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® Point-to-point channels

Analog Channel N(f)
g

Message —»| Encoder|——— H(f) —PE
X(t) y(t) C. E. Shannon

Decoder > Message

Issue: wideband systems preclude Nyquist-rate sampling!

* Sub-Nyquist sampling well explored in Signal Processing

Landau-rate sampling, compressed sensing, etc.
Objective metric: MSFE

H. Nyquist

* Question: which sub-Nyquist samplers are optimal

in terms of CAPACITY?
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® C(Consider linear time-invariant sub-sampled channels
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(1) a filter bank followed by uniform sampling
(2) a single branch of and modulation and filtering with
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Universal Sampling for Compound Channels

The channel-optimized sampler suppresses aliasing

e What if there are a collection of channel realizations?
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Universal Sampling for Compound Channels

The channel-optimized sampler suppresses aliasing

e What if there are a collection of channel realizations”

/ N
0 2715 > — -2 S \'__,
W |
O f

e Universal (channel-blind) Sampling
---- A sampler is typically integrated into the hardware
---- Need to operate independently of instantaneous realization
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Sub-optimality of Channel-optimized Samplers

Consider 2 possible channel realizations .........

Effective channel

gain (b)

Effective channel
(a)
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optimal sampler for (a) | |, Far from optimal!
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* No single linear sampler can maximize capacity for all realizations!

* Question: how to design a universal sampler robust to different
channel realizations



Robustness Measure: Minimax Capacity Loss

e Consider a channel state s and a sampler @ :

> 7 \'——>
f
0 205 l
maximum capacity Cl achievable rate under (): CSQ

Capacity Loss: L$ :=C,—CZ



Robustness Measure: Minimax Capacity Loss

e Consider a channel state s and a sampler @ :

= -~ \'——>
f
0 2fs l
maximum capacity Cs achievable rate under Q: C¥
Capacity Loss: L% :=C,—C8
Minimax Capacity Loss: ming mMaXs LSQ

accounting for all channel states s <«



Robustness Measure: Minimax Capacity Loss

e Consider a channel state s and a sampler @ :

2 -~ \'——>
f
0 2fs l
maximum capacity Cs achievable rate under Q: C¥
Capacity Loss: L% :=C,—C8
Minimax Capacity Loss: ming mMaXs LSQ

optimize over a large class of samplers +——
accounting for all channel states s <«

Q* = argming maxy LY

& =-- Minimax Sampler
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— A sampler that minimizes the worse-case capacity loss
due to universal sampling () = argmingmax. O — ¢ SQ



Minimax Universal Sampling

Capacity Nyquist-1< Capacity
P e minimax
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Capacity under Minimax Sampler

Sampler that maximizes compount channel capacity

State: s

A

-- A sampler that maximizes compound channel capacity () = arg maxg min, C¢

— A sampler that minimizes the worse-case capacity loss
due to universal sampling Q* = arg ming max, C, — C Q
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Focus on Multiband Channel Model

A class of channels where at each time only a {'raction of bandwidths are active.
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k out of n subbands are active.

Im-branch sampling with modulation and filtering:
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Sparsity ratio: 8 :=k/n

Undersampling ratio:

a:= fs/W



Converse: Landau-rate Sampling (a=p0)

Sparsity ratio: 5 := k/n
Undersampling ratio: a :=m/n = f,/W

Theorem (Converse): The minimax capacity loss per Hertz obeys:
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Converse: Landau-rate Sampling (a=0)

Sparsity ratio: 8 := k/n
Undersampling ratio: a :=m/n = fs/W

Theorem (Converse): The minimax capacity loss per Hertz obeys:

P> (D)= =Blog A1 —0)logll=1)

N At high SNR and large n,
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B
Sparsity ratio: 8 :=k/n

minimax capacity loss determined by subband uncertainty
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Converse: Landau-rate Sampling (a=0)

Sparsity ratio: 8 :=k/n
Undersampling ratio: o :=m/n = fs/W

Theorem (Converse). The minimax capacity loss per Hertz obeys:

Key observation for the proof :

5. exp(LY) ~ constant

[ The minimax sampler achieves equivalent loss across all channel states ]




Achievability: Landau-rate Sampling (a=0)
Sparsity ratio: 5 := k/n
Undersampling ratio: a:=m/n = f4/W

o Deterministic optimization is NP-hard (non-convex).



Achievability: Landau-rate Sampling (a=0)
Sparsity ratio: 8 :=k/n
Undersampling ratio: a:=m/n = f4/W

o Deterministic optimization is NP-hard (non-convex).
e Hope: random sampling

%er transform of periodic
wnce is a spike-train o)
,é 2

—» h(t)

qri(t) /: e
=4
l__t I T 1 ‘ T j /—» LPF y—(»t)/—>ym[l]




Achievability: Landau-rate Sampling (a=0)
Sparsity ratio: 8 :=k/n
Undersampling ratio: o :=m/n = fs/W

o Deterministic optimization is NP-hard (non-convex).
e Hope: random sampling

%er transform of periodic
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— A sampling system is called independent random sampling if
the coefficients of the spike-train are independently
and randomly generated.



Achievability: Landau-rate Sampling (a=0)
Sparsity ratio: 5 :=k/n
Undersampling ratio: « :=m/n = fs/W
q, (1) =1
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Theorem (Achievability): The capacity loss per Hertz under
independent random sampling is

—Q(n)

with probability exceeding 1—e



Implications: Landau-rate Sampling (a=p)
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Theorem (Achievability): Under independent random sampling (with
zero mean and unit variance), with exponentially high probability,
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Implications: Landau-rate Sampling (a=p)
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Theorem (Achievability): Under independent random sampling (with
zero mean and unit variance), with exponentially high probability,

Theorem (Converse):

e Random sampling is Minimax
e Sharp concentration — exponentially high probability



Implications: Landau-rate Sampling (a=p)

Theorem ( Converse):

1

inf max L? > —
Q se(ln) 2

Theorem (Achievability): Under independent random sampling (with
zero mean and unit variance), with exponentially high probability,

e Random sampling is Minimax

e Sharp concentration — exponentially high probability

e Universality phenomena:
A large class of distributions can work!
-- Gaussian, Bernoulli, uniform. ..
No need for i.i.d. randomness

-- can be a mixture of Gaussian, Bernoulli, uniform. ..
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Capacity Loss for Multiband Channels

Capacity Nyquist-rate Capacity
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Capacity under Minimax Sampler

State: s

Minimax sampling yields equivalent capacity loss over all
possible channel realizations when SNR and n are large!



Converse: Super-Landau Sampling (a>f3)

Sparsity ratio: §:=k/n
Undersampling ratio: a :=m/n = fs/W

Theorem (Converse): The minimax capacity loss per Hertz obeys:
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Achievability: Super-Landau Sampling (a>p)

Sparsity ratio: 8 :=k/n
Undersampling ratio: a :=m/n = fs/W

Gaussian sampling
=2 Gaussian modulation coefficient,
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Achievability: Super-Landau Sampling (a>f)

Sparsity ratio: 8 :=k/n
Undersampling ratio: o :=m/n = fs/W

Gaussian sampling
- Gaussian modulation coefficient,
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Theorem (Achievability): If a+3<7, then the capacity loss per Hertz under
i.i.d. Gaussian random sampling is

with probability exceeding 1 — ()



Implications: super-Landau sampling (a=8, a+B<7)

Theorem (Converse): The minimax capacity loss per Hertz obeys:

Theorem (Achievability): Under i.i.d. Gaussian random sampling,
with exponentially high probability

e Gaussian sampling is Minimax !

e Sharp concentration: exponentially high probability

e Universality phenomena not shown. ..
We have only shown the results for i.i.d. Gaussian sampling



Concluding Remarks

Minimax Capacity Loss

-- A new metric to characterize robustness against different channel
realizations

-- For multiband channels, it depends only on undersampling factor
and sparsity ratio

The power of random sampling

-- Near-optimal in an overall sense (minimax)
-- Large random samplers behave in deterministic ways

(sharp concentration + universality)

A Non-Asymptotic analysis of random
channels
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