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Agenda

1. The power of nonconvex optimization in solving random quadratic systems of
equations (Aug. 28)

2. Random initialization and implicit regularization in nonconvex statistical
estimation (Aug. 29)

3. The projected power method: an efficient nonconvex algorithm for joint
discrete assignment from pairwise data (Sep. 3)

4. Spectral methods meets asymmetry: two recent stories (Sep. 4)

5. Inference and uncertainty quantification for noisy matrix completion (Sep. 5)
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Nonconvex problems are everywhere

Maximum likelihood estimation is usually nonconvex

maximizeg {(x; data) — may be nonconcave

subj. to x €S — may be nonconvex




Nonconvex problems are everywhere

Maximum likelihood estimation is usually nonconvex

maximize {(x; data) —  may be nonconcave

subj. to x €S — may be nonconvex

low-rank matrix completion

e robust principal component analysis

graph clustering

dictionary learning

blind deconvolution

e learning neural nets




Nonconvex optimization may be super scary

There may be bumps everywhere and exponentially many local optima J

e.g. 1-layer neural net (Auer, Herbster, Warmuth '96; Vu '98)



Example: solving quadratic programs is hard

Finding maximum cut in a graph is
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Example: solving quadratic programs is hard

MOLLL L 1

"I can't find an efficient algorithm, but neither can all these people.”

Fig credit: coding horror

31,888,688 guestion



One strategy: convex relaxation

Can relax into convex problems by

e finding convex surrogates (e.g. compressed sensing, matrix completion)

e lifting into higher dimensions (e.g. Max-Cut)



Example of convex surrogate: low-rank matrix completion
— Fazel '02, Recht, Parrilo, Fazel '10, Candeés, Recht '09

minimizeps rank(M) subj. to data constraints

@ CVvX surrogate

minimizeps nuc-norm(M) subj. to data constraints
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Example of convex surrogate: low-rank matrix completion

— Fazel '02, Recht, Parrilo, Fazel '10, Candeés, Recht '09

minimizeps rank(M) subj. to data constraints
@ CVvX surrogate
minimizeps nuc-norm(M) subj. to data constraints

Robust variation used everyday by Netflix

Problem: operate in full matrix space even though X is low-rank




Example of lifting: Max-Cut

— Goemans, Williamson '95

maximizeg ' We
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Example of lifting: Max-Cut

— Goemans, Williamson '95

maximize, z Wz
: subj. to xle, i=1,---,n
o (o
1
E —e let X be za’
1
1
® ': [ maximize x (X, W)
' subj. to X;i=1, i=1,---,n
X*>0
rank{X)—+t

Problem: explosion in dimensions (R™ — R™*™) J




How about optimizing nonconvex problems directly without lifting?



A case study: solving random quadratic systems of equations



Solving quadratic systems of equations
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Solve for & € C™ in m quadratic equations

y =~ [ag, ) k=1,...



Motivation: a missing phase problem in imaging science

Detectors record intensities of diffracted rays

e x(t1,t2) —> Fourier transform Z(f1, f2)

sample

diffraction pattern
recorded in the far field

2

intensity of electrical field: |gz(f1,f2)]2 = ‘/x(tl,tz)e_i%(fltl+f2t2)dt1dt2

Phase retrieval: recover true signal x(¢;,t2) from intensity measurements

J




Motivation: latent variable models

Example: mixture of regression

yNS.’L',—B> y%(;f, )

o Samples {(yk, xx)}: drawn from one of two unknown regressors 3 and —3

ith prob. 0.5
Yk & {<wk’ﬁ>’ with pro (labels: latent variables)

(xp, —B), else



Motivation: latent variable models

Example: mixture of regression

o Samples {(yk, xx)}: drawn from one of two unknown regressors 3 and —3

ith . 0.
Yk & {<wk’ﬁ>’ with prob. 0.5 (labels: latent variables)

(xp, —B), else

— equivalent to observing |yi|* ~ |(zk, B)|*

e Goal: estimate 3



Motivation: learning neural nets with quadratic activation

— Soltanolkotabi, Javanmard, Lee '17, Li, Ma, Zhang '17

A
& Hlo)——
a .éy » T
g output layer

.// hldden layer

input layer
[mh Tty mr]

weights: X =
s Z o)

input features: a
output: y:Z (a'z;)
i=1



An equivalent view: low-rank factorization

Lifting: introduce X = @™ to linearize constraints

ye = larz|® = aj(zx")ay = yr = apXay

H -




An equivalent view: low-rank factorization

Lifting: introduce X = @™ to linearize constraints

e = |ajx|® = aj(xx)as = Yk = apXay

H -




An equivalent view: low-rank factorization

Lifting: introduce X = @™ to linearize constraints

e = |ajx|® = aj(xx)as = Yk = apXay

H -

find X>0
s.t. yr = arXay, k=1,---,m



An equivalent view: low-rank factorization

Lifting: introduce X = @™ to linearize constraints

e = |ajx|® = aj(xx)as = Yk = apXay

H -

find X >0
s.t yr = arXay, k=1,---,m
rank{X)—=1t

Works well if {ay} are random, but huge increase in dimensions
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Prior art (before our work)
n: # unknowns; m: sample size (# eqns); y = |Az|?, A € R™*"

sample complexity
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A glimpse of our results
n: # unknowns; m: sample size (# eqns); y = |Az|?, A € R™*"
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This work: random quadratic systems are solvable in linear time!



A glimpse of our results
n: # unknowns; m: sample size (# eqns); y = |Az|?, A € R™*"

sample complexity

4 alt-min (fresh samples at each iter)

n log3 0 ’
:
|
- Wirtinger flow
nlogn |-—-3 | [ ]
Q | | .
% | Our algorithm | cvx relaxation
- B ———
i infeasible |
|
| ? N
mn mn? comput. cost

This work: random quadratic systems are solvable in linear time!

v' minimal sample size
v’ optimal statistical accuracy
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1 m
maximize, {(z) = - Zkzlék(z)

e Gaussian data: yj ~ |a2m\2 +N(0,02%) \

u(2) = —(y — lajz*)’

e Poisson data: y; ~ Poisson(|ajz|*)
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A first impulse: maximum likelihood estimate

1 m
maximize, {(z) = - Zkzlék(z)

e Gaussian data: yj ~ |aZ:1:\2 +N(0,02%) \

u(2) = —(y — lajz*)’

e Poisson data: y; ~ Poisson(|ajz|*)

‘P | ]
lk(2) = —|ajz|” + yi log |ajz|?

Problem: —/ nonconvex, many local stationary points




Wirtinger flow: Candeés, Li, Soltanolkotabi'14

e N . - . . . .
LTI e Spectral initialization: z° <« leading eigenvector of
- N
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Already rich theory (see also Soltanolkotabi'14, Ma, Wang, Chi, Chen '17)
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Interpretation of spectral initialization

Spectral initialization: 2% < leading eigenvector of

1 m
Y = — a,a;
m;ykk k

e Rationale: E[Y] = I + 2zx* (||x||2 = 1) under Gaussian design

e Would succeed if Y — E[Y]



Empirical performance of initialization (m = 12n)

Ground truth & € R#09600



Empirical performance of initialization (m = 12n)

Ground truth & € R#09600

Spectral initialization
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Improving initialization

1
Y = *Z ygaray, - E[Y] unlessm>n
m o

heavy-tailed

1 *
Tax = 4

6000

k (m=6n)

Problem large outliers yx = |ajx|? bear too much influence
Solution discard large samples and run PCA for % zk:ykakaZI{wk‘gA\,g{‘yl”}

— improvable via more refined pre-processing
(Wang, Giannakis, Eldar’16, Lu, Li’17, Mondelli, Montanari '17)

1 *
— > pluaa;  eg. plys) = max{yy, a}
k



Empirical performance of initialization (m = 12n)

Ground truth ¢ € R409600

Regularized spectral initialization



Iterative refinement stage: search directions
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Iterative refinement stage: search directions

m
irti o Tt
Wirtinger flow: zt1 = 2t — E — |a} 2t[*)ara; z
g m Yk — |ay, ) k@

==V, (zt)

Even in a local region around x (e.g. {z | ||z — x||2 < 0.1||z||2}):

o f(-) is NOT strongly convex unless m > n

e f(-) has huge smoothness parameter



Iterative refinement stage: search directions

m
Wirtinger flow: z'*! t Mtz
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Problem: descent direction has large variability




Our solution: variance reduction via proper trimming

More adaptive rule:
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Our solution: variance reduction via proper trimming

More adaptive rule:
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Our solution: variance reduction via proper trimming

More adaptive rule:

t+1 _ _t Ntzyz— 1 _
z =z a, zt “zlsf(zm%(zt)

here £i(z) = J ol < la/ 2zl _ ). Si(z) = _1aT 22| < e ‘y_A(zzT)Hl‘aiTzl
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Our solution: variance reduction via proper trimming

More adaptive rule:

t+1 _ _t Ntzyz— 1 _
z =z a, zt azlsi(zmss(zt)

AR st -stee
where £i(z) = {a'f < Ee < a;b}; Ei(z) = {lyi —la]z]?| < = = }
\\\ .
XA
S\ .
;/k\zs informally, z!+! = 2t + £ ZkeTt Vi (2?)
.(/// //\\\\?\%\\X e 7, trims away excessively large grad
i \ X components
AN =N
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Slight bias 4+  much reduced variance J




Larger step size y; is feasible

=0

with trimming:

(1/n)

=0

without trimming:

With better-controlled descent directions, one proceeds far more aggressively J




Summary: truncated Wirtinger flows (TWF)

1. Regularized spectral initialization: z2° < leading eigenvector of

L > praa;
m k€To k

2. Regularized gradient descent

Key idea: adaptively discard high-leverage data




Performance guarantees of TWF (noiseless data)

dist(z, ) := min{||z + |2}
Theorem (Chen & Candeés'15). Under i.i.d. Gaussian design, TWF achieves
diSt(Zt,ZE) 5 (1_p)t ||:B||27 tZO,]_,

with high prob., provided that sample size m 2> n. Here, 0 < p < 1 is const.

~




Performance guarantees of TWF (noiseless data)

dist(z, ) := min{||z + |2}
Theorem (Chen & Candeés'15). Under i.i.d. Gaussian design, TWF achieves
diSt(Zt,ZE) 5 (1_p)t ||:B||27 tZO,]_,

with high prob., provided that sample size m 2> n. Here, 0 < p < 1 is const.

~
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(log scale)
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Relative error
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start within basin of attraction linear convergence



Computational complexity

A= {a}}i<k<m

o Initialization: leading eigenvector — a few applications of A and A*

Z Yk akaz = A" diag{yk . 1/667'0} A
keTo
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Computational complexity

A= {a}}i<k<m

o Initialization: leading eigenvector — a few applications of A and A*

Z Yk akaz = A" diag{yk . 1/667'0} A
keTo

e lterations: one application of A and A™* per iteration
—Viy(2) = A*v

|Az"]?—y

t
2t =2t 4 &V&,(zt)
m v=2"—— 17

Approximate runtime: several tens of applications of A and A*




Numerical surprise

o CG: solve y = Ax e Our algorithm: solve y = |Ax|?

proposed algorithm |

/
s} least squares (CG)

Relative error (log scale)

é 10 15
® lteration * &0

For random quadratic systems (m = 8n)

comput. cost of our algo. =~ 4 X comput. cost of least squares




Empirical performance

After regularized spectral initialization



Empirical performance

After regularized spectral initialization

After 50 TWF iterations



Key convergence condition for gradient stage

If there are many samples:




Key convergence condition for gradient stage

If there are NOT many samples, i.e. m < n:




Key convergence condition for gradient stage

If there are NOT many samples, i.e. m < n:
Vz s.t. dist(z, ) < ||z

(VI"(2), & —2) 2 ||z —=|3 + [V (2)]3

Vi(z) V(2N wt;(L’/,
p 4
J/ VI (z)
//" - -
/// €T z -~ -



Stability under noisy data

e Noisy data: yx, = |ajz|? + ni

e Signal-to-noise ratio:

SNR = Zk |a']tw‘4 ~ 3m||:c||4

e Il

e i.i.d. Gaussian design



Stability under noisy data

e Noisy data: yx, = |ajz|? + ni

e Signal-to-noise ratio:

SNR = Zk |a';;w‘4 ~ 3m||:c||4
>k Inl]?

e i.i.d. Gaussian design

Theorem (Soltanolkotabi) WF converges to MLE

Theorem (Chen, Candés) Relative error of TWF converges to O( SIN )

:




Relative MSE vs. SNR (Poisson data)
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Empirical evidence: relative MSE scales inversely with SNR




This accuracy is nearly un-improvable (empirically)
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This accuracy is nearly un-improvable (empirically)

Comparison with genie-aided MLE (with sign info. revealed)
yr ~ Poisson( |ajx|’ ) and &, = sign (ajx) (revealed by a genie)

-20 7

o5 #

0|
| truncated WF
0|

451

Relative MSE (dB)

| genie-aided MLE

5l

ol

-65—‘ i i i i i i i
15 20 25 30 35 40 45 50 55

SNR (dB) (n=100)

little empirical loss due to missing signs



This accuracy is nearly un-improvable (theoretically)

e Poisson data: yy nd: Poisson( |a;x|?)

e Signal-to-noise ratio:

* o4
SNR ~ B
>k Var(yx)



This accuracy is nearly un-improvable (theoretically)

e Poisson data: yy nd: Poisson( |a;x|?)
e Signal-to-noise ratio:
aix|*
SNR =~ 2|l ~ 3|z|?
> Var(yk)

Theorem (Chen, Candés). Under i.i.d. Gaussian design, for any estimator &,

E [dist (&, ) | {ax}] S 1
¢ 2 || >logh®m ||l ~ /SNR’

provided that sample size m = n.

inf sup




Phaseless 3D computational imaging

Fromenteze, Liu, Boyarsky, Gollub, & Smith '16

) f(r)
(Tj Tr,y
| |
ﬂ .
intensity /
measurement metasurface field source

Measure intensities (with radiating metasurfaces) rather than complex signals
for sub-centimeter wavelengths




Phaseless 3D computational imaging

Fromenteze, Liu, Boyarsky, Gollub, & Smith '16
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-0.2 0 02 03 0.4 05 -02 0 0.2
x (m) y (m) z(m)

(red) phaseless reconstruction  (blue) reconstruction w/ phase!

1This demonstration is proposed in microwave range as proof of concept



No need of sample splitting

e Several prior works use sample-splitting: require fresh samples at each
iteration; not practical but much easier to analyze
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No need of sample splitting

e Several prior works use sample-splitting: require fresh samples at each
iteration; not practical but much easier to analyze

1
z 23 25

N
fresh samples

0 z*
z 2
z

e Our works: reuse all samples in all iterations




A small sample of more recent works

e other optimal algorithms

o reshaped WF (Zhang et al.), truncated AF (Wang et al.), median-TWF (Zhang et al.)
o alt-min w/o resampling (Waldspurger)

o composite optimization (Duchi et al., Charisopoulos et al.)

o approximate message passing (Ma et al.)

o block coordinate descent (Barmherzig et al.)

o PhaseMax (Goldstein et al., Bahmani et al., Salehi et al., Dhifallah et al., Hand et al.)

e stochastic algorithms (Kolte et al., Zhang et al., Lu et al., Tan et al., Jeong et al.)

e improved WF theory: iteration complexity — O(lognlog L) (Ma et al.)

e improved initialization (Lu et al., Wang et al., Mondelli et al.)

e random initialization (Chen et al.)

e structured quadratic systems (Cai et al., Soltanolkotabi, Wang et al., Yang et al.,
Qu et al.)

e geometric analysis (Sun et al., Davis et al.)

e low-rank generalization (White et al., Li et al., Vaswani et al.)



Central message

e Simple nonconvex paradigms are surprisingly effective for computing MLE
e Importance of statistical thinking (initialization)

statistical accuracy

comput. cost

convex relaxation ‘

=
nonconvex procedure ‘3 ‘-

e Y. Chen, E. Candés, “Solving random quadratic systems of equations is nearly as easy as
solving linear systems,” Comm. Pure and Applied Math., 2017



