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In RL, agent(s) often learn by probing the environment



Reinforcement
Learning

In RL, agent(s) often learn by probing the environment

e unknown environment e delayed feedback

e explosion of dimensionality ® nonconvexity



Data efficiency

Data collection might be expensive, time-consuming, or high-stakes

self-driving cars

clinical trials

Calls for design of sample-efficient RL algorithms!
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Understanding efficiency of contemporary RL requires a modern suite
of non-asymptotic analysis
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Sample complexity issues that permeate
state-of-the-art RL theory

A

regret
or

other metrics <

&

o0
X

X0 X
‘\O(((\’b \\((\
o

»
|

sample size

6/ 28



Sample complexity issues that permeate
state-of-the-art RL theory

regret
or
other metrics

4

/7, :

<
&
eo
N0

X0 X
U
R

\

»

|

sample size

6/ 28



Sample complexity issues that permeate
state-of-the-art RL theory

A

regret
or
other metrics

»
|

sample size

A N

<{ )
N L4
high-dimensional large-sample

statistics th6ef>£¥



Sample complexity issues that permeate
state-of-the-art RL theory

A
regret
or [

other metrics —
H
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:

sample size

huge burn-in cost!
$ >
high-dimensional large-sample

statistics th6ef>£¥



Sample complexity issues that permeate
state-of-the-art RL theory
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generative model / simulator

online RL w/ exploration
offline / batch RL

huge burn-in cost!
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Sample complexity issues that permeate
state-of-the-art RL theory
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e multi-agent RL

e partially observable MDPs
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e multi-agent RL sample size

e partially observable MDPs
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FIRST-ORDER METHODS
IN OPTIIZATION High-Dimensional
Probability

Amir Beck

(large-scale) optimization (high-dimensional) statistics

This talk: breaking sample size barrier in online RL
— accomplished by a model-based approach!



Background: Markov decision process (MDP)



Finite-horizon Markov decision process (MDP)

step h=1,2---  H

state Sp action ap,

R 3 agent 7

] |

.
e H: horizon length (large)
e S=1{1,...,5}: state space (large)
e A=1{1,..., A}: action space (large)
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Finite-horizon Markov decision process (MDP)

step h=1,2---  H

state Sp action ap,
________ | agent —_
r 1
i reward |
i iTh = (s, an |
“+=<==-1 environment —_

e H: horizon length (large)
e S=1{1,...,5}: state space (large)
e A=1{1,..., A}: action space (large)
o 7,(sp,ap) € [0,1]: immediate reward in step h
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Finite-horizon Markov decision process (MDP)

step h=1,2---  H

tate s action
e n — ap ~ mh(-|sh)
S 1
i reward |
i iTh = (s, an
Lomee _

environment

H: horizon length

S=1{1,...,S}: state space

A={1,..., A}: action space

rh(Sn,ap) € [0, 1]: immediate reward in step h

7 ={Th}<p<pg: Policy

(large)
(large)
(large)
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Finite-horizon Markov decision process (MDP)

step h=1,2---  H

tate s action
e n — ap ~ mh(-|sh)
S 1
i reward |
i iTh = (s, an
Lomee _

! next state
Shy1 ~ Pr(-|sn, an)

H: horizon length

S=1{1,...,S}: state space

A={1,..., A}: action space

rh(Sn,ap) € [0, 1]: immediate reward in step h
7 ={Th}<p<pg: Policy

Pi(-|s,a): transition probability in step h

(large)
(large)
(large)
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state sp, action r P .

TH
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| ay az as an
- 2 i 2

mi(-[s1) m2(|s2)  m3(-|s3) 7 (-[sm)

! next state
Sh1 ~ Pu(:|sn, an)

execute policy 7 to generate a trajectory {(s¢, at) hi<i<m

H

value function of 7 : Vii(s) =E Zrt(st, a) | sn=s
t=h
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state sp, action 7,1 P rs

TH
h ~ i (-[sn)
r---- _: S1 ‘I So ‘I S3 ‘I SH—"
' reward T ) T, ¢ ) '
Lvh = r(eh,ah I :> \5; \d}’ \a_; s
> - 2 2 2
! next state m1(|s1) ma(-[s2)  m3(:|s3) T (|sw)

Sh+1 ™~ Ph("Shsdh)

execute policy 7 to generate a trajectory {(s¢, at) hi<i<m

value function of 7 : Vir (s Z (s¢, at) | Sp =358
=h
H
Q-function of 7: Q7 (s,a) =E Z (st,at) | Sp=8,ap = a
t=h
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state s

e Optimal policy 7*: maximizing the value function

e Optimal values: V* := V"™
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DIMITRI P. BERTSEKAS

Richard . Sutton and Andeew G, Barto

Need to collect data to learn unknown environments
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Reinforcement
Learning

—_ Dynamic Programming
-I and Optimal Control

Need to collect data to learn unknown environments

1. simulator
2. offline RL

i, Wei, i, en '24, Operations Researc
Li, Wei, Chi, Chen 24, O R h
(Li, Shi, Chen, Chi, Wei'24, Annals. Stats)

3. online exploratory RL

(this talk)
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Online RL: interacting with real environment

To 1 T2 T3 T4 5

exploration via adaptive sampling

e trial-and-error

e sequential and online

e adaptive learning from data

ﬂ;,',//\\ apeess

“Recalculating ... recalculating ...”
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Online episodic RL

Sequentially execute MDP for K episodes, each consisting of H steps

LE execute 7'

episode 1 |::> {sh»ah, 7 e
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Online episodic RL

Sequentially execute MDP for K episodes, each consisting of H steps

ik execute 7!

episode 1 |::> {sh»ah, 7 e

(= 3Ir execute 7>
L 2 2 2\H
episode 2 {8h> @ T =1
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Online episodic RL

Sequentially execute MDP for K episodes, each consisting of H steps

U execute 7'

episode 1 |::> {sh»ah, 7 e

S e [ execute 7>

2 2 oH
episode 2 :> {8h: @k, i h=1

execute 75

episode K |:> {Sf ai{7 T}{(}hH:I
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Online episodic RL

Sequentially execute MDP for K episodes, each consisting of H steps
— sample size: T'= KH

4
LE execute 7!

episode 1 |:> {sh> ah,ThHhey

execute 7>

s rihin

episode 2

‘;% execute 75

episode K |:> {Sf ai{7 T}{(}hH:I

exploration (exploring unknowns) vs. exploitation (exploiting learned info)J
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Regret: gap between learned policy & optimal policy

adversary learner

initial state execute
st = policy 7!

episode 1
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initial state execute initial state execute
I 51 I = policy ! = e = 5K = | policy 7

episode 1 episode K
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Regret: gap between learned policy & optimal policy

adversary learner

initial state execute initial state execute
I 51 I = policy ! = e = 5K = | policy 7

episode 1 episode K

Performance metric: given initial states {s}}X , define
K

Regret(T) = Y (Vi(sf) = V7" (s1))
k=1

16/ 28



Lower bound
(Domingues et al. '21)

Regret(T') =2 VH?SAT

Existing algorithms

UCB-VI: Azar et al.'17

UBEV: Dann et al.'17
UCB-Q-Hoeffding: Jin et al.'18
UCB-Q-Bernstein: Jin et al.’18
UCB2-Q-Bernstein: Bai et al.'19
EULER: Zanette et al. 19
UCB-Q-Advantage: Zhang et al.'20
MVP: Zhang et al.'20

UCB-M-Q: Menard et al.’'21
Q-EarlySettled-Advantage: Li et al.'21
(modified) MVP: Zhang et al.’23



Existing algorithms

Lower bound i
(Domingues et al. '21) .
Regret(T') =2 VH?SAT .

UCB-VI: Azar et al.'17

UBEV: Dann et al.'17
UCB-Q-Hoeffding: Jin et al.'18
UCB-Q-Bernstein: Jin et al.’18
UCB2-Q-Bernstein: Bai et al.'19
EULER: Zanette et al. 19
UCB-Q-Advantage: Zhang et al.'20
MVP: Zhang et al.'20

UCB-M-Q: Menard et al.’'21
Q-EarlySettled-Advantage: Li et al.'21
(modified) MVP: Zhang et al.’23

Which online RL algorithms achieve near-minimal regret? J
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Model-based approach (“plug-in”
1. build an empirical estimate Pfor P

2. planning based on the empirical P
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1. build an empirical estimate Pfor P
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Model-free approach (e.g. Q-learning)
— learning w/o estimating the model explicitly
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2. planning based on the empirical P

Model-free approach (e.g. Q-learning)
— learning w/o estimating the model explicitly
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T. L. Lai H. Robbins

Optimism in the face of uncertainty:

e explores based on the best optimistic estimates associated with
the actions!

e a common framework: utilize upper confidence bounds (UCB)

accounts for estimates + uncertainty level
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T. L. Lai H. Robbins

Optimism in the face of uncertainty:

e explores based on the best optimistic estimates associated with
the actions!

e a common framework: utilize upper confidence bounds (UCB)

accounts for estimates + uncertainty level

Optimistic model-based approach: incorporates UCB framework
into model-based approach

19/ 28



UCB-VI (Azar et al.’17)

For each episode:
1. Backtrack h = H,H —1,...,1: run value iteration

Qh(8h7 ah) <~ Th($h7 ah) + Ph75h7ah Vh+1
——
model estimate

Vi(sp) < rgleaj( Qn(sp,a)
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UCB-VI (Azar et al.’17)

For each episode:
1. Backtrack h = H, H —1,...,1: run optimistic value iteration

Qn(sh,an) < h(sh,an) + Phsy,an Vat1 + 0n(sh, an)
—— —_————
model estimate bonus

Vi(sp) < r;leaj( Qn(sp,a)
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UCB-VI (Azar et al.’17)

For each episode:
1. Backtrack h = H, H —1,...,1: run optimistic value iteration

Qn(sh,an) < h(sh,an) + Phsy,an Vat1 + 0n(sh, an)
—— —_————
model estimate bonus

Vi(sp) < r;leaj( Qn(sp,a)

2. Forward h =1,..., H: take actions according to greedy policy

() < argmax,c 4 Qn (s, a)

to collect a new episode {sj, ah,rh}thl

20/ 28



UCB-VI is asymptotically regret-optimal

— Azar, Osband, Munos 17

Regret(T")

4

h

VH2SAT

>

>

sample size : T’
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UCB-VI is asymptotically regret-optimal

— Azar, Osband, Munos 17

Regret(T")
r'

- VH?SAT

UCB:-VI

HYS%A

>

S3A*HS  sample size: T

huge burn-in cost!
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UCB-VI is asymptotically regret-optimal

— Azar, Osband, Munos 17

Regret(T")
r'

- VH?SAT

UCB:-VI

HYS%A

>

S3A*HS  sample size: T

huge burn-in cost!

Issues: large burn-in cost
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Other asymptotically regret-optimal algorithms

Range of K that

Algorithm Regret upper bound ° i
attains optimal regret
UCBVI 5 2 1113 3 3
(Azar et al. 17) VSAHMT + 57AH [S*AH?, 00)
ORLC AT2 02 A 774 3 A 775
(Dann et al.’19) VSAH?T + S?AH [S3AH®, c0)
EULER , SAH?T + S:;,/ZAH:z(\@ + \/ﬁ) [SZAH3(\E+ \/ﬁ)oc)
(Zanette et al."19)
UCB-Adv 2 52 A3/2 F733/4 )71/4 6 A4 727
(Zhang et al. 20) VSAH?T + S2AS2H3/4K [S6AYH?T 00)
MVP 5 2 4172 3
(Zhang et al. "20) VSAH?T + S*AH [SPAH, 00)
UCB-M-Q AT " ., 5
(Menard et al.'21) SAHT + SAH [SAH?, o)
Q-Earlysettled-Adv JEATTT + SAHS (SAH, o0)

(Li et al.'21)

22/ 28



Other asymptotically regret-optimal algorithms

Range of K that

Algorithm Regret upper bound ° i
attains optimal regret
UCBVI V] 2 2 4 73 34173
(Azar et al. 17) SAH'T + S°AH [S*AH?, 00)
ORLC AH2 02 A 774 3 A 775
(Dann et a1.'19) VSAH?T + S*AH [S3AH?, 00)
EULER SAHZT + 2 AH(VS + V) | [S2AHY(VS + VH), )
(Zanette et al."19)
UCB-Adv 2 G2 A3/2 [33/4 f1/4 16 A4 7727
(Zhang et al."20) VSAH?T + S2AS2H3/4K [S6AYH?T 00)
MVP 5 S s
v S*AH* AH,
(Zhang et al.'20) SAH®T + 5°AH s ;00)
UCB-M-Q AT " ., 5
(Menard et al.'21) SAHT + SAH [SAH?, o)
Q-Earlysettled-Adv SAHPT + SAHS [SAHngo)

(Li et al.'21)

Can we find a regre-optimal algorithm with no burn-in cost?

J

22/ 28



Monotonic Value Propagation (Zhang et al. '21)

UCB-VI with doubling update rules and variance-aware bonus
e (s,a,h) is updated only when visited the {1,3,7,15,--- }-th time

23/ 28



Monotonic Value Propagation (Zhang et al. '21)

UCB-VI with doubling update rules and variance-aware bonus
e (s,a,h) is updated only when visited the {1,3,7,15,--- }-th time
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Monotonic Value Propagation (Zhang et al. '21)

UCB-VI with doubling update rules and variance-aware bonus
e (s,a,h) is updated only when visited the {1,3,7,15,--- }-th time

UCB-VI MVP
P _pm
o)

PG —
p@) —
PB)— — pB3)
P(2) —
P — — p)
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Monotonic Value Propagation (Zhang et al. '21)

UCB-VI with doubling update rules and variance-aware bonus

e (s,a,h) is updated only when visited the {1,3,7,15,--- }-th time

UCB-VI MVP
PN _pm
p6)

PB) —
]3(4) —
PB)— - p®)
P(2) —
p) — — p)

o visitation counts change much less frequently
— reduces covering number dramatically
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Monotonic Value Propagation (Zhang et al. '21)

UCB-VI with doubling update rules and variance-aware bonus

e (s,a,h) is updated only when visited the {1,3,7,15,--- }-th time

UCB-VI MVP
PN _pm
p6)

PB) —
]3(4) —
PB)— - p®)
P(2) —
p) — — p)

o visitation counts change much less frequently
— reduces covering number dramatically

e data-driven bonus terms (chosen based on empirical variances)

23/ 28



Regret-optimal algorithm w/o burn-in cost

Regret(T")

A

. VH2SAT

UCB-VI

H*S?A

0 S®AHS  sample size : T

Theorem 1 (Zhang, Chen, Lee, Du’23)

The model-based algorithm Monotonic Value Propagation achieves

Regret(T) < O(VH2SAT)
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Regret-optimal algorithm w/o burn-in cost

Regret(T")

A

. VH2SAT

UCB-VI

H*S?A

0 S®AHS  sample size : T

Theorem 1 (Zhang, Chen, Lee, Du’23)

The model-based algorithm Monotonic Value Propagation achieves

Regret(T) < O(VH2SAT)

e the only algorithm so far that is regret-optimal w/o burn-ins

24/ 28



Key technical innovation

N .
N —
\ —
online data collection samples drawn
w/ sample reuse independently from simulator

Decoupling complicated statistical dependency during online learning
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e couples online data collection with i.i.d. sampling
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Key technical innovation

N .
N —
\ _—
online data collection samples drawn
w/ sample reuse independently from simulator

Decoupling complicated statistical dependency during online learning

e couples online data collection with i.i.d. sampling
e exploit compressibility of visitation counts

o w/ the aid of doubling algorithmic trick

25/ 28



Summary for online RL

e model-based approach is regret-optimal w/ no burn-in cost
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Summary for online RL

e model-based approach is regret-optimal w/ no burn-in cost

open problems:

e how to design model-free algorithms w/o burn-in cost (i.e., w/
optimal H-dependency too)?
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Summary for online RL

e model-based approach is regret-optimal w/ no burn-in cost

open problems:
e how to design model-free algorithms w/o burn-in cost (i.e., w/
optimal H-dependency too)?
e how to achieve full-range regret-optimal algorithms for:
o discounted infinite-horizon MDPs?
o finite-horizon stationary MDPs?

o ...

26/ 28



Concluding remarks

Model-based alg. remains the only solution that achieves optimal
sample complexity w/o burn-ins for these scenarios and beyond
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Concluding remarks

Model-based alg. remains the only solution that achieves optimal
sample complexity w/o burn-ins for these scenarios and beyond

Model-based approach is also optimal w/o burn-ins for

horizon
sample

sample
complexity

complexity

V-learning

e

H3SC*

C model-based
1 our algorithm
p %i .

A+B AB #actions

RL imul 2-player zero-sum Markov
w/ simulator Offline RL games
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Concluding remarks

Understanding RL requires modern statistics and optimization

FIRST-ORDER METHODS
IN OPTIMIZATION

Martin J. Wainwright

—

rewa I’d e ﬂ | I Amir Beck
|
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