Non-Asymptotic Analysis for Reinforcement Learning (Part 2)

Yuxin Chen

Wharton Statistics & Data Science, SIGMETRICS 2023

Multi-agent RL with a generative model

Multi-agent reinforcement learning (MARL)

- H: horizon
- S = [S]: state space A = [A]: action space of max-player
 - $\mathcal{B} = [B]$: action space of min-player

- $\mathcal{S} = [S]$: state space $\mathcal{A} = [A]$: action space of max-player
- H: horizon

- $\mathcal{B} = [B]$: action space of min-player
- immediate reward: max-player $r(s, a, b) \in [0, 1]$ min-player -r(s, a, b)

- $\mathcal{S} = [S]$: state space $\mathcal{A} = [A]$: action space of max-player
- H: horizon

- $\mathcal{B} = [B]$: action space of min-player
- immediate reward: max-player $r(s, a, b) \in [0, 1]$ min-player -r(s, a, b)
- $\mu: \mathcal{S} \times [H] \to \Delta(\mathcal{A})$: policy of max-player $\nu: \mathcal{S} \times [H] \to \Delta(\mathcal{B})$: policy of min-player

- $\mathcal{S} = [S]$: state space $\mathcal{A} = [A]$: action space of max-player
- H: horizon

- $\mathcal{B} = [B]$: action space of min-player
- immediate reward: max-player $r(s, a, b) \in [0, 1]$ min-player -r(s, a, b)
- $\mu: \mathcal{S} \times [H] \to \Delta(\mathcal{A})$: policy of max-player $\nu: \mathcal{S} \times [H] \to \Delta(\mathcal{B})$: policy of min-player
- $P_h(\cdot \mid s, a, b)$: unknown transition probabilities

Value function under *independent* policies (μ, ν) (no coordination)

$$V^{\mu,\nu}(s) := \mathbb{E}\left[\sum_{h=1}^{H} r_h(s_h, a_h, b_h) \,\middle|\, s_1 = s\right]$$

Value function under *independent* policies (μ, ν) (no coordination)

$$V^{\mu,\nu}(s) := \mathbb{E}\left[\sum_{h=1}^{H} r_h(s_h,a_h,b_h)\,\Big|\, s_1 = s\right]$$
 state s which action a to take?

Each agent seeks optimal policy maximizing her own value

Value function under *independent* policies (μ, ν) (no coordination)

$$V^{\mu,\nu}(s) := \mathbb{E}\left[\sum_{h=1}^{H} r_h(s_h,a_h,b_h) \,\Big|\, s_1 = s\right]$$
 which action b to take? which action a to take?

- Each agent seeks **optimal policy** maximizing her own value
- But two agents have conflicting goals . . .

John von Neumann

John Nash

An NE policy pair $(\mu^{\star}, \nu^{\star})$ obeys

$$\max_{\mu} V^{\mu,\nu^\star} = V^{\mu^\star,\nu^\star} = \min_{\nu} V^{\mu^\star,\nu}$$

John von Neumann

John Nash

An NE policy pair $(\mu^{\star}, \nu^{\star})$ obeys

$$\max_{\mu} V^{\mu,\nu^\star} = V^{\mu^\star,\nu^\star} = \min_{\nu} V^{\mu^\star,\nu}$$

no unilateral deviation is beneficial

John von Neumann

John Nash

An NE policy pair $(\mu^{\star}, \nu^{\star})$ obeys

$$\max_{\mu} V^{\mu,\nu^\star} = V^{\mu^\star,\nu^\star} = \min_{\nu} V^{\mu^\star,\nu}$$

- no unilateral deviation is beneficial
- no coordination between two agents (they act independently)

John von Neumann

John Nash

An ε -NE policy pair $(\widehat{\mu}, \widehat{\nu})$ obeys

$$\max_{\mu} V^{\mu,\,\widehat{\nu}} - \varepsilon \leq V^{\widehat{\mu},\,\widehat{\nu}} \leq \min_{\nu} V^{\widehat{\mu},\,\nu} + \varepsilon$$

- no unilateral deviation is beneficial
- no coordination between two agents (they act *independently*)

Learning NEs with a simulator

input: any (s, a, b, h)

output: an independent sample $s' \sim P_h(\cdot \mid s, a, b)$

Learning NEs with a simulator

input: any (s, a, b, h)

output: an independent sample $s' \sim P_h(\cdot \mid s, a, b)$

Question: how many samples are sufficient to learn an ε -Nash policy pair?

— Zhang, Kakade, Başar, Yang '20

1. for each (s, a, b, h), call simulator N times

— Zhang, Kakade, Başar, Yang '20

1. for each (s, a, b, h), call simulator N times

— Zhang, Kakade, Başar, Yang '20

- 1. for each (s, a, b, h), call simulator N times
- 2. build empirical model \widehat{P}

— Zhang, Kakade, Başar, Yang '20

- 1. for each (s, a, b, h), call simulator N times
- 2. build empirical model \widehat{P} , and run "plug-in" methods

— Zhang, Kakade, Başar, Yang '20

- 1. for each (s, a, b, h), call simulator N times
- 2. build empirical model \widehat{P} , and run "plug-in" methods

sample complexity: $\frac{H^4SAB}{\varepsilon^2}$

1 player: A

Let's look at the size of joint action space . . .

1 player: $\it A$

2 players: AB

Let's look at the size of joint action space . . .

Let's look at the size of joint action space . . .

joint actions blows up geometrically in # players!

horizon

horizon

Theorem 1 (Li, Chi, Wei, Chen '22)

For any $0 < \varepsilon \leq H$, one can design an algorithm that finds an ε -Nash policy pair $(\widehat{\mu}, \widehat{\nu})$ with high prob., with sample complexity at most

$$\widetilde{O}\Big(\frac{H^4S(A+B)}{\varepsilon^2}\Big)$$
 (minimax-optimal $\forall \varepsilon$)

Model-free / value-based RL

- 1. Basics of Q-learning
- 2. Synchronous Q-learning and variance reduction (simulator)
- 3. Asynchronous Q-learning (Markovian data)
- 4. Q-learning with lower confidence bounds (offline RL)
- 5. Q-learning with upper confidence bounds (online RL)

Model-based vs. model-free RL

Model-based approach ("plug-in")

- 1. build empirical estimate \widehat{P} for P
- 2. planning based on empirical \widehat{P}

Model-free / value-based approach

- learning w/o modeling & estimating environment explicitly
- memory-efficient, online, ...

Focus of this part: classical Q-learning algorithm and its variants

A starting point: Bellman optimality principle

Bellman operator

$$\mathcal{T}(Q)(s,a) := \underbrace{r(s,a)}_{\text{immediate reward}} + \gamma \mathop{\mathbb{E}}_{s' \sim P(\cdot \mid s,a)} \left[\underbrace{\max_{a' \in \mathcal{A}} Q(s',a')}_{\text{next state's value}} \right]$$

• one-step look-ahead

A starting point: Bellman optimality principle

Bellman operator

$$\mathcal{T}(Q)(s,a) := \underbrace{r(s,a)}_{\text{immediate reward}} + \gamma \mathop{\mathbb{E}}_{s' \sim P(\cdot \mid s,a)} \left[\underbrace{\max_{a' \in \mathcal{A}} Q(s',a')}_{\text{next state's value}} \right]$$

• one-step look-ahead

Bellman equation: Q^* is unique solution to

$$\mathcal{T}(Q^{\star}) = Q^{\star}$$

A starting point: Bellman optimality principle

Bellman operator

$$\mathcal{T}(Q)(s,a) := \underbrace{r(s,a)}_{\text{immediate reward}} + \gamma \mathop{\mathbb{E}}_{s' \sim P(\cdot \mid s,a)} \left[\underbrace{\max_{a' \in \mathcal{A}} Q(s',a')}_{\text{next state's value}} \right]$$

• one-step look-ahead

Bellman equation: Q^* is unique solution to

$$\mathcal{T}(Q^{\star}) = Q^{\star}$$

- takeaway message: it suffices to solve the Bellman equation
- challenge: how to solve it using stochastic samples?

Richard Bellman

Q-learning: a stochastic approximation algorithm

Chris Watkins

Peter Dayan

Stochastic approximation for solving the Bellman equation

Robbins & Monro. 1951

$$\mathcal{T}(Q) - Q = 0$$

where

$$\mathcal{T}(Q)(s,a) := \underbrace{r(s,a)}_{\text{immediate reward}} + \gamma \mathop{\mathbb{E}}_{s' \sim P(\cdot \mid s,a)} \Big[\underbrace{\max_{a' \in \mathcal{A}} Q(s',a')}_{\text{next state's value}} \Big].$$

Q-learning: a stochastic approximation algorithm

Chris Watkins

Peter Dayan

Stochastic approximation for solving Bellman equation $\mathcal{T}(Q)-Q=0$

$$\underbrace{Q_{t+1}(s,a) = Q_t(s,a) + \eta_t \big(\mathcal{T}_t(Q_t)(s,a) - Q_t(s,a) \big)}_{\text{sample transition } (s,a,s')}, \quad t \ge 0$$

Q-learning: a stochastic approximation algorithm

Chris Watkins

Peter Dayan

Stochastic approximation for solving Bellman equation $\mathcal{T}(Q) - Q = 0$

$$\underbrace{Q_{t+1}(s,a) = Q_t(s,a) + \eta_t \big(\mathcal{T}_t(Q_t)(s,a) - Q_t(s,a)\big)}_{\text{sample transition } (s,a,s')}, \quad t \ge 0$$

$$\mathcal{T}_t(Q)(s, a) = r(s, a) + \gamma \max_{a'} Q(s', a')$$

$$\mathcal{T}(Q)(s, a) = r(s, a) + \gamma \mathop{\mathbb{E}}_{s' \sim P(\cdot \mid s, a)} \left[\max_{a'} Q(s', a') \right]$$

Model-free RL

- 1. Basics of Q-learning
- 2. Synchronous Q-learning and variance reduction (simulator)
- 3. Asynchronous Q-learning (Markovian data)
- 4. Q-learning with lower confidence bounds (offline RL)
- 5. Q-learning with upper confidence bounds (online RL)

A generative model / simulator

Each iteration, draw an independent sample (s, a, s') for given (s, a)

Synchronous Q-learning

Chris Watkins

Peter Dayan

$$\begin{aligned} &\textbf{for } t = 0, 1, \dots, \textcolor{red}{T} \\ &\textbf{for } \mathsf{each} \ (s, a) \in \mathcal{S} \times \mathcal{A} \\ &\mathsf{draw } \mathsf{a } \mathsf{sample} \ (s, a, s'), \ \mathsf{run} \\ &Q_{t+1}(s, a) = (1 - \eta_t) Q_t(s, a) + \eta_t \Big\{ r(s, a) + \gamma \max_{s'} Q_t(s', a') \Big\} \end{aligned}$$

synchronous: all state-action pairs are updated simultaneously

• total sample size: $T|\mathcal{S}||\mathcal{A}|$

Sample complexity of synchronous Q-learning

Theorem 2 (Li, Cai, Chen, Wei, Chi'21)

For any $0<\varepsilon\leq 1$, synchronous Q-learning yields $\|\widehat{Q}-Q^\star\|_\infty\leq \varepsilon$ with high prob. and $\mathbb{E}[\|\widehat{Q}-Q^\star\|_\infty]\leq \varepsilon$, with sample size at most

$$\begin{cases} \widetilde{O}\Big(\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^4\varepsilon^2}\Big) & \text{if } |\mathcal{A}| \geq 2\\ \widetilde{O}\Big(\frac{|\mathcal{S}|}{(1-\gamma)^3\varepsilon^2}\Big) & \text{if } |\mathcal{A}| = 1 \end{cases} \qquad (\textit{TD learning})$$

Sample complexity of synchronous Q-learning

Theorem 2 (Li, Cai, Chen, Wei, Chi'21)

For any $0<\varepsilon\leq 1$, synchronous Q-learning yields $\|\widehat{Q}-Q^\star\|_\infty\leq \varepsilon$ with high prob. and $\mathbb{E}[\|\widehat{Q}-Q^\star\|_\infty]\leq \varepsilon$, with sample size at most

$$\begin{cases} \widetilde{O}\Big(\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^4\varepsilon^2}\Big) & \text{if } |\mathcal{A}| \geq 2\\ \widetilde{O}\Big(\frac{|\mathcal{S}|}{(1-\gamma)^3\varepsilon^2}\Big) & \text{if } |\mathcal{A}| = 1 \end{cases} \qquad (\textit{TD learning})$$

• Covers both constant and rescaled linear learning rates:

$$\eta_t \equiv \frac{1}{1 + \frac{c_1(1-\gamma)T}{\log^2 T}} \quad \text{or} \quad \eta_t = \frac{1}{1 + \frac{c_2(1-\gamma)t}{\log^2 T}}$$

Sample complexity of synchronous Q-learning

Theorem 2 (Li, Cai, Chen, Wei, Chi'21)

For any $0<\varepsilon\leq 1$, synchronous Q-learning yields $\|\widehat{Q}-Q^\star\|_\infty\leq \varepsilon$ with high prob. and $\mathbb{E}[\|\widehat{Q}-Q^\star\|_\infty]\leq \varepsilon$, with sample size at most

$$\begin{cases} \widetilde{O}\Big(\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^4\varepsilon^2}\Big) & \text{if } |\mathcal{A}| \geq 2 \\ \widetilde{O}\Big(\frac{|\mathcal{S}|}{(1-\gamma)^3\varepsilon^2}\Big) & \text{if } |\mathcal{A}| = 1 \end{cases} \qquad \text{(minimax optimal)}$$

other papers	sample complexity
Even-Dar & Mansour '03	$2^{\frac{1}{1-\gamma}} \frac{ \mathcal{S} \mathcal{A} }{(1-\gamma)^4 \varepsilon^2}$
Beck & Srikant '12	$\frac{ \mathcal{S} ^2 \mathcal{A} ^2}{(1-\gamma)^5\varepsilon^2}$
Wainwright '19	$\frac{ \mathcal{S} \mathcal{A} }{(1-\gamma)^5\varepsilon^2}$
Chen, Maguluri, Shakkottai, Shanmugam '20	$\frac{ \mathcal{S} \mathcal{A} }{(1-\gamma)^5\varepsilon^2}$

All this requires sample size at least $\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^4\varepsilon^2}$ ($|\mathcal{A}| \geq 2$) ...

All this requires sample size at least $\frac{|S||A|}{(1-\gamma)^4 \varepsilon^2}$ ($|A| \ge 2$) ...

Question: Is Q-learning sub-optimal, or is it an analysis artifact?

A numerical example: $\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^4\varepsilon^2}$ samples seem necessary . . .

— observed in Wainwright '19

Q-learning is NOT minimax optimal

Theorem 3 (Li, Cai, Chen, Wei, Chi, 2021)

For any $0<\varepsilon\leq 1$, there exists an MDP with $|\mathcal{A}|\geq 2$ such that to achieve $\|\widehat{Q}-Q^\star\|_\infty\leq \varepsilon$, synchronous Q-learning needs at least

$$\widetilde{\Omega}\left(\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^4 \varepsilon^2} \right)$$
 samples

Q-learning is NOT minimax optimal

Theorem 3 (Li, Cai, Chen, Wei, Chi, 2021)

For any $0<\varepsilon\leq 1$, there exists an MDP with $|\mathcal{A}|\geq 2$ such that to achieve $\|\widehat{Q}-Q^\star\|_\infty\leq \varepsilon$, synchronous Q-learning needs at least

$$\widetilde{\Omega}\left(\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^4 \varepsilon^2} \right)$$
 samples

- Tight algorithm-dependent lower bound
- Holds for both constant and rescaled linear learning rates

Q-learning is NOT minimax optimal

Theorem 3 (Li, Cai, Chen, Wei, Chi, 2021)

For any $0<\varepsilon\leq 1$, there exists an MDP with $|\mathcal{A}|\geq 2$ such that to achieve $\|\widehat{Q}-Q^\star\|_\infty\leq \varepsilon$, synchronous Q-learning needs at least

$$\widetilde{\Omega}\left(rac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^4arepsilon^2}
ight)$$
 samples

Improving sample complexity via variance reduction

— a powerful idea from finite-sum stochastic optimization

Variance-reduced Q-learning updates (Wainwright '19)

— inspired by SVRG (Johnson & Zhang '13)

$$Q_t(s,a) = (1-\eta)Q_{t-1}(s,a) + \eta \Big(\mathcal{T}_t(Q_{t-1}) \underbrace{-\mathcal{T}_t(\overline{Q}) + \widetilde{\mathcal{T}}(\overline{Q})}_{\text{to help reduce variability}} \Big)(s,a)$$

Variance-reduced Q-learning updates (Wainwright '19)

— inspired by SVRG (Johnson & Zhang '13)

$$Q_t(s,a) = (1-\eta)Q_{t-1}(s,a) + \eta \Big(\mathcal{T}_t(Q_{t-1}) \underbrace{-\mathcal{T}_t(\overline{Q}) + \widetilde{\mathcal{T}}(\overline{Q})}_{\text{use } \overline{Q} \text{ to help reduce variability}} \Big)(s,a)$$

- \overline{Q} : some <u>reference</u> Q-estimate
- $\widetilde{\mathcal{T}}$: empirical Bellman operator (using a <u>batch</u> of samples)

$$\mathcal{T}_{t}(Q)(s, a) = r(s, a) + \gamma \max_{a'} Q(s', a')$$

$$\widetilde{\mathcal{T}}(Q)(s, a) = r(s, a) + \gamma \underset{s' \sim \widetilde{P}(\cdot|s, a)}{\mathbb{E}} \left[\max_{a'} Q(s', a') \right]$$

An epoch-based stochastic algorithm

— inspired by Johnson & Zhang '13

for each epoch

- 1. update \overline{Q} and $\widetilde{\mathcal{T}}(\overline{Q})$ (which stay fixed in the rest of the epoch)
- 2. run variance-reduced Q-learning updates iteratively

Sample complexity of variance-reduced Q-learning

Theorem 4 (Wainwright '19)

For any $0 < \varepsilon \le 1$, sample complexity for variance-reduced synchronous **Q-learning** to yield $\|\widehat{Q} - Q^\star\|_{\infty} \le \varepsilon$ is at most

$$\widetilde{O}\bigg(\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^3\varepsilon^2}\bigg)$$

• allows for more aggressive learning rates

Sample complexity of variance-reduced Q-learning

Theorem 4 (Wainwright '19)

For any $0<\varepsilon\leq 1$, sample complexity for variance-reduced synchronous **Q-learning** to yield $\|\widehat{Q}-Q^\star\|_\infty\leq \varepsilon$ is at most

$$\widetilde{O}\left(\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^3 \varepsilon^2}\right)$$

- allows for more aggressive learning rates

Model-free RL

- 1. Basics of Q-learning
- 2. Synchronous Q-learning and variance reduction (simulator)
- 3. Asynchronous Q-learning (Markovian data)
- 4. Q-learning with lower confidence bounds (offline RL)
- 5. Q-learning with upper confidence bounds (online RL)

Markovian samples and behavior policy

Observed: $\{s_t, a_t, r_t\}_{t \geq 0}$ generated by behavior policy π_b

Goal: learn optimal value V^{\star} and Q^{\star} based on sample trajectory

Markovian samples and behavior policy

Key quantities of sample trajectory

minimum state-action occupancy probability (uniform coverage)

$$\mu_{\min} := \min \underbrace{\mu_{\pi_{\mathrm{b}}}(s, a)}_{\text{stationary distribution}} \in \left[0, \frac{1}{|\mathcal{S}||\mathcal{A}|}\right]$$

ullet mixing time: $t_{
m mix}$

Chris Watkins

Peter Dayan

$$\underbrace{Q_{t+1}(s_t, a_t) = (1 - \eta_t)Q_t(s_t, a_t) + \eta_t \mathcal{T}_t(Q_t)(s_t, a_t)}_{\text{only update } (s_t, a_t)\text{-th entry}}, \quad t \geq 0$$

Chris Watkins

Peter Dayan

$$\underbrace{Q_{t+1}(s_t, a_t) = (1 - \eta_t)Q_t(s_t, a_t) + \eta_t \mathcal{T}_t(Q_t)(s_t, a_t)}_{\text{only update } (s_t, a_t) \text{-th entry}}, \quad t \ge 0$$

$$\mathcal{T}_t(Q)(s_t, a_t) = r(s_t, a_t) + \gamma \max_{a'} Q(s_{t+1}, a')$$

• asynchronous: only a single entry is updated each iteration

- asynchronous: only a single entry is updated each iteration
- off-policy: target policy $\pi^* \neq$ behavior policy π_b

Sample complexity of asynchronous Q-learning

Theorem 5 (Li, Cai, Chen, Wei, Chi'21)

For any $0 < \varepsilon \le \frac{1}{1-\gamma}$, sample complexity of async Q-learning to yield $\|\widehat{Q} - Q^*\|_{\infty} \le \varepsilon$ with high prob. (or $\mathbb{E}[\|\widehat{Q} - Q^*\|_{\infty}] \le \varepsilon$) is at most

$$\frac{1}{\mu_{\min}(1-\gamma)^4 \varepsilon^2} + \frac{t_{\min}}{\mu_{\min}(1-\gamma)} \qquad \text{(up to log factor)}$$

Sample complexity of asynchronous Q-learning

Theorem 5 (Li, Cai, Chen, Wei, Chi'21)

For any $0<\varepsilon\leq \frac{1}{1-\gamma}$, sample complexity of async Q-learning to yield $\|\widehat{Q}-Q^\star\|_\infty\leq \varepsilon$ with high prob. (or $\mathbb{E}[\|\widehat{Q}-Q^\star\|_\infty]\leq \varepsilon$) is at most $\frac{1}{\mu_{\min}(1-\gamma)^4\varepsilon^2}+\frac{t_{\min}}{\mu_{\min}(1-\gamma)} \qquad \text{(up to log factor)}$

other papers	sample complexity
Even-Dar, Mansour '03	$\frac{(t_{cover})^{\frac{1}{1-\gamma}}}{(1-\gamma)^4 \varepsilon^2}$
Even-Dar, Mansour '03	$\left(rac{t_{ ext{cover}}^{1+3\omega}}{(1-\gamma)^4arepsilon^2} ight)^{rac{1}{\omega}}+\left(rac{t_{ ext{cover}}}{1-\gamma} ight)^{rac{1}{1-\omega}}$, $\omega\in(rac{1}{2},1)$
Beck & Srikant '12	$\frac{t_{cover}^3 \mathcal{S} \mathcal{A} }{(1-\gamma)^5 \varepsilon^2}$
Qu & Wierman '20	$\frac{t_{\rm mix}}{\mu_{\rm min}^2 (1-\gamma)^5 \varepsilon^2}$
Li, Wei, Chi, Gu, Chen '20	$\frac{1}{\mu_{\min}(1-\gamma)^5\varepsilon^2} + \frac{t_{\min}}{\mu_{\min}(1-\gamma)}$
Chen, Maguluri, Shakkottai, Shanmugam '21	$rac{1}{\mu_{\min}^3(1-\gamma)^5arepsilon^2} + ext{other-term}(t_{\mathrm{mix}})$

Linear dependency on $1/\mu_{\rm min}$

if we take
$$\mu_{\min} symp rac{1}{|\mathcal{S}||\mathcal{A}|}$$
, $t_{\mathrm{cover}} symp rac{t_{\mathrm{mix}}}{\mu_{\mathrm{min}}}$

Effect of mixing time on sample complexity

$$\frac{1}{\mu_{\min}(1-\gamma)^4\varepsilon^2} + \frac{t_{\min}}{\mu_{\min}(1-\gamma)}$$

• reflects cost taken to reach steady state

Effect of mixing time on sample complexity

$$\frac{1}{\mu_{\min}(1-\gamma)^4\varepsilon^2} + \frac{t_{\min}}{\mu_{\min}(1-\gamma)}$$

- reflects cost taken to reach steady state
- one-time expense (almost independent of ε)
 - it becomes amortized as algorithm runs

— prior art:
$$\frac{t_{\text{mix}}}{\mu_{\text{min}}^2(1-\gamma)^5\varepsilon^2}$$
 (Qu & Wierman '20)

Model-free RL

- 1. Basics of Q-learning
- 2. Synchronous Q-learning and variance reduction (simulator)
- 3. Asynchronous Q-learning (Markovian data)
- 4. Q-learning with lower confidence bounds (offline RL)
- 5. Q-learning with upper confidence bounds (online RL)

Recap: offline RL / batch RL

Historical dataset $\mathcal{D} = \{(s^{(i)}, a^{(i)}, s'^{(i)})\}$: N independent copies of

$$s \sim \rho^{\mathsf{b}}, \qquad a \sim \pi^{\mathsf{b}}(\cdot \,|\, s), \qquad s' \sim P(\cdot \,|\, s, a)$$

for some state distribution $\rho^{\rm b}$ and behavior policy $\pi^{\rm b}$

Recap: offline RL / batch RL

Historical dataset $\mathcal{D} = \{(s^{(i)}, a^{(i)}, s'^{(i)})\}$: N independent copies of

$$s \sim \rho^{\mathsf{b}}, \qquad a \sim \pi^{\mathsf{b}}(\cdot \,|\, s), \qquad s' \sim P(\cdot \,|\, s, a)$$

for some state distribution $\rho^{\rm b}$ and behavior policy $\pi^{\rm b}$

Single-policy concentrability

$$C^* \coloneqq \max_{s,a} \frac{d^{\pi^*}(s,a)}{d^{\pi^b}(s,a)} \ge 1$$

where d^π : occupancy distribution under π

- captures distributional shift
- allows for partial coverage

How to design offline model-free algorithms with optimal sample efficiency?

How to design offline model-free algorithms with optimal sample efficiency?

LCB-Q: Q-learning with LCB penalty

— Shi et al. '22, Yan et al. '22

$$Q_{t+1}(s_t, a_t) \leftarrow \underbrace{\left(1 - \eta_t\right) Q_t(s_t, a_t) + \eta_t \mathcal{T}_t\left(Q_t\right)\left(s_t, a_t\right)}_{\text{classical Q-learning}} - \underbrace{\eta_t \underbrace{b_t(s_t, a_t)}_{\text{LCB penalty}}}_{\text{LCB penalty}}$$

LCB-Q: Q-learning with LCB penalty

— Shi et al. '22, Yan et al. '22

$$Q_{t+1}(s_t, a_t) \leftarrow \underbrace{\left(1 - \eta_t\right) Q_t(s_t, a_t) + \eta_t \mathcal{T}_t\left(Q_t\right)\left(s_t, a_t\right)}_{\text{classical Q-learning}} - \underbrace{\eta_t \underbrace{b_t(s_t, a_t)}_{\text{LCB penalty}}}_{\text{LCB penalty}}$$

- $b_t(s,a)$: Hoeffding-style confidence bound
- pessimism in the face of uncertainty

LCB-Q: Q-learning with LCB penalty

— Shi et al. '22, Yan et al. '22

$$Q_{t+1}(s_t, a_t) \leftarrow \underbrace{\left(1 - \eta_t\right) Q_t(s_t, a_t) + \eta_t \mathcal{T}_t\left(Q_t\right)\left(s_t, a_t\right)}_{\text{classical Q-learning}} - \underbrace{\eta_t \underbrace{b_t(s_t, a_t)}_{\text{LCB penalty}}}_{\text{LCB penalty}}$$

- $b_t(s,a)$: Hoeffding-style confidence bound
- pessimism in the face of uncertainty

sample size:
$$\tilde{O}ig(\frac{SC^\star}{(1-\gamma)^5\varepsilon^2}ig) \quad \Longrightarrow \quad \text{sub-optimal by a factor of } \frac{1}{(1-\gamma)^2}$$

Issue: large variability in stochastic update rules

— Shi et al. '22, Yan et al. '22

$$\begin{split} Q_{t+1}(s_t, a_t) \leftarrow (1 - \eta_t) Q_t(s_t, a_t) - \eta_t \underbrace{b_t(s_t, a_t)}_{\text{LCB penalty}} \\ + \eta_t \Big(\underbrace{\mathcal{T}_t(Q_t) - \mathcal{T}_t(\overline{Q})}_{\text{advantage}} + \underbrace{\widehat{\mathcal{T}}(\overline{Q})}_{\text{reference}} \Big) (s_t, a_t) \end{split}$$

— Shi et al. '22, Yan et al. '22

$$\begin{split} Q_{t+1}(s_t, a_t) \leftarrow (1 - \eta_t) Q_t(s_t, a_t) - \eta_t \underbrace{b_t(s_t, a_t)}_{\text{LCB penalty}} \\ + \eta_t \Big(\underbrace{\mathcal{T}_t(Q_t) - \mathcal{T}_t(\overline{Q})}_{\text{advantage}} + \underbrace{\widehat{\mathcal{T}}(\overline{Q})}_{\text{reference}} \Big) (s_t, a_t) \end{split}$$

incorporates variance reduction into LCB-Q

— Shi et al. '22, Yan et al. '22

$$\begin{split} Q_{t+1}(s_t, a_t) \leftarrow (1 - \eta_t) Q_t(s_t, a_t) - \eta_t \underbrace{b_t(s_t, a_t)}_{\text{LCB penalty}} \\ + \eta_t \Big(\underbrace{\mathcal{T}_t(Q_t) - \mathcal{T}_t(\overline{Q})}_{\text{advantage}} + \underbrace{\widehat{\mathcal{T}}(\overline{Q})}_{\text{reference}} \Big) (s_t, a_t) \end{split}$$

incorporates variance reduction into LCB-Q

Theorem 6 (Yan, Li, Chen, Fan '22, Shi, Li, Wei, Chen, Chi '22)

For $\varepsilon \in (0,1-\gamma]$, LCB-Q-Advantage achieves $V^\star(\rho) - V^{\widehat{\pi}}(\rho) \leq \varepsilon$ with optimal sample complexity $\widetilde{O}\big(\frac{SC^\star}{(1-\gamma)^3\varepsilon^2}\big)$

Model-free offline RL attains sample optimality too!

— with some burn-in cost though . . .

Model-free RL

- 1. Basics of Q-learning
- 2. Synchronous Q-learning and variance reduction (simulator)
- 3. Asynchronous Q-learning (Markovian data)
- 4. Q-learning with lower confidence bounds (offline RL)
- 5. Q-learning with upper confidence bounds (online RL)

Sequentially execute MDP for K episodes, each consisting of H steps

Sequentially execute MDP for K episodes, each consisting of H steps

Sequentially execute MDP for K episodes, each consisting of H steps

Sequentially execute MDP for K episodes, each consisting of H steps — sample size: T = KH

exploration (exploring unknowns) vs. exploitation (exploiting learned info)

Regret: gap between learned policy & optimal policy

Regret: gap between learned policy & optimal policy

Regret: gap between learned policy & optimal policy

Performance metric: given initial states $\{s_1^k\}_{k=1}^K$, define

chosen by nature/adversary

$$\mathsf{Regret}(T) \ := \ \sum_{k=1}^K \left(V_1^\star(s_1^k) - V_1^{\pi^k}(s_1^k) \right)$$

Lower bound

(Domingues et al. '21)

 $Regret(T) \gtrsim \sqrt{H^2SAT}$

Existing algorithms

- UCB-VI: Azar et al. '17
 - UBFV: Dann et al. '17
 - UCB-Q-Hoeffding: Jin et al. '18
 - UCB-Q-Bernstein: Jin et al. '18
 - UCB2-Q-Bernstein: Bai et al. '19
 - EULER: Zanette et al. '19
- UCB-Q-Advantage: Zhang et al. '20
 UCB-M-Q: Menard et al. '21
- Q-EarlySettled-Advantage: Li et al. '21

Which model-free algorithms are sample-efficient for online RL?

$$Q_h(s_h, a_h) \leftarrow \underbrace{(1 - \eta_k)Q_h(s_h, a_h) + \eta_k \mathcal{T}_k\left(Q_{h+1}\right)(s_h, a_h)}_{\text{classical Q-learning}} + \underbrace{\eta_k \underbrace{b_h(s_h, a_h)}_{\text{exploration bonus}}}_{\text{exploration bonus}}$$

$$Q_h(s_h, a_h) \leftarrow \underbrace{\left(1 - \eta_k\right) Q_h(s_h, a_h) + \eta_k \mathcal{T}_k\left(Q_{h+1}\right)(s_h, a_h)}_{\text{classical Q-learning}} + \underbrace{\eta_k \underbrace{b_h(s_h, a_h)}_{\text{exploration bonus}}}_{\text{exploration bonus}}$$

- b_h(s, a): upper confidence bound; encourage exploration
 optimism in the face of uncertainty
- inspired by UCB bandit algorithm (Lai, Robbins '85)

$$Q_h(s_h, a_h) \leftarrow \underbrace{\left(1 - \eta_k\right) Q_h(s_h, a_h) + \eta_k \mathcal{T}_k\left(Q_{h+1}\right)(s_h, a_h)}_{\text{classical Q-learning}} + \underbrace{\eta_k \underbrace{b_h(s_h, a_h)}_{\text{exploration bonus}}}_{\text{exploration bonus}}$$

- $b_h(s,a)$: upper confidence bound; encourage exploration optimism in the face of uncertainty
- inspired by UCB bandit algorithm (Lai, Robbins '85)

$$\mathsf{Regret}(T) \lesssim \sqrt{{\color{red} H^3} SAT} \quad \Longrightarrow \quad \mathsf{sub\text{-}optimal\ by\ a\ factor\ of\ } \sqrt{H}$$

$$Q_h(s_h, a_h) \leftarrow \underbrace{\left(1 - \eta_k\right) Q_h(s_h, a_h) + \eta_k \mathcal{T}_k\left(Q_{h+1}\right)(s_h, a_h)}_{\text{classical Q-learning}} + \underbrace{\eta_k \underbrace{b_h(s_h, a_h)}_{\text{exploration bonus}}}_{\text{exploration bonus}}$$

- $b_h(s,a)$: upper confidence bound; encourage exploration optimism in the face of uncertainty
- inspired by UCB bandit algorithm (Lai, Robbins '85)

$$\mathsf{Regret}(T) \lesssim \sqrt{H^3 SAT} \quad \Longrightarrow \quad \mathsf{sub\text{-}optimal} \ \mathsf{by} \ \mathsf{a} \ \mathsf{factor} \ \mathsf{of} \ \sqrt{H}$$

Issue: large variability in stochastic update rules

Incorporates variance reduction into UCB-Q: — Zhang, Zhou, Ji '20

asymptotically regret-optimal

Incorporates variance reduction into UCB-Q: — Zhang, Zhou, Ji'20

- asymptotically regret-optimal
- Issue: high burn-in cost $O(S^6A^4H^{28})$

Incorporates variance reduction into UCB-Q: — Zhang, Zhou, Ji '20

- asymptotically regret-optimal
- **Issue:** high burn-in cost $O(S^6A^4H^{28})$

One additional idea: early settlement of reference updates — Li, Shi, Chen, Chi '23

Incorporates variance reduction into UCB-Q: — Zhang, Zhou, Ji '20

- asymptotically regret-optimal
- **Issue:** high burn-in cost $O(S^6A^4H^{28})$

One additional idea: early settlement of reference updates — *Li, Shi, Chen, Chi'23*

- ullet regret-optimal w/ near-minimal burn-in cost in S and A
- memory-efficient O(SAH)
- computationally efficient: runtime ${\cal O}(T)$

Summary of this part

Model-free RL can achieve memory efficiency, computational efficiency, and sample efficiency at once!

— with some burn-in cost though

Reference I

- "Model-based multi-agent RL in zero-sum Markov games with near-optimal sample complexity," K. Zhang, S. Kakade, T. Basar, L. Yang, NeurIPS, 2020
- "When can we learn general-sum Markov games with a large number of players sample-efficiently?" Z. Song, S. Mei, Y. Bai, ICLR 2022
- "V-learning: A simple, efficient, decentralized algorithm for multiagent RL," C. Jin, Q. Liu, Y. Wang, T. Yu, 2021
- "Minimax-optimal multi-agent RL in markov games with a generative model," G. Li, Y. Chi, Y. Wei, Y. Chen, NeurIPS, 2022
- "The complexity of Markov equilibrium in stochastic games,"
 C. Daskalakis, N. Golowich, K. Zhang, COLT, 2023
- "A stochastic approximation method," H. Robbins, S. Monro, Annals of mathematical statistics, 1951

Reference II

- "Robust stochastic approximation approach to stochastic programming," A. Nemirovski, A. Juditsky, G. Lan, A. Shapiro, SIAM Journal on optimization, 2009
- "Learning from delayed rewards," C. Watkins, 1989
- "Q-learning," C. Watkins, P. Dayan, Machine learning, 1992
- "Learning to predict by the methods of temporal differences,"
 R. Sutton, Machine learning, 1988
- "Analysis of temporal-diffference learning with function approximation,"
 B. van Roy, J. Tsitsiklis, IEEE transactions on automatic control, 1997
- "Learning Rates for Q-learning," E. Even-Dar, Y. Mansour, Journal of machine learning Research, 2003
- "The asymptotic convergence-rate of Q-learning," C. Szepesvari, NeurIPS, 1998

Reference III

- "Stochastic approximation with cone-contractive operators: Sharp ℓ_{∞} bounds for Q-learning," M. Wainwright, arXiv:1905.06265, 2019
- "Is Q-Learning minimax optimal? A tight sample complexity analysis,"
 G. Li, Y. Wei, Y. Chi, Y. Chen, accepted to Operations Research, 2023
- "Accelerating stochastic gradient descent using predictive variance reduction," R. Johnson, T. Zhang, NeurIPS, 2013
- "Variance-reduced Q-learning is minimax optimal," M. Wainwright, arXiv:1906.04697, 2019
- "Asynchronous stochastic approximation and Q-learning," J. Tsitsiklis, Machine learning, 1994
- "On the convergence of stochastic iterative dynamic programming algorithms," T. Jaakkola, M. Jordan, S. Singh, Neural computation, 1994

Reference IV

- "Error bounds for constant step-size Q-learning," C. Beck, R. Srikant, Systems and control letters, 2012
- "Sample complexity of asynchronous Q-learning: sharper analysis and variance reduction," G. Li, Y. Wei, Y. Chi, Y. Gu, Y. Chen, NeurIPS 2020
- "Finite-time analysis of asynchronous stochastic approximation and Q-learning," G. Qu, A. Wierman, COLT 2020.
- "Pessimistic Q-learning for offline reinforcement learning: Towards optimal sample complexity," L. Shi, G. Li, Y. Wei, Y. Chen, Y. Chi, ICML 2022.
- "The efficacy of pessimism in asynchronous Q-learning," Y. Yan, G. Li, Y. Chen, J. Fan, arXiv:2203.07368, 2022.
- "Asymptotically efficient adaptive allocation rules," T. L. Lai, H. Robbins, Advances in applied mathematics, vol. 6, no. 1, 1985.

Reference V

- "Is Q-learning provably efficient?" C. Jin, Z. Allen-Zhu, S. Bubeck, and M. Jordan, NeurIPS 2018.
- "Almost optimal model-free reinforcement learning via reference-advantage decomposition," Z. Zhang, Y. Zhou, X. Ji, NeurIPS 2020.
- "Breaking the sample complexity barrier to regret-optimal model-free reinforcement learning," G. Li, L. Shi, Y. Chen, Y. Chi, Information and Inference: A Journal of the IMA, 2023.