2011 Infocom, Shanghai April 12, 2011

Sharing Multiple Messages over Mobile Networks

Yuxin Chen, Sanjay Shakkottai, Jeffrey G. Andrews

Information Spreading over MANET

• n users over a unit area

 Each user wishes to spread its individual message to all other users

• File sharing, distributed computing, scheduling, ...

Gossip Algorithms

Gossip algorithms --- Rumor-style dissemination
 peer selection → random
 message selection → random

Advantages

- decentralized
- asynchronous

Background

• One-sided protocol [Shah'2009]

• based only on the sender's current state

n users: each of them wants to broadcast its message to all other users

Background – spreading time

- One-sided protocol (push-only)
 - **FAST** (within polylog(n) ratio gap from optimal)

- graphs with high expansion
- complete graph: $O(n \log n)$ v.s. optimal $\Theta(n)$
- **SLOW** (**above** polylog(n) ratio gap from optimal)

- from NetworkX
- geometric graph $\Omega(n^{1.5-\epsilon})$ v.s. optimal $\Theta(n)$

---- we'll show...

Background

• Two-sided protocol [SanghaviHajek'2007]

• based on both the sender's and the receiver's current state

n users: each of them wants to broadcast its message to all other users

Background – spreading time

- Two-sided protocol
 - FAST: (order-wise optimal)
 - complete graph [SanghaviHajek'2007]
 geometric graph (*conjectured*...)

• **Problem**: two-sided information may **NOT** be obtainable (e.g. privacy/security...)

Background – spreading time

- Variant: network coding approach [DebMedardChoute'2006]
 - one-sided (but behaves like two-sided protocol)
 - send a random combination of all msgs

- FAST: complete graph, geometric graph...
- **Problem**: large computation burden

from NetworkX

Question

How to design a dissemination protocol which is

decentralized

- one-sided
- low computation burden (uncoded)
- FAST (for geometric graphs)

Static Networks

Consider first a SIMPLE protocol...

- RANDOM PUSH
 - random peer selection
 - random message selection (uncoded)

Static Networks

- Theorem 1: Under appropriate initial conditions, using RANDOM PUSH in static geometric networks achieves a spreading time Ω (n^{1.5}) w.h.p.
 - Slow: $\Omega(\sqrt{n})$ ratio gap from the lower limit $\Theta(n)$
 - Reasons:
 - low conductance / expansion
 - blindness of message selection
 - -- lots of wasted transmissions

Mobile Networks

• RANDOM PUSH is slow in static networks

• How about mobile networks?

Mobility Pattern

• Random walk model

• A node moves to one of its adjacent subsquares with equal probability.

subsquare of size $v^2(n)$

1/v(n) edges

Discrete-jump model

- At the beginning of each slot: **movement**
- In the remaining duration: transmission (stay still)

• Velocity:
$$v(n) = \Omega\left(\sqrt{\log n/n}\right) \ll 1$$

Strategy – mobile networks

MOBILE PUSH

- random neighbor selection
- message selection

• even slot: random among all messages I have

Performance: Mobile Networks

- Theorem 2: Using MOBILE PUSH, the spreading time in mobile geometric networks is $O(n \log^2 n)$ w.h.p.
 - **Fast**: logarithmic ratio gap from the lower limit $\Theta(n)$
 - Reasons:
 - fast mixing: $t_{mix} \approx \log n/v^2(n) \ll n$
 - **balanced** evolution simulate a **complete graph**

Analysis – static networks

Assumptions

• Each node contains at least w msgs at time t_0

Analysis – static networks

- the node that has received Msg *i*
- o the node that has NOT received Msg *i*

			The second	
000		000	12444	000
000	000	000		000
000	000	000		000
000	000	000	12010	000
000	000	000		000
000	000	000		000
000	000	000		000
• • •	000	000		000
000	000	000		000
000	000	000		000
000	000	000	• • •	000
000	000	000		000
000	000	000		000
000	000	000	•••	000
000	000	000		000
			and the second	

- 1. Each node contains at least w msgs at time t_0
- 2. Message spreading experiences resistance due to existing nodes

Analysis – static networks

Each node contains at least w msgs at time t_0

- Fixed-point equation
 - $\mathbf{E}(N_l(t)) \le t/w \cdot \mathbf{E}(N_{l-1}(t)) + \mathbf{E}(N_{l+1}(t))$
- It takes $\Omega(w^{1-\epsilon})$ slots to cross one block
- roughly $\Theta(\sqrt{n})$ blocks in total
 - \rightarrow spreading time: $\Omega(w\sqrt{n})$
- Worse case: $w = \Theta(n)$
 - \rightarrow spreading time: $\Omega(n^{1.5})$

Analysis: Phase 1 -- MOBILE PUSH

 $\log^3 n/v^2(n)$ slots

Phase 1

Self-advocating phase

- consider only transmissions in odd slots
- count # innovative transmissions
 - calculate return probability for a RW
- After this phase, each message is contained in $\log n/v^2(n)$ nodes

• Summary: each msg has been seeded to a large number of nodes

Analysis: Phase 2 -- MOBILE PUSH

After seeding, spread other people's messages \rightarrow how long does it take to spread them?

- Spreading phase:
 - set message selection probability to 1/n
- Relaxation phase:
 - no transmissions
 - mobility "uniformizes" the locations of nodes containing the msg

Analysis: Phase 2 -- MOBILE PUSH

- Evolves like a complete graph across each subphase
- Large expansion property
- By the end of Phase 2, each msg is spread to at least n/8 users

Analysis: Phase 3 -- MOBILE PUSH

- Starting point: n/8 (a constant fraction of) users containing the msg
- Evolves like a complete graph for each slot
- Complete spreading within this phase

Concluding Remarks

 Limited velocity is sufficient to achieve order-optimal spreading rate

• Mixing allows for *balanced/uniform* evolution