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In memory of Tom Cover (1938 - 2012)

Tom @ Stanford EE

“We all know the feeling that follows when one investigates a problem, goes
through a large amount of algebra, and finally investigates the answer to find that
the entire problem is illuminated not by the analysis

but by the inspection of the answer” 3/ 2



Inference in regression problems

Example: logistic regression

y; ~ logistic-model(x, 3), 1<i<n
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Inference in regression problems

Example: logistic regression

y; ~ logistic-model(x, 3), 1<i<n

One wishes to determine which covariate is of importance, i.e.

Bi=0 vs. Bi#0 (1<j<p)
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Classical tests

Bi=0 vs.  B;#0 (1<j<p)

Standard approaches (widely used in R, Matlab, etc): use asymptotic
distributions of certain statistics
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Classical tests

Bi=0 vs.  B;#0 (1<j<p)

Standard approaches (widely used in R, Matlab, etc): use asymptotic
distributions of certain statistics

e Wald test: Wald statistic — 2

o Likelihood ratio test: log-likelihood ratio statistic — x?
e Score test: score — N/ (0, Fisher Info)

[ ]
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Example: logistic regression in R (n = 100, p = 30)

> fit = glm(y ~ X, family = binomial)
> summary(fit)

Call:
glm(formula = y ~ X, family = binomial)

Deviance Residuals:
Min 1Q  Median 3Q Max
-1.7727 -0.8718 0.3307 0.8637 2.3141

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.086602 0.247561 0.350 0.72647
X1 0.268556 0.307134 0.874 0.38190
X2 0.412231  0.291916 1.412 0.15790
X3 0.667540 0.363664 1.836 0.06642
X4 -0.293916  0.3315563 -0.886 0.37536
X5 0.207629 0.272031 0.763 0.44531
X6 1.104661  0.345493 3.197 0.00139 *x*

Signif. codes: O ’#*%’ 0.001 ’*x’ 0.01 ’%> 0.05 ’.” 0.1’ ’> 1

Can these inference calculations (e.g. p-values) be trusted? J
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This talk: likelihood ratio test (LRT)

Bi=0 wvs.  Bi#0 (1<j<p)
Log-likelihood ratio (LLR) statistic

LLR; == £(8) — £(B(_;))

o /(-): log-likelihood
e 3= arg maxg {(3): unconstrained MLE
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Wilks’ phenomenon 1938

Samuel Wilks, Princeton

Bi=0 vs. Bi#0 (1<j<p)

LRT asymptotically follows chi-square distribution (under null)

2LLR; N X3 (p fixed,n — o0)
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Wilks’ phenomenon 1938

Samuel Wilks, Princeton assess significance of coefficients

Bi=0 vs. Bi#0 (1<j<p)

LRT asymptotically follows chi-square distribution (under null)
2LLR; N X3 (p fixed,n — o0)
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Classical LRT in high dimensions

p/n € (1,00)

Linear regression

y=XB+ n
~~

i.i.d. Gaussian

0.00 0.25 050 075 1.00
classical p-values are uniform

For linear regression (with Gaussian noise) in high dimensions,
2LLR; ~ x3 (classical test always works)
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Classical LRT in high dimensions

p = 1200, n = 4000

Logistic regression

y ~ logistic-model( X 3)

0.00 0.25 0.50 0.75 1.00
classical p-values are highly nonuniform
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Classical LRT in high dimensions

p = 1200, n = 4000

Logistic regression

y ~ logistic-model(X 3)

0.00 0.25 050 075 1.00
classical p-values are highly nonuniform

Wilks' theorem seems inadequate in accommodating
logistic regression in high dimensions
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Bartlett correction? (n = 4000, p = 1200)

Counts

0

0.00 025 050 0.75
P-Values

classical Wilks

LR, o
1+an/n X1

e Bartlett correction (finite sample effect):
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Bartlett correction? (n = 4000, p = 1200)

10000

Counts

1.00 0.25

050 0.75
P-Values

0.00 025 050 0.75
P-Values

classical Wilks Bartlett-corrected

e Bartlett correction (finite sample effect): % ~ X3

o p-values are still non-uniform — this is NOT finite sample effect
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Bartlett correction? (n = 4000, p = 1200)

Counts

10000

Counts

0.00 025 1.00 0.25

050 0.75
P-Values

050 0.75
P-Values

classical Wilks Bartlett-corrected

e Bartlett correction (finite sample effect): % ~ X3

o p-values are still non-uniform — this is NOT finite sample effect

What happens in high dimensions?
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Our findings

Counts

6000

classical Wilks Bartlett-corrected rescaled x?
e Bartlett correction (finite sample effect): AR 2
* 1+an/n 1

o p-values are still non-uniform — this is NOT finite sample effect

e A glimpse of our theory: LRT follows a rescaled x? distribution

11/ 26



Problem formulation (formal)

Yy b'e 8
(- m m
[ | I EEE N
| " g
"m T @ = =
[ | ECEEN
| |
L H EEE
Gaussian design: X; " N (0, %)
Logistic model:
1, with prob. ——1
Y = ) 1+eXp§_XiTﬂ) 1<i:<n
—1, with prob. m

Proportional growth: p/n — constant
Global null: =0
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When does MLE exist?

(MLE) maximizeg ¢(B) = — En:log {1 + eXP(—iniT/@)}
i=1

MLE is unbounded if 3 perfect separating hyperplane
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When does MLE exist?

(MLE) maximizeg ((B) = — ilog{l + exp(_in’L'TIB)}
i=1

<0

If 3 a hyperplane that perfectly separates {y;}, i.e.
3,@ s.t. yZXzT,[; > 0 for all ¢
then MLE is unbounded

25t 9B ) =0
unbounded
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When does MLE exist?

Separating capacity (Tom Cover, Ph. D. thesis '1965)

o yi=1 yi=—1

n=2 n=4 n=12

number of samples n increases
= more difficult to find separating hyperplane
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When does MLE exist?

Separating capacity (Tom Cover, Ph. D. thesis '1965)

o yi=1 yi=—1

n=2 n=4 n=12

Theorem 1 (Cover '1965)

Under i.i.d. Gaussian design, a separating hyperplane exists with high
prob. iff n/p < 2 (asymptotically)
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Main result: asymptotic distribution of LRT

Theorem 2 (Sur, Chen, Candés '2017)
Suppose n/p > 2. Under i.i.d. Gaussian design and global null,

2LLR; -L a(%) 2
—n/

rescaled x?
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Main result: asymptotic distribution of LRT

Theorem 2 (Sur, Chen, Candés '2017)
Suppose n/p > 2. Under i.i.d. Gaussian design and global null,

2LLR; L a( )G
w_/
rescaled x?

e a(p/n) can be determined by solving a system of 2 nonlinear
equations and 2 unknowns

= E[((rZ:0)]

p
=E [V (7Z;b)]

\]
[\

p_
n
LG

where Z ~ N(0,1), ¥ is some operator, and a(p/n) = 72/b
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Main result: asymptotic distribution of LRT

Theorem 2 (Sur, Chen, Candés '2017)
Suppose n/p > 2. Under i.i.d. Gaussian design and global null,

2LLR; -L a(%) 2
—n/

rescaled x?

e a(p/n) can be determined by solving a system of 2 nonlinear
equations and 2 unknowns

o «f(-) depends only on aspect ratio p/n
o It is not a finite sample effect

o «a(0) = 1: matches classical theory
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Our adjusted LRT theory in practice
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rescaling constant for logistic model empirical p-values ~ Unif(0, 1)

Empirically, LRT ~ rescaled x? (as predicted) J
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Validity of tail approximation

0.0100-

Empirical cdf

Empirical CDF of adjusted pvalues (n = 4000, p = 1200)

Empirical CDF is in near-perfect aggreement with diagonal, suggesting
that our theory is remarkably accurate even when we zoom in
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Efficacy under moderate sample sizes

Empir(i:cal cdf

o
N

Empirical CDF of adjusted pvalues (n = 200, p = 60)

Our theory seems adequete for moderately large samples
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Universality: non-Gaussian covariates

Counts
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classical Wilks Bartlett-corrected rescaled x?

i.i.d. Bernoulli design, n = 4000, p = 1200

1.00
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Connection to convex geometry
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Connection to convex geometry

no separating

hyperplane _.--* R}
i
range(X) =" kY
separating \\\_*
hyperplane
exists
WLOG, ifyy = -+ =y, =1, then
separability = {range(X) NRY # {0}}

can be analyzed via convex geometry (e.g. Amelunxen et al.)
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Connection to robust M-estimation

Since y; = +1 and X; "¢ N(0,%),

maximizeg £(3) = — znjlog {1 + exp(—iniT,B)}
i=1

4 —anlog {1 + exp(—X;B)}
i=1

=y p(—=XiB)
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Connection to robust M-estimation

Since y; = +1 and X; "¢ N(0,%),

maximizeg £(3) = — znjlog {1 + exp(—iniT,B)}
i=1

[le

—zn: log {1 + exp(—X;B)}
i=1

=i, P(=XiB)

— MLEﬁ:argmﬁin S p(yi — XiB) withy =0

=1

robust M-estimation
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Connection to robust M-estimation

MLE 8 = argmin 3~ p(y: — Xif3)

=1

robust M-estimation

Variance inflation as p/n | (El Karoui et al. 13, Donoho, Montanari '13)
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Connection to robust M-estimation

MLE 8 = argmin 3~ p(y: — Xif3)

=1

robust M-estimation

Variance inflation as p/n | (El Karoui et al. 13, Donoho, Montanari '13)

variance inflation
— increasing rescaling factor

rescaling constant a(p/n)
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This is not just about logistic regression

Our theory is applicable to

logistic model

probit model

linear model (under Gaussian noise)
o rescaling const a(p/n) =1 (consistent with classical theory)

linear model (under non-Gaussian noise)

23/ 26



Key ingredients in establishing our theory

Key step is to realize that

2LLR; -4 _L__p2

b(p/n)
————

rescaled x2

where b(-) depends only on 2, Bj ~ N(O, M)
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Key ingredients in establishing our theory

Key step is to realize that

d D 5

9LLR; % G
! b(p/n)"™’
N—_———

rescaled x2

where b(-) depends only on 2, Bj ~ N(O, %)

1. Convex geometry: show ||3]| = O(1)

2. Approximate message passing: determine asymptotic
distribution of || 3||

3. Leave-one-out analysis: characterize marginal distribution of
Bj (rescaled Gaussian) and ensure higher-order terms vanish
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A small sample of prior work

e Candes, Fan, Janson, Lv '16: observed empirically
nonuniformity of p-values in logistic regression

e Fan, Demirkaya, Lv’'17: classical asymptotic normality of MLE

basis of Wald test) fails to hold in logistic regression when
g g
p = n?/3

e El Karoui, Beana, Bickel, Limb, Yu'13, El Karoui'13,
Donoho, Montanari’13, El Karoui’'15: robust M-estimation
for linear models (assuming strong convexity)
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Summary

e Caution needs to be exercised when applying classical statistical
procedures in a high-dimensional regime — a regime of growing
interest and relevance

e What shall we do under non-null (3 # 0)?

Paper: “The likelihood ratio test in high-dimensional logistic regression is
asymptotically a rescaled chi-square”, Pragya Sur, Yuxin Chen, Emmanuel
Candés, 2017.
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