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Reinforcement learning (RL): challenges

In RL, an agent learns by interacting with an environment

Challenges:
e explore or exploit in unknown environments
e credit assignment problem: delayed rewards or feedback
e enormous state and action space

2/ 29



Sample efficiency

Collecting data samples might be expensive or time-consuming in the
face of enormous state/action space

clinical trials autonomous driving online ads
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Calls for design of sample-efficient RL algorithms!
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Memory efficiency

Running RL algorithms might impose huge memory requirement in
the face of enormous state/action space
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Memory efficiency

Running RL algorithms might impose huge memory requirement in
the face of enormous state/action space

Calls for design of memory-efficient RL algorithms!
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How to design sample- & memory-efficient algorithms?



From asymptotic to non-asymptotic analyses
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From asymptotic to non-asymptotic analyses
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Non-asymptotic analyses play a key role in understanding
sample & memory efficiency of modern RL J
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Background



Episodic Markov decision process (MDP)
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Episodic Markov decision process (MDP)

reward
rh = 1(Sh, an |

| environment ¢ — -

&
<

next state
Sh+41 ™~ P;,,(-\sh,ah)

H: horizon length

S: state space with size S e A: action space with size A
rr(sn,an) € [0, 1]: immediate reward in step h

7 = {7 }i_,: policy (or action selection rule)

Py,(-|s,a): transition probabilities in step h
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Value function and Q-function of policy 7
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e execute policy 7 to generate sample trajectory
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Optimal policy and optimal values
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e Optimal policy 7*: maximizing the value function

e Optimal value / Q function: V}* := V,f*, o= Q;lr*
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Model-based vs. model-free RL

o model | 2L,
&wf/ (ie. P € RISIAIxIS)) “*:f‘f‘%s
/ model-based )

samples value function
(experience) policy

Model-based approach (“plug-in”
1. build an empirical estimate P for P

2. planning based on empirical P
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Model-based vs. model-free RL
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samples value function
(experience) policy
”. ~

Model-based approach (“plug-in”
1. build an empirical estimate P for P

2. planning based on empirical P

Model-free approach
— learning w/o modeling & estimating environment explicitly
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Model-free RL is often more memory-efficient

o model P,
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samples value function
(experience) policy

store transition kernel estimates
— O(S?AH) memory
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Model-free RL is often more memory-efficient

o model P,
‘w@ | (e, P € RISIAIXISI) == “ﬁ(ﬂg

&,
wodel-based X :
samples value function samples value function
wodel-free

store transition kernel estimates maintain Q-estimates

— O(S?AH) memory — O(SAH) memory
Definition 1 (Jin et al.’18)
An RL algorithm is model-free if its space complexity is 0o(S?AH) J
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Online RL and regret minimization



Online RL: interacting with real environments

Sequentially execute MDP for K episodes, each consisting of H steps

Ll execute 7!

episode 1 |:> {shyap, T3}
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Online RL: interacting with real environments

Sequentially execute MDP for K episodes, each consisting of H steps

execute 7!

:> {Sflma}lmrllz}hH:l

R ) execute 72
Al 2 2 2\H
episode 2 :> {Sh: @ Thth=1

episode 1

execute 7TK

episode K |:> {ShK, ahKv T{L(}i[:l
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Regret: gap between learned policy & optimal policy

adversary learner

initial state execute initial state execute
I 51 I = policy 7" = e = s{( = policy nf&

episode 1 episode K
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Regret: gap between learned policy & optimal policy

adversary learner

initial state : execute . |n|t|aI state execute
3% policy 7" . = policy 7€

episode 1 episode K

Performance metric: given initial states {s¥}5_ | define

chosen by nature/adversary

Regret( \1; ) Z <V1 st) Vfrk (Slf))

sample size: KH =
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Lower bound
(Domingues et al. '21)

Regret(T) =2 VH?SAT

Existing algorithms

UCB-VI: Azar et al.'17

UBCV: Dann et al.'17
UCB-Q-Hoeffding: Jin et al.'18
UCB-Q-Bernstein: Jin et al.’18
UCB2-Q-Bernstein: Bai et al.'19
EULER: Zanette et al.'19
UCB-Q-Advantage: Zhang et al. '20
UCB-M-Q: Menard et al.'21



Existing algorithms

Lower bound *

(Domingues et al. '21)

Regret(T) =2 VH?SAT .

UCB-VI: Azar et al.'17

UBCV: Dann et al.'17
UCB-Q-Hoeffding: Jin et al.'18
UCB-Q-Bernstein: Jin et al.’18
UCB2-Q-Bernstein: Bai et al.'19
EULER: Zanette et al.'19
UCB-Q-Advantage: Zhang et al. '20
UCB-M-Q: Menard et al.'21

Which algorithms can achieve near-minimal regret?




Prior art: Azar et al.’17

First method that is asymptotically regret-optimal: UCB-VI

Regret(T')
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sample size : T'

17/ 29



Prior art: Azar et al.’17

First method that is asymptotically regret-optimal: UCB-VI

Regret(T')
A
. VH2SAT
/
/
""""""" o —
H*S%A
0 >

sample size : T'

17/ 29



Prior art: Azar et al.’17

First method that is asymptotically regret-optimal: UCB-VI

Regret(T')
A
—VH2SAT
A
/
""""""" o —
H'S?A
0 S3AYHS sample size : T'

17/ 29



Prior art: Azar et al.’17

First method that is asymptotically regret-optimal: UCB-VI

Regret(T')
A
—VH2SAT
A
/
""""""" o —
H'S?A
0 S3AYHS sample size : T'

huge burn-in cost!

17/ 29



Prior art: Azar et al.’17

First method that is asymptotically regret-optimal: UCB-VI

Regret(T')
A
—VH2SAT
A
/
""""""" o —
H'S?A
0 S3AYHS sample size : T'

huge burn-in cost!

Issues: (1) large burn-in cost; (2) large memory complexity

model-based: S2AH 17/ 29



Prior art: other regret-optimal algorithms

Algorithm Regret
UCB-VI Lo
VH2SAT + H*S?A
(Azar et al., 2017) *
UCB-M-Q VH2SAT + H*SA

(Menard et al., 2021)

UCB-Q-Advantage

VH2SAT + H3S2ASTT
(Zhang et al., 2020) + '
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Prior art: other regret-optimal algorithms

memory
complexity
UCB-M-Q
Algorithm Regret S2AH
B-VI
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(Azar et al., 2017)
UCB-M-Q )
VH2SAT + H'SA
(Menard et al., 2021) N
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Prior art:

other regret-optimal algorithms

memory
complexity
UCB-M-Q
Algorithm Regret S2AL | [ S—— ® UCB-VI
UCB-VI ,
VH?SAT + H*S?A
(Azar et al., 2017) +
UCB-M-Q ,
VH2SAT + H'SA
(Menard et al., 2021) N
UCB»Q_Advantage \/m+ HSSQAET} 7\/. UCB-Q-Advantage
(Zhang et al., 2020) SAH |ereeens -L ........................................ . burn-in cost
0 SApoly(H)  SPA*HS  §6A*H?
Can we find a regre-optimal algorithm with
(1) low burn-in cost and (2) low memory complexity?
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This work: an efficient model-free solution



Our algorithm: Q-EarlySettled-Advantage

Theorem 2 (Li, Shi, Chen, Gu, Chi, 2021)
With high prob., Q-EarlySettled-Advantage achieves (up to log factor)

Regret(T) < VH2SAT + HSA

with a memory complexity of O(SAH)
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Our algorithm: Q-EarlySettled-Advantage

Theorem 2 (Li, Shi, Chen, Gu, Chi, 2021)
With high prob., Q-EarlySettled-Advantage achieves (up to log factor)

Regret(T) < VH2SAT + HSA

with a memory complexity of O(SAH)

e regret-optimal with near-minimal burn-in cost O(SApoly(H))
e memory-efficient O(SAH)

e computationally efficient: runtime O(T")
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memory

complexity
A
UCB-M-Q
S2AH .......... ‘ ........................ . UCB-VI
UCB-Q-Advantage
SAH |oeeereeeeo QLIS -eereeseesbrermessmessessseens . burn-in cost
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A glimpse of our algorithm design



early-settled
UcCB variance variance
exploration reduction reduction

= (69 = (@amm)

A glimpse of our algorithm design




Q-learning: a classical model-free algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation

Qn(sn,an) — (1= me)Qn(sn, an) + e Tr(Qni1)(sn, an)
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Q-learning: a classical model-free algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation

Qn(sn,an) — (1= me)Qn(sn, an) + e Tr(Qni1)(sn, an)

Te(Qn)(sh, an) = r(sn,an) + max Q(sp+1,a’)
a
using sample in k-th episode
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Q-learning with UCB exploration (Jin et al., 2018)

Qn(sh.an) — (1 —m)Qn(Sh,an) + kT (Qnt1) (Sh, an) + nk br(sk, an)
———

classical Q-learning exploration bonus
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e bp(s,a): upper confidence bound
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Q-learning with UCB exploration (Jin et al., 2018)

Qn(sh.an) — (1 —m)Qn(Sh,an) + kT (Qnt1) (Sh, an) + nk br(sk, an)
———

classical Q-learning exploration bonus

e bp(s,a): upper confidence bound
— optimism in the face of uncertainty

e inspired by UCB bandit algorithm (Lai, Robbins '85)

Regret(T) < VH3SAT = sub-optimal by a factor of vV H J

Issue: large variability in stochastic update rules
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Q-learning with UCB and variance reduction

— Zhang et al. 20
Incorporates reference-advantage decomposition into UCB-Q:

Qn(sn,an) < (1 —n)Qn(sh,an) + i b (sn, an)
——r
UCB bonus

+ 1k (ﬁ(QhH) — T (@Qp11) + 7A'(@h+1)) (8hyan)

advantage reference

o Reference @, batch estimate 7(Q),..;): help reduce variability
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Q-learning with UCB and variance reduction

— Zhang et al. 20
Incorporates reference-advantage decomposition into UCB-Q:

Qn(sh,an) < (1 —n1)Qn(sh,an) + ni bp(sh, an)
———

UCB bonus
0 (Te(@ur) = Te@ni) + T @us0) ) (51, )
dvant f
advantage rererence

o Reference @, batch estimate 7(Q),..;): help reduce variability

UCB-Q-Advantage is asymptotically regret-optimal |

Issue: high burn-in cost O(S%A*H?%)
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Diagnosis of UCB-Q-Advantage

Variance reduction requires sufficiently good references @,
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Diagnosis of UCB-Q-Advantage

Variance reduction requires sufficiently good references @,

{

Updating references Q,, and V', many times

{

Large burn-in cost

Key idea: early settlement of the reference as soon as
it reaches a reasonable quality (e.g., V), < V¥ +1)
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How to implement our early-settlement idea?

Vi(s) = Vi(s) <1
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How to implement our early-settlement idea?

Vi(s) — V¥ (s) <1

i}

Vil(s) — ViEB(s) <1 for some estimate V-8 < V¥

Optimistic V,VB(s)

Q-EarlySettled-Advantage:
maintains auxiliary sequences VhUCB & Vi (s)
VLB 1o help settle the reference early

Pessimistic V,-B(s)
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Concluding remarks

memory
complexity
A

RLT Y T T ® UCB-VI

UCB-Q-Advantage
. burn-in cost

SAH @ ours

>
>

0 SApoly(H)  SPA'HS  SSATH

Model-free algorithms can simultaneously achieve

(1) regret optimality; (2) low burn-in cost; (3) memory efficiency
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