Optimal multi-distribution learning

Yuxin Chen

Statistics \& Data Science, Wharton, UPenn

"Optimal multi-distribution learning," Z. Zhang, W. Zhan, Y. Chen, S. Du, J. Lee, arXiv:2312.05134, 2023

In multi-distribution learning, an agent aims to learn a shared model to fit multiple (unknown) data distributions

- diverse data sources (e.g., localities, communities, populations)
- heterogeneous objectives \longrightarrow need a balance

\perp NewYork-Presbyterian
7 The University Hospital of Columbia and Cornell
$\longrightarrow \mathcal{D}_{3}$
- k unknown data distributions $\mathcal{D}_{1}, \ldots, \mathcal{D}_{k}$ (e.g., localities, communities, populations)
- hypothesis class \mathcal{H} : VC dimension d
- known loss function ℓ (e.g., misclassification error)

- k unknown data distributions $\mathcal{D}_{1}, \ldots, \mathcal{D}_{k}$ (e.g., localities, communities, populations)
- hypothesis class \mathcal{H} : VC dimension d
- known loss function ℓ (e.g., misclassification error)
goal: learn an ε-optimal $\underbrace{\text { hypothesis } \widehat{h}}_{\text {possibly random }}$ (in min-max sense)

$$
\max _{1 \leq i \leq k} \underset{(x, y) \sim \mathcal{D}_{i}, \widehat{h}}{\mathbb{E}}[\ell(\widehat{h},(x, y))] \leq \min _{h \in \mathcal{H}} \max _{1 \leq i \leq k} \underset{(x, y) \sim \mathcal{D}_{i}}{\mathbb{E}}[\ell(h,(x, y))]+\varepsilon
$$

Mohri et al. '19, Sagawa et al. '19, Blum et al. '17, Buhlmann et al. '15, Guo '23 ...

distributionally robust learning

Mohri et al. '19, Sagawa et al. '19, Blum et al. '17, Buhlmann et al. '15, Guo '23 ...

distributionally robust learning

Mohri et al. '19, Sagawa et al. '19, Blum et al. '17, Buhlmann et al. '15, Guo '23 . . .

distributionally robust learning

collaborative learning

Adaptive vs. non-adaptive sampling

- non-adaptive sampling: pre-determine sample-size budgets for each distribution beforehand
\longrightarrow loss of data efficiency

Adaptive vs. non-adaptive sampling

- non-adaptive sampling: pre-determine sample-size budgets for each distribution beforehand
\longrightarrow loss of data efficiency
- adaptive sampling: sample on demand during learning process
\longrightarrow this talk

Adaptive vs. non-adaptive sampling

- non-adaptive sampling: pre-determine sample-size budgets for each distribution beforehand
\longrightarrow loss of data efficiency
- adaptive sampling: sample on demand during learning process
\longrightarrow this talk
learning 1 distribution

Adaptive vs. non-adaptive sampling

- non-adaptive sampling: pre-determine sample-size budgets for each distribution beforehand
\longrightarrow loss of data efficiency
- adaptive sampling: sample on demand during learning process
\longrightarrow this talk
learning 1 distribution

Adaptive vs. non-adaptive sampling

- non-adaptive sampling: pre-determine sample-size budgets for each distribution beforehand
\longrightarrow loss of data efficiency
- adaptive sampling: sample on demand during learning process
\longrightarrow this talk
learning 1 distribution

Prior works: VC classes

paper	sample complexity
Haghtalab et al. '22	$\frac{d+k}{\varepsilon^{2}}+\frac{d k}{\varepsilon}$
Awasthi et al. '23	$\frac{d}{\varepsilon^{4}}+\frac{k}{\varepsilon^{2}}$
(lower bound) Haghtalab et al. '22	$\frac{d+k}{\varepsilon^{2}}$

Prior works: VC classes

Can we close the gap between achievability and lower bound?

Proceedings of Machine Learning Research vol 195:1-11, 2023
36 t Annual Conference on Learning Theory

Open Problem: The Sample Complexity of Multi-Distribution
Learning for VC Classes

Pranjal Awasthi
Google Research, Mountain View, CA, USA
Nika Haghtalab
University of California, Berkeley, CA, USA
Eric Zhao
University of California, Berkeley, CA, USA

PRANJALAWASTHI@ GOOGLE.COM

NIKA@BERKELEY.EDU

ERIC.ZH@BERKELEY.EDU

Main results

Theorem 1 (Zhang, Zhan, Chen, Du, Lee '23)

We can design an algorithm that returns randomized hypothesis \widehat{h} s.t.

$$
\max _{1 \leq i \leq k} \underset{(x, y) \sim \mathcal{D}_{i}, \widehat{h}}{\mathbb{E}}[\ell(\widehat{h},(x, y))] \leq \min _{h \in \mathcal{H}} \max _{1 \leq i \leq k} \underset{(x, y) \sim \mathcal{D}_{i}}{\mathbb{E}}[\ell(h,(x, y))]+\varepsilon
$$

with sample complexity

$$
\widetilde{O}\left(\frac{d+k}{\varepsilon^{2}}\right)
$$

- matches the minimax lower bound (up to log factors)

Main results

- matches the minimax lower bound (up to log factors)
- solves a COLT open problem (concurrent work: Peng '23)

Main results

- matches the minimax lower bound (up to log factors)
- solves a COLT open problem (concurrent work: Peng'23)
- can be extended to Rademacher classes

Main results

- matches the minimax lower bound (up to log factors)
- solves a COLT open problem (concurrent work: Peng '23)
- can be extended to Rademacher classes
- algorithm is $\underbrace{\text { oracle-efficient }}$ (solves another COLT open problem) only needs to call ERM oracle

Algorithm design

A game-theoretic view

finding most favorable hypothesis

Preliminaries: learning in games

- no-regret algorithm: online algorithm w/ $\underbrace{\text { sub-linear regret }}$ over any adversary

$$
\frac{1}{T} \operatorname{Regret}(T) \rightarrow 0
$$

- e.g., Hedge algorithm (equivalent to online mirror descent)

Preliminaries: learning in games

- no-regret algorithm: online algorithm w/ $\underbrace{\text { sub-linear regret }}$ over any adversary

$$
\frac{1}{T} \operatorname{Regret}(T) \rightarrow 0
$$

- e.g., Hedge algorithm (equivalent to online mirror descent)
- best-response: play argmin or argmax (not always no-regret)

- min-player/max-player: no-regret/no-regret (Haghtalab et al. '22)

$$
\frac{d+k}{\varepsilon^{2}}+\frac{d k}{\varepsilon} \quad(\text { burn-in due to covering of } \mathcal{H})
$$

- min-player/max-player: best-response/no-regret (Awasthi et al. '23)

$$
\frac{d}{\varepsilon^{4}}+\frac{k}{\varepsilon^{2}} \quad \text { (lack of sample reuse) }
$$

Our approach: best-response/no-regret

At iteration t :

- min-player computes empirical best response

$$
\begin{gathered}
h^{t} \approx \arg \min _{h \in \mathcal{H}} L\left(h, w^{t}\right) \\
\circ L(h, w):=\sum_{i=1}^{k} w_{i} \underset{(x, y) \sim \mathcal{D}_{i}}{\mathbb{E}}[\ell(h,(x, y))] \text { (loss w.r.t. weighted dist) }
\end{gathered}
$$

Our approach: best-response/no-regret

At iteration t :

- min-player computes empirical best response

$$
\begin{gathered}
h^{t} \approx \arg \min _{h \in \mathcal{H}} L\left(h, w^{t}\right) \\
\circ L(h, w):=\sum_{i=1}^{k} w_{i} \underset{(x, y) \sim \mathcal{D}_{i}}{\mathbb{E}}[\ell(h,(x, y))] \text { (loss w.r.t. weighted dist) }
\end{gathered}
$$

- max-player runs Hedge to update $\underbrace{\text { mixed distribution } w^{t} \in \Delta_{k}}$ weighted distribution $\sum_{i} w_{i}^{t} \mathcal{D}_{i}$

Our approach: best-response/no-regret

At iteration t :

- min-player computes empirical best response

$$
\begin{gathered}
h^{t} \approx \arg \min _{h \in \mathcal{H}} L\left(h, w^{t}\right) \\
\circ L(h, w):=\sum_{i=1}^{k} w_{i} \underset{(x, y) \sim \mathcal{D}_{i}}{\mathbb{E}}[\ell(h,(x, y))] \text { (loss w.r.t. weighted dist) }
\end{gathered}
$$

- max-player runs Hedge to update $\underbrace{\text { mixed distribution } w^{t} \in \Delta_{k}}_{\text {weighted distribution } \sum_{i} w_{i}^{t} \mathcal{D}_{i}}$

$$
w_{i}^{t} \propto w_{i}^{t-1} \exp \left(\eta \widehat{r}_{i}^{t}\right) \quad \text { with } \widehat{r}_{i}^{t}: \text { empirical risk for } \mathcal{D}_{i}
$$

Our approach: best-response/no-regret

At iteration t :

- min-player computes empirical best response

$$
\begin{gathered}
h^{t} \approx \arg \min _{h \in \mathcal{H}} L\left(h, w^{t}\right) \\
\circ L(h, w):=\sum_{i=1}^{k} w_{i} \underset{(x, y) \sim \mathcal{D}_{i}}{\mathbb{E}}[\ell(h,(x, y))] \text { (loss w.r.t. weighted dist) }
\end{gathered}
$$

- max-player runs Hedge to update $\underbrace{\text { mixed distribution } w^{t} \in \Delta_{k}}_{\text {weighted distribution } \sum_{i} w_{i}^{t} \mathcal{D}_{i}}$

$$
w_{i}^{t} \propto w_{i}^{t-1} \exp \left(\eta \widehat{r}_{i}^{t}\right) \quad \text { with } \widehat{r}_{i}^{t}: \text { empirical risk for } \mathcal{D}_{i}
$$

Output: randomized hypothesis $\widehat{h} \sim \operatorname{Uniform}\left(\left\{h^{t}\right\}_{1 \leq t \leq T}\right)$

Key algorithmic distinction from prior work

adaptive sampling $\quad+$ sample reuse
 \#samples from \mathcal{D}_{i} based on $\left\{w_{i}^{t}\right\}$

Key algorithmic distinction from prior work

adaptive sampling $\quad+$ sample reuse
 \#samples from \mathcal{D}_{i} based on $\left\{w_{i}^{t}\right\}$

Sampling strategy at iteration t :

- best-response: $\underbrace{\text { have } \frac{d+k}{\varepsilon^{2}} w_{i}^{t} \text { samples available from } \mathcal{D}_{i}, ~}_{\text {reuse samples }}$

Key algorithmic distinction from prior work

Sampling strategy at iteration t :

- best-response: have $\frac{d+k}{\varepsilon^{2}} \max _{1 \leq \tau \leq t} w_{i}^{\tau}$ samples available from \mathcal{D}_{i} reuse samples

Key algorithmic distinction from prior work

Sampling strategy at iteration t :

- best-response: have $\frac{d+k}{\varepsilon^{2}} \max _{1 \leq \tau \leq t} w_{i}^{\tau}$ samples available from \mathcal{D}_{i}
reuse samples
- no-regret: draw $k \max _{1 \leq \tau \leq t} w_{i}^{\tau}$ samples from \mathcal{D}_{i}
fresh samples

Key technical challenges

1. complicated statistical dependency due to sample reuse

our work: sample reuse

Key technical challenges

1. complicated statistical dependency due to sample reuse

our work: sample reuse
2. need to bound the algorithm trajectory in a fine-grained manner

$$
\text { sample complexity } \asymp \frac{d+k}{\varepsilon^{2}} \underbrace{\sum_{i=1}^{k} \max _{1 \leq t \leq T} w_{i}^{t}}
$$

Key technical challenges

1. complicated statistical dependency due to sample reuse

our work: sample reuse
2. need to bound the algorithm trajectory in a fine-grained manner

$$
\text { sample complexity } \asymp \frac{d+k}{\varepsilon^{2}} \underbrace{\sum_{i=1}^{k} \max _{1 \leq t \leq T} w_{i}^{t}}_{\widetilde{O}(1)}
$$

concentration + doubling trick + combinatorics

Concurrent work: Peng et al. '23

Peng et al. '23 established a sample complexity of

$$
\frac{d+k}{\varepsilon^{2}}\left(\frac{k}{\varepsilon}\right)^{o(1)}
$$

which also solved the COLT open problem

Concurrent work: Peng et al. '23

Peng et al. '23 established a sample complexity of

$$
\frac{d+k}{\varepsilon^{2}}\left(\frac{k}{\varepsilon}\right)^{o(1)}
$$

which also solved the COLT open problem

- optimal up to some sub-polynomial term
- a very different algorithm
- recursive structure to eliminate non-optimal hypotheses

Necessesity of randomization

Our alg. returns randomized hypothesis ...

Necessesity of randomization

Our alg. returns randomized hypothesis ...

Question: is it possible to find an ε-optimal deterministic hypothesis $\mathrm{w} /$ the same sample complexity (another COLT open problem)?

Necessesity of randomization

Our alg. returns randomized hypothesis ...

Question: is it possible to find an ε-optimal deterministic hypothesis $\mathrm{w} /$ the same sample complexity (another COLT open problem)?

Answer: No!

- finding an ε-optimal deterministic policy needs $\Omega\left(\frac{d k}{\varepsilon^{2}}\right)$ samples

Summary: multi-distribution learning

- settles the sample complexity of MDL under on-demand sampling
- solves 3 COLT open problems posed by Awasthi et al. '23

Concluding remarks

Advancing frontier of statistical learning requires integrated thinking of modern statistics, optimization \& game theory

online learning \& games

(high-dimensional) statistics
"Optimal multi-distribution learning," Z. Zhang, W. Zhan, Y. Chen, S. Du, J. Lee, arXiv:2312.05134, 2023

