May 9

Exact and Stable Covariance Estimation from Quadratic Sampling via Convex Programming

Yuxin Chen[†], Yuejie Chi^{*}, Andrea J. Goldsmith[†] Stanford University[†], Ohio State University^{*}

High-Dimensional Sequential Data / Signals

• Data Stream / Stochastic Processes

- Each data instance can be high-dimensional
- We're interested in information in the data rather than the data themselves

• Covariance Estimation

- \circ second-order statistics $\mathbf{\Sigma} \in \mathbb{R}^{n imes n}$
- cornerstone of many information processing tasks

- Quadratic Measurements
 - $\circ\,$ obtain m measurements of Σ taking the form

Example: Applications in Spectral Estimation

- **High-frequency wireless and signal processing** (Energy Measurements)
 - Spectral estimation of stationary processes (*possibly sparse*)

Example: Applications in Spectral Estimation

- **High-frequency wireless and signal processing** (Energy Measurements)
 - Spectral estimation of stationary processes (*possibly sparse*)

 $\circ\,$ Channel Estimation in MIMO Channels

• Phase Space Tomography

 $\circ\,$ measure correlation functions of a wave field

Fig credit: Chi et al

• Phase Space Tomography

 $\circ\,$ measure correlation functions of a wave field

courtesy of Chi et al

• Phase Retrieval

signal recovery from magnitude measurements

• Covariance Sketching

 \circ data stream: real-time data $\{x_t\}_{t=1}^\infty$ arriving sequentially at a high rate...

• Challenges

- $\circ~$ limited memory
- $\circ\,$ computational efficiency
- $\circ~$ hopefully a single pass over the data

binary data stream by Kazmin

1) Sketching:

- \circ at each time t, obtain a *quadratic* sketch $(\boldsymbol{a}_i^{ op} \boldsymbol{x}_t)^2$
 - a_i : sketching vector

1) Sketching:

- \circ at each time t, obtain a *quadratic* sketch $(\boldsymbol{a}_i^{ op} \boldsymbol{x}_t)^2$
 - a_i : sketching vector

2) Aggregation:

 \circ all sketches are aggregated into m measurements

$$y_{i} = \boldsymbol{a}_{i}^{\top} \left(\frac{1}{T} \sum_{t=1}^{T} \boldsymbol{x}_{t} \boldsymbol{x}_{t}^{\top} \right) \boldsymbol{a}_{i} \approx \boldsymbol{a}_{i}^{\top} \boldsymbol{\Sigma} \boldsymbol{a}_{i} \quad (1 \leq i \leq m)$$
Sketching
Aggregation
Estimation

1) Sketching:

- \circ at each time t, obtain a *quadratic* sketch $(\boldsymbol{a}_i^{ op} \boldsymbol{x}_t)^2$
- a_i : sketching vector

2) Aggregation:

 \circ all sketches are aggregated into m measurements

$$y_i = \boldsymbol{a}_i^{\top} \left(\frac{1}{T} \sum_{t=1}^T \boldsymbol{x}_t \boldsymbol{x}_t^{\top} \right) \boldsymbol{a}_i \approx \boldsymbol{a}_i^{\top} \boldsymbol{\Sigma} \boldsymbol{a}_i \quad (1 \le i \le m)$$

• Benefits:

 \circ one pass

• **minimal storage** (*as will be shown*)

X_t

Problem Formulation

• Given: $m \ (\ll n^2)$ quadratic measurements $\boldsymbol{y} = \{y_i\}_{i=1}^m$

$$y_i = \boldsymbol{a}_i^\top \boldsymbol{\Sigma} \boldsymbol{a}_i + \eta_i, \quad i = 1, \cdots, m,$$

• Sampling model

• sub-Gaussian i.i.d. sampling vectors

Geometry of Covariance Structure

- **#** unknown > **#** stored measurements
 - \circ exploit low-dimensional structures!
- Structures considered in this talk:
 - \circ low rank
 - $\circ~$ Toeplitz low rank
 - $\circ\,$ simultaneously sparse and low-rank

Piet Mondrian

3) jointly sparse and low rank

• Low-Rank Structure:

- $\circ\,$ A few components explains most of the data variability
- metric learning, array signal processing, collaborative filtering

• $\operatorname{rank}(\Sigma) = r \ll n$.

Trace Minimization for Low-Rank Structure

• Trace Minimization

$$\begin{array}{ll} (\mathsf{TraceMin}) & \mathsf{minimize}_{\boldsymbol{M}} & \underbrace{\mathsf{trace}\left(\boldsymbol{M}\right)}_{\mathsf{low rank}} \\ \mathsf{s.t.} & \left\|\mathcal{A}\left(\boldsymbol{M}\right) - \boldsymbol{y}\right\|_{1} \leq \underbrace{\epsilon}_{\mathsf{noise bound}}, \\ \boldsymbol{M} \succeq \boldsymbol{0}. \end{array}$$

o inspired by Candes et. al. for phase retrieval

minimize tr (\boldsymbol{M}) s.t. $\|\boldsymbol{\mathcal{A}}(\boldsymbol{M}) - \boldsymbol{y}\|_1 \leq \epsilon, \quad \boldsymbol{M} \succeq 0$

Theorem 1 (Low Rank). With high prob, for all Σ with rank $(\Sigma) \leq r$, the solution $\hat{\Sigma}$ to TraceMin obeys

provided that $m \gtrsim rn$. (Σ_r : rank-r approx of Σ)

- Exact recovery in the noiseless case
- Universal recovery: simultaneously works for all low-rank matrices
- Robust recovery when Σ is *approximately* low-rank
- Stable recovery against bounded noise

Phase Transition for Low-Rank Recovery

empirical success probability of Monte Carlo trials: n = 50

- Near-Optimal Storage Complexity!
 - \circ degrees of freedom pprox rn

- Toeplitz Low-Rank Structure:
 - Spectral sparsity!
 - * possibly *off-the-grid* frequency spikes (Vandemonde decomposition)
 - $\circ\,$ wireless communication, array signal processing $\ldots\,$

Trace Minimization for Toeplitz Low-Rank Structure

• Trace Minimization

$$\begin{array}{ll} (\mathsf{ToepTraceMin}) & \mathsf{minimize}_{\boldsymbol{M}} & \underbrace{\mathsf{trace}\left(\boldsymbol{M}\right)}_{\mathsf{low rank}} \\ \mathsf{s.t.} & \left\|\mathcal{A}\left(\boldsymbol{M}\right) - \boldsymbol{y}\right\|_{2} \leq \underbrace{\epsilon_{2}}_{\mathsf{noise bound}}, \\ \boldsymbol{M} \succeq \boldsymbol{0}, \\ \boldsymbol{M} \text{ is Toeplitz.} \end{array}$$

noise bound

minimize tr (\boldsymbol{M}) s.t. $\|\mathcal{A}(\boldsymbol{M}) - \boldsymbol{y}\|_2 \leq \epsilon_2$, $\boldsymbol{M} \succeq 0$, \boldsymbol{M} is Toeplitz

Theorem 2 (Toeplitz Low Rank). With high prob, for all Toeplitz Σ with rank(Σ) $\leq r$, the solution $\hat{\Sigma}$ to ToepTraceMin obeys

provided that $m \gtrsim r \operatorname{poly} \log(n)$.

- Exact recovery in the absence of noise
- Universal recovery: simultaneously works for all Toeplitz low-rank matrices
- Stable recovery against bounded noise

Toeplitz ball

Phase Transition for Toeplitz Low-Rank Recovery

empirical success probability of Monte Carlo trials: n = 50

- Near-Optimal Storage Complexity!
 - \circ degrees of freedom pprox r

Simultaneous Structure

- Joint Structure: Σ is simultaneously sparse and low-rank.
 - \circ rank: r
 - \circ sparsity: k

 \circ SVD: $\boldsymbol{\Sigma} = \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{ op}$, where $\boldsymbol{U} = [\boldsymbol{u}_1, \cdots, \boldsymbol{u}_r]$

Convex Relaxation for Simultaneous Structure

• Convex Relaxation

• coincides with Li and Voroninski for rank-1 cases

minimize $\operatorname{tr}(\boldsymbol{M}) + \boldsymbol{\lambda} \|\boldsymbol{M}\|_{1}$ s.t. $\mathcal{A}(\boldsymbol{M}) = \boldsymbol{y}, \quad \boldsymbol{M} \succeq 0$

Theorem 3 (Simultaneous Structure). SDP with $\lambda \in \left[\frac{1}{n}, \frac{1}{N_{\Sigma}}\right]$ is exact with high probability, provided that

$$m \gtrsim \frac{r \log n}{\lambda^2} \tag{1}$$

where
$$N_{\Sigma} := \max \left\{ \| \operatorname{sign} (\Sigma_{\Omega}) \|, \sqrt{\frac{k \sum_{i=1}^{r} \|\boldsymbol{u}_{i}\|_{1}^{2}}{r}} \right\}.$$

- Exact recovery with appropriate regularization parameters
- Question: how good is the storage complexity (1)?

Compressible Covariance Matrices: Near-Optimal Recovery

Definition (Compressible Matrices)

• *non-zero entries* of u_i exhibit power-law decays

 $\circ \|\boldsymbol{u}_i\|_1 = O(\operatorname{poly} \log(n)).$

Compressible Covariance Matrices: Near-Optimal Recovery

Definition (Compressible Matrices)

• *non-zero entries* of u_i exhibit power-law decays

$$\circ \|\boldsymbol{u}_i\|_1 = O(\operatorname{poly} \log(n)).$$

Corollary 1 (Compressible Case). For compressible covariance matrices, SDP with $\lambda \approx \frac{1}{\sqrt{k}}$ is exact w.h.p., provided that

 $m \gtrsim kr \cdot \operatorname{poly} \log(n).$

- Near-Minimal Measurements!
 - \circ degree-of-freedom: $\Theta(kr)$

Stability and Robustness

- noise: $\|\boldsymbol{\eta}\|_1 \leq \epsilon$
- imperfect structural assumption: $\Sigma =$

simultaneous sparse and low-rank

Stability and Robustness

- noise: $\|\boldsymbol{\eta}\|_1 \leq \epsilon$
- imperfect structural assumption: $\Sigma = \Sigma_{\Omega} + \Sigma_{c}$

simultaneous sparse and low-rank

residuals

Theorem 4. Under the same λ as in Theorem 1 or Corollary 1,

$$\left\| \hat{\boldsymbol{\Sigma}} - \boldsymbol{\Sigma}_{\Omega} \right\|_{\mathrm{F}} \lesssim \frac{1}{\sqrt{r}} \left(\underbrace{\left\| \boldsymbol{\Sigma}_{\mathrm{c}} \right\|_{*} + \lambda \left\| \boldsymbol{\Sigma}_{\mathrm{c}} \right\|_{1}}_{\text{due to imperfect structure}} \right) + \underbrace{\frac{\epsilon}{m}}_{\text{due to noise}}$$

- stable against bounded noise
- robust against imperfect structural assumptions

• **Restricted Isometry Property**: a powerful notion for compressed sensing

 $\forall X \text{ in some class}: \qquad \left\|\mathcal{B}(X)\right\|_{2} \approx \left\|X\right\|_{F}.$

• unfortunately, it does **NOT** hold for quadratic models

• **Restricted Isometry Property**: a powerful notion for compressed sensing

 $\forall X \text{ in some class}: \qquad \left\|\mathcal{B}(X)\right\|_{2} \approx \left\|X\right\|_{F}.$

• unfortunately, it does **NOT** hold for quadratic models

• A Mixed-norm Variant: RIP- ℓ_2/ℓ_1

 $\forall X \text{ in some class}: \qquad \left\|\mathcal{B}(X)\right\|_{1} \approx \left\|X\right\|_{F}.$

• **Restricted Isometry Property**: a powerful notion for compressed sensing

 $\forall X \text{ in some class}: \qquad \left\|\mathcal{B}(X)\right\|_{2} \approx \left\|X\right\|_{F}.$

• unfortunately, it does **NOT** hold for quadratic models

• A Mixed-norm Variant: RIP- ℓ_2/ℓ_1

 $\forall X \text{ in some class}: \qquad \left\|\mathcal{B}(X)\right\|_{1} \approx \left\|X\right\|_{F}.$

o does NOT hold for A, but hold after A is debiased
o A very simple proof for PhaseLift!

• Our approach / analysis works for other structural models

- Sparse covariance matrix
- Low-Rank plus Sparse matrix

• The way ahead

- Sparse *inverse* covariance matrix
- Beyond sub-Gaussian sampling
- Online recovery algorithms

Piet Mondrian

Full-length version available at arXiv:

Exact and Stable Covariance Estimation from Quadratic Sampling via Convex Programming

http://arxiv.org/abs/1310.0807

Thank You! Questions?