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Multi-agent RL with a generative model



Multi-agent reinforcement learning (MARL)
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Two-player zero-sum Markov games (finite-horizon)

state sp, ction ap
P » max-player —_— —I
state sp_— action by, I
___________ 'i m|n—player’— —_ —I

4===7 environment —
< : '

e S =[9]: state space e A = [A]: action space of max-player

e H: horizon e 3 = [B]: action space of min-player

4/ 53



Two-player zero-sum Markov games (finite-horizon)

state sp ction ap
P ) max-player -_— —I

reward 75,

state S J— action by,
___________ >l min-player —— _|
reward -7,

4===7 environment —
< : '

e S =[9]: state space e A = [A]: action space of max-player

e H: horizon e 3 = [B]: action space of min-player

e immediate reward: max-player r(s,a,b) € [0, 1]
min-player —r(s, a,b)
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Two-player zero-sum Markov games (finite-horizon)

state Sp, action

N pn (- | sn)
___________ max-player — — — —I

reward 75,
action

state sp K by ~ Vh(' ‘ Sh) I
----------- @ - _I
reward -7,

4===7 environment —
< : '

e S = [S]: state space e A = [A]: action space of max-player
e H: horizon e 3 = [B]: action space of min-player
e immediate reward: max-player r(s,a,b) € [0, 1]

min-player —r(s, a,b)
o 1 :S x[H] = A(A): policy of max-player
v:S x [H|] — A(B): policy of min-player
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Two-player zero-sum Markov games (finite-horizon)

action

state Sp ~ G
___________ max-player _—— —I

reward 75,
action

state sp K by ~ Vh(' ‘ Sh) I
----------- @ - _I
reward -7, I

4===7 environment —
< : '

next state
Sha1 ~ Pu(- | sh, an, bn)

e S =[9]: state space e A = [A]: action space of max-player
e H: horizon e 3 = [B]: action space of min-player
e immediate reward: max-player r(s,a,b) € [0, 1]
min-player —r(s, a,b)
o 1 :S x[H] = A(A): policy of max-player
v:S x [H|] — A(B): policy of min-player
e P,(-|s,a,b): unknown transition probabilities
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Value function under independent policies (i, ) (no coordination)

H
Vi (s) :=E [Z T1(8h, an, br) ‘ 51 = S]
h=1
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Value function under independent policies (4, ) (no coordination)

H
VIY(s) = | > rh(Sh; an, bn) ’ s1=15
h=1

state s

which action a
to take?

e Each agent seeks optimal policy maximizing her own value
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Value function under independent policies (4, ) (no coordination)

H
Vi (s) :=E [Z T1(8h, an, br) ‘ 51 = 8]
h=1

¢ S .
r t\x\\ & N /”,W
L - which action b o
R e =
PR state s N
' \g “

e Each agent seeks optimal policy maximizing her own value

e But two agents have conflicting goals ...
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Compromise: Nash equilibrium (NE)

John von Neumann John Nash
An NE pOliC pair /L*, v*) obeys
Y Y

* * gk . *
max VY =VHF Y =minVH* Y
n v
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Compromise: Nash equilibrium (NE)

John von Neumann John Nash
An NE policy pair (u*, v*) obeys

* * % . *
max VY =VHF Y =minVH* Y
n v

e no unilateral deviation is beneficial
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Compromise: Nash equilibrium (NE)

John von Neumann John Nash
An e-NE policy pair (i, 7) obeys

max VY —e < VHY <minV*Y 4 ¢
m v

e no unilateral deviation is beneficial

e no coordination between two agents (they act independently)
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Learning NEs with a simulator

stmulator

input: any (s,a,b,h)
output: an independent sample s ~ Py(-| s, a,b)
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Learning NEs with a simulator

stmulator

input: any (s,a,b,h)
output: an independent sample s ~ Py(-| s, a,b)

Question: how many samples are sufficient to
learn an e-Nash policy pair?
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Model-based approach (non-adaptive sampling)

— Zhang, Kakade, Basar, Yang '20

for any (s, h)

1. for each (s, a,b, h), call simulator N times
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Model-based approach (non-adaptive sampling)

— Zhang, Kakade, Basar, Yang '20

for each (a,b)

’_’ _____________________ , catl generative model
N times

for any (s, h)

1. for each (s, a,b, h), call simulator N times
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Model-based approach (non-adaptive sampling)

— Zhang, Kakade, Basar, Yang '20

for each (a,b)

empirical
model P

’ _____________________ , catl generative model
N times

for any (s, h)

1. for each (s, a,b, h), call simulator N times
2. build empirical model P
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Model-based approach (non-adaptive sampling)

— Zhang, Kakade, Basar, Yang '20

for each (a, b)

planning
oracle
empirical | ()
model P
A
" _____________________ , cail gewnerative model
N times

for any (s, h)
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Model-based approach (non-adaptive sampling)

— Zhang, Kakade, Basar, Yang '20

for each (a, b)

planning
oracle
empirical | ()
model P
A
" _____________________ , cail gewnerative model
N times

for any (s, h)

1. for each (s,a,b,h), call simulator N times

2. build empirical model P, and run “plug-in" methods

. 4
sample complexity: H—fﬁ J
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Curse of multiple agents

~
s !E!
(<

1 player: A
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Curse of multiple agents

§ "‘\”&
1 player: A 2 players: AB
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Curse of multiple agents

1 player: A 2 players: AB m players: A1As--- Ay,
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Curse of multiple agents

1 player: A 2 players: AB m players: A1As--- Ay,
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horizon

HG
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V-learning
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\7 model-based
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##actions



horizon
A
V-learning
F6 [ .

model-based

e our algorithm

0 ; E >
A+B AB  4tactions

Theorem 1 (Li, Chi, Wei, Chen '22)
For any 0 < € < H, one can design an algorithm that finds an e-Nash
policy pair (i, V) with high prob., with sample complexity at most

~ (H4S(A + B))

0 = (minimax-optimal Ve)




Model-free / value-based RL

. Basics of Q-learning

. Synchronous Q-learning and variance reduction (simulator)
. Asynchronous Q-learning (Markovian data)

. Q-learning with lower confidence bounds (offline RL)

. Q-learning with upper confidence bounds (online RL)



Model-based vs. model-free RL

o model A,
7o | e P e RISIMIXIS) < T
& ~g
/ model-based \
samples value function
(experience) policy
2. ~
e wodel-free -

Model-based approach (“plug-in”
1. build empirical estimate P for P

2. planning based on empirical P

Model-free / value-based approach
— learning w/o modeling & estimating environment explicitly
— memory-efficient, online, ...
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finite-time &
finite-sample analysis

asymptotic
analysis

1989 1992 1994 2018

Focus of this part: classical Q-learning algorithm and its variants



A starting point: Bellman optimality principle

Bellman operator

TQ)(s,0) = r(s,q) +7 E |maxQ(s,a)]
N—— s'~P(:|s,a) a’'eA

immediate reward ——

next state's value

e one-step look-ahead
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A starting point: Bellman optimality principle

Bellman operator

TQ)(s,0) = r(s,q) +7 E |maxQ(s,a)]
N—— s'~P(:|s,a) a’'eA

immediate reward ——

next state's value

e one-step look-ahead

Bellman equation: Q* is unique solution to

T(Q) ="
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A starting point: Bellman optimality principle

Bellman operator

TQ)(s,0) = r(s,q) +7 E |maxQ(s,a)]
s'~P(-|s,a) La’EA
immediate reward
next state's value

e one-step look-ahead
Bellman equation: Q* is unique solution to
TQ)=0Q"

e takeaway message: it suffices to solve the
Bellman equation

. . . Richard Bellman
e challenge: how to solve it using stochastic

samples?
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Q-learning: a stochastic approximation algorithm

i

Chris Watkins Peter Dayan

Stochastic approximation for solving the Bellman equation

Robbins & Monro, 1951

TQ) -Q=0
where
@ e 1 g o)

immediate reward ;
next state’s value
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Q-learning: a stochastic approximation algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation 7(Q) —Q =0

Qt+1(37a) = Qt(37a) + nt(ﬁ(Qt)(SvaJ - Qt(sﬂa))v > 0

sample transition (s,a,s’)
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Q-learning: a stochastic approximation algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation 7(Q) —Q =0

Qt+1(37a) = Qt(sva) + nt(,n(Qt)(Sva> - Qt(sﬂa))v > 0

sample transition (s,a,s’)

Te(Q)(s,a) = 7(s,a) +ymax Q(s', a’)

T(Q)(s,a) =T(S,a)+’y E [maXQ(sl,a’)]

s/~P(:|s,a) - a

16/ 53



Model-free RL

. Basics of Q-learning

. Synchronous Q-learning and variance reduction (simulator)
. Asynchronous Q-learning (Markovian data)

. Q-learning with lower confidence bounds (offline RL)

. Q-learning with upper confidence bounds (online RL)



A generative model / simulator

— Kearns, Singh '99

generative model

Each iteration, draw an independent sample (s, a, s) for given (s,a)
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Synchronous Q-learning

&

Chris Watkins Peter Dayan

fort=0,1,...,7T
for each (s,a) e S x A

draw a sample (s, a,s’), run

Qer1(s,a) = (L —m)Qu(s,a) + Ut{r(s, a) + ymax Qu(s', a')}

synchronous: all state-action pairs are updated simultaneously J

e total sample size: T|S||A|
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Sample complexity of synchronous Q-learning

Theorem 2 (Li, Cai, Chen, Wei, Chi’21)

For any 0 < € < 1, synchronous Q-learning yields ||@ — Q"o <€
with high prob. and E[||Q — Q*||«] < €, with sample size at most

B(24L) 14> 2
6<i) if|Al =1 (TD learning)

(1—7)3e?
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Sample complexity of synchronous Q-learning

Theorem 2 (Li, Cai, Chen, Wei, Chi’21)

For any 0 < € < 1, synchronous Q-learning yields ||@ — Q"o <€
with high prob. and E[||Q — Q*||«] < €, with sample size at most

B(24L) 14> 2
6<i) if|Al =1 (TD learning)

(1—7)3e?

e Covers both constant and rescaled linear learning rates:

1 1
= c1(1—y)T or T = ca(1—7)t
1+ log? T 1+ log? T
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Sample complexity of synchronous Q-learning

Theorem 2 (Li, Cai, Chen, Wei, Chi’21)

For any 0 < € < 1, synchronous Q-learning yields ||@ — Q"o <€
with high prob. and E[||Q — Q*||«] < €, with sample size at most

=~ S||.A -
O(rft) iflAz2 ()
5(%) if|Al =1 (minimax optimal)

other papers sample complexity
= _ISll4l
Even-Dar & Mansour '03 21—~ o
(1=v)%e
kant’ IS|2]4)2
Beck & Srikant'12 (1—7)5e2
L ISIIAI
Wainwright '19 (i—7)5e2
Chen, Maguluri, Shakkottai, Shanmugam '20 I "‘}l )
(1—-v)°e
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All this requires sample size at least 7= HA‘ s (A >2) ...

D
SR
\\/

sample
complexity

(log scale)

1
log scale
- (log scale)



All this requires sample size at least J“i‘ s (A >2) ..

Pt
4 SR
sample K

complexity

(log scale)

1
log scale
- (log scale)

Question: Is Q-learning sub-optimal, or is it an analysis artifact?



. S
A numerical example: % samples seem necessary . ..
(1-7)%e

— observed in Wainwright '19

a=1
a=2 . 108
1 g
Q 1-p O ! g
—
©O—— 0 g
1- z
3]
=¥
Q
N
2 10°
4'7 - 1 E ——— Q-learning .
p frd T § , ———— Theory: N =< iy
")/ 10 10 15 20 25 30 35 40
discount complexity:
r(07 1) — O, 74(1, 1) — T.(l, 2) — 1 1scount complexity: g p
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Q-learning is NOT minimax optimal

Theorem 3 (Li, Cai, Chen, Wei, Chi, 2021)

For any 0 < & < 1, there exists an MDP with |A| > 2 such that to
achieve ||QQ — Q*||so < €, synchronous Q-learning needs at least

Q <(1‘f|’7¢4€2> samples
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Q-learning is NOT minimax optimal

Theorem 3 (Li, Cai, Chen, Wei, Chi, 2021)

For any 0 < & < 1, there exists an MDP with |A| > 2 such that to
achieve ||QQ — Q*||so < €, synchronous Q-learning needs at least

Q <(1‘f|’7¢452> samples

e Tight algorithm-dependent lower bound

e Holds for both constant and rescaled linear learning rates
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Q-learning is NOT minimax optimal

Theorem 3 (Li, Cai, Chen, Wei, Chi, 2021)

For any 0 < & < 1, there exists an MDP with |A| > 2 such that to
achieve ||QQ — Q*||so < €, synchronous Q-learning needs at least

Q <(1‘f|’7¢452> samples

sample b
complexity
(log scale)

log scale
1-7 (log ) 23/ 53



Improving sample complexity via variance reduction

— a powerful idea from finite-sum stochastic optimization



Variance-reduced Q-learning updates (Wainwright '19)
— inspired by SVRG (Johnson & Zhang '13)

Qu(s,a) = (1 =m)Qi-1(5,0) + n(Ti(Qr-1) =T(@Q) + T(@Q) )(s,a)

use @ to help reduce variability
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Variance-reduced Q-learning updates (Wainwright '19)
— inspired by SVRG (Johnson & Zhang '13)

Qu(s,a) = (1 =m)Qi-1(5,0) + n(Ti(Qr-1) =T(@Q) + T(@Q) )(s,a)

use @ to help reduce variability

e (Q: some reference Q-estimate

e 7 empirical Bellman operator (using a batch of samples)
Te(Q)(s,a) = 7(s,a) + ymax Q(s', a’)

TQa) =r(sa)+y  E  [maxQ(s',a)]

s'~P(ls,a)  ©
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An epoch-based stochastic algorithm

— inspired by Johnson & Zhang '13

update variance-reduced

Q-learning
)-)-)‘)‘
epoch 1 epoch 2 epoch 3

for each epoch
1. update Q and 7(Q) (which stay fixed in the rest of the epoch)

2. run variance-reduced Q-learning updates iteratively
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Sample complexity of variance-reduced Q-learning

Theorem 4 (Wainwright '19)

For any 0 < € < 1, sample complexity for variance-reduced
synchronous Q-learning to yield ||QQ — Q*||cc < € is at most

(=)

e allows for more aggressive learning rates
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Sample complexity of variance-reduced Q-learning

Theorem 4 (Wainwright '19)

For any 0 < € < 1, sample complexity for variance-reduced
synchronous Q-learning to yield ||QQ — Q*||cc < € is at most

(=)

e allows for more aggressive learning rates

e minimax-optimal for 0 < e <1
o remains suboptimal if 1 < ¢ < ;-

27/ 53



Model-free RL

. Basics of Q-learning

. Synchronous Q-learning and variance reduction (simulator)
. Asynchronous Q-learning (Markovian data)

. Q-learning with lower confidence bounds (offline RL)

. Q-learning with upper confidence bounds (online RL)



Markovian samples and behavior policy

observed: (So——($1——> 82 ——>83——>S4 ——>85 —;
H H 7 I 7 H 1 1

m(+1s0) mo([s1) mo(-ls2) mu(-[ss) ms([sa) mu(|ss)

O

learn:  so—— 81— 82— 83— 84— 85—
L ./ L/ L
ag ai az as a4 as

7 (lso) ™ (ls1) m*([s2) 7*(:|s3) 7*(|sa) 7*(-[s5)

Observed:  {s;,a,¢}t>0  generated by behavior policy 7
—_————

stationary Markovian trajectory

Goal: learn optimal value V* and Q* based on sample trajectory
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Markovian samples and behavior policy

observed: (So——>(81——> 82 —~—>83——>S4——>S5
‘\_— '\_a’l \_—" ! ;~_¢" '\\ -

‘o
ay az as a4 as

S

aq
T

m(+1s0) mo([s1) mo(-ls2) mu(-[ss) ms([sa) mu(|ss)

O

learn:  sp—— 81— 82— 83— S4——> 85
] 4] ] v % F 7
‘\_a' ‘\_,' ‘\_a' ‘\_4' ‘\_-/ ‘\_,

ag ai az as as as

il T

IS
7 (lso) ™ (ls1) m*([s2) 7*(:|s3) 7*(|sa) 7*(-[s5)

S|

Key quantities of sample trajectory
e minimum state-action occupancy probability (uniform coverage)
1
in := min s,a €0, =—
fmin m(ss0) € [0

. . stationary distribution
e mixing time: fmix

29/ 53



Q-learning on Markovian samples

Chris Watkins Peter Dayan

Qt+1(st,at) = (1 —m)Qe(st, ar) + meTe(Qt) (e, ae), >0

only update (s¢,at)-th entry
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Q-learning on Markovian samples

Chris Watkins Peter Dayan

Qt+1(st,at) = (1 —m)Qe(st, ar) + meTe(Qt) (e, ae), >0

only update (s¢,at)-th entry

Te(Q)(st, at) = r(st, ar) +ymax Q(si41,a’)
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Q-learning on Markovian samples

A
(s0 auj\ I
\ |
(silay |
observed: 88_) 8;1\ ) 3:2\_) Si ) Si /‘; si /‘} S| < K (52,/02)
ag ay az az ay as |
|
subo) | |
I |
Q(s,a)

e asynchronous: only a single entry is updated each iteration

31/ 53



Q-learning on Markovian samples

observed: (So——(s1——>S2——>/s3 84
) 4 %

s Lt L’ \

-~ - -
ag ay a2

%
!
g

\
as EZ
T

m(-s0) m([s1) mo(|s2) mb(-|s3) mu(-[sa) mu(-]s5)

A

ao)

k)

Q(s,a)

ar)l™

e asynchronous: only a single entry is updated each iteration

e off-policy: target policy n* # behavior policy m

Jaz)
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Sample complexity of asynchronous Q-learning

Theorem 5 (Li, Cai, Chen, Wei, Chi’21)
Forany 0 <e < ﬁ sample complexity of async Q-learning to yield
|Q — Q||coc < € with high prob. (or E[||Q — Q*||ec] < €) is at most
1 n tmix
fimin(1 = 7)€% pmin(1 —7)

(up to log factor)




Sample complexity of asynchronous Q-learning

Theorem 5 (Li, Cai, Chen, Wei, Chi’21)

FoAr any 0 <e < ﬁ sample comp/exitonf async Q-learning to yield
|Q — Q||coc < € with high prob. (or E[||Q — Q*||ec] < €) is at most

1 75mix
+ up to log factor
Mmin(1 - 7)452 Mmin(l - ’Y) ( g )

other papers sample complexity

Even-Dar, Mansour '03 (E“ff",))/:;;
) s (L1 1
Even-Dar, Mansour'03 (%)* + (fe) ™o, we (3,1)

Beck & Srikant '12 Lral9ll

Qu & Wierman '20 ;(tlmﬁ

Li, Wei, Chi, Gu, Chen '20 W + m

Chen, Maguluri, Shakkottai, Shanmugam '21

W -+ other-term(tmix)




Linear dependency on 1/imin

C%) ™
o F o4
IO O S

s =
et 8
2] g

sample o 2

: 3

complexity g S
g/E & NS
A FSEING
S /|« N NG
AR
A (]
9'!7 Q ﬁ@}p N\
s @)
S |SIAL

>0.21
\_-\eta\. 20'
>|S| A

tmix
Hmin

. o 1 -
if we take Mmin =< TSTAT teover X
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Effect of mixing time on sample complexity

Markov Chains
and Mixing Times

1 + tmix
,Ltmin(1 - ’7)452 /f‘min(1 - 7)

o reflects cost taken to reach steady state
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Effect of mixing time on sample complexity

Markov Chains
and Mixing Times

1 + tmix
,L‘min(1 - 7)452 Mmin(1 - 7)

o reflects cost taken to reach steady state

e one-time expense (almost independent of ¢)
— it becomes amortized as algorithm runs

— prior art: W (Qu & Wierman '20)

34/ 53



Model-free RL

. Basics of Q-learning

. Synchronous Q-learning and variance reduction (simulator)
. Asynchronous Q-learning (Markovian data)

. Q-learning with lower confidence bounds (offline RL)

. Q-learning with upper confidence bounds (online RL)



Recap: offline RL / batch RL

Historical dataset D = {(s¥,a(", s'¥)}: N independent copies of
Sprv aNﬂ-b("s)» S,NP('|Sva)

for some state distribution p® and behavior policy 7®
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Recap: offline RL / batch RL

Historical dataset D = {(s¥,a(", s'¥)}: N independent copies of
Sprv aNﬂ-b("s)» S,NP('|87G)

for some state distribution p® and behavior policy 7®

Single-policy concentrability
* T 4 ’ \\»\\
d™ (s,a
C* := max M >1 B \
s, d” (37 CL) 7 historical dataset D //\
where d™: occupancy distribution under 7 \}\ . \
| ! T r
e captures distributional shift

e allows for partial coverage

36/ 53



How to design offline model-free algorithms
with optimal sample efficiency?



How to design offline model-free algorithms
with optimal sample efficiency?

pessimism variance
(low confidence bounds) reduction

— | LCB-Q| = [LCB—Q—Advantage]




LCB-Q: Q-learning with LCB penalty

— Shi et al. '22, Yan et al. '22

QtJrl(st»at) <~ (1 - nt)Qt(Stvat) + 0Ty (Qt) (5t7 at) - ntbt(sta (lt)

———
classical Q-learning LCB penalty
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LCB-Q: Q-learning with LCB penalty

— Shi et al. '22, Yan et al. '22

QtJrl(st»at) <~ (1 - nt)Qt(Stvat) + 0Ty (Qt) (5t7 at) - ntbt(sta (lt)

———
classical Q-learning LCB penalty

e b.(s,a): Hoeffding-style confidence bound

e pessimism in the face of uncertainty
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LCB-Q: Q-learning with LCB penalty

— Shi et al. '22, Yan et al. '22

QtJrl(st»at) <~ (1 - nt)Qt(Stvat) + 0Ty (Qt) (5t7 at) - ntbt(sta (lt)

———
classical Q-learning LCB penalty

e b.(s,a): Hoeffding-style confidence bound

e pessimism in the face of uncertainty

sample size: é(ﬁ;?) =  sub-optimal by a factor of ﬁ; J

Issue: large variability in stochastic update rules

38/ 53



Q-learning with LCB and variance reduction

— Shi et al. '22, Yan et al. '22

Qit1(5¢,a1) (1 = 1)Qe(5¢,a1) — ¢ be(54,a¢)
~—_———
LCB penalty

+n(TQ) -~ T@)+ T@) ) (51, )

advantage reference
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Q-learning with LCB and variance reduction

— Shi et al. '22, Yan et al. '22

Qit1(5¢,a1) (1 = 1)Qe(5¢,a1) — ¢ be(54,a¢)
~—_———
LCB penalty

+n(TQ) -~ T@)+ T@) ) (51, )

advantage reference

e incorporates variance reduction into LCB-Q

> > >

epochm =1 epoch m =2 epoch m =3

39/ 53



Q-learning with LCB and variance reduction

— Shi et al. '22, Yan et al. '22

Qit1(5¢,a1) (1 = 1)Qe(5¢,a1) — ¢ be(54,a¢)
~—_———
LCB penalty

+n(TQ) -~ T@)+ T@) ) (51, )

advantage reference

e incorporates variance reduction into LCB-Q

> > >

epochm =1 epoch m =2 epoch m =3

Theorem 6 (Yan, Li, Chen, Fan’22, Shi, Li, Wei, Chen, Chi’22)

Fore € (0,1 — ], LCB-Q-Advantage achieves V*(p) — V%(p) <e
with optimal sample complexity O(ﬁ)

39/ 53



sample sample .
complexity i A complexity
W
%
G
L

infinite-horizon MDPs finite-horizon MDPs



Model-free RL

. Basics of Q-learning

. Synchronous Q-learning and variance reduction (simulator)
. Asynchronous Q-learning (Markovian data)

. Q-learning with lower confidence bounds (offline RL)

. Q-learning with upper confidence bounds (online RL)



Online RL: interacting with real environments

Sequentially execute MDP for K episodes, each consisting of H steps

LE execute 7'

episode 1 |:> {sh»ah, 7 e
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Online RL: interacting with real environments

Sequentially execute MDP for K episodes, each consisting of H steps
— sample size: T'= KH

ik execute 7!

episode 1 |::> {sh»ah, 7 e

SRR ! LL execute 7>
35
L 2 2 2\H
episode 2 :> {8h: @k, i h=1

e execute &

episode K |:> {Sf ai{7 T}{(}hH:I

exploration (exploring unknowns) vs. exploitation (exploiting learned info)J
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Regret: gap between learned policy & optimal policy

adversary learner

A
-3/ )

initial state execute
51 = policy !
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43/ 53



Regret: gap between learned policy & optimal policy

adversary learner

initial state : execute . |n|t|aI state execute
3% policy 7" . = policy 7€

episode 1 episode K

43/ 53



Regret: gap between learned policy & optimal policy

adversary learner

initial state execute initial state execute
I 51 I = policy 7! = = s{{ = policy ©f

episode 1 episode K

Performance metric: given initial states {s¥}X_ | define

chosen by nature/adversary

K

Regret(T) = > (Vi(sf) — Vi (s}))
k=1

43/ 53



Existing algorithms
e UCB-VI: Azar et al.'17
e UBEV: Dann et al.'17
e UCB-Q-Hoeffding: Jin et al. 18
e UCB-Q-Bernstein: Jin et al.’18
e UCB2-Q-Bernstein: Bai et al.'19
Regret(T) > VH2SAT e EULER: Zanette et al.'19
e UCB-Q-Advantage: Zhang et al.’20
o UCB-M-Q: Menard et al. 21

e Q-EarlySettled-Advantage: Li et
al.’21

Lower bound
(Domingues et al. '21)



Which model-free algorithms are sample-efficient for online RL?



Which model-free algorithms are sample-efficient for online RL?

early-settled
ucB variance variance
exploration reduction reduction

= |ucBQ| = [UCB—Q—Advantage] =

Jin et al.’18 Zhang et al. '20 Li et al. 21




Q-learning with UCB exploration (Jin et al., 2018)

Qn(sh.an) — (1 —m)Qn(Sh,an) + kT (Qnt1) (Sh, an) + nk br(sk, an)
———

classical Q-learning exploration bonus
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Q-learning with UCB exploration (Jin et al., 2018)

Qn(sh.an) — (1 —m)Qn(Sh,an) + kT (Qnt1) (Sh, an) + nk br(sk, an)
———

classical Q-learning exploration bonus

e bp(s,a): upper confidence bound; encourage exploration
— optimism in the face of uncertainty

e inspired by UCB bandit algorithm (Lai, Robbins '85)

Regret(T) < VH3SAT = sub-optimal by a factor of VH J

Issue: large variability in stochastic update rules

46/ 53



UCB Q-learning with UCB and variance reduction

Incorporates variance reduction into UCB-Q: — Zhang, Zhou, Ji'20

e asymptotically regret-optimal
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UCB Q-learning with UCB and variance reduction

Incorporates variance reduction into UCB-Q: — Zhang, Zhou, Ji'20
e asymptotically regret-optimal
e Issue: high burn-in cost O(S®A*H?)

One additional idea: early settlement of reference updates — Li, Shi,
Chen, Chi’'23
memory
complexity
b
e regret-optimal w/ near-minimal UCB-M-Q

. . Y g T W UCB-VI
burn-in cost in S and A STAH . @

o memory-efficient O(SAH) . 5

e computationally efficient:
runtime O(T)

UCB-Q-Advantage

LY : g — ? ................................................ @ .
Q-EarlySettled-Advantage ¢ burn-in cost

0 SaApoly(H)  S3AHS  SSA'H?
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Summary of this part

sample
complexity

T et 21.20,21

1SIAl

[SIA]

memory
complexity

S?AH

SAH

0

.......... @@ UCB-VI

Q-Eav\y?ett\ed-Advzntzge

UCB-Q-Advantage
. burn-in cost

S Apoly(H) S3AHS

)

Model-free RL can achieve memory efficiency,

computational efficiency, and sample efficiency at once!

— with some burn-in cost though
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