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Community recovery / graph clustering

Community structures are common in many social networks
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Community recovery: partition users into several clusters
based on their friendships / similarities




Community recovery in computational biology
A genome phasing problem
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Community recovery in computational biology

A genome phasing problem
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G@GTGGTGCGCAGGGATGAGAAGGCAGAG@ACTGGGGTTCATGAGGAAGGGCAGGAGGAGGGTGTGGGA GA

G GTGGTGCGCAGGGATGAGAAGGCAGAGACTGGGGWCATGAGGAAGGGCAGGAGGAGGGTGTGGGA @l IGA
L]

phase info for each SNP: (1) maternally inherited (2) paternally inherited

linking reads: relative phase relation of 2 (or more) SNPs

Haplotype phasing: retrieve phase info of all SNPs from linking reads




Stochastic block model / censored block model

Pairwise measurements for any pair (i,j) of nodes

ind. | Po, ifiand j are from same community
oyl

Py, else




Problem: nodes often have locality

Most prior work: (almost) equally likely to sample between any pair of nodes

— Condon et al., Jalali et al., Chen et al., Abbe et al., Mossel et al., Hajek et al., Chin et al...
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Problem: nodes often have locality

Most prior work: (almost) equally likely to sample between any pair of nodes

— Condon et al., Jalali et al., Chen et al., Abbe et al., Mossel et al., Hajek et al., Chin et al...
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In new technologies like 10x-Genomics: (1) n ~ 10° SNPs; (2) linking range ~ 100 SNPs



This work: how to deal with measurement locality

in community recovery?



A two-community model

e n variables we seek: zy,---,z, € {0,1}

— encode community membership




Measurement model: random sampling

e Constraint graph G
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Measurement model: random sampling

e Constraint graph G

e Random sampling: pick m randomly chosen edges of G

e Noise model: on each of these m edges (i, j), take an independent sample

T; D with prob. 1 — 0

ind. o DY P ~~

Yitis meas. error rate
z; ®x; D1, else



Modeling locality via constraint graph

Global / long-range measurements

constraint graph randomly picked edges



Modeling locality via constraint graph

Global / long-range measurements

constraint graph

Local measurements

constraint graph randomly picked edges
(e.g. 7 ~ n%* for 10x)



Information and computation limits

1. How many samples are needed to recover {x;} reliably (up to global offset)?
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Information and computation limits

1. How many samples are needed to recover {x;} reliably (up to global offset)?

2. How to recover efficiently?

Global samples

Local samples

prior works

Encouraging news: one can obtain efficient recovery within linear time

)







Spectral-Stitching: Stage 1

Start by running spectral method on core complete subgraphs

rank-1

e Compute rank-1 approximation of L (sample matrix restricted to the subgraph)
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Split all nodes into overlapping subsets and run spectral methods separately
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Spectral-Stitching: Stage 1

Split all nodes into overlapping subsets and run spectral methods separately

e Approximate solution within each subgraph
— Key observation: approx. recovery needs only O(1) samples per node

e Inconsistent global phases across subgraphs



Spectral-Stitching: Stage 2

Calibrate phases across subgraphs by checking their correlations
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Spectral-Stitching: Stage 2

Calibrate phases across subgraphs by checking their correlations

Purpose of Stages 1-2: obtain approximate solution of all nodes




Spectral-Stitching: Stage 3

Clean up all remaining errors by iterative refinement

e |ocal majority vote using all samples
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Spectral-Stitching: Stage 3

Clean up all remaining errors by iterative refinement

e |ocal majority vote using all samples

e Key observation: exact recovery needs at least ©(logn) samples per node

32/45



Main results: rings

sample complexity
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Main results: rings

sample complexity

20nlogn

achievable by proposed method

10nlogn

infeasible

0.2 0.4
0 : input error rate

Theorem: minimum sample complexity = 1_exp0{'f’|l(llf’(%’g )

Info and comput. limits meet!
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complete graph

sample complexity
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An insensitivity phenomenon
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sample complexity
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Info and comput. limits are identical for many spatially invariant graphs

J




Empirical success rate vs. sample size

/ Information-theoretic limit
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# measurements normalized by information limit
n = 100,000, input error rate = 0.2

10 Monte Carlo runs to get each point

Each run takes ~6.4 sec on a Mac Pro



Extension: beyond spatially invariant graphs
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Info limit vs. r

Infomation and comput. limits achievable by same algorithm




Extension: beyond pairwise measurements

New technologies (e.g. 10x) provide multi-linked reads from same chromosome,
not just two

GCC GTGTGGTGCGCAGGGATGAGAAGGCAGAG CGCGACTGGGGTTCATGAGGAAGGGCAGGAGGAGGGTGTGGGATG " TGGA

G@GGTGCGCAGGGATGAGAAGGCAG CGACTGGGGTTCATGAGGAAGGGCAGGAGGAGGGTGTGGGA




Extension: beyond pairwise measurements

New technologies (e.g. 10x) provide multi-linked reads from same chromosome,
not just two

GCC GTGTGGTGCGCAGGGATGAGAAGGCAGAG CGCGACTGGGGTTCATGAGGAAGGGCAGGAGGAGGGTGTGGGATG " TGGA

G@GGTGCGCAGGGATGAGAAGGCAG CGACTGGGGTTCATGAGGAAGGGCAGGAGGAGGGTGTGGGA

Algorithm and theory can be easily extended to see performance gain

15nlogn {total # SNPs touched
paired reads

10nlogn

5nlogn

Tiite-linked reads

error rate per read

0.1 0.2



Initial results on real data (haplotype phasing)

NA12878 dataset from 10x genomics
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# SNPs n : 34240 ~ 191829, sample size m : 102633 ~ 574189



Concluding remarks

e Studied community recovery when measurements are highly local
— motivated by genome phasing and social networks

e Information limits can be achieved in linear time for a broad family of models

Full version of paper available at http://arxiv.org/abs/1602.03828
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