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Recovering data from correlation measurements

• A large collection of data instances

• In many applications, it is

◦ difficult/infeasible to measure each variable directly

◦ feasible to measure pairwise correlation
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Motivating application: multi-image alignment

• Structure from motion: estimate 3D structures from 2D image sequences

◦ Key step: joint alignment

– input: (noisy) estimates of relative camera poses

– goal: jointly recover all camera poses
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Motivating application: graph clustering

• Real-world networks exhibit community structures

◦ input: pairwise similarities between members

◦ goal: uncover hidden clusters
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This talk: recovery from pairwise difference measurements

• Goal: recover a collection of variables {xi}

• Can only measure several pairwise difference xi − xj (broadly defined)
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This talk: recovery from pairwise difference measurements

• Goal: recover a collection of variables {xi}

• Can only measure several pairwise difference xi − xj (broadly defined)

◦ Examples:

— joint alignment

– xi: (angle θi, position zi)

– relative rotation/translation (θi − θj, zi − zj)

— graph partition

– xi: membership (which partition it belongs to)

– cluster agreement: xi − xj =
{
1, if i, j ∈ same partition

0, else.

— pairwise maps, parity reads, ...

Page 5



A fundamental-limit perspective?

• A flurry of activity in recovery algorithm design

convex program combinatorial spectral method
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• A flurry of activity in recovery algorithm design

convex program combinatorial spectral method

◦ What are the fundamental recovery limits?

— min. sample complexity? how noisy the measurements can be?
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A fundamental-limit perspective?

• A flurry of activity in recovery algorithm design

convex program combinatorial spectral method

◦ What are the fundamental recovery limits?

— min. sample complexity? how noisy the measurements can be?

• So far mostly studied in a model-specific manner

◦ Seek a more unified framework
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xi ∈ {0, · · · ,M − 1}

x3 x1
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x2
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• Information network

◦ n vertices

◦ discrete inputs w/ alphabet size: M

— could scale with n

Problem setup: a Shannon-theoretic framework
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measurement graph G
measurements of

x1 − x2, x1 − x3, x1 − x5, · · ·
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• Pairwise difference measurements

◦ truth: xi − xj
◦ measurements: yij (arbitrary alphabet)

∗ can be corrupted by noise, distortion, ...

• Graphical representation

◦ observe yij ⇐⇒ (i, j) ∈ G

Problem setup: a Shannon-theoretic framework
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x1 - x2

x6 - x7

x1 - x5

x2 - x7

y12 

y15 

y27 

y67 

p (yij | xi-xj )
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• Channel-decoding perspective

◦ each measurement is modeled by an i.i.d. channel

◦ transition prob. P (yij | xi − xj)

Problem setup: a Shannon-theoretic framework
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channel
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• Goal: recover {xi} exactly (up to global offset)

• Unified framework for decoding model

◦ capture similarities among various applications

Problem setup: a Shannon-theoretic framework
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x1

x2

channel

channel

x1 − x2 = 1

x1 − x2 = 2

y12 ∼ P1

y12 ∼ P2

Pl := P( yij | xi − xj = l)

• Channel distance/resolution

◦ Captured by

KL( Pl ‖ Pk) or Hellinger( Pl ‖ Pk) or ...

What factors dictate hardness of recovery?
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x1

x2

channel

channel

x1 − x2 = 1

x1 − x2 = 3

y12 ∼ P1

y12 ∼ P3

Pl := P( yij | xi − xj = l)

• Minimum channel distance/resolution

minl 6=k KL( Pl ‖ Pk) := KLmin or

minl 6=k Hellinger( Pl ‖ Pk) := Hellingermin or ...

◦ Uncoded input

What factors dictate hardness of recovery?
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o Impossible to recover isolated vertices

measurement graph G

What factors dictate hardness of recovery?

• Graph connectivity
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o Over-sparse connectivity is fragile

measurement graph G

What factors dictate hardness of recovery?

• Graph connectivity
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measurement graph G

o Sufficient connectivity removes fragility!

What factors dictate hardness of recovery?

• Graph connectivity
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Agenda
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Main result: Erdos-Renyi random graph

Erdos-Renyi graph G(n, pobs). Each edge (i, j) is present independently w.p. pobs

(pobs = 1) (pobs = 0.3)
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non-asymptotic!

Main result: Erdos-Renyi random graph
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Main result: Erdos-Renyi random graph

(pobs = 1) (pobs = 0.3)

• In the hard regime where dPl
dPk
≈ 1:

KLmin ≈ 2 · Hellingermin
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• Recovery conditions

ML works if Hellingermin >
2 log n+ 4 logM

pobsn

Impossible if Hellingermin <
log n

2pobsn

Main result: Erdos-Renyi random graph

(pobs = 1) (pobs = 0.3)

• In the hard regime where dPl
dPk
≈ 1:

KLmin ≈ 2 · Hellingermin
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• Fundamental recovery condition (assuming M . poly(n))

Hellingermin &
log n

pobsn
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• Fundamental recovery condition (assuming M . poly(n))

Hellingermin &
log n

pobsn
⇐⇒ avg-degree× Hellingermin & log n

Main result: Erdos-Renyi random graph

(pobs = 1) (pobs = 0.3)

• In the hard regime where dPl
dPk
≈ 1:

KLmin ≈ 2 · Hellingermin
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Fundamental recovery condition (Erdos-Renyi graphs).

avg-degree× Hellingermin & log n

[xi−xj]1≤i,j≤n
1

2

3
4

5

6

7
8

9

Intuition
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Fundamental recovery condition (Erdos-Renyi graphs).

avg-degree× Hellingermin & log n

[xi−xj]1≤i,j≤n

hypotheses: H0: x = [0, 0, · · · , 0] H1: x = [1, 0, · · · , 0]

• H0 and H1 differ only at the highlighted region (≈ avg-degree pieces of info)

Intuition
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Fundamental recovery condition (Erdos-Renyi graphs).

avg-degree× Hellingermin & log n

[xi−xj]1≤i,j≤n

hypotheses: H0: x = [0, 0, · · · , 0] H2: x = [0, 1, · · · , 0]

• H0 and H2 differ only at the highlighted region (≈ avg-degree pieces of info)

Intuition
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Fundamental recovery condition (Erdos-Renyi graphs).

avg-degree× Hellingermin & log n (1)

[xi−xj]1≤i,j≤n

hypotheses: H0: x = [0, 0, · · · , 0] Hn: x = [0, 0, · · · , 1]

• n minimally-separated hypotheses ⇒ needs at least logn bits

◦ the consequence of uncoded inputs

Intuition
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Minimal sample complexity

Fundamental recovery condition (Erdos-Renyi graphs).

avg-degree× Hellingermin & log n

• Sample complexity: n · avg-degree
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Minimal sample complexity

Fundamental recovery condition (Erdos-Renyi graphs).

avg-degree× Hellingermin & log n

• Sample complexity: n · avg-degree

Min sample complexity � n log n

Hellingermin
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How general this limit is?

Fundamental recovery condition (Erdos-Renyi graphs).

avg-degree× Hellingermin & log n

• Can we go beyond Erdos-Renyi graphs?
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Main results: homogeneous graphs

random geometric graph (generalized) ring
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• Homogeneous graphs:

◦ min-degree � max-degree � mincut

◦ balanced cut-set distributions

Main results: homogeneous graphs

random geometric graph (generalized) ring

Fundamental recovery condition (various homogeneous graphs).

avg-degree× Hellingermin & log n
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• Depend almost only on graph sparsity

Main results: homogeneous graphs

random geometric graph (generalized) ring

Fundamental recovery condition (various homogeneous graphs).

avg-degree× Hellingermin & log n
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Main results: general graphs

mincut = 5
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• Information across the minimum cut set:

mincut · Hellingermin

Main results: general graphs

mincut = 5
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• Recovery conditions

ML works if mincut · Hellingermin & τ cut + log n+ logM

Impossible if mincut · Hellingermin . τ cut +
mincut

max-degree
log n

Main results: general graphs

mincut = 5
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Cut-homogeneity exponent

• τ cut captures1

◦ growth rate of the cut-set distribution

◦ the ratio mincut
avg-degree

1 τcut := maxk
1
k |N (k · mincut)|, where N (K) := |{cut : cut-size ≤ K}|
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Cut-homogeneity exponent

• τ cut captures1

◦ growth rate of the cut-set distribution

◦ the ratio mincut
avg-degree

• In general: τ cut & 1

• For homogeneous graphs: τ cut . log n

1 τcut := maxk
1
k |N (k · mincut)|, where N (K) := |{cut : cut-size ≤ K}|
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mincut× Hellingermin & (1 ∼ log n)

gap . log n

avg-deg× Hellingermin & log n

gap � 1

avg-deg× Hellingermin & log n

gap ≤ 4(1 + 2 logM
logn )

Summary of main results
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Concrete application: stochastic block model

• Stochastic block model:

◦ 2 clusters

◦ edge densities:

— within-cluster: p = α logn
n

— across-cluster: q = β logn
n (q < p) adjacency matrix
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Concrete application: stochastic block model

• Stochastic block model:

◦ 2 clusters

◦ edge densities:

— within-cluster: p = α logn
n

— across-cluster: q = β logn
n (q < p) adjacency matrix

• Our theory:

feasible if
√
α−

√
β >
√
2

impossible if
√
α−

√
β < 1/2

• Fundamental limit (Abbe et al. and Mossel et al.):
√
α−
√
β >
√
2

Page 20



Concluding remarks

• A unified framework to determine recovery limits

• Interplay between IT and graph theory

• Tighten the pre-constants?

Arxiv: http://arxiv.org/abs/1504.01369
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