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High-Dimensional Sequential Data / Signals

M‘mmm by T. McCracken

e Data Stream / Stochastic Processes | B
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o Each data instance can be high-dimensional

o We're interested in information in the data
rather than the data themselves

d &

e Covariance Estimation

o second-order statistics X2 € R"**"

o cornerstone of many information processing tasks
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What are Quadratic Measurements?

e Quadratic Measurements

o obtain m measurements of X taking the form

yi%a;rﬁai (1<i<m)

o rank-1 measurements!
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Example: Applications in Spectral Estimation

e High-frequency wireless and signal processing (Energy Measurements)

o Spectral estimation of stationary processes (possibly sparse)
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Example: Applications in Spectral Estimation

e High-frequency wireless and signal processing (Energy Measurements)

o Spectral estimation of stationary processes (possibly sparse)

o Channel Estimation in MIMO Channels

energy
measurements

D~

===
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Example: Applications in Optics

e Phase Space Tomography

o measure correlation functions of a wave field

Fig credit: Chi et al
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Example: Applications in Optics

e Phase Space Tomography

o measure correlation functions of a wave field

courtesy of Chi et al
e Phase Retrieval

o signal recovery from magnitude measurements

xray
sample source

mask a l

diffraction
pattern

courtesy of Candes et al Page 5



Example: Applications in Data Streams

e Covariance Sketching

o data stream: real-time data {x;}$2, arriving sequentially at a high rate...

d

e Challenges

= n-dim

o limited memory
o computational efficiency

o hopefully a single pass over the data

binary data stream by Kazmin
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Proposed Quadratic Sketching Method

1) Sketching:

T
)

— a,;: sketching vector i I

o at each time t, obtain a quadratic sketch (a,
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Proposed Quadratic Sketching Method

1) Sketching:
o at each time ¢, obtain a quadratic sketch (a, x;)*

— a;: sketching vector

2) Aggregation: I I

o all sketches are aggregated into m measurements

T
1
—a, <T2wtw:> a;~a, Xa; (1<i<m)
t=1

Page 7



Proposed Quadratic Sketching Method

1) Sketching:

_l_
)

— a,;: sketching vector
2) Aggregation: I I
o all sketches are aggregated into m measurements

Vi = a < Zwtwt>aZ~aT2az (1<i<m)

t=1

o at each time t, obtain a quadratic sketch (a,

Benefits:

o one pass

o minimal storage (as will be shown)
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Problem Formulation

e Given: m (< n?) quadratic measurements y = {y;}",
— ! -
yi—aizai+ni7 7’_]—7"°7m7

o a; : sampling vectors
o n = {n;}™: noise terms WaEy Covariance

o more concise operator form:

- Covariance
y=AX)+n

5]

~
»
~

e

Covariance
e Goal: recover X € R"*<", A

e Sampling model

o sub-Gaussian i.i.d. sampling vectors
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Geometry of Covariance Structure

e # unknown > # stored measurements

o exploit low-dimensional structures!

e Structures considered in this talk:

o low rank

o Toeplitz low rank

o simultaneously sparse and low-rank

1) low rank

2) Toeplitz low rank

Piet Mondrian

!_“. —“—

1

3) jointly sparse and low rank
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Low Rank

e Low-Rank Structure:

o A few components explains most of the data variability

o metric learning, array signal processing, collaborative filtering ...

rank: r

o rank(X) =r < n.
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Trace Minimization for Low-Rank Structure

\_'_l
rank: r
e Trace Minimization
(TraceMin) minimizepy trace (M)

Iow‘gnk
st. JAM) —yl, < e .
noise bound

M > 0.

o inspired by Candes et. al. for phase retrieval
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Near-Optimal Recovery for Low-Rank Structure

minimize tr(M) st ||[AM)—-y|1<e M=0

Theorem 1 (Low Rank). With high prob, for all ¥ with rank(3) < r, the
solution X to TraceMin obeys

7

. TV
due to imperfect structure

1= -3 < + =
J \/’7}/

due to noise

Y

A&

provided that m = rn. (X,: rank-r approx of )

e Exact recovery in the noiseless case
e Universal recovery: simultaneously works for all low-rank matrices
e Robust recovery when X is approximately low-rank

e Stable recovery against bounded noise
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Phase Transition for Low-Rank Recovery

—— theoretic sampling limit 1 e
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m / (n*n)

empirical success probability of Monte Carlo trials: n = 50

Near-Optimal Storage Complexity!

o degrees of freedom ~ rn
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Toeplitz Low Rank

e Toeplitz Low-Rank Structure:

o Spectral sparsity!
* possibly off-the-grid frequency spikes (Vandemonde decomposition)

o wireless communication, array signal processing ...

~ V==

e rank(X) =r < n.
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Trace Minimization for Toeplitz Low-Rank Structure

w~ V==

N

e Trace Minimization

(ToepTraceMin) minimizepy trace (M)
low rank
st JAM) —yl, < e .
noise bound
M > 0,
M is Toeplitz.
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Near-Optimal Recovery for Toeplitz Low-Rank Structure

minimize tr(M) st [|[A(M)—1yl|2<e, M >0, M is Toeplitz

Theorem 2 (Toeplitz Low Rank). With high prob, for all Toeplitz ¥ with
rank(3) < r, the solution 3 to ToepTraceMin obeys

1= -2 <

(gl

due to noise

provided that m = rpoly log(n).

e Exact recovery in the absence of noise Toeplitz ball
e Universal recovery: simultaneously works for all Toeplitz low-rank matrices

e Stable recovery against bounded noise
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Phase Transition for Toeplitz Low-Rank Recovery

r: rank

empirical success probability of Monte Carlo trials: n = 50
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m: number of measurements

e Near-Optimal Storage Complexity!

o degrees of freedom ~ r
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Simultaneous Structure

e Joint Structure:

o rank: r
o sparsity: k
sparsity: k -
rank: r
o SVD:

Y. is simultaneously sparse and low-rank.

X =UAU", where U = [uq, -, u,]
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Convex Relaxation for Simultaneous Structure

*T{
sparsity: k= U, U, '

N

rank: r
e Convex Relaxation
minimizeps trace (M) + A||M ||1
low rank sparsity
st. A —yl, <

noise bound

M = 0.

o coincides with L/ and Voroninski for rank-1 cases
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Exact Recovery for Simultaneous Structure

minimize tr(M)+ A |M|, st AM)=y, M=>0

Theorem 3 (Simultaneous Structure). SDP with )\ € [l

1 . .
-, N_z} Is exact with

high probability, provided that

rlogn
mz s (1)

r n2
where Ny := max { |sign (Xq)]| , \/k Zi_q}”u””l} :

e Exact recovery with appropriate regularization parameters

e Question: how good is the storage complexity ((1])?
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Compressible Covariance Matrices: Near-Optimal Recovery

power-law decay

u |
e non-zero entries of u; exhibit power-law decays ¥ % :

=]

Definition (Compressible Matrices)

o |lusl1 = O(polylog(n)).

rank: r
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Compressible Covariance Matrices: Near-Optimal Recovery

power-law decay
Definition (Compressible Matrices)

e non-zero entries of u; exhibit power-law decays & 4

o |luilly = O(polylog(n)). ...

rank: r

Corollary 1 (Compressible Case). For compressible covariance matrices, SDP
with \ ~ ﬁ Is exact w.h.p., provided that

m 2 kr - polylog(n).
e Near-Minimal Measurements!

o degree-of-freedom: O(kr)
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Stability and Robustness

e noise: ||n|j; <e

e imperfect structural assumption: X = >0 + X

simultaneous sparse and low-rank residuals
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Stability and Robustness

e noise: ||n|j; <e
e imperfect structural assumption: X = >0 + X
simultaneous sparse and low-rank residuals

Theorem 4. Under the same A as in Theorem 1 or Corollary 1,

. 1
2-2” < Iz £ 21,
of, £ 7 | 1Bl A= | +

due to imperfect structure

€
L

due to noise

e stable against bounded noise

e robust against imperfect structural assumptions
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Mixed-Norm RIP (for Low-Rank and Joint Structure)

e Restricted Isometry Property: a powerful notion for compressed sensing
VX in some class : 1B(X)],~ | Xl -

o unfortunately, it does NOT hold for quadratic models
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Mixed-Norm RIP (for Low-Rank and Joint Structure)

e Restricted Isometry Property: a powerful notion for compressed sensing
VX in some class : 1B(X)],~ | Xl -

o unfortunately, it does NOT hold for quadratic models

e A Mixed-norm Variant: RIP-/5//;

VX in some class : 1B(X)], =~ | Xl -
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Mixed-Norm RIP (for Low-Rank and Joint Structure)

e Restricted Isometry Property: a powerful notion for compressed sensing
VX in some class : 1B(X)],~ | Xl -

o unfortunately, it does NOT hold for quadratic models

e A Mixed-norm Variant: RIP-/5//;

VX in some class : 1B(X)], =~ | Xl -

o does NOT hold for A, but hold after A is debiased
o A very simple proof for PhaseLift!
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Concluding Remarks

e Our approach / analysis works for other structural models

o Sparse covariance matrix

o Low-Rank plus Sparse matrix

e The way ahead

o Sparse inverse covariance matrix
o Beyond sub-Gaussian sampling

o Online recovery algorithms

Piet Mondrian
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Q&A

Full-length version available at arXiv:

Exact and Stable Covariance Estimation from Quadratic Sampling
via Convex Programming

http://arxiv.org/abs/1310.0807

Thank You! Questions?
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