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A genome phasing problem

phase info for each SNP: (1) maternally inherited (2) paternally inherited
linking reads: relative phase relation of 2 (or more) SNPs

Haplotype phasing: retrieve phase info of all SNPs from linking reads
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Stochastic block model / censored block model

Pairwise measurements for any pair (i, j) of nodes

yi,j
ind.∼

{
P0, if i and j are from same community
P1, else



Problem: nodes often have locality

Most prior work: (almost) equally likely to sample between any pair of nodes
– Condon et al., Jalali et al., Chen et al., Abbe et al., Mossel et al., Hajek et al., Chin et al...

More realistically: samples come mainly (or exclusively) from nearby nodes

In new technologies like 10x-Genomics: (1) n ∼ 105 SNPs; (2) linking range ∼ 100 SNPs
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This work: how to deal with measurement locality
in community recovery?



A two-community model

• n variables we seek: x1, · · · , xn ∈ {0, 1}
– encode community membership

xi = 0 xi = 1



Measurement model: random sampling

• Constraint graph G
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• Random sampling: pick m randomly chosen edges of G
• Noise model: on each of these m edges (i, j), take an independent sample

yi,j
ind.=

xi ⊕ xj , with prob. 1− θ︸︷︷︸
meas. error rate

xi ⊕ xj ⊕ 1, else
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Modeling locality via constraint graph

Global / long-range measurements

constraint graph randomly picked edges

Local measurements
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Information and computation limits

1. How many samples are needed to recover {xi} reliably (up to global offset)?

2. How to recover efficiently?

Global samples Local samples

prior works

Encouraging news: one can obtain efficient recovery within linear time
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Proposed algorithm: a 3-stage linear-time paradigm



Spectral-Stitching: Stage 1

Start by running spectral method on core complete subgraphs

L = E[L]︸︷︷︸
rank-1

+ L− E [L]

• Compute rank-1 approximation of L (sample matrix restricted to the subgraph)



Spectral-Stitching: Stage 1

Split all nodes into overlapping subsets and run spectral methods separately

• Approximate solution within each subgraph
– Key observation: approx. recovery needs only O(1) samples per node

• Inconsistent global phases across subgraphs
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Spectral-Stitching: Stage 2

Calibrate phases across subgraphs by checking their correlations

Purpose of Stages 1-2: obtain approximate solution of all nodes
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Spectral-Stitching: Stage 3

Clean up all remaining errors by iterative refinement
• local majority vote using all samples

• Key observation: exact recovery needs at least Θ(logn) samples per node
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Main results: rings

Theorem: minimum sample complexity = 0.5n logn
1−exp{−KL(0.5 ‖ θ})

Info and comput. limits meet!
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Empirical success rate vs. sample size

n = 100, 000, input error rate = 0.2

10 Monte Carlo runs to get each point
Each run takes ∼6.4 sec on a Mac Pro



Extension: beyond spatially invariant graphs
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Extension: beyond pairwise measurements

New technologies (e.g. 10x) provide multi-linked reads from same chromosome,
not just two

Algorithm and theory can be easily extended to see performance gain0.2 0.4 0.6 0.8 1
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Initial results on real data (haplotype phasing)

NA12878 dataset from 10x genomics

# SNPs n : 34240 ∼ 191829, sample size m : 102633 ∼ 574189



Concluding remarks

• Studied community recovery when measurements are highly local
– motivated by genome phasing and social networks

• Information limits can be achieved in linear time for a broad family of models
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Full version of paper available at http://arxiv.org/abs/1602.03828
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