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Recent successes in reinforcement learning (RL)

Google DeepMind's

AlphaFold 2

[
)

«“/
Al Breakthrough in Biology

At last — a computer program that
can beat a champion Go player PAce4s4

ALL SYSTEMS GO o

SAFEGUARD
TRANSPARENCY

RL holds great promise in the next era of artificial intelligence.
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Recap: Supervised learning

Given i.i.d training data, the goal is to make prediction on unseen data:

— pic from internet
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Reinforcement learning (RL)

In RL, an agent learns by interacting with an environment.

® no training data

trial-and-error

® maximize total rewards

delayed reward

‘Recalculating ... recalculating ...”
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Sample efficiency

I
CLINICAL TRIAL

DISCOVERY &
PRE-CLINICAL

PHASE | PHASE 2

Source: chinsights.com

® prohibitively large state & action space

FDA
APPROVAL

E: CBINSIGHTS

® collecting data samples can be expensive or time-consuming
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Sample efficiency

I
CLINICAL TRIAL

DISCOVERY &
PRE-CLINICAL

PHASE | PHASE 2

Source: chinsights.com

® prohibitively large state & action space

FDA
APPROVAL

E: CBINSIGHTS

® collecting data samples can be expensive or time-consuming

Challenge: design sample-efficient RL algorithms
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Computational efficiency

Running RL algorithms might take a long time ...

® enormous state-action space

® nonconvexity
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Computational efficiency

Running RL algorithms might take a long time ...

® enormous state-action space

® nonconvexity

Challenge: design computationally efficient RL algorithms )
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Theoretical foundation of RL

asymptotic
ana Iysy
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Theoretical foundation of RL

50 Iﬁpo finite-sample
¢ analysis «

asymptotic _
analysy

Understanding sample efficiency of RL requires a modern suite of
non-asymptotic analysis tools
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This tutorial

FIRsT-ORDER METHODS
IN OPTIMIZATION High-Dimen:
Prob

Amir Beck

(large-scale) optimization (high-dimensional) statistics

Demystify sample- and computational efficiency of RL algorithms
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This tutorial

FIRsT-ORDER METHODS
IN OPTIMIZATION

Amir Beck

(large-scale) optimization (high-dimensional) statistics

Demystify sample- and computational efficiency of RL algorithms

Part 1. basics, and model-based RL
Part 2. value-based RL
Part 3. policy optimization

We will illustrate these approaches for learning standard, robust, and
multi-agent RL with simulator/online/offline data.
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Outline (Part 1)

® Basics: Markov decision processes
® Basic dynamic programming algorithms

® Model-based RL (“plug-in" approach)
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Basics: Markov decision processes



Markov decision process (MDP)

state s¢ action a;
agent ——1

environment [« — —J

vY

y S N

® S: state space

e A: action space
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Markov decision process (MDP)

state s¢ action a;
agent ——1

reward |
;Tt =TS, Q¢ |

A A 4

environment [« — —J

y S N

® S: state space
e A: action space

e r(s,a) € [0,1]: immediate reward
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Infinite-horizon

Markov decision process

state s;

action

reward

y W N

S: state space

A: action space

e

re = 1(8¢, at |

environment |« — —J

r(s,a) € [0,1]: immediate reward

m(+|s): policy (or action selection rule)
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Infinite-horizon

Markov decision process

state s;

action

reward

y W N

e

Ty =T8¢, 4t |
environment |« — —J

next state

st+1 ~ P(|ss, at)

S: state space

A: action space

r(s,a) € [0,1]: immediate reward

m(+|s): policy (or action selection rule)

P(-]s,a): unknown transition probabilities

14 /54



Value function

state s (.
_7f(] Is) To ™ T -

T4

|

| | I |
reward :> So S1 S2 S3
Ty = T(St, ag | T ; H 3 i ‘5 H 7

'~ '~

4--- environment — ag ay as a3
Al

Sth1 ~ P("Sm(lt)

Value of policy 7: cumulative discounted reward

VseS: VT(s):=E Z’ytr(st,at) |so=s
=0

84

Se|

-

a4
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Value function

state s a arsti;)rrz'ls )
= rooom ™ om
l | |
d S S S
= o | & %54 SR h W
¢--+ environment ¢~ —J a0 ay as az ar
St ~ P("st1at)
Value of policy m: cumulative discounted reward
(o]
VseS: VT(s):=E E V'r(se,ae) | so=s
t=0
® v €[0,1): discount factor
> take v — 1 to approximate long-horizon MDPs
1
1—y
15/54

> effective horizon:



Q-function (action-value function)

To T T2 T3 T4 T5
™ . | |
Q (30, Cbo) S 81— S2—; 83— 84— 85— XY
(S L A L L .
ao a1 a2 az a4 as

Q-function of policy 7:

V(s,a) e SxA: Q7(s,a) =E Z’ytrt|so =s,a0=a
=0

® (g¢7 s1,a1, S2,a2,- - ): induced by policy 7
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Q-function (action-value function)

0 r T2 3 T4 75
o) @ -G--g-s-lg-Lg L -
aO’ a1 ay a}, a?; ‘a'5'/
o 1 T T3 T4 5
Q" (0, a0) ’—I—' —|—»52—|—»33—|—.s4_|_.35_|_.
a,g El &'{ &3 al @

Q-function of policy 7:

V(s,a) e SxA: Q7(s,a) =E Z’ytrt|so =s,a0=a

t=0

® (g¢7 s1,a1, S2,a2,- - ): induced by policy 7
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Finite-horizon MDPs

Th = 1(Sh, an I
“~""1 environment [« — -

next state
Sht1 ™~ P}L("S’H ah)

H: horizon length

S: state space with size S e A: action space with size A
rn(Sn,an) € [0,1]: immediate reward in step h

= {wh},?zl: policy (or action selection rule)

Py,(-|s,a): transition probabilities in step h
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Finite-horizon MDPs

reward
T = 1(5h, an I

“~""1 environment [« — -

next state
Sh1 ~ Pu(:|sn, an)

M=

value function: V;"(s) =E [ rh(Sh, ap) | Sp = 51

t=h

Q-function: Q7 (s, a) :

H
E l rh(Sh, an) ‘ Sp=S,ap = (L]
t=h
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Optimal policy and optimal value

state s

14

=
=
&=

optimal policy 7*: maximizing value function max, V™
Proposition (Puterman’94)

For infinite horizon discounted MDP, there always exists a deterministic
policy ©*, such that

V™ (s)>V™(s), Vs, and .
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Optimal policy and optimal value

optimal policy 7*: maximizing value function max, V™

* optimal value / Q function: V* := V™" Q* := Q™
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Optimal policy and optimal value

optimal policy 7*: maximizing value function max, V™
* optimal value / Q function: V* := V™" Q* := Q™

® How to find this ©*7
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Basic dynamic programming algorithms
when MDP specification is known



Policy evaluation: Given MDP M = (S, A,r, P,) and policy
m:S — A, how good is 77 (i.e., how to compute V7™ (s), Vs7)



Policy evaluation: Given MDP M = (S, A,r, P,) and policy
m:S — A, how good is 77 (i.e., how to compute V7™ (s), Vs7)

Possible scheme:
® execute policy evaluation for each 7

® find the optimal one



Policy evaluation: Bellman’s consistency equation

e V™ /Q™: value / action-value function under policy 7
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Policy evaluation: Bellman’s consistency equation

e V™ /Q™: value / action-value function under policy 7

Bellman’s consistency equation

V7(8) = Eqmr(s) [Q”(s, a)]

Q(sa)= r(sa) +7 E | V) |
~—— s'~P(-|s,a) ——

immediate reward next state's value

Richard Bellman
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Policy evaluation: Bellman’s consistency equation

e V™ /Q™: value / action-value function under policy 7

Bellman’s consistency equation

V7(8) = Eqmr(s) [Q”(s, a)]

Q(sa)= r(sa) +7 E | V) |
~—— s'~P(-|s,a) ——

immediate reward next state's value

® one-step look-ahead !//‘!@ —

Richard Bellman
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Policy evaluation: Bellman’s consistency equation

e V™ /Q™: value / action-value function under policy 7

Bellman’s consistency equation

V7(8) = Eqmr(s) [Q”(s, a)]

Q(s,a)= risa) +v E | VS |
——v s'~P(-|s,a) ——
immediate reward next state's value

® one-step look-ahead

® |et P™ be the state-action transition matrix
induced by m:

QU=r+1P"Q" = Q" =(I-~P")lr
Richard Bellman
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Optimal policy 7*: Bellman’s optimality principle

Bellman operator

T(@Q)(s,a):== 7r(s,a) +v E max Q(s',a’)
s'~P(-|s,a) La’€A
immediate reward
next state's value

® one-step look-ahead
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Optimal policy 7*: Bellman’s optimality principle

Bellman operator

T(@Q)(s,a):== r(s,a) +v E max Q(s',a’)
s'~P(-|s,a) La’€A
immediate reward
next state's value

® one-step look-ahead

Bellman equation: Q* is unique solution to

T(Q*) — Q*
~v-contraction of Bellman operator:
“T(Ql) o T(QQ)HOO < fYHQl B Q2”OO Richard Bellman
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Two dynamic programming algorithms

Q(U)

Value iteration (VI) T
(1)
Fort=0,1,..., ¢
-
Q(t-‘rl) _ T(Q(t)) Qw .
Q4

Policy iteration (PI)
FOI’tZO,l,---,
policy evaluation: Q) = Q™"

policy improvement: 71 (s) = argmax QW (s,a)
ac
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When the model is unknown . ..

Reinforcement ||\

Learning

An Introduction
second edition

|
Richard S. Sutton and Andrew G. Barto / \

Voot

Dynamic Programming
and Optimal Control

DIMITRI P. BERTSEKAS
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When the model is unknown

THIRD EDITION
voww: B

Reinforcement ||\
Learning

A Introduction
second edition

Dynamic Programming
and Optimal Control

DIMITRI P. BERTSEKAS

—

Richard S. Sutton and Andrew G. Barto

L

|

-
,
’

L

Need to learn optimal policy from samples w/o model specification
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Three approaches

Wt model AL,

&@i’f/ (ie. P € RISIAIXIS]) %,19
! model-based X

samples value function
(experience) policy

Model-based approach (“plug-in”)
1. build an empirical estimate P for P

2. planning based on the empirical P

25 /54



Three approaches

o> model P,

e et “, .
,;'”‘;{)’ > (ie. P € RISIAIxIS]) 4 ‘uﬁs
; wodel-based )

samples value function
(experience) policy

Model-based approach (“plug-in”)
1. build an empirical estimate P for P

2. planning based on the empirical P

Tutorial Part 2: Value-based approach
— learning w/o estimating the model explicitly

Tutorial Part 3: Policy-based approach
— optimization in the space of policies
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Three approaches

’<’.V°\': _____ > model p{q

T <
&@t’j, > (ie. P c RISIAIXIS) ‘uﬁs
; wodel-based '

samples value function
(experience) policy

Model-based approach (“plug-in”)
1. build an empirical estimate P for P

2. planning based on the empirical P

Tutorial Part 2: Value-based approach
— learning w/o estimating the model explicitly

Tutorial Part 3: Policy-based approach
— optimization in the space of policies

25 /54



Model-based RL (a “plug-in” approach)

1. Sampling from a generative model (simulator)
2. Offline RL / batch RL
3. Robust RL



A generative model / simulator

— Kearns and Singh, 1999

gewerative model

e sampling: for each (s,a), collect N samples {(s, a, S/(i))}lgiSN
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A generative model / simulator

— Kearns and Singh, 1999

gewerative model

e sampling: for each (s,a), collect N samples {(s, a, S/(i))}lgiSN

® construct 7 based on samples (in total |S||A| x N)

27 /54



(. -sample complexity: how many samples are required to

learn an e-optimal policy ?

-~

Vs: V() >V*(s)—e



An incomplete list of works

Kearns and Singh, 1999
Kakade, 2003

Kearns 3t al., 2002

Azar et al., 2012

Azar et al., 2013

Sidford et al, 2018a, 2018b
Wang, 2019

Agarwal et al, 2019
Wainwright, 2019a, 2019b
Pananjady and Wainwright, 2019
Yang and Wang, 2019
Khamaru, 2020

Mou et al., 2020

Li et al., 2020

Cui and Yang, 2021

29 /54



Model estimation

Sampling: for each (s, a), collect
N ind. samples {(s, a, Sl(i))}lgigN

generative model
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Model estimation

Sampling: for each (s, a), collect
N ind. samples {(s, a, Sl(i))}lgigN

Empirical estimates

!
generative model (s'ls, a) Z 1 {s

TV
empirical frequency

30/54



Empirical MDP + planning

— Azar et al., 2013, Agarwal et al., 2019

[/ empirical MDP

HEBN
| [ |
| - u =
BB | planning =%
le
| BB orac
| | . .
| | | B e.g. dynamic programming
N
| |
r

empirical P

Find policy based on the empirical MDP (empirical maximizer)
—_———— ~——_— ———

using, e.g., policy iteration (ﬁ,r)
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Challenges in the sample-starved regime

| H B
[
| =
|
]
H N
|
L
H B
H |
truth: P € RISIMAIXIS] empirical estimate: P

e Can't recover P faithfully if sample size < |S|?|Al!
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Challenges in the sample-starved regime

| H B
[
| =
[
]
H N
|
L
H B
H |
truth: P € RISIMAIXIS] empirical estimate: P

e Can't recover P faithfully if sample size < |S|?|Al!

e Can we trust our policy estimate when reliable model estimation is
infeasible?

32/54



(~-based sample complexity

Theorem (Agarwal Kakade, Yang'19)
Forany 0 < e < \/7 the optimal policy ™ of empirical MDP achieves

IVF =V <e

with high prob., with sample complexity at most

o(a=a)
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(~-based sample complexity

Theorem (Agarwal Kakade, Yang'19)

Forany 0 < e < \/7 the optimal policy ™ of empirical MDP achieves

IVF =V <e

with high prob., with sample complexity at most

5 (_ISIIA]
o) kLl
<(1 —7)%?
® matches minimax lower bound: ﬁ((l‘fg)f;' z) when ¢ < —
IS]IA]|

(equivalently, when sample size exceeds =2 %) Azar et al., 2013
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(~-based sample complexity

Theorem (Agarwal Kakade, Yang'19)

Forany 0 < e < \/7 the optimal policy ™ of empirical MDP achieves

IVF =V <e

with high prob., with sample complexity at most

5 (_ISIIA]
o) kLl
<(1 —7)%?
® matches minimax lower bound: ﬁ((l‘fg)f;' z) when ¢ < —
IS]IA]|

(equivalently, when sample size exceeds =2 %) Azar et al., 2013

® established upon leave-one-out analysis framework
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sample
complexity

ISII-A]
(1=7)

1s)14] |

(=)

$

‘K:%'
«be’ ) .
O — Sidford et al. "18a

S

Agarwal et al.'19

AN , N °S,
7
z\ >
N
> %
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sample
complexity

v
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sample
complexity

Agarwal et al., 2019 still requires a burn-in sample size > (577)2
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sample

complexity
g
3
\:%'
5114 i
1-7)2[= & — Sidford et al. "18a
A

o - &
\)(\

+

(\\«@

isiAl |- @
1-v L 1 1 >
@\\ é‘\\ @\\/ 5-2
% ’
ke
3 3
Agarwal et al., 2019 still requires a burn-in sample size > (|fl‘j;‘2

Question: is it possible to break this sample size barrier? J
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Perturbed model-based approach (Li et al. ’20)

[ empirical MDP

|
H B
|
|
H B
o ]

empirical P

perturb
rewards

—

|

—Lietal,

planning
oracle

\Qj_e:ynamic programming

b
<

empirical

2020

*

Tp

Find policy based on the empirical MDP with slightly perturbed rewards
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Optimal /,.-based sample complexity

Theorem (Li, Wei, Chi, Chen '20)

Forany 0 <e < ﬁ the optimal policy 7}, of perturbed empirical MDP
achieves

IV = V¥l <€

with high prob., with sample complexity at most

A=)
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Optimal /,.-based sample complexity

Theorem (Li, Wei, Chi, Chen '20)

Forany 0 < e < ﬁ the optimal policy 7}, of perturbed empirical MDP
achieves

IV — V¥ <e

with high prob., with sample complexity at most
~ S
5(_ISI4
(1 —7)3e?

® matches minimax lower bound: Q((l‘ﬂlé;) Azar et al., 2013

e full e-range: € € (0, ﬁ] — no burn-in cost

® established upon more refined leave-one-out analysis and a
perturbation argument

36 /54



sample
complexity

X
N
> //
¢ s
>
éé — Sidford et al.'18a
......... X o




Model-based RL (a “plug-in” approach)

1. Sampling from a generative model (simulator)
2. Offline RL / batch RL
3. Robust RL



Offline RL / batch RL

® Collecting new data might be expensive or time-consuming

® But we have already stored tons of historical data

THE COMING INAUTONOMOUS VEHICLES

L) - L]
i L) i RN
@ é N -
& | ILE $ L
p ~ S PEROAL.EACHDAY
’ < =
medical records data of self-driving clicking times of ads
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Offline RL / batch RL

® Collecting new data might be expensive or time-consuming

® But we have already stored tons of historical data

THE COMING INAUTONOMOUS VEHICLES
o o L
[é i L/ s v ]
NETONGHOLS VEHOLES X

L

AN ,
& PR A

s

vy B

medical records data of self-driving clicking times of ads

Question: Can we design algorithms based solely on historical
data? J

39/54



Offline RL / batch RL

A historical dataset D = { a(® s/(l))}: N independent copies of
s~ p°, an~m(-|s), s' ~ P(-]s,a)

for some state distribution p® and behavior policy 7®

40 /54



Offline RL / batch RL

A historical dataset D = { a(® s/(l))}: N independent copies of
s~ p°, an~m(-|s), s' ~ P(-]s,a)

for some state distribution p® and behavior policy 7®

Goal: given some test distribution p and accuracy level ¢, find an
g-optimal policy 7 based on D obeying

V() -V = E [V(s)] - B [VA() <e

S~p S~ p

— in a sample-efficient manner

40 /54



Challenges of offline RL

e Distribution shift:

distribution(D) # target distribution under 7*
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Challenges of offline RL

¢ Distribution shift:
distribution(D) # target distribution under 7*

¢ Partial coverage of state-action space:

3
5 y
B N, /
mm Gl N
e o )
~. //

o

uniform coverage over entire space
(sufficiently explored)
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Challenges of offline RL

e Distribution shift:

distribution(D) # target distribution under 7*

¢ Partial coverage of state-action space:

N / Practically, Y
/ \ /

i sl - A
/ ~ o A
= -\ samples cover all (s,a) & all polncueg/\ / historical dataset D A
B AN )

i \\\ /,/ />\ ﬂ-l

- N {

D) I T Yo’ \ o o
L T2 yi N , o
B ! / ~ Fee”

N Janssustag SN S
\\‘<7>',\\ /// \\\\>/7’/’
uniform coverage over entire space
(sufficiently explored)

partial coverage
(inadequately explored)

41/54



How to quantify quality of historical dataset D (induced by 7°)?
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How to quantify quality of historical dataset D (induced by 7°)?

Single-policy concentrability coefficient

C* := max d” (5,0) b(s, )
s,a d™(s,a)

where d™(s,a) = (1 — ) Y52, Y'P((s',a") = (s,a) | 7)
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How to quantify quality of historical dataset D (induced by 7°)?

Single-policy concentrability coefficient

C* :=m xd BOl

occupancy density of m* 1
sa d™(s,a) occupancy density of w° ||
where d™(s,a) = (1 — ) Y52, Y'P((s*,a") = (s,a) | 7)
/’/0\‘(\/ N ‘ \»\\
A /
e captures distributional shift / historical datajetD 3
N Q \ /
e allows for partial coverage [ m .
C* < o0

42 /54



Key idea: pessimism in the face of uncertainty

— Jin et al. 20, Rashidinejad et al. 21, Xie et al. '21

online

upper confidence bounds
— promote exploration of under-explored (s, a)
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Key idea: pessimism in the face of uncertainty

— Jin et al. 20, Rashidinejad et al. 21, Xie et al. '21

online

upper confidence bounds
— promote exploration of under-explored (s, a)

offline

lower confidence bounds
— stay cautious about under-explored (s, a)

43 /54



Key idea: pessimism in the face of uncertainty

— Jin et al. '20, Rashidinejad et al. '21, Xie et al. '21

A model-based offline algorithm: VI-LCB

1. build empirical model P
2. (value iteration) for ¢t < Tyay:

~

Qi(s,a) + |:T(8,a)+’y<ﬁ(’|8,(1),‘/}t—1>]+

for all (s,a), where V;(s) = max, Qs(s, a)

43 /54



Key idea: pessimism in the face of uncertainty

— Jin et al. '20, Rashidinejad et al. '21, Xie et al. '21

A model-based offline algorithm: VI-LCB

1. build empirical model P

2. (pessimistic value iteration) for ¢ < Ty ay:

~

Qi(s,a) « |:T(8, a) +’y<]3(. | s,a), ‘7t—1> — b(s,a; 12_1) }—F

penalize poorly visited (s,a)

for all (s,a), where V;(s) = max, Q:(s, a)
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Key idea: pessimism in the face of uncertainty

— Jin et al. '20, Rashidinejad et al. '21, Xie et al. '21

A model-based offline algorithm: VI-LCB

1. build empirical model P

2. (pessimistic value iteration) for ¢ < Ty ay:

~

Qi(s,a) « |:T(8, a) +’y<]3(. | s,a), ‘7t—1> — b(s,a; ‘/}t—l) }—F

penalize poorly visited (s,a)

compared w/ prior works
® no need of variance reduction e variance-aware penalty

43 /54



Minimax optimality of model-based offline RL

Theorem (Li, Shi, Chen, Chi, Wei’22)
Forany 0 < e < ﬁ the policy T returned by VI-LCB achieves

V*p)—V7(p) <e

with high prob., with sample complexity at most

(=)
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Minimax optimality of model-based offline RL

Theorem (Li, Shi, Chen, Chi, Wei’22)
Forany 0 < e < ﬁ the policy T returned by VI-LCB achieves

V*(p) = V7(p) <e

with high prob., with sample complexity at most
~ SC~*
ol—-="=__
((1 = 7)362>

® matches minimax lower bound: ﬁ(%) Rashidinejad et al, 2021

® depends on distribution shift (as reflected by C*)

e full e-range (no burn-in cost)

44 /54
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Model-based RL (a “plug-in” approach)

1. Sampling from a generative model (simulator)
2. Offline RL / batch RL
3. Robust RL



Safety and robustness in RL

(Zhou et al., 2021; Panaganti and Kalathil, 2022; Yang et al., 2022;)

Training environment # Test environment
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Safety and robustness in RL

(Zhou et al., 2021; Panaganti and Kalathil, 2022; Yang et al., 2022;)

Training environment # Test environment

Sim2Real Gap: Can we learn optimal policies that are robust to
model perturbations? J

47 /54



Distributionally robust MDP

action

state s ~ .
_Zr(_||8t) o r o r3 T4

|:>80‘|31‘82‘|83‘|S4|
4. A 4. ..

\ \
—’ N -’ N N

ao ai a2 asz Qg4

Sox

Sc:+1 ~ P('|Sz,at)

Uncertainty set of the norminal transition kernel P°:
U (P°)={P: p(P,P°) <o}

Robust value/Q function of policy 7:

PeUe(P°)

VseS: V™o(s):= inf E.p [Z'y T ! So = s]

V(s,a) eSxA: Q7(s,a):

inf E try| s =s,a0 =a
peus(po) " LZ_;’Y t| 0 0 1

The optimal robust policy 7* maximizes V™7(p)

4854



Robust Bellman’s optimality equation

(lyengar. '05, Nilim and El Ghaoui. '05)

Robust Bellman’s optimality equation: the optimal robust policy 7*
and optimal robust value V*7 := V™7 satisfy

Q"7 (s,a) =r(s,a) +~ inf (Ps.a, V),
Py €U (PS,)

V*7(s) = max Q*(s,a)
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Robust Bellman’s optimality equation

(lyengar. '05, Nilim and El Ghaoui. '05)

Robust Bellman’s optimality equation: the optimal robust policy 7*
and optimal robust value V*7 := V™7 satisfy

Q*J(S? a) = 7"(8, a) + Y inf <PS7CL7 V*70> ’
Pra€UU”(P,)
V*7(s) = max Q*(s,a)

Robust value iteration:

Q(s,a) < r(s,a) +~ inf <P8,aa V),
Ps a€U? (P2,)

where V (s) = max, Q(s,a).
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Learning distributionally robust MDPs

arbitra ry

(s,a)

Nominal Transition
kernel

50/ 54



Learning distributionally robust MDPs

arbi,trarg

(s,a)

Nominal Transition
kernel

Goal of robust RL: given D := {(s;,a;, s})}}\.; from the nominal
environment P, find an e-optimal robust policy 7 obeying

V*(p) = VT (p) < e

— in a sample-efficient manner
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A curious question

. . . Learn the optimal policy of

. . = /,’! the nominal MDP?
’/

- - r”’ IS
HE B =
" =3 W (l

NN

EE B - . =
. . . ~4 Learn the robust policy

. - around the nominal MDP?

empirical MDP
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A curious question

. . . Learn the optimal policy of
.. . = /)' the nominal MDP?
’/
| | el
HE B
H B R
| | NS
am B - .
. . . ~4 Learn the robust policy
. - around the nominal MDP?

empirical MDP

Robustness-statistical trade-off? Is there a statistical premium that
one needs to pay in quest of additional robustness? J
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When the uncertainty set is TV

Sample complexity“
54 bound [Cl |
T a0 1 u Clavier et al.] =
(1 — 7)452 [~ Upper boun [Clavier et al.]
|
1
|
SA ] Standard MDPs
T3 === upper & minimax lower bound T~~~
(I =)
SA
Upper & minimax lower bound
SA (this work)
(1—n)2e?
SA(I _ ’Y) Lower bound [Yang et al.]
2 >
€ 0 1
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When the uncertainty set is TV

Sample complexity“
54 bound [Cl |
T a0 1 u Clavier et al.] =
(1 — 7)452 [~ Upper boun [Clavier et al.]
|
1
|
SA ] Standard MDPs
T3 === upper & minimax lower bound T~~~
(I =)
Upper & minimax lower bound
SA (this work)
(1—n)2e?
SA(I _ ’Y) Lower bound [Yang et al.]
€2 > o

1

RMDPs are easier to learn than standard MDPs.

-
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When the uncertainty set is y? divergence

Sample complexity“

Upper bound 5%Ac
2 P ti and Kalathil 1—n)te?
S<A [Panaganti and Kalathil] ( 7) Lower bound
(1 _ 7)452 (this work)
Upper bound 5S40
(this work) (1 —n)te?
SA -
(=
SAo SAc
=)' 1 +o) =
SA Standard MDPs
(1 — )32 N . U e upper & minimax lower bound =
SA a Lower bound [Yang et al.]
(1—7)e? 1 1 1

v
Q

o(1/(1-7)
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When the uncertainty set is y? divergence

Sample complexity“
S?Ac
SZA [Panaganti and Kalathil] (1 —7)te? ——
(1 — ’7)452 (this work)
SAc
SA -
(a—e
SAc
62
SA Standard MDPs
(1 _ 7)352 N ) U S upper & minimax lower bound
i - Lower bound [Yang et al.]
CERE . .
o(1/(1-)
RMDPs can be harder to learn than standard MDPs. J
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Summary of this part

Model-based RL (a “plug-in” approach)

® Sampling from a generative model (simulator)
e Offline RL / batch RL
® Robust RL

Papers:

“Breaking the sample size barrier in model-based reinforcement learning with a generative
model,” G Li, Y Wei, Y Chi, Y Chen, NeurlPS'20, Operators Research'23

“Settling the sample complexity of model-based offline reinforcement learning,” G Li, L Shi, Y
Chen, Y Chi, Y Wei, 2022

“The curious price of distributional robustness in reinforcement learning with a generative
model,” L Shi, G Li, Y Wei, Y Chen, M Geist, Y Chi, 2023
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