

Information Recovery from Pairwise Measurements A Shannon-Theoretic Approach

Yuxin Chen[†], Changho Suh^{*}, Andrea Goldsmith[†] Stanford University[†] KAIST^{*}

Page 1

Recovering data from correlation measurements

• A large collection of data instances

- In many applications, it is
 - difficult/infeasible to measure each variable directly
 - o feasible to measure pairwise correlation

Motivating application: multi-image alignment

• **Structure from motion**: estimate 3D structures from 2D image sequences

• Key step: joint alignment

- input: (noisy) estimates of relative camera poses
- goal: jointly recover all camera poses

Motivating application: graph clustering

• Real-world networks exhibit community structures

- input: pairwise similarities between members
- goal: uncover hidden clusters

- Goal: recover a collection of variables $\{x_i\}$
- Can only measure several **pairwise difference** $x_i x_j$ (broadly defined)

- Goal: recover a collection of variables $\{x_i\}$
- Can only measure several **pairwise difference** $x_i x_j$ (broadly defined)
 - Examples:
 - joint alignment
 - x_i : (angle $\boldsymbol{\theta}_i$, position \boldsymbol{z}_i)
 - relative rotation/translation $(\boldsymbol{\theta}_i \boldsymbol{\theta}_j, \boldsymbol{z}_i \boldsymbol{z}_j)$

- Goal: recover a collection of variables $\{x_i\}$
- Can only measure several **pairwise difference** $x_i x_j$ (broadly defined)
 - Examples:
 - joint alignment
 - x_i : (angle $\boldsymbol{\theta}_i$, position \boldsymbol{z}_i)
 - relative rotation/translation $(\boldsymbol{\theta}_i \boldsymbol{\theta}_j, \boldsymbol{z}_i \boldsymbol{z}_j)$

- graph partition

- x_i : membership (which partition it belongs to)

- cluster agreement:
$$x_i - x_j = \begin{cases} 1, & \text{if } i, j \in \text{ same partition} \\ 0, & \text{else.} \end{cases}$$

- Goal: recover a collection of variables $\{x_i\}$
- Can only measure several **pairwise difference** $x_i x_j$ (broadly defined)
 - Examples:
 - joint alignment
 - x_i : (angle $\boldsymbol{\theta}_i$, position \boldsymbol{z}_i)
 - relative rotation/translation $(\boldsymbol{\theta}_i \boldsymbol{\theta}_j, \boldsymbol{z}_i \boldsymbol{z}_j)$
 - graph partition
 - x_i : membership (which partition it belongs to)
 - cluster agreement: $x_i x_j = \begin{cases} 1, & \text{if } i, j \in \text{ same partition} \\ 0, & \text{else.} \end{cases}$
 - pairwise maps, parity reads, ...

A fundamental-limit perspective?

• A flurry of activity in recovery algorithm design

convex program

spectral method

A fundamental-limit perspective?

• A flurry of activity in recovery algorithm design

convex program

combinatorial

spectral method

• What are the fundamental recovery limits?

— min. sample complexity? how noisy the measurements can be?

A fundamental-limit perspective?

• A flurry of activity in recovery algorithm design

• What are the fundamental recovery limits?

- min. sample complexity? how noisy the measurements can be?
- So far mostly studied in a model-specific manner
 - Seek a more unified framework

 $x_i \in \{0, \cdots, M-1\}$

- Information network
 - \circ *n* vertices
 - \circ discrete inputs w/ alphabet size: M
 - could scale with n

measurements of $x_1 - x_2, x_1 - x_3, x_1 - x_5, \cdots$

measurement graph $\mathcal G$

- Pairwise difference measurements
 - \circ truth: $x_i x_j$
 - \circ measurements: y_{ij} (arbitrary alphabet)
 - * can be corrupted by noise, distortion, ...

Graphical representation

 \circ observe $y_{ij} \iff (i,j) \in \mathcal{G}$

• Channel-decoding perspective

o each measurement is modeled by an i.i.d. channel
o transition prob. P(y_{ij} | x_i − x_j)

- Goal: recover $\{x_i\}$ exactly (up to global offset)
- Unified framework for decoding model
 - capture similarities among various applications

- Channel distance/resolution
 - $\circ~\mbox{Captured}$ by

 $\mathsf{KL}(\mathbb{P}_l \parallel \mathbb{P}_k)$ or $\mathsf{Hellinger}(\mathbb{P}_l \parallel \mathbb{P}_k)$ or ...

• *Minimum* channel distance/resolution

 $\min_{l \neq k} \mathsf{KL}(\mathbb{P}_l \parallel \mathbb{P}_k) := \mathsf{KL}^{\min} \quad \text{or}$ $\min_{l \neq k} \mathsf{Hellinger}(\mathbb{P}_l \parallel \mathbb{P}_k) := \mathsf{Hellinger}^{\min} \quad \text{or} \quad \dots$

Uncoded input

measurement graph ${\cal G}$

• Graph connectivity

o Impossible to recover isolated vertices

measurement graph ${\cal G}$

• Graph connectivity

o Over-sparse connectivity is fragile

measurement graph ${\cal G}$

• Graph connectivity

o Sufficient connectivity removes fragility!

Agenda

general graphs

homogeneous graphs (e.g. geometric graphs, small-world)

Erdos-Renyi random graphs

Page 10

• ML decoding works if

 $\mathsf{Hellinger}^{\min} > \frac{2\log n + 4\log M}{p_{\mathrm{obs}}n}$

• In the hard regime where $\frac{\mathrm{d}\mathbb{P}_l}{\mathrm{d}\mathbb{P}_k} \approx 1$:

 $\mathsf{KL}^{\min} \approx 2 \cdot \mathsf{Hellinger}^{\min}$

• In the hard regime where $\frac{\mathrm{d}\mathbb{P}_l}{\mathrm{d}\mathbb{P}_k} \approx 1$:

 $\mathsf{KL}^{\min} \approx 2 \cdot \mathsf{Hellinger}^{\min}$

• Recovery conditions

$$\begin{array}{ll} \text{ML works if} & \text{Hellinger}^{\min} > \frac{2\log n + 4\log M}{p_{\mathrm{obs}}n} \\ \\ \text{Impossible if} & \text{Hellinger}^{\min} < \frac{\log n}{2p_{\mathrm{obs}}n} \end{array}$$

• In the hard regime where $\frac{\mathrm{d}\mathbb{P}_l}{\mathrm{d}\mathbb{P}_k} \approx 1$:

 $\mathsf{KL}^{\min} \approx 2 \cdot \mathsf{Hellinger}^{\min}$

• Fundamental recovery condition (assuming $M \leq poly(n)$)

$$\mathsf{Hellinger}^{\min} \gtrsim \frac{\log n}{p_{\mathrm{obs}} n}$$

• In the hard regime where $\frac{\mathrm{d}\mathbb{P}_l}{\mathrm{d}\mathbb{P}_k} \approx 1$:

 $\mathsf{KL}^{\min} \approx 2 \cdot \mathsf{Hellinger}^{\min}$

• Fundamental recovery condition (assuming $M \leq poly(n)$)

$$\mathsf{Hellinger}^{\min} \gtrsim \frac{\log n}{p_{\mathrm{obs}}n} \qquad \Longleftrightarrow \qquad \mathsf{avg-degree} \times \mathsf{Hellinger}^{\min} \gtrsim \log n$$

Fundamental recovery condition (Erdos-Renyi graphs). avg-degree \times Hellinger^{min} $\gtrsim \log n$

$$[x_i - x_j]_{1 \le i,j \le n}$$

Fundamental recovery condition (Erdos-Renyi graphs). avg-degree × Hellinger^{min} $\gtrsim \log n$

0 0 0 0 $[x_i - x_j]_{1 \le i,j \le n}$ 0 0 0 0 0 0 hypotheses: $H_0: \ m{x} = [0, 0, \cdots, 0]$ $H_1: \boldsymbol{x} = [1, 0, \cdots, 0]$

• H_0 and H_1 differ only at the highlighted region (\approx avg-degree pieces of info)

Fundamental recovery condition (Erdos-Renyi graphs). avg-degree × Hellinger^{min} $\gtrsim \log n$

• H_0 and H_2 differ only at the highlighted region (\approx avg-degree pieces of info)

Fundamental recovery condition (Erdos-Renyi graphs). avg-degree × Hellinger^{min} $\geq \log n$ (1)

• *n* minimally-separated hypotheses \Rightarrow needs at least $\log n$ bits

• the consequence of **uncoded inputs**

Minimal sample complexity

Fundamental recovery condition (Erdos-Renyi graphs).

 $\mathsf{avg-degree} \times \mathsf{Hellinger}^{\min} \ \gtrsim \ \log n$

• Sample complexity: $n \cdot avg$ -degree

Minimal sample complexity

Fundamental recovery condition (Erdos-Renyi graphs).

avg-degree × Hellinger^{min} $\gtrsim \log n$

• Sample complexity: $n \cdot avg$ -degree

Min sample complexity
$$\asymp \frac{n \log n}{\text{Hellinger}^{\min}}$$

How general this limit is?

Fundamental recovery condition (Erdos-Renyi graphs).

 $\mathsf{avg-degree} \times \mathsf{Hellinger}^{\min} \ \gtrsim \ \log n$

• Can we go beyond Erdos-Renyi graphs?

Main results: homogeneous graphs

Main results: homogeneous graphs

Fundamental recovery condition (various homogeneous graphs).

avg-degree \times Hellinger^{min} $\gtrsim \log n$

- Homogeneous graphs:
 - \circ min-degree \asymp max-degree \asymp mincut
 - balanced cut-set distributions

Main results: homogeneous graphs

Fundamental recovery condition (various homogeneous graphs).

avg-degree × Hellinger^{min} $\gtrsim \log n$

• Depend almost only on graph sparsity

Main results: general graphs

Main results: general graphs

• Information across the minimum cut set:

 $\mathsf{mincut} \cdot \mathsf{Hellinger}^{\min}$

Main results: general graphs

• Recovery conditions

Cut-homogeneity exponent

• $\tau^{\rm cut}$ captures¹

 $\circ\,$ growth rate of the cut-set distribution

 \circ the ratio $\frac{\text{mincut}}{\text{avg-degree}}$

¹
$$\tau^{\text{cut}} := \max_k \frac{1}{k} |\mathcal{N}(k \cdot \text{mincut})|$$
, where $\mathcal{N}(K) := |\{\text{cut} : \text{cut-size} \leq K\}|$

Cut-homogeneity exponent

• au^{cut} captures¹

 $\circ\,$ growth rate of the cut-set distribution

 \circ the ratio $\frac{\text{mincut}}{\text{avg-degree}}$

- In general: $au^{\mathrm{cut}} \gtrsim 1$
- For homogeneous graphs: $au^{\mathrm{cut}} \lesssim \log n$

 $^{1} \tau^{\operatorname{cut}} := \max_{k} \frac{1}{k} |\mathcal{N}(k \cdot \operatorname{mincut})|, \text{ where } \mathcal{N}(K) := |\{\operatorname{cut} : \operatorname{cut-size} \leq K\}|$

Summary of main results

Concrete application: stochastic block model

- Stochastic block model:
 - 2 clusters
 - edge densities:
 - within-cluster: $p = \frac{\alpha \log n}{n}$
 - across-cluster: $q = \frac{\beta \log n}{n} (q < p)$

adjacency matrix

Concrete application: stochastic block model

- Stochastic block model:
 - 2 clusters
 - edge densities:
 - within-cluster: $p = \frac{\alpha \log n}{n}$
 - across-cluster: $q = \frac{\beta \log n}{n} (q < p)$
- Our theory:

feasible if $\sqrt{\alpha} - \sqrt{\beta} > \sqrt{2}$ impossible if $\sqrt{\alpha} - \sqrt{\beta} < 1/2$

• Fundamental limit (Abbe et al. and Mossel et al.): $\sqrt{\alpha} - \sqrt{\beta} > \sqrt{2}$

Concluding remarks

- A unified framework to determine recovery limits
- Interplay between IT and graph theory
- Tighten the pre-constants?

Arxiv: http://arxiv.org/abs/1504.01369

