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In multi-distribution learning, an agent aims to learn a shared model
to fit multiple (unknown) data distributions

e diverse data sources (e.g., localities, communities, populations)

e heterogeneous objectives — need a balance
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e [ unknown data distributions D, ..., Dy (e.g., localities,

communities, populations)
e hypothesis class H: VC dimension d

e known loss function ¢ (e.g., misclassification error)

goal: learn an c-optimal hypothesis & (in min-max sense)
—_———

possibly random

R S
max (m)IEDi’E [(h, (z,))] < min max wE, [£(h, (z,y))] +
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Adaptive vs. non-adaptive sampling

e non-adaptive sampling: pre-determine sample-size budgets for
each distribution beforehand

— loss of data efficiency
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Can we close the gap between achievability and lower bound?

Proceedings of Machine Learning Rescarch vol 195:1-11, 2023 36t Annual Conference on Learing Theory

Open Problem: |The Sample Complexity of Multi-Distribution

Learning for VC Classes

Pranjal Awasthi PRANJALAWASTHI@GOOGLE.COM
Google Research, Mountain View, CA, USA
Nika Haghtalab NIKA@BERKELEY.EDU
University of California, Berkeley, CA, USA
Eric Zhao ERIC.ZH @BERKELEY.EDU

University of California, Berkeley, CA, USA



Main results

Theorem 1 (Zhang, Zhan, Chen, Du, Lee’23)

We can design an algorithm that returns randomized hypothesis h s.t.
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with sample complexity

e matches the minimax lower bound (up to log factors)
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Main results

sample ,
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matches the minimax lower bound (up to log factors)

solves a COLT open problem (concurrent work: Peng'23)

can be extended to Rademacher classes

algorithm is oracle-efficient (solves another COLT open problem)
—_———

only needs to call ERM oracle
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Algorithm design

high-dimensional
statistics
game theory |=

.

online learning
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A game-theoretic view

min max )]
heH 1<i<k (g, y)ND

o @

max-player:
finding least favorable distribution

min-player:
finding most favorable hypothesis
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Preliminaries: learning in games

ALGORITHMIC

GAME THEORY

e no-regret algorithm: online algorithm w/ sub-linear regret
N——

over any adversary 7 Regret(T') — 0

o e.g., Hedge algorithm (equivalent to online mirror descent)
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GAME THEORY

ot

e no-regret algorithm: online algorithm w/ sub-linear regret
N——

over any adversary 7 Regret(T') — 0

o e.g., Hedge algorithm (equivalent to online mirror descent)
e best-response: play argmin or argmax (not always no-regret)
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min max
heH 1<i<k (

@

max-player

min-player

e min-player/max-player: no-regret/no-regret  (Haghtalab et al.'22)

d+k dk
5+

. (burn-in due to covering of H)

€
e min-player/max-player: best-response/no-regret (Awasthi et al.’23)

;4 + ;2 (lack of sample reuse)
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Our approach: best-response/no-regret

At iteration t:

e min-player computes empirical best response
h' ~ arg minpey L(h, w')

k
>w;, E [€(h, (z, y))} (loss w.r.t. weighted dist)

i=1 (z,9)~D;

o L(h,w) :
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At iteration t:

e min-player computes empirical best response
h' ~ arg minpey L(h, w')

k
>w;, E [€(h, (z, y))} (loss w.r.t. weighted dist)

i=1  (z,y)~D;

o L(h,w) :

e max-player runs Hedge to update mixed distribution w' € Ay,

weighted distribution Zl wiD;

w! o< wiexp(nrt) with 7% : empirical risk for D;

Output: randomized hypothesis i ~ Uniform({h'}1<;<7)
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adaptive sampling + sample reuse

#samples from D; based on {wf}
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Key algorithmic distinction from prior work

adaptive sampling + sample reuse

#samples from D; based on {wf}

Sampling strategy at iteration ¢:

e best-response: have max w; samples available from D;

g2 1<r<t

reuse samples

e no-regret: draw £ max w; samples from D;
1<7<¢t

fresh samples
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Key technical challenges

1. complicated statistical dependency due to sample reuse

Rl

prior work: fresh samples each iteration

our work: sample reuse

2. need to bound the algorithm trajectory in a fine-grained manner

. d
sample complexity =< ——» max w!
£

concentration + doubling trick + combinatorics
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Concurrent work: Peng et al. 23

Peng et al. '23 established a sample complexity of

d+k <k—>0<1>
ez \e

which also solved the COLT open problem
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Concurrent work: Peng et al. 23

Peng et al. '23 established a sample complexity of

d+k <k—>0<1>
ez \e

which also solved the COLT open problem

e optimal up to some sub-polynomial term
e a very different algorithm

— recursive structure to eliminate non-optimal hypotheses
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Necessesity of randomization

J

Our alg. returns randomized hypothesis . ..

1 .

Question: is it possible to find an e-optimal deterministic hypothesis
w/ the same sample complexity (another COLT open problem)?

Answer: No!

e finding an e-optimal deterministic policy needs Q(d—g) samples
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Summary: multi-distribution learning

sample ,
complexity

&k
d+k |

dk

d+

e settles the sample complexity of MDL under on-demand sampling

e solves 3 COLT open problems posed by Awasthi et al. '23
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Concluding remarks

Advancing frontier of statistical learning requires integrated thinking
of modern statistics, optimization & game theory

online learning & games (high-dimensional) statistics

“Optimal multi-distribution learning,” Z. Zhang, W. Zhan, Y. Chen, S. Du, J. Lee,
arXiv:2312.05134, 2023
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