

ICML 2014, Beijing

Scalable Semidefinite Relaxation for Maximum A Posteriori Estimation

Qixing Huang, Yuxin Chen, and Leonidas Guibas

Stanford University

Maximum A Posteriori (MAP) Inference

• Markov Random Field (MRF)

- $\circ w_i$: potential function for vertices
- $\circ W_{ij}$: potential function for edges

Maximum A Posteriori (MAP) Inference

• Markov Random Field (MRF)

- $\circ w_i$: potential function for vertices
- $\circ W_{ij}$: potential function for edges
- Maximum A Posteriori (MAP) Inference

 $\circ\,$ Find the mode with the lowest energy / potential

A Large Number of Applications ...

• Computer Vision Applications

- Image Segmentation
- Geometric Surface Labeling
- Photo Montage
- Scene Decomposition
- Object Detection
- Color Segmentation

0 ...

•

. . .

- Protein Folding
- Metric Labeling
- Error-Correcting Codes

OpenGM Benchmark

Problem Setup

• Model

$$\circ$$
 n vertices (x_1, \cdots, x_n)

 $\circ m$ different states $\iff x_i \in \{1, \cdots, m\}$

- Representation of Each x_i
 - \circ m possible states \iff $x_i \in \{e_1, e_2, \cdots, e_m\}$

 $oldsymbol{x}_i$

$$\begin{array}{ll} \text{maximize} & f\left(\pmb{x}_{1},\cdots,\pmb{x}_{n}\right) := \sum_{i=1}^{n} \left< \pmb{w}_{i},\pmb{x}_{i} \right> + \sum_{(i,j)\in\mathcal{G}} \left< \pmb{W}_{ij},\pmb{x}_{i}\pmb{x}_{j}^{\top} \right> \\ \text{s.t.} & \pmb{x}_{i} \in \{\pmb{e}_{1},\cdots,\pmb{e}_{m}\} \end{array}$$

• Non-Convex!

Page 5

$$\begin{array}{ll} \text{maximize} & f\left(\pmb{x}_{1},\cdots,\pmb{x}_{n}\right) := \sum_{i=1}^{n} \left< \pmb{w}_{i},\pmb{x}_{i} \right> + \sum_{(i,j)\in\mathcal{G}} \left< \pmb{W}_{ij},\pmb{x}_{i}\pmb{x}_{j}^{\mathsf{T}} \right> \\\\ \text{s.t.} & \pmb{x}_{i} \in \{\pmb{e}_{1},\cdots,\pmb{e}_{m}\} \end{array}$$

$$\begin{array}{ll} \text{maximize} & f\left(\boldsymbol{x}_{1},\cdots,\boldsymbol{x}_{n}\right) := \sum_{i=1}^{n} \left\langle \boldsymbol{w}_{i},\boldsymbol{x}_{i}\right\rangle + \sum_{(i,j)\in\mathcal{G}} \left\langle \boldsymbol{W}_{ij},\boldsymbol{x}_{i}\boldsymbol{x}_{j}^{\top}\right\rangle\\ \text{s.t.} & \boldsymbol{x}_{i}\in\{\boldsymbol{e}_{1},\cdots,\boldsymbol{e}_{m}\} \end{array}$$

• Auxiliary Variable
$$\boldsymbol{X} = \begin{bmatrix} \boldsymbol{X}_{11} & \boldsymbol{X}_{12} & \cdots & \boldsymbol{X}_{1n} \\ \boldsymbol{X}_{12}^{\top} & \boldsymbol{X}_{22} & \cdots & \boldsymbol{X}_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ \boldsymbol{X}_{1n}^{\top} & \boldsymbol{X}_{2n}^{\top} & \cdots & \boldsymbol{X}_{nn} \end{bmatrix}$$

$$\begin{array}{ll} \text{maximize} & f\left(\boldsymbol{x}_{1},\cdots,\boldsymbol{x}_{n}\right) \coloneqq \sum_{i=1}^{n} \left\langle \boldsymbol{w}_{i},\boldsymbol{x}_{i}\right\rangle + \sum_{(i,j)\in\mathcal{G}} \left\langle \boldsymbol{W}_{ij},\boldsymbol{X}_{ij}\right\rangle \\ \text{s.t.} & \boldsymbol{X}_{ij} = \boldsymbol{x}_{i}\boldsymbol{x}_{j}^{\top}, \quad \boldsymbol{X}_{ii} = \boldsymbol{x}_{i}\boldsymbol{x}_{i}^{\top} = \text{diag}(\boldsymbol{x}_{i}) \\ & \boldsymbol{x}_{i} \in \{\boldsymbol{e}_{1},\cdots,\boldsymbol{e}_{m}\} \end{array}$$

$$\begin{array}{ll} \text{maximize} & f\left(\pmb{x}_{1},\cdots,\pmb{x}_{n}\right) \coloneqq \sum_{i=1}^{n} \left< \pmb{w}_{i},\pmb{x}_{i} \right> + \sum_{(i,j)\in\mathcal{G}} \left< \pmb{W}_{ij}, \pmb{x}_{i} \pmb{x}_{j}^{\mathsf{T}} \right> \\ \text{s.t.} & \pmb{x}_{i} \in \{\pmb{e}_{1},\cdots,\pmb{e}_{m}\} \end{array}$$

• Auxiliary Variables
$$oldsymbol{X} = egin{bmatrix} oldsymbol{X}_{11} & oldsymbol{X}_{12} & \cdots & oldsymbol{X}_{1n} \ oldsymbol{X}_{12} & oldsymbol{X}_{22} & \cdots & oldsymbol{X}_{2n} \ oldsymbol{i} & oldsymbol{i} & \cdots & oldsymbol{i} \ oldsymbol{X}_{1n} & oldsymbol{X}_{2n}^\top & \cdots & oldsymbol{X}_{nn} \end{bmatrix}$$
 and $oldsymbol{x} = egin{bmatrix} oldsymbol{x}_1 \ oldsymbol{x}_2 \ oldsymbol{i} \ oldsymbol{X}_{nn} \end{bmatrix}$

$$\begin{array}{ll} \text{maximize} & f\left(\boldsymbol{x}_{1},\cdots,\boldsymbol{x}_{n}\right) := \sum_{i=1}^{n} \left\langle \boldsymbol{w}_{i},\boldsymbol{x}_{i}\right\rangle + \sum_{(i,j)\in\mathcal{G}} \left\langle \boldsymbol{W}_{ij},\boldsymbol{X}_{ij}\right\rangle \\ \text{s.t.} & \boldsymbol{X} = \boldsymbol{x}\boldsymbol{x}^{\top}, \quad \boldsymbol{X}_{ii} = \text{diag}(\boldsymbol{x}_{i}) \\ & \boldsymbol{x}_{i} \in \{\boldsymbol{e}_{1},\cdots,\boldsymbol{e}_{m}\} \end{array}$$

Page 7

$$\begin{array}{ll} \text{maximize} & f\left(\boldsymbol{x}_{1},\cdots,\boldsymbol{x}_{n}\right) := \sum_{i=1}^{n} \left\langle \boldsymbol{w}_{i},\boldsymbol{x}_{i}\right\rangle + \sum_{(i,j)\in\mathcal{G}} \left\langle \boldsymbol{W}_{ij},\boldsymbol{X}_{ij}\right\rangle \\ \text{s.t.} & \boldsymbol{X} = \boldsymbol{x}\boldsymbol{x}^{\top}, \quad \boldsymbol{X}_{ii} = \text{diag}(\boldsymbol{x}_{i}) \\ & \boldsymbol{x}_{i} \in \{\boldsymbol{e}_{1},\cdots,\boldsymbol{e}_{m}\} \end{array}$$

$$\begin{array}{ll} \text{maximize} & f\left(\boldsymbol{x}_{1},\cdots,\boldsymbol{x}_{n}\right) \coloneqq \sum_{i=1}^{n} \left\langle \boldsymbol{w}_{i},\boldsymbol{x}_{i}\right\rangle + \sum_{(i,j)\in\mathcal{G}} \left\langle \boldsymbol{W}_{ij},\boldsymbol{X}_{ij}\right\rangle \\ \text{s.t.} & \boldsymbol{X} = \boldsymbol{x}\boldsymbol{x}^{\top}, \quad \boldsymbol{X}_{ii} = \text{diag}(\boldsymbol{x}_{i}) \\ & \boldsymbol{x}_{i} \in \{\boldsymbol{e}_{1},\cdots,\boldsymbol{e}_{m}\} \end{array}$$

• Semidefinite Relaxation

$$\begin{array}{ll} \text{maximize} & f\left(\boldsymbol{x}_{1},\cdots,\boldsymbol{x}_{n}\right) \coloneqq \sum_{i=1}^{n} \left\langle \boldsymbol{w}_{i},\boldsymbol{x}_{i}\right\rangle + \sum_{(i,j)\in\mathcal{G}} \left\langle \boldsymbol{W}_{ij},\boldsymbol{X}_{ij}\right\rangle \\ \text{s.t.} & \left[\begin{array}{c} 1 & \boldsymbol{x}^{\top} \\ \boldsymbol{x} & \boldsymbol{X} \end{array} \right] \succeq \boldsymbol{0} \\ \boldsymbol{X}_{ii} = \operatorname{diag}(\boldsymbol{x}_{i}) \\ \boldsymbol{x}_{i} \in \{\boldsymbol{e}_{1},\cdots,\boldsymbol{e}_{m}\} \end{array}$$

 $\begin{array}{ll} \text{maximize} & f\left(\boldsymbol{x}_{1},\cdots,\boldsymbol{x}_{n}\right) \coloneqq \sum_{i=1}^{n} \left\langle \boldsymbol{w}_{i},\boldsymbol{x}_{i}\right\rangle + \sum_{(i,j)\in\mathcal{G}} \left\langle \boldsymbol{W}_{ij},\boldsymbol{X}_{ij}\right\rangle \\ \text{s.t.} & \left[\begin{array}{c} 1 & \boldsymbol{x}^{\top} \\ \boldsymbol{x} & \boldsymbol{X} \end{array} \right] \succeq \boldsymbol{0}, \quad \boldsymbol{X}_{ii} = \text{diag}(\boldsymbol{x}_{i}) \\ \boldsymbol{x}_{i} \in \{\boldsymbol{e}_{1},\cdots,\boldsymbol{e}_{m}\} \end{array}$

$$\begin{array}{ll} \mathsf{maximize} & f\left(\boldsymbol{x}_{1},\cdots,\boldsymbol{x}_{n}\right) \coloneqq \sum_{i=1}^{n} \left< \boldsymbol{w}_{i},\boldsymbol{x}_{i} \right> + \sum_{(i,j)\in\mathcal{G}} \left< \boldsymbol{W}_{ij},\boldsymbol{X}_{ij} \right> \\ \mathsf{s.t.} & \left[\begin{array}{cc} 1 & \boldsymbol{x}^{\top} \\ \boldsymbol{x} & \boldsymbol{X} \end{array} \right] \succeq \boldsymbol{0}, \quad \boldsymbol{X}_{ii} = \mathrm{diag}(\boldsymbol{x}_{i}) \\ \boldsymbol{x}_{i} \in \{\boldsymbol{e}_{1},\cdots,\boldsymbol{e}_{m}\} \end{array}$$

• Relax the Constraints $oldsymbol{x}_i \in \{oldsymbol{e}_1, \cdots, oldsymbol{e}_m\}$

$$\mathsf{maximize} \qquad f\left(\boldsymbol{x}_{1},\cdots,\boldsymbol{x}_{n}\right) := \sum_{i=1}^{n} \left< \boldsymbol{w}_{i}, \boldsymbol{x}_{i} \right> + \sum_{(i,j) \in \mathcal{G}} \left< \boldsymbol{W}_{ij}, \boldsymbol{X}_{ij} \right>$$

s.t.

$$egin{aligned} &i=1\ &(i,j)\in\mathcal{G}\ &\left[egin{aligned} 1 & oldsymbol{x}^{ op}\ oldsymbol{x} &oldsymbol{X} \end{array}
ight]\succeqoldsymbol{0},\quad oldsymbol{X}_{ii}= ext{diag}(oldsymbol{x}_i)\ &oldsymbol{x}_i\geqoldsymbol{0},\quad oldsymbol{1}^{ op}oldsymbol{x}_i=oldsymbol{1},\ &oldsymbol{X}_{ij}\geqoldsymbol{0},\quad oldsymbol{1}^{ op}oldsymbol{x}_i=oldsymbol{1},\ &oldsymbol{X}_{ij}=oldsymbol{1},\quad oldsymbol{1}^{ op}oldsymbol{x}_{ij}=oldsymbol{1},\ &oldsymbol{X}_{ij}=oldsymbol{1},\quad oldsymbol{1}^{ op}oldsymbol{x}_{ij}=oldsymbol{1},\ &oldsymbol{V}(i,j)\in\mathcal{G} \end{aligned}$$

Our Semidefinite Formulation

• Final Semidefinite Program (SDR):

$$\begin{array}{ll} \text{maximize} & \sum_{i=1}^{n} \langle \boldsymbol{w}_{i}, \boldsymbol{x}_{i} \rangle + \sum_{(i,j) \in \mathcal{G}} \langle \boldsymbol{W}_{ij}, \boldsymbol{X}_{ij} \rangle \\ \text{s.t.} & \begin{bmatrix} 1 & \boldsymbol{x}^{\top} \\ \boldsymbol{x} & \boldsymbol{X} \end{bmatrix} \succeq \boldsymbol{0}, \quad \boldsymbol{X}_{ii} = \text{diag}(\boldsymbol{x}_{i}) \\ \boldsymbol{x}_{i} \geq \boldsymbol{0}, \quad \boldsymbol{1}^{\top} \boldsymbol{x}_{i} = \boldsymbol{1}, \\ \boldsymbol{X}_{ij} \geq \boldsymbol{0}, \quad \forall (i,j) \in \mathcal{G} \end{array}$$

- Low-Rank and Sparse!
- $O(nm^2)$ linear equality constraints

Superiority to Linear Programming Relaxation

Semidefinite Relaxation (SDR)
$\left[egin{array}{ccc} 1 & oldsymbol{x}^{ op} \ oldsymbol{x} & oldsymbol{X} \end{array} ight] \succeq oldsymbol{0},$
$oldsymbol{X}_{ii} = ext{diag}(oldsymbol{x}_i)$
$\boldsymbol{x}_i \geq \boldsymbol{0}, \boldsymbol{1}^{\top} \boldsymbol{x}_i = 1$
$oldsymbol{X}_{ij} \geq oldsymbol{0}, orall (i,j) \in \mathcal{G}$

LP Relaxation

$$egin{aligned} & oldsymbol{X}_{ij} oldsymbol{1} = oldsymbol{x}_i & (oldsymbol{1} \leq oldsymbol{i}, oldsymbol{j} \leq oldsymbol{n}) \ & oldsymbol{X}_{ii} = ext{diag}(oldsymbol{x}_i) \ & oldsymbol{x}_i \geq oldsymbol{0}, \quad oldsymbol{1}^ op oldsymbol{x}_i = oldsymbol{1} \ & oldsymbol{X}_{ij} \geq oldsymbol{0}, \quad oldsymbol{1}^ op oldsymbol{x}_i = oldsymbol{1} \ & oldsymbol{X}_{ij} \geq oldsymbol{0}, \quad oldsymbol{1}^ op oldsymbol{x}_i = oldsymbol{1} \ & oldsymbol{X}_{ij} \geq oldsymbol{0}, \quad oldsymbol{1}^ op oldsymbol{x}_i = oldsymbol{1} \ & oldsymbol{X}_{ij} \geq oldsymbol{0}, \quad oldsymbol{1}^ op oldsymbol{x}_i = oldsymbol{1} \ & oldsymbol{X}_{ij} \geq oldsymbol{0}, \quad oldsymbol{1}^ op oldsymbol{x}_i = oldsymbol{1} \ & oldsymbol{X}_{ij} \geq oldsymbol{0}, \quad oldsymbol{1}^ op oldsymbol{x}_i = oldsymbol{1} \ & oldsymbol{X}_{ij} \geq oldsymbol{0}, \quad oldsymbol{1}^ op oldsymbol{x}_i = oldsymbol{1} \ & oldsymbol{1}^ op oldsymbol{1} \ & oldsymbol{1}^ op oldsymbol{0}, \quad oldsymbol{1}^ op oldsymbol{1}^ op oldsymbol{1} \ & oldsymbol{1} \ & oldsymbol{1}^ op oldsymbol{1} \ & oldsymbol{1}^ op oldsymbol{1} \ & oldsy$$

• Shall we enforce the marginalization constraints? $(X_{ij}\mathbf{1} = x_i, 1 \le i, j \le n)$

 $\Theta(n^2m)$ constraints

Superiority to Linear Programming Relaxation

$$\begin{split} \textbf{Semidefinite Relaxation (SDR)} \\ \begin{bmatrix} 1 & \boldsymbol{x}^\top \\ \boldsymbol{x} & \boldsymbol{X} \end{bmatrix} \succeq \boldsymbol{0}, \\ \boldsymbol{X}_{ii} = \operatorname{diag}(\boldsymbol{x}_i) \\ \boldsymbol{x}_i \geq \boldsymbol{0}, \quad \boldsymbol{1}^\top \boldsymbol{x}_i = 1 \\ \boldsymbol{X}_{ij} \geq \boldsymbol{0}, \quad \forall (i,j) \in \mathcal{G} \end{split}$$

P Relaxation

$$egin{aligned} oldsymbol{X}_{ij} \mathbf{1} &= oldsymbol{x}_i & (\mathbf{1} \leq oldsymbol{i}, oldsymbol{j} \leq oldsymbol{n}) \ oldsymbol{X}_{ii} &= ext{diag}(oldsymbol{x}_i) \ oldsymbol{x}_i \geq oldsymbol{0}, \quad oldsymbol{1}^ op oldsymbol{x}_i = 1 \ oldsymbol{X}_{ij} \geq oldsymbol{0}, \quad orall (i, j) \in \mathcal{G} \end{aligned}$$

- Shall we enforce the marginalization constraints? $(X_{ij}1 = x_i, 1 \le i, j \le n)$
- Answer: No!

 $\Theta(n^2m)$ constraints

Proposition

Any feasible solution to SDR necessarily satisfies $X_{ij} \mathbf{1} = x_i$.

 $O(nm^2)$ v.s. $O(n^2m + nm^2)$ linear equality constraints!

ADMM

- Alternating Direction Methods of Multipliers
 - $\circ~\mbox{Fast}$ convergence in the first several tens of iterations

Semidefinite Relaxation (SDR)

$$\begin{array}{ll} \max & \sum_{i=1}^{n} \langle \boldsymbol{w}_{i}, \boldsymbol{x}_{i} \rangle + \sum_{(i,j) \in \mathcal{G}} \langle \boldsymbol{W}_{ij}, \boldsymbol{X}_{ij} \rangle \\ \text{s.t.} & \begin{bmatrix} 1 & \boldsymbol{x}^{\top} \\ \boldsymbol{x} & \boldsymbol{X} \end{bmatrix} \succeq \boldsymbol{0}, \\ & \boldsymbol{X}_{ii} = \operatorname{diag}(\boldsymbol{x}_{i}) \\ & \boldsymbol{x}_{i} \geq \boldsymbol{0}, \quad \boldsymbol{1}^{\top} \boldsymbol{x}_{i} = \boldsymbol{1}, \\ & \boldsymbol{X}_{ij} \geq \boldsymbol{0}, \quad \forall (i,j) \in \mathcal{G} \end{array}$$

ADMM

- Alternating Direction Methods of Multipliers
 - Fast convergence in the first several tens of iterations

Semidefinite Relaxation (SDR)

m

$$\begin{array}{ll} \max & \sum_{i=1}^{n} \langle \boldsymbol{w}_{i}, \boldsymbol{x}_{i} \rangle + \sum_{(i,j) \in \mathcal{G}} \langle \boldsymbol{W}_{ij}, \boldsymbol{X}_{ij} \rangle \\ \text{s.t.} & \begin{bmatrix} 1 & \boldsymbol{x}^{\top} \\ \boldsymbol{x} & \boldsymbol{X} \end{bmatrix} \succeq \boldsymbol{0}, \\ & \boldsymbol{X}_{ii} = \operatorname{diag}(\boldsymbol{x}_{i}) \\ & \boldsymbol{x}_{i} \geq \boldsymbol{0}, \quad \boldsymbol{1}^{\top} \boldsymbol{x}_{i} = \boldsymbol{1}, \\ & \boldsymbol{X}_{ij} \geq \boldsymbol{0}, \quad \forall (i,j) \in \mathcal{G} \end{array}$$

Generic Formulation							
max	$\langle oldsymbol{C}, oldsymbol{X} angle$						
s.t.	$\mathcal{A}\left(oldsymbol{X} ight) =oldsymbol{b},$						
	$oldsymbol{\mathcal{B}}\left(oldsymbol{X} ight)\geq0,$						
	$X \succeq 0.$						

• $\mathcal{A}, \mathcal{B}, C$ are all highly sparse!

Scalability?

Generic Formulation	
$max~ \langle \boldsymbol{C}, \boldsymbol{X} \rangle$	dual vars
s.t. $\mathcal{A}\left(oldsymbol{X} ight) =oldsymbol{b},$	\boldsymbol{y}
$\mathcal{B}\left(oldsymbol{X} ight) \geq0,$	$oldsymbol{z} \geq oldsymbol{0}$
$X \succeq 0.$	$old S \succeq old 0$

• $\mathcal{A}, \mathcal{B}, C$ are all sparse!

• All operations are fast except ...

Scalability?

Generic Formulation

- $\mathcal{A}, \mathcal{B}, C$ are all sparse!

• All operations are fast except ...

$$\boldsymbol{X}^{(t)} = \underbrace{\left(\boldsymbol{X}^{(t-1)} - \frac{\boldsymbol{C} + \mathcal{A}^*\left(\boldsymbol{y}^{(t)}\right) - \mathcal{B}^*\left(\boldsymbol{z}^{(t)}\right)}{\mu}\right)}_{\text{projection onto PSD cone}}$$

• Eigen-decomposition of dense matrices is expensive!

Accelerated ADMM (SDPAD-LR)

$$\boldsymbol{X}^{(t)} = \underbrace{\left(\boldsymbol{X}^{(t-1)} - \frac{\boldsymbol{C} + \mathcal{A}^*\left(\boldsymbol{y}^{(t)}\right) - \mathcal{B}^*\left(\boldsymbol{z}^{(t)}\right)}{\mu}\right)_{\succeq 0}}_{\text{projection onto PSD cone}}$$

- Recall: the ground truth obeys $\mathrm{rank}(\boldsymbol{X})=1$
 - Enforce / Exploit Low-Rank Structure!

Accelerated ADMM (SDPAD-LR)

$$\boldsymbol{X}^{(t)} = \underbrace{\left(\boldsymbol{X}^{(t-1)} - \frac{\boldsymbol{C} + \mathcal{A}^*\left(\boldsymbol{y}^{(t)}\right) - \mathcal{B}^*\left(\boldsymbol{z}^{(t)}\right)}{\mu}\right)_{\succeq \boldsymbol{0}}}_{\text{projection onto PSD cone}}$$

• Recall: the ground truth obeys $\mathrm{rank}(\boldsymbol{X})=1$

• Enforce / Exploit Low-Rank Structure!

- Our Strategy:
 - \circ Only keep rank-r approximation of $m{X}^{(t)} pprox m{Y}^{(t) op}$

eigens of
$$\underbrace{\left(\underbrace{\boldsymbol{Y}^{(t-1)}\boldsymbol{Y}^{(t-1)\top}}_{\text{low rank}} - \frac{\boldsymbol{C} + \mathcal{A}^{*}\left(\boldsymbol{y}^{(t)}\right) - \mathcal{B}^{*}\left(\boldsymbol{z}^{(t)}\right)}{\frac{\mu}{\text{sparse}}}\right)}_{\text{sparse}}$$

Accelerated ADMM (SDPAD-LR)

- Our Strategy:
 - \circ Only keep rank-r approximation of $m{X}^{(t)} pprox m{Y}^{(t) op}$

• Numerically fast

 \circ e.g. Lanczos Process $O(nmr^2 + m^2|\mathcal{G}|)$

• Empirically, $r \approx 8$

Cornelius Lanczos

Benchmark Data Sets

- Benchmark
 - \circ OPENGM2
 - \circ PIC
 - \circ ORIENT

Benchmark Data Sets

• Benchmark

- \circ OPENGM2
- \circ PIC
- \circ ORIENT

categories	graphs	n	m	# instances	avg time
PIC-Object	full	60	11-21	37	5m32s
PIC-Folding	mixed	2K	2-503	21	21m42s
PIC-Align	dense	30-400	20-93	19	37m63s
GM-Label	sparse	1K	7	324	6m32s
GM-Char	sparse	5K-18K	2	100	1h13m
GM-Montage	grid	100K	5,7	3	9h32m
GM-Matching	dense	19	19	4	2m21s
ORIENT	sparse	1K	16	10	10m21s

All problems can be solved within reasonable time!

Empirical Convergence: Example

- Benchmark: Geometric Surface Labeling (gm275)
 - \circ matrix size: 5201; # constraints: 218791
 - $\circ~{\rm Stopping}$ criterion: duality gap $<10^{-3}$

Empirical Convergence: Example

- Benchmark: Geometric Surface Labeling (gm275)
 - matrix size: 5201; # constraints: 218791
 - $\circ\,$ Stopping criterion: duality gap $<10^{-3}$

	SDPAD-LR	SDPAD
	(our algorithm)	(original ADMM by Wen'10)
time	21:33	41:33:21
duality gap	5.1×10^{-4}	1.2×10^{-4}
primal-dual infeasibility	1.3×10^{-6}	3.1×10^{-6}

	SDPNAL	MOSEK
	(ADMM w/ Newton-CG)	interior point
time	21:34:35	N/A
duality gap	0.97×10^{-4}	N/A
primal-dual infeasibility	4.5×10^{-7}	N/A

• SDPAD-LR converges to the correct optimizer of SDP in these problems!

Performance on MAP Problems

- Performance Measures
 - $\circ\,$ mean objective values

• the percentage of an algorithm achieving the best result

Performance on MAP Problems

- Performance Measures
 - $\circ\,$ mean objective values

• the percentage of an algorithm achieving the best result

	SDPAD-LR	Ficolofo	BRAOBB	lpha-expand	TRWS-LF2	ogm-TRBP
ORIENT	-7834.6	na	-3059.2	-7695.4	-7592.4	-7553.8
	100%		0%	0%	0%	0%
PIC_Object	-19316.12	-19308.94	-19113.87	-10106.8	-19020.82	-18900.81
TTC-Object	97.3%	91.9%	24.3%	0%	59.5%	32.2%
DIC Ealding	-5963.68	-5963.68	-5927.01	-5652.76	-5905.01	-5907.24
PIC-Folding	100%	100%	42.9%	14.2%	38.1%	42.9%
PIC-Align	2285.23	2285.34	2285.34	2285.34	2286.64	2289.12
	100%	90%	90%	90%	80%	70%
GM-Label	-476.95	na	na	-476.95	-476.95	486.42
	100%			100%	99.67%	40%
GM-Char	-59550.67	na	na	na	-49519.44	-49507.98
	86.1%				11%	6%
GM-Montage	168298.00	na	na	168220.00	735193.0	235611.00
	66.3%			33.3%	0%	0%
GM-Matching	44.19	b 0	21.22	na	32.38	5.5e10
	0%	na	100%		0%	0%

Implications from Empirical Results

	SDPAD-LR	Ficolofo	BRAOBB	lpha-expand	TRWS-LF2	ogm-TRBP
ORIENT	-7834.6 100%	na	- <i>3059.2</i>	- <i>7695.4</i>	-7592.4	-7553.8
	-19316.12	-19308.94	-19113.87	-10106.8	-19020.82	-18900.81
PIC-Object	97.3%	91.9%	24.3%	0%	59.5%	32.2%
DIC Ealding	-5963.68	-5963.68	-5927.01	-5652.76	-5905.01	-5907.24
PIC-Folding	100%	100%	42.9%	14.2%	38.1%	42.9%
PIC-Align	2285.23	2285.34	2285.34	2285.34	2286.64	2289.12
	100%	90%	90%	90%	80%	70%
GM-Label	-476.95	na	na	-476.95	-476.95	486.42
	100%			100%	99.67%	40%
GM-Char	-59550.67	na	na	na	-49519.44	-49507.98
	86.1%				11%	6%
GM-Montage	168298.00	82	na	168220.00	735193.0	235611.00
	66.3%	lld		33.3%	0%	0%
GM-Matching	44.19	n 2	21.22	32.38	5.5e10	
	0%	na	100%	lla	0%	0%

• SDPAD-LR is *top-performing* on all datasets

except GM-Matching

Concluding Remarks

• Semidefinite Relaxation for MAP Inference

- SDP, if computationally feasible, outperforms many algorithms
- $\circ~$ Exploit underlying structure to accelerate SDP solvers

• The Way Ahead

• Theoretical Support for Our Accelerated Algorithm (SDPAD-LR)

