Breaking the Sample Complexity Barrier to Regret-Optimal Model-Free Reinforcement Learning

Gen Li Princeton ECE

Laixi Shi CMU ECE

Yuxin Chen Princeton ECE

Yuantao Gu Tsinghua EE

Yuejie Chi CMU ECE

Reinforcement learning (RL): challenges

In RL, an agent learns by interacting with an environment

Challenges:

- explore or exploit in unknown environments
- credit assignment problem: delayed rewards or feedback
- enormous state and action space

Sample efficiency

Collecting data samples might be expensive or time-consuming in the face of enormous state/action space

clinical trials

autonomous driving

online ads

Sample efficiency

Collecting data samples might be expensive or time-consuming in the face of enormous state/action space

clinical trials

autonomous driving

online ads

Calls for design of sample-efficient RL algorithms!

Memory efficiency

Running RL algorithms might impose huge memory requirement in the face of enormous state/action space

Memory efficiency

Running RL algorithms might impose huge memory requirement in the face of enormous state/action space

Calls for design of memory-efficient RL algorithms!

How to design sample- & memory-efficient algorithms?

From asymptotic to non-asymptotic analyses

From asymptotic to non-asymptotic analyses

From asymptotic to non-asymptotic analyses

Non-asymptotic analyses play a key role in understanding sample & memory efficiency of modern RL

• *H*: horizon length

- H: horizon length
- \mathcal{S} : state space with size S
- A: action space with size A

- H: horizon length
- S: state space with size S A: action space with size A
- $r_h(s_h, a_h) \in [0, 1]$: immediate reward in step h

- H: horizon length
- S: state space with size S A: action space with size A
- $r_h(s_h, a_h) \in [0, 1]$: immediate reward in step h
- $\pi = {\{\pi_h\}_{h=1}^H}$: policy (or action selection rule)

- H: horizon length
- S: state space with size S A: action space with size A
- $r_h(s_h, a_h) \in [0, 1]$: immediate reward in step h
- $\pi = {\{\pi_h\}_{h=1}^H}$: policy (or action selection rule)
- $P_h(\cdot \mid s, a)$: transition probabilities in step h

Value function and Q-function of policy π

$$\begin{split} V_h^\pi(s) &\coloneqq \mathbb{E}\left[\sum_{t=h}^H r_h(s_h, a_h) \,\middle|\, s_h = s\right] \\ Q_h^\pi(s, a) &\coloneqq \mathbb{E}\left[\sum_{t=h}^H r_h(s_h, a_h) \,\middle|\, s_h = s, \underline{a_h} = \underline{a}\right] \end{split}$$

 \bullet execute policy π to generate sample trajectory

Optimal policy and optimal values

- Optimal policy π^* : maximizing the value function
- ullet Optimal value / Q function: $V_h^\star := V_h^{\pi^\star}$, $Q_h^\star := Q_h^{\pi^\star}$

Model-based vs. model-free RL

Model-based approach ("plug-in")

- 1. build an empirical estimate \widehat{P} for P
- 2. planning based on empirical \widehat{P}

Model-based vs. model-free RL

Model-based approach ("plug-in")

- 1. build an empirical estimate \widehat{P} for P
- 2. planning based on empirical \widehat{P}

Model-free approach

— learning w/o modeling & estimating environment explicitly

Model-free RL is often more memory-efficient

store transition kernel estimates $\rightarrow O(S^2AH)$ memory

Model-free RL is often more memory-efficient

store transition kernel estimates $\rightarrow O(S^2AH)$ memory

maintain Q-estimates $\rightarrow O(SAH)$ memory

Model-free RL is often more memory-efficient

store transition kernel estimates $\rightarrow O(S^2AH)$ memory

maintain Q-estimates $\rightarrow O(SAH)$ memory

Definition 1 (Jin et al. '18)

An RL algorithm is **model-free** if its space complexity is $o(S^2AH)$

Online RL and regret minimization

Online RL: interacting with real environments

Sequentially execute MDP for K episodes, each consisting of H steps

Online RL: interacting with real environments

Sequentially execute MDP for K episodes, each consisting of H steps

Online RL: interacting with real environments

Sequentially execute MDP for K episodes, each consisting of H steps

Regret: gap between learned policy & optimal policy

Regret: gap between learned policy & optimal policy

Performance metric: given initial states $\{s_1^k\}_{k=1}^K$, define

chosen by nature/adversary

$$\mathsf{Regret}(\underbrace{T}_{\mathsf{sample size}:\,KH}) \coloneqq \sum_{k=1}^K \left(V_1^{\star}(s_1^k) - V_1^{\pi^k}(s_1^k)\right)$$

Lower bound

(Domingues et al. '21)

 $\mathsf{Regret}(T) \gtrsim \sqrt{H^2 SAT}$

Existing algorithms

- UCB-VI: Azar et al. '17
- UBCV: Dann et al. '17
- $\bullet~$ UCB-Q-Hoeffding: Jin et al.'18
- UCB-Q-Bernstein: Jin et al. '18
- UCB2-Q-Bernstein: Bai et al. '19
- EULER: Zanette et al. '19
- UCB-Q-Advantage: Zhang et al. '20
- UCB-M-Q: Menard et al. '21

Lower bound

(Domingues et al. '21)

 $\mathsf{Regret}(T) \gtrsim \sqrt{H^2 SAT}$

Existing algorithms

- UCB-VI: Azar et al. '17
- UBCV: Dann et al. '17
- UCB-Q-Hoeffding: Jin et al. '18
- UCB-Q-Bernstein: Jin et al. '18
- UCB2-Q-Bernstein: Bai et al. '19
- EULER: Zanette et al. '19
- UCB-Q-Advantage: Zhang et al. '20
- UCB-M-Q: Menard et al. '21

Which algorithms can achieve near-minimal regret?

First method that is asymptotically regret-optimal: UCB-VI

Issues: (1) large burn-in cost; (2) <u>large memory complexity</u>

model-based: S^2AH

Prior art: other regret-optimal algorithms

Algorithm	Regret
UCB-VI	$\sqrt{H^2SAT} + H^4S^2A$
(Azar et al., 2017)	VH-SAI + H S A
UCB-M-Q	$\sqrt{H^2SAT} + H^4SA$
(Menard et al., 2021)	VII SAI + II SA
UCB-Q-Advantage	$\sqrt{H^2SAT} + H^8S^2A^{\frac{3}{2}}T^{\frac{1}{4}}$
(Zhang et al., 2020)	$VH^{-}SAI + H^{+}S^{-}A^{2}I^{4}$

Prior art: other regret-optimal algorithms

Algorithm	Regret
UCB-VI	$\sqrt{H^2SAT} + H^4S^2A$
(Azar et al., 2017)	$VH^{-}SAI + H S A$
UCB-M-Q	$\sqrt{H^2SAT} + H^4SA$
(Menard et al., 2021)	$VH^{-}SAI + H SA$
UCB-Q-Advantage	$\sqrt{H^2SAT} + H^8S^2A^{\frac{3}{2}}T^{\frac{1}{4}}$
(Zhang et al., 2020)	$VH^{-}SAI + H^{+}S^{-}A^{2}I^{4}$

Prior art: other regret-optimal algorithms

Algorithm	Regret
UCB-VI	$\sqrt{H^2SAT} + H^4S^2A$
(Azar et al., 2017)	$VH^2SAI + H^2S^2A$
UCB-M-Q	$\sqrt{H^2SAT} + H^4SA$
(Menard et al., 2021)	
UCB-Q-Advantage	$\sqrt{H^2SAT} + H^8S^2A^{\frac{3}{2}}T^{\frac{1}{4}}$
(Zhang et al., 2020)	$VH^{2}SAI + H^{3}S^{2}A^{2}T^{4}$

Can we find a regre-optimal algorithm with (1) low burn-in cost and (2) low memory complexity?

Our algorithm: Q-EarlySettled-Advantage

Theorem 2 (Li, Shi, Chen, Gu, Chi, 2021)

With high prob., Q-EarlySettled-Advantage achieves (up to log factor)

$$\mathrm{Regret}(T) \lesssim \sqrt{H^2SAT} + H^6SA$$

with a memory complexity of O(SAH)

Our algorithm: Q-EarlySettled-Advantage

Theorem 2 (Li, Shi, Chen, Gu, Chi, 2021)

With high prob., Q-EarlySettled-Advantage achieves (up to log factor)

$$\mathrm{Regret}(T) \lesssim \sqrt{H^2SAT} + H^6SA$$

with a memory complexity of O(SAH)

- ullet regret-optimal with near-minimal burn-in cost $O(SA\mathrm{poly}(H))$
- memory-efficient O(SAH)
- computationally efficient: runtime O(T)

A glimpse of our algorithm design

A glimpse of our algorithm design

Q-learning: a classical model-free algorithm

Chris Watkins

Peter Dayan

Stochastic approximation for solving Bellman equation

$$Q_h(s_h, a_h) \longleftarrow (1 - \eta_k)Q_h(s_h, a_h) + \eta_k \mathcal{T}_k(Q_{h+1})(s_h, a_h)$$

Q-learning: a classical model-free algorithm

Chris Watkins

Peter Dayan

Stochastic approximation for solving Bellman equation

$$Q_h(s_h, a_h) \leftarrow (1 - \eta_k)Q_h(s_h, a_h) + \eta_k \mathcal{T}_k(Q_{h+1})(s_h, a_h)$$

$$\mathcal{T}_k(Q_h)(s_h, a_h) = r(s_h, a_h) + \max_{a'} Q(s_{h+1}, a')$$

using sample in k-th episode

$$Q_h(s_h, a_h) \leftarrow \underbrace{(1 - \eta_k)Q_h(s_h, a_h) + \eta_k \mathcal{T}_k\left(Q_{h+1}\right)(s_h, a_h)}_{\text{classical Q-learning}} + \underbrace{\eta_k \underbrace{b_h(s_h, a_h)}_{\text{exploration bonus}}}_{\text{exploration bonus}}$$

$$Q_h(s_h, a_h) \leftarrow \underbrace{\left(1 - \eta_k\right) Q_h(s_h, a_h) + \eta_k \mathcal{T}_k\left(Q_{h+1}\right)(s_h, a_h)}_{\text{classical Q-learning}} + \underbrace{\eta_k \underbrace{b_h(s_h, a_h)}_{\text{exploration bonus}}}_{\text{exploration bonus}}$$

- b_h(s, a): upper confidence bound
 optimism in the face of uncertainty
- inspired by UCB bandit algorithm (Lai, Robbins '85)

$$Q_h(s_h, a_h) \leftarrow \underbrace{\left(1 - \eta_k\right) Q_h(s_h, a_h) + \eta_k \mathcal{T}_k\left(Q_{h+1}\right)(s_h, a_h)}_{\text{classical Q-learning}} + \underbrace{\eta_k \underbrace{b_h(s_h, a_h)}_{\text{exploration bonus}}}_{\text{exploration bonus}}$$

- b_h(s, a): upper confidence bound
 optimism in the face of uncertainty
- inspired by UCB bandit algorithm (Lai, Robbins '85)

$$\mathsf{Regret}(T) \lesssim \sqrt{H^3 SAT} \implies \mathsf{sub-optimal} \ \mathsf{by} \ \mathsf{a} \ \mathsf{factor} \ \mathsf{of} \sqrt{H}$$

$$Q_h(s_h, a_h) \leftarrow \underbrace{\left(1 - \eta_k\right) Q_h(s_h, a_h) + \eta_k \mathcal{T}_k\left(Q_{h+1}\right)(s_h, a_h)}_{\text{classical Q-learning}} + \eta_k \underbrace{b_h(s_h, a_h)}_{\text{exploration bonus}}$$

- b_h(s, a): upper confidence bound
 optimism in the face of uncertainty
- inspired by UCB bandit algorithm (Lai, Robbins '85)

$$\mathsf{Regret}(T) \lesssim \sqrt{H^3 SAT} \quad \Longrightarrow \quad \mathsf{sub-optimal \ by \ a \ factor \ of} \sqrt{H}$$

Issue: large variability in stochastic update rules

Q-learning with UCB and variance reduction

— Zhang et al. '20

Incorporates reference-advantage decomposition into UCB-Q:

$$\begin{split} Q_h(s_h, a_h) \leftarrow (1 - \eta_k) Q_h(s_h, a_h) + \eta_k \underbrace{b_h(s_h, a_h)}_{\text{UCB bonus}} \\ + \eta_k \underbrace{\left(\mathcal{T}_k(Q_{h+1}) - \mathcal{T}_k(\overline{Q}_{h+1}) + \widehat{\mathcal{T}}(\overline{Q}_{h+1}) \right)}_{\text{advantage}} (s_h, a_h) \end{split}$$

ullet Reference \overline{Q}_h , batch estimate $\widehat{\mathcal{T}}(\overline{Q}_{h+1})$: help reduce variability

Q-learning with UCB and variance reduction

— Zhang et al. '20

Incorporates reference-advantage decomposition into UCB-Q:

$$\begin{split} Q_h(s_h, a_h) \leftarrow (1 - \eta_k) Q_h(s_h, a_h) + \eta_k \underbrace{b_h(s_h, a_h)}_{\text{UCB bonus}} \\ + \eta_k \underbrace{\left(\underbrace{\mathcal{T}_k(Q_{h+1}) - \mathcal{T}_k(\overline{Q}_{h+1})}_{\text{advantage}} + \underbrace{\widehat{\mathcal{T}}(\overline{Q}_{h+1})}_{\text{reference}} \right)}_{\text{reference}} (s_h, a_h) \end{split}$$

ullet Reference \overline{Q}_h , batch estimate $\widehat{\mathcal{T}}(\overline{Q}_{h+1})$: help reduce variability

UCB-Q-Advantage is asymptotically regret-optimal

Q-learning with UCB and variance reduction

— Zhang et al. '20

Incorporates reference-advantage decomposition into UCB-Q:

$$\begin{split} Q_h(s_h, a_h) \leftarrow (1 - \eta_k) Q_h(s_h, a_h) + \eta_k \underbrace{b_h(s_h, a_h)}_{\text{UCB bonus}} \\ + \eta_k \underbrace{\left(\underbrace{\mathcal{T}_k(Q_{h+1}) - \mathcal{T}_k(\overline{Q}_{h+1})}_{\text{advantage}} + \underbrace{\widehat{\mathcal{T}}(\overline{Q}_{h+1})}_{\text{reference}} \right)}_{\text{reference}} (s_h, a_h) \end{split}$$

ullet Reference \overline{Q}_h , batch estimate $\widehat{\mathcal{T}}(\overline{Q}_{h+1})$: help reduce variability

UCB-Q-Advantage is asymptotically regret-optimal

Issue: high burn-in cost $O(S^6A^4H^{28})$

Variance reduction requires sufficiently good references \overline{Q}_{h}

Variance reduction requires sufficiently good references \overline{Q}_h

Variance reduction requires sufficiently good references \overline{Q}_h

Updating references \overline{Q}_h and \overline{V}_h many times

Variance reduction requires sufficiently good references \overline{Q}_h

Updating references \overline{Q}_h and \overline{V}_h many times

Large burn-in cost

Variance reduction requires sufficiently good references \overline{Q}_h

Updating references \overline{Q}_h and \overline{V}_h many times

Large burn-in cost

Variance reduction requires sufficiently good references $\overline{{\cal Q}}_h$

Updating references \overline{Q}_h and \overline{V}_h many times

Large burn-in cost

Key idea: early settlement of the reference as soon as it reaches a reasonable quality (e.g., $\overline{V}_h \leq V_h^{\star} + 1$)

How to implement our early-settlement idea?

$$\overline{V}_h(s) - V_h^{\star}(s) \le 1$$

How to implement our early-settlement idea?

$$\overline{V}_h(s) - V_h^{\star}(s) \le 1$$

$$\overline{V}_h(s) - V_h^{\mathsf{LCB}}(s) \leq 1 \quad \text{for some estimate } V_h^{\mathsf{LCB}} \leq V_h^{\star}$$

How to implement our early-settlement idea?

$$\overline{V}_h(s) - V_h^{\star}(s) \le 1$$

$$\overline{V}_h(s) - V_h^{\mathsf{LCB}}(s) \leq 1 \quad \text{for some estimate } V_h^{\mathsf{LCB}} \leq V_h^{\star}$$

Q-EarlySettled-Advantage: maintains auxiliary sequences $V_h^{\rm UCB}$ & $V_h^{\rm LCB}$ to help settle the reference early

Concluding remarks

Model-free algorithms can simultaneously achieve

(1) regret optimality; (2) low burn-in cost; (3) memory efficiency

Paper:

"Breaking the sample complexity barrier to regret-optimal model-free reinforcement

learning," G. Li, L. Shi, Y. Chen, Y. Gu, Y. Chi, arXiv:2110.04645, NeurIPS 2021