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Capacity of Undersampled Channels 

�   Point-to-point channels 

Issue: wideband systems preclude Nyquist-rate sampling!  
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C. E. Shannon 

�   Sub-Nyquist sampling well explored in Signal Processing 
�   Landau-rate sampling,  compressed sensing,  etc. 

�   Objective metric:  MSE 

H. Nyquist 

�   Question: which sub-Nyquist samplers are optimal 
in terms of CAPACITY?  
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Prior work: Channel-specific Samplers 

�   Consider linear time-invariant sub-sampled channels 
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Prior work: Channel-specific Samplers 

�   Consider linear time-invariant sub-sampled channels 

�   The channel-optimized sampler (optimized for a 
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�  (1) a filter bank followed by uniform sampling 
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Prior work: Channel-specific Samplers 

�   Consider linear time-invariant sub-sampled channels 

�   The channel-optimized sampler (optimized for a 
single channel) 

�  (1) a filter bank followed by uniform sampling 
�  (2) a single branch of and modulation and filtering with 
uniform sampling 

�  No need to use non-uniform sampling grid!  
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�   Suppresses Aliasing 
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Universal Sampling for Compound Channels 

The channel-optimized sampler suppresses aliasing 

�   What if there are a collection of channel realizations? 

�  Universal (channel-blind) Sampling 

---- A sampler is typically integrated into the hardware  

---- Need to operate independently of instantaneous realization 
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Sub-optimality of Channel-optimized Samplers 

Consider 2 possible channel realizations ...⋯⋯ 
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Sub-optimality of Channel-optimized Samplers 

�  No single linear sampler can maximize capacity for all realizations! 

Consider 2 possible channel realizations ...⋯⋯ 

optimal sampler for (a) 

(a) 

Far from optimal!   
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�   Question:  how to design a universal sampler robust to different 
channel realizations 
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Robustness Measure: Minimax Capacity Loss 

�   Consider a channel state s and a sampler Q :  

Capacity Loss:  

accounting for all channel states s 
 

optimize over a large class of samplers 

Minimax Capacity Loss:  

-- Minimax Sampler 
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Capacity Nyquist-rate Capacity 

Capacity under Minimax Sampler 

State: s 

minimax  
capacity loss 

－  A sampler that minimizes the worse-case capacity loss  
due to universal sampling  



Minimax Universal Sampling 

Capacity Nyquist-rate Capacity 

Sampler that maximizes compount channel capacity 

Capacity under Minimax Sampler 

State: s 

minimax  
capacity loss 

--  A sampler that maximizes compound channel capacity  

－  A sampler that minimizes the worse-case capacity loss  
due to universal sampling  
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Focus on Multiband Channel Model 

A class of channels where at each time only a fraction of bandwidths are active. 

k out of n subbands are active. 

m-branch sampling with modulation and filtering:  
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Converse: Landau-rate Sampling  (α=β)


Theorem (Converse): The minimax capacity loss per Hertz obeys: 
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At high SNR and large n,  

minimax capacity loss determined by  subband uncertainty 
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Converse: Landau-rate Sampling  (α=β)


Theorem (Converse): The minimax capacity loss per Hertz obeys: 

Key observation for the proof :  

The minimax sampler achieves equivalent loss across all channel states 
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 A sampling system is called independent random sampling if  
            the coefficients of the spike-train are independently 
            and randomly generated. 
 

Fourier transform of periodic 
sequence is a spike-train 



Achievability: Landau-rate Sampling  (α=β)
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        random sampling   
  à random modulation coefficients 

Theorem (Achievability): The capacity loss per Hertz under 
independent random sampling is 

with probability exceeding 
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Implications: Landau-rate Sampling  (α=β)


Theorem (Achievability): Under independent random sampling (with 
zero mean and unit variance),  with exponentially high probability, 

Theorem (Converse): 

�  Sharp concentration – exponentially high probability 
 �  Universality phenomena:  

� A large class of distributions can work!  
-- Gaussian, Bernoulli, uniform⋯ 

� No need for i.i.d. randomness 

   -- can be a mixture of Gaussian, Bernoulli, uniform⋯ 

 

�  Random sampling is Minimax  
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Capacity Loss for Multiband Channels 

Capacity Nyquist-rate Capacity 

Capacity under Minimax Sampler 

State: s 

minimax  
capacity loss 

 Minimax sampling yields equivalent capacity loss over all 
possible channel realizations when SNR and n are large!    



Converse: Super-Landau Sampling  (α>β)


Theorem (Converse): The minimax capacity loss per Hertz obeys: 

�  Capacity gain due to oversampling is 

 



Achievability: Super-Landau Sampling  (α>β)
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        Gaussian sampling   
   à Gaussian modulation coefficients 

Theorem (Achievability): If α+β<1, then the capacity loss per Hertz under 
              i.i.d. Gaussian random sampling is 

with probability exceeding 



Implications: super-Landau sampling  (α=β, α+β<1)


Theorem (Achievability): Under i.i.d. Gaussian random sampling,  
with exponentially high probability 

Theorem (Converse): The minimax capacity loss per Hertz obeys: 

�  Sharp concentration: exponentially high probability 

 � Universality phenomena not shown⋯  
� We have only shown the results for i.i.d. Gaussian sampling 

 

�  Gaussian sampling is Minimax !  
 



Concluding Remarks 

"   The power of random sampling  
-- Near-optimal in an overall sense (minimax) 

-- Large random samplers behave in deterministic ways       

             (sharp concentration + universality)  

" Minimax Capacity Loss 
-- A new metric to characterize robustness against different channel 
realizations 

-- For multiband channels, it depends only on undersampling factor 
and sparsity ratio 

"   A Non-Asymptotic analysis of random 
channels 
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