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Nonconvex problems are everywhere

Maximum likelihood estimation is usually nonconvex

maximizex `(x; data) → may be nonconcave
subj. to x ∈ S → may be nonconvex

• low-rank matrix completion
• robust principal component analysis
• graph clustering
• dictionary learning
• blind deconvolution
• learning neural nets
• ...
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Nonconvex optimization may be super scary

There may be bumps everywhere and exponentially many local optima

e.g. 1-layer neural net (Auer, Herbster, Warmuth ’96; Vu ’98)



Example: solving quadratic programs is hard

Finding maximum cut in a graph is

maximizex x>Wx

subj. to x2
i = 1, i = 1, · · · , n

Fig credit: coding horror
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One strategy: convex relaxation

Can relax into convex problems by

• finding convex surrogates (e.g. compressed sensing, matrix completion)

• lifting into higher dimensions (e.g. Max-Cut)



Example of convex surrogate: low-rank matrix completion
— Fazel ’02, Recht, Parrilo, Fazel ’10, Candès, Recht ’09

minimizeM rank(M) subj. to data constraints

cvx surrogate

minimizeM nuc-norm(M) subj. to data constraints

Robust variation used everyday by Netflix

Problem: operate in full matrix space even though X is low-rank
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Example of lifting: Max-Cut

— Goemans, Williamson ’95

maximizex x>Wx

subj. to x2
i = 1, i = 1, · · · , n

let X be xx>

maximizeX 〈X,W 〉
subj. to Xi,i = 1, i = 1, · · · , n

X � 0

Problem: explosion in dimensions (Rn → Rn×n)
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How about optimizing nonconvex problems directly without lifting?



A case study: solving random quadratic systems of equations



Solving quadratic systems of equations
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Solve for x ∈ Cn in m quadratic equations

yk ≈ |〈ak,x〉|2, k = 1, . . . ,m



Motivation: a missing phase problem in imaging science

Detectors record intensities of diffracted rays
• x(t1, t2) −→ Fourier transform x̂(f1, f2)

intensity of electrical field:
∣∣x̂(f1, f2)

∣∣2 =
∣∣∣∫ x(t1, t2)e−i2π(f1t1+f2t2)dt1dt2

∣∣∣2
Phase retrieval: recover true signal x(t1, t2) from intensity measurements



Motivation: latent variable models

Example: mixture of regression
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entrywise
squared magnitude

minimizeX ` (b)

s.t. bk = a⇤
kXak, k = 1, · · · , m

X ⌫ 0

yk =

(
hxk,�i + ⌘k, with prob. 1

2

hxk,��i + ⌘k, else

y ⇡ hx,�i
y ⇡ hx,��i

1

A

x

Ax

y = |Ax|2

| · |2

entrywise
squared magnitude

minimizeX ` (b)

s.t. bk = a⇤
kXak, k = 1, · · · , m

X ⌫ 0

yk =

(
hxk,�i + ⌘k, with prob. 1

2

hxk,��i + ⌘k, else

y ⇡ hx,�i
y ⇡ hx,��i

1

• Samples {(yk,xk)}: drawn from one of two unknown regressors β and −β

yk ≈
{
〈xk,β〉 , with prob. 0.5
〈xk,−β〉 , else

(labels: latent variables)

— equivalent to observing |yk|2 ≈ |〈xk,β〉|2

• Goal: estimate β



Motivation: latent variable models

Example: mixture of regression

A

x

Ax

y = |Ax|2

| · |2

entrywise
squared magnitude

minimizeX ` (b)

s.t. bk = a⇤
kXak, k = 1, · · · , m

X ⌫ 0

yk =

(
hxk,�i + ⌘k, with prob. 1

2

hxk,��i + ⌘k, else

y ⇡ hx,�i
y ⇡ hx,��i

1

A

x

Ax

y = |Ax|2

| · |2

entrywise
squared magnitude

minimizeX ` (b)

s.t. bk = a⇤
kXak, k = 1, · · · , m

X ⌫ 0

yk =

(
hxk,�i + ⌘k, with prob. 1

2

hxk,��i + ⌘k, else

y ⇡ hx,�i
y ⇡ hx,��i

1

• Samples {(yk,xk)}: drawn from one of two unknown regressors β and −β

yk ≈
{
〈xk,β〉 , with prob. 0.5
〈xk,−β〉 , else

(labels: latent variables)

— equivalent to observing |yk|2 ≈ |〈xk,β〉|2

• Goal: estimate β



Motivation: learning neural nets with quadratic activation

— Soltanolkotabi, Javanmard, Lee ’17, Li, Ma, Zhang ’17
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input features: a; weights: X = [x1, · · · , xr]

output: y =
rX

i=1

�(a>xi)
�(z)=z2

:=
rX

i=1

(a>xi)
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An equivalent view: low-rank factorization

Lifting: introduce X = xx∗ to linearize constraints

yk = |a∗kx|2 = a∗k(xx∗)ak =⇒ yk = a∗kXak

find X � 0

s.t. yk = a∗kXak, k = 1, · · · ,m

rank(X) = 1

Works well if {ak} are random, but huge increase in dimensions
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Prior art (before our work)
n: # unknowns; m: sample size (# eqns); y = |Ax|2,A ∈ Rm×n

sample complexity
(# equations)

comput. cost
n
mn
mn2

n log n
n log3 n

1

cvx relaxation

comput. cost

sample complexity

infeasible

This work: random quadratic systems are solvable in linear time!

X minimal sample size
X optimal statistical accuracy
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A glimpse of our results
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A first impulse: maximum likelihood estimate

maximizez `(z) = 1
m

∑m

k=1
`k(z)

• Gaussian data: yk ∼ |a∗kx|
2 +N (0, σ2)

`k(z) = −
(
yk − |a∗kz|

2 )2

• Poisson data: yk ∼ Poisson
(
|a∗kx|

2 )
`k(z) = −|a∗kz|2 + yk log |a∗kz|2

Problem: −` nonconvex, many local stationary points
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Wirtinger flow: Candès, Li, Soltanolkotabi ’14

• Spectral initialization: z0 ← leading eigenvector of

1
m

m∑
k=1

ykaka
∗
k

• Iterative refinement: for t = 0, 1, . . .

zt+1 = zt + µt∇`(zt)

Already rich theory (see also Soltanolkotabi ’14, Ma, Wang, Chi, Chen ’17)



Interpretation of spectral initialization

Spectral initialization: z0 ← leading eigenvector of

Y := 1
m

m∑
k=1

ykaka
∗
k

• Rationale: E[Y ] = I + 2xx∗ (‖x‖2 = 1) under Gaussian design

• Would succeed if Y → E[Y ]
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Empirical performance of initialization (m = 12n)

Ground truth x ∈ R409600

Spectral initialization



Empirical performance of initialization (m = 12n)

Ground truth x ∈ R409600

Spectral initialization



Improving initialization
Y = 1

m

∑
k

ykaka
∗
k︸ ︷︷ ︸

heavy-tailed
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Problem large outliers yk = |a∗kx|2 bear too much influence

Solution discard large samples and run PCA for 1
m

∑
k

ykaka
∗
k1{|yk|.Avg{|yl|}}

— improvable via more refined pre-processing
(Wang, Giannakis, Eldar ’16, Lu, Li ’17, Mondelli, Montanari ’17)

1
m

∑
k

ρ(yk)aka∗k e.g. ρ(yk) = max{yk, a}
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Iterative refinement stage: search directions

Wirtinger flow: zt+1 = zt − µt
m

m∑
k=1

(
yk − |a>k zt|2

)
aka

>
k z

t︸ ︷︷ ︸
=−∇`k(zt)

Even in a local region around x (e.g. {z | ‖z − x‖2 ≤ 0.1‖x‖2}):

• f(·) is NOT strongly convex unless m� n

• f(·) has huge smoothness parameter
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Problem: descent direction has large variability



Iterative refinement stage: search directions

Wirtinger flow: zt+1 = zt − µt
m

m∑
k=1

(
yk − |a>k zt|2

)
aka

>
k z

t︸ ︷︷ ︸
=−∇`k(zt)

Even in a local region around x (e.g. {z | ‖z − x‖2 ≤ 0.1‖x‖2}):

• f(·) is NOT strongly convex unless m� n

• f(·) has huge smoothness parameter

z

x

locus of {−∇`k(z)}

Problem: descent direction has large variability



Iterative refinement stage: search directions

Wirtinger flow: zt+1 = zt − µt
m

m∑
k=1

(
yk − |a>k zt|2

)
aka

>
k z

t︸ ︷︷ ︸
=−∇`k(zt)

Even in a local region around x (e.g. {z | ‖z − x‖2 ≤ 0.1‖x‖2}):

• f(·) is NOT strongly convex unless m� n

• f(·) has huge smoothness parameter

z

x

locus of {−∇`k(z)}

Problem: descent direction has large variability



Our solution: variance reduction via proper trimming

More adaptive rule:

zt+1 = zt − µt
m

m∑
i=1

yi − |a>i zt|2

a>i z
t
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{
|yi − |a>i z|
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∥∥y−A(zz>)
∥∥

1
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‖z‖2

}
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x

informally, zt+1 = zt + µ
m

∑
k∈Tt ∇`k(zt)

• Tt trims away excessively large grad
components

Slight bias + much reduced variance
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Larger step size µt is feasible
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Summary: truncated Wirtinger flows (TWF)

1. Regularized spectral initialization: z0 ← leading eigenvector of

1
m

∑
k∈T0

yk aka
∗
k

2. Regularized gradient descent

zt+1 = zt + µt
1
m

∑
k∈Tt
∇`k(zt)︸ ︷︷ ︸

:=∇`tr(zt)

Key idea: adaptively discard high-leverage data



Performance guarantees of TWF (noiseless data)

dist(z,x) := min{‖z ± x‖2}

Theorem (Chen & Candès ’15). Under i.i.d. Gaussian design, TWF achieves

dist(zt,x) . (1− ρ)t ‖x‖2, t = 0, 1, · · ·

with high prob., provided that sample size m & n. Here, 0 < ρ < 1 is const.
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Computational complexity

A := {a∗k}1≤k≤m

• Initialization: leading eigenvector → a few applications of A and A∗∑
k∈T0

yk aka
∗
k = A∗ diag{yk · 1k∈T0}A

• Iterations: one application of A and A∗ per iteration

zt+1 = zt + µt
m
∇`tr(zt)

−∇`tr(zt) = A∗ν

ν = 2 |Azt|2−y
Azt

· 1T

Approximate runtime: several tens of applications of A and A∗
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Numerical surprise

• CG: solve y = Ax • Our algorithm: solve y = |Ax|2

For random quadratic systems (m = 8n)
comput. cost of our algo. ≈ 4 × comput. cost of least squares



Empirical performance

After regularized spectral initialization

After 50 TWF iterations



Empirical performance

After regularized spectral initialization

After 50 TWF iterations



Key convergence condition for gradient stage

If there are many samples:

∀z s.t. dist(z,x) ≤ ε‖x‖2:

〈∇`(z), x− z〉 & ‖z − x‖2
2 + ‖∇`(z)‖2
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Stability under noisy data

• Noisy data: yk = |a∗kx|2 + ηk

• Signal-to-noise ratio:

SNR :=
∑
k |a∗kx|4∑
k η

2
k

≈ 3m‖x‖4

‖η‖2

• i.i.d. Gaussian design

Theorem (Soltanolkotabi) WF converges to MLE

Theorem (Chen, Candès) Relative error of TWF converges to O( 1√
SNR )
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Relative MSE vs. SNR (Poisson data)
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Empirical evidence: relative MSE scales inversely with SNR



This accuracy is nearly un-improvable (empirically)
Comparison with genie-aided MLE (with sign info. revealed)

yk ∼ Poisson( |a∗kx|
2 ) and εk = sign (a∗kx) (revealed by a genie)
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This accuracy is nearly un-improvable (theoretically)

• Poisson data: yk
ind.∼ Poisson( |a∗kx|2 )

• Signal-to-noise ratio:

SNR ≈
∑
k |a∗kx|4∑
k Var(yk) ≈ 3‖x‖2

Theorem (Chen, Candès). Under i.i.d. Gaussian design, for any estimator x̂,

inf
x̂

sup
x: ‖x‖≥log1.5 m

E
[
dist (x̂,x) | {ak}

]
‖x‖

&
1√

SNR
,

provided that sample size m � n.
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Phaseless 3D computational imaging

Fromenteze, Liu, Boyarsky, Gollub, & Smith ’16

benefit of the hardware simplification allowed by both approaches to propose a new paradigm for
imaging systems. This demonstration is proposed in the microwave range as a proof of concept
to easily compare the reconstructions from complex valued and intensity measurements, paving
the way for millimeter wave, terahertz, and photonic applications.

Here, we study the mathematical formalism and develop the conditions in which intensity
measurement of compressed waveforms can be applied to retrieve the positions of targets in the
near field. The experimental setup and the associated parameters are defined in Fig. (2).

⇢(⌫) �(rr,⌫)

f(r)

g(r, rr,⌫)

Fig. 2. Computational imaging system used for the experimental demonstration. A metasur-
face radiating frequency diverse patterns is applied to the localization of field sources from
the intensity measurement of a compressed frequency domain waveform.

In this setup, a frequency diverse structure similar to those introduced in [9, 22, 25, 26] is
considered. The large modal diversity excited by these metasurfaces allows for the radiation
of structured field patterns which vary with the driving frequency. The quality factor of the
metasurface is optimized to avoid modal degeneration, allowing for the radiation of a large
number of pseudo-orthogonal spatial modes sensing the target space. The expression of the
measured frequency signal r(n) on the radiating device’s output port can be expressed as:

r(n) =
Z

rr

Z

r
f(rr,n) g(rr,r,n) f (r) d3r d2rr (10)

where f(rr,n) stands for the near field distribution of the metasurface measured at the
aperture locations rr for each frequency n , g(rr,r,n) represents the Green function modeling the
propagation of field from the object space r and the metasurface’s aperture, and f (r) corresponds
to a field source that is localized with this computational system. This problem can be expressed
using a matrix formalism by discretizing equation Eq. 10; we represented the resulting vectors
and matrices in bold notation as rrr = [ri]1in, rrrr = [rr j ]1 jnr , and nnn = [nk]1km. A sensing
matrix HHH 2 Cm⇥n is defined by the product of the Green function matrix GGGn,nr(nk) and the cavity
near-field response written in the vector form fff nr

(nk) for each frequency nk:

HHHn(nk) = GGGn,nr(nk) fff nr
(nk) (11)

The sensing matrix allows for a representation of the linear dependency between the measured
frequency signal rrr 2 Cm and the object fff 2 Cn, leading to the following formulation:

rrr = HHH fff (12)

Previous works demonstrated methods of reconstructing the image vector fff under certain
invertibility conditions of sensing matrix HHH, corresponding to a sufficient number of radiated
orthogonal patterns interrogating the target space [9]. This work extends the frame of computa-
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field source metasurface
intensity 

measurement

Measure intensities (with radiating metasurfaces) rather than complex signals
for sub-centimeter wavelengths
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Fig. 13. Localization of a field source on a domain of 10⇥10⇥10 voxels, with and without
the phase information. The blue square represents the array of equivalent dipoles constituting
the radiating metasurface.

considering that a supplementary mounting structure (source of diffraction) was added after the
near-field characterization of the leaky cavity leading to a relative error e = 0.57. A more precise
comparison of the two estimated fields f̂ff and f̂ff I is proposed, extracting the x, y, and z-cuts from
the maximum values (Fig. 14).
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Fig. 14. Comparison of the x, y, and z-cuts extracted at the maximum value of the recon-
structed fields f̂ff and f̂ff I . The orange solid lines correspond to the phaseless results f̂ff I ,
and are compared to the dashed blue lines standing for the reconstructions from complex
measurements f̂ff .

Comparable locations and resolutions are observed in both cases, validating the fidelity of
the truncated Wirtinger flow applied to this phaseless computational system. A larger domain is
considered for the last part of this experimental validation, studying the impact of the sampling
m/n presented earlier in a practical situation. A domain of 20⇥ 20⇥ 10 = 4000 voxels is
thus considered this time, conserving the same spatial sampling and centered at the same
location. We now consider a sampling of m/n = 9800/4000 = 2.45 (with the approximation of
two independent measurements rrr1 and rrr2). In contrast with the numerical simulations where
spatial random field distributions were considered, the experimental cases are focused on the
reconstruction of a punctual point like object. Even if a relative error of e < 10�5 may not be
reachable, we are interested in determining whether a localization of the field source is possible
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Phaseless 3D computational imaging

Fromenteze, Liu, Boyarsky, Gollub, & Smith ’16

benefit of the hardware simplification allowed by both approaches to propose a new paradigm for
imaging systems. This demonstration is proposed in the microwave range as a proof of concept
to easily compare the reconstructions from complex valued and intensity measurements, paving
the way for millimeter wave, terahertz, and photonic applications.

Here, we study the mathematical formalism and develop the conditions in which intensity
measurement of compressed waveforms can be applied to retrieve the positions of targets in the
near field. The experimental setup and the associated parameters are defined in Fig. (2).

⇢(⌫) �(rr,⌫)

f(r)

g(r, rr,⌫)

Fig. 2. Computational imaging system used for the experimental demonstration. A metasur-
face radiating frequency diverse patterns is applied to the localization of field sources from
the intensity measurement of a compressed frequency domain waveform.

In this setup, a frequency diverse structure similar to those introduced in [9, 22, 25, 26] is
considered. The large modal diversity excited by these metasurfaces allows for the radiation
of structured field patterns which vary with the driving frequency. The quality factor of the
metasurface is optimized to avoid modal degeneration, allowing for the radiation of a large
number of pseudo-orthogonal spatial modes sensing the target space. The expression of the
measured frequency signal r(n) on the radiating device’s output port can be expressed as:

r(n) =
Z

rr

Z

r
f(rr,n) g(rr,r,n) f (r) d3r d2rr (10)

where f(rr,n) stands for the near field distribution of the metasurface measured at the
aperture locations rr for each frequency n , g(rr,r,n) represents the Green function modeling the
propagation of field from the object space r and the metasurface’s aperture, and f (r) corresponds
to a field source that is localized with this computational system. This problem can be expressed
using a matrix formalism by discretizing equation Eq. 10; we represented the resulting vectors
and matrices in bold notation as rrr = [ri]1in, rrrr = [rr j ]1 jnr , and nnn = [nk]1km. A sensing
matrix HHH 2 Cm⇥n is defined by the product of the Green function matrix GGGn,nr(nk) and the cavity
near-field response written in the vector form fff nr

(nk) for each frequency nk:

HHHn(nk) = GGGn,nr(nk) fff nr
(nk) (11)

The sensing matrix allows for a representation of the linear dependency between the measured
frequency signal rrr 2 Cm and the object fff 2 Cn, leading to the following formulation:

rrr = HHH fff (12)

Previous works demonstrated methods of reconstructing the image vector fff under certain
invertibility conditions of sensing matrix HHH, corresponding to a sufficient number of radiated
orthogonal patterns interrogating the target space [9]. This work extends the frame of computa-
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Fig. 13. Localization of a field source on a domain of 10⇥10⇥10 voxels, with and without
the phase information. The blue square represents the array of equivalent dipoles constituting
the radiating metasurface.

considering that a supplementary mounting structure (source of diffraction) was added after the
near-field characterization of the leaky cavity leading to a relative error e = 0.57. A more precise
comparison of the two estimated fields f̂ff and f̂ff I is proposed, extracting the x, y, and z-cuts from
the maximum values (Fig. 14).
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Fig. 14. Comparison of the x, y, and z-cuts extracted at the maximum value of the recon-
structed fields f̂ff and f̂ff I . The orange solid lines correspond to the phaseless results f̂ff I ,
and are compared to the dashed blue lines standing for the reconstructions from complex
measurements f̂ff .

Comparable locations and resolutions are observed in both cases, validating the fidelity of
the truncated Wirtinger flow applied to this phaseless computational system. A larger domain is
considered for the last part of this experimental validation, studying the impact of the sampling
m/n presented earlier in a practical situation. A domain of 20⇥ 20⇥ 10 = 4000 voxels is
thus considered this time, conserving the same spatial sampling and centered at the same
location. We now consider a sampling of m/n = 9800/4000 = 2.45 (with the approximation of
two independent measurements rrr1 and rrr2). In contrast with the numerical simulations where
spatial random field distributions were considered, the experimental cases are focused on the
reconstruction of a punctual point like object. Even if a relative error of e < 10�5 may not be
reachable, we are interested in determining whether a localization of the field source is possible

                                                                                                   Vol. 24, No. 15 | 25 Jul 2016 | OPTICS EXPRESS 16773 

(red) phaseless reconstruction (blue) reconstruction w/ phase1

1This demonstration is proposed in microwave range as proof of concept



No need of sample splitting

• Several prior works use sample-splitting: require fresh samples at each
iteration; not practical but much easier to analyze
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• Our works: reuse all samples in all iterations
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A small sample of more recent works

• other optimal algorithms
◦ reshaped WF (Zhang et al.), truncated AF (Wang et al.), median-TWF (Zhang et al.)
◦ alt-min w/o resampling (Waldspurger)
◦ composite optimization (Duchi et al., Charisopoulos et al.)
◦ approximate message passing (Ma et al.)
◦ block coordinate descent (Barmherzig et al.)
◦ PhaseMax (Goldstein et al., Bahmani et al., Salehi et al., Dhifallah et al., Hand et al.)

• stochastic algorithms (Kolte et al., Zhang et al., Lu et al., Tan et al., Jeong et al.)

• improved WF theory: iteration complexity → O(log n log 1
ε
) (Ma et al.)

• improved initialization (Lu et al., Wang et al., Mondelli et al.)

• random initialization (Chen et al.)

• structured quadratic systems (Cai et al., Soltanolkotabi, Wang et al., Yang et al.,
Qu et al.)

• geometric analysis (Sun et al., Davis et al.)

• low-rank generalization (White et al., Li et al., Vaswani et al.)



Central message

• Simple nonconvex paradigms are surprisingly effective for computing MLE
• Importance of statistical thinking (initialization)

statistical accuracy comput. cost

convex relaxation

nonconvex procedure

• Y. Chen, E. Candès, “Solving random quadratic systems of equations is nearly as easy as
solving linear systems,” Comm. Pure and Applied Math., 2017


