space.
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Main result: discounted setting

Theorem (Cen, Chi, Du, Xiao, 2022)

For the infinite-horizon ~-discounted setting, the last-iterate of the
single-loop algorithm finds an e-QRE in

(=)

iterations, and in O (O—isv)“e> iterations for finding an e-NE.

<

e . . ~ 5 /2
® This significantly improves upon the prior art O (%)

of (Wei et al., 2021) and O (%) of (Zeng et al.,

2022) in all parameter dependencies.



Concluding Remarks



Concluding remarks

state . FiRsT-ORDER METHODS
action IN OPTIMIZATION
______ agent —
Dynamic Programming r
and Optimal Control H
1.
v L reward Amir Beck
i i-—€==1 environment
: inext state

Understanding non-asymptotic performances of RL algorithms
is a fruitful playground! J

Promising directions:

® function approximation e hybrid RL
® multi-agent/federated RL ® many more...
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Beyond the tabular setting

Policy network Value network
Poy @l9) vy (8")
*
9
L N . ii”
°
. .
0 O
s s

Figure credit: (Silver et al., 2016)
e function approximation for dimensionality reduction
® Provably efficient RL algorithms under minimal assumptions

(Osband and Van Roy, 2014; Dai et al., 2018; Du et al., 2019; Jin et al., 2020)
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Multi-agent RL

e 4

® Competitive setting: finding Nash equilibria for Markov
games

® Collaborative setting: multiple agents jointly optimize the
policy to maximize the total reward

(Zhang, Yang, and Basar, 2021; Cen, Wei, and Chi, 2021)
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Hybrid RL

® interact with environment

this is done
many times
=

,-ﬁ;, \ Online RL

® actively collect new data

train for
many epoch:

deploy learned policy in new scenarios

Offline/Batch RL

® no interaction

big dataset from
past interactions

® data is given

Can we achieve the best of both worlds?
(Wagenmaker and Pacchiano, 2022; Song et al., 2022; Li et al., 2023)



RL meets federated learning

Federated reinforcement learning enables multiple agents to
collaboratively learn a global model without sharing datasets.

Central server

e 2 Iy

Agent 1 Agent2 7 Agentk T Agentk

Can we achieve linear speedup via federated learning?
(Khodadadian et al., 2022; Woo et al., 2023)
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