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• Data Stream / Stochastic Processes

◦ Each data instance can be high-dimensional

◦ We’re interested in information in the data
rather than the data themselves

• Covariance Estimation

◦ second-order statistics Σ ∈ Rn×n

◦ cornerstone of many information processing tasks

High-Dimensional Sequential Data / Signals
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What are Quadratic Measurements?

• Quadratic Measurements

◦ obtain m measurements of Σ taking the form

yi ≈ a>i Σai (1 ≤ i ≤ m)

◦ rank-1 measurements!
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Example: Applications in Spectral Estimation

• High-frequency wireless and signal processing (Energy Measurements)

◦ Spectral estimation of stationary processes (possibly sparse)
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Example: Applications in Spectral Estimation

• High-frequency wireless and signal processing (Energy Measurements)

◦ Spectral estimation of stationary processes (possibly sparse)

◦ Channel Estimation in MIMO Channels
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Fig credit: Chi et al

Example: Applications in Optics

• Phase Space Tomography

◦ measure correlation functions of a wave field

Page 5
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Figure 1: A typical setup for structured illuminations in diffraction imaging using a phase mask.

Figure 2: A typical setup for structured illuminations in diffraction imaging using oblique illumina-
tions. The left image shows direct (on-axis) illumination and the right image corresponds to oblique
(off-axis) illumination.

6

courtesy of Candes et al

Example: Applications in Optics

• Phase Space Tomography

◦ measure correlation functions of a wave field

• Phase Retrieval

◦ signal recovery from magnitude measurements
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binary data stream by Kazmin

Example: Applications in Data Streams

• Covariance Sketching

◦ data stream: real-time data {xt}∞t=1 arriving sequentially at a high rate...

• Challenges

◦ limited memory

◦ computational efficiency

◦ hopefully a single pass over the data
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Proposed Quadratic Sketching Method

1) Sketching:

◦ at each time t, obtain a quadratic sketch (a>i xt)
2

— ai: sketching vector
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Proposed Quadratic Sketching Method

1) Sketching:

◦ at each time t, obtain a quadratic sketch (a>i xt)
2

— ai: sketching vector

2) Aggregation:

◦ all sketches are aggregated into m measurements

yi = a>i

(
1

T

T∑
t=1

xtx
>
t

)
ai ≈ a>i Σai (1 ≤ i ≤ m)
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Proposed Quadratic Sketching Method

1) Sketching:

◦ at each time t, obtain a quadratic sketch (a>i xt)
2

— ai: sketching vector

2) Aggregation:

◦ all sketches are aggregated into m measurements

yi = a>i

(
1

T

T∑
t=1

xtx
>
t

)
ai ≈ a>i Σai (1 ≤ i ≤ m)

• Benefits:

◦ one pass

◦ minimal storage (as will be shown)
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• Given: m (� n2) quadratic measurements y = {yi}mi=1

yi = a>i Σai + ηi, i = 1, · · · ,m,

◦ ai : sampling vectors

◦ η = {ηi}mi=1: noise terms

◦ more concise operator form:

y = A(Σ) + η

• Goal: recover Σ ∈ Rn×n.

• Sampling model

◦ sub-Gaussian i.i.d. sampling vectors

Problem Formulation
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Piet Mondrian

1) low rank 2) Toeplitz low rank 3) jointly sparse and low rank

Geometry of Covariance Structure

• # unknown > # stored measurements

◦ exploit low-dimensional structures!

• Structures considered in this talk:

◦ low rank

◦ Toeplitz low rank

◦ simultaneously sparse and low-rank
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Low Rank

• Low-Rank Structure:

◦ A few components explains most of the data variability

◦ metric learning, array signal processing, collaborative filtering ...

• rank(Σ) = r � n.
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• Trace Minimization

(TraceMin) minimizeM trace (M)︸ ︷︷ ︸
low rank

s.t. ‖A (M)− y‖1 ≤ ε︸︷︷︸
noise bound

,

M � 0.

◦ inspired by Candes et. al. for phase retrieval

Trace Minimization for Low-Rank Structure
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minimize tr (M) s.t. ‖A (M)− y‖1 ≤ ε, M � 0

Theorem 1 (Low Rank). With high prob, for all Σ with rank(Σ) ≤ r, the
solution Σ̂ to TraceMin obeys

‖Σ̂−Σ‖F .
‖Σ−Σr‖∗√

r︸ ︷︷ ︸
due to imperfect structure

+
ε

m︸︷︷︸
due to noise

,

provided that m & rn. (Σr: rank-r approx of Σ)

• Exact recovery in the noiseless case

• Universal recovery: simultaneously works for all low-rank matrices

• Robust recovery when Σ is approximately low-rank

• Stable recovery against bounded noise

Near-Optimal Recovery for Low-Rank Structure
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Phase Transition for Low-Rank Recovery

• Near-Optimal Storage Complexity!

◦ degrees of freedom ≈ rn
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Toeplitz Low Rank

• Toeplitz Low-Rank Structure:

◦ Spectral sparsity!
∗ possibly off-the-grid frequency spikes (Vandemonde decomposition)

◦ wireless communication, array signal processing ...

• rank(Σ) = r � n.
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• Trace Minimization

(ToepTraceMin) minimizeM trace (M)︸ ︷︷ ︸
low rank

s.t. ‖A (M)− y‖2 ≤ ε2︸︷︷︸
noise bound

,

M � 0,

M is Toeplitz.

Trace Minimization for Toeplitz Low-Rank Structure
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minimize tr (M) s.t. ‖A (M)− y‖2 ≤ ε2, M � 0, M is Toeplitz

Theorem 2 (Toeplitz Low Rank). With high prob, for all Toeplitz Σ with
rank(Σ) ≤ r, the solution Σ̂ to ToepTraceMin obeys

‖Σ̂−Σ‖F .
ε2√
m︸︷︷︸

due to noise

,

provided that m & rpoly log(n).

• Exact recovery in the absence of noise

• Universal recovery: simultaneously works for all Toeplitz low-rank matrices

• Stable recovery against bounded noise

Toeplitz ball

Near-Optimal Recovery for Toeplitz Low-Rank Structure
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m: number of measurements

r:
 r

an
k
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Phase Transition for Toeplitz Low-Rank Recovery

• Near-Optimal Storage Complexity!

◦ degrees of freedom ≈ r
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Simultaneous Structure

• Joint Structure: Σ is simultaneously sparse and low-rank.

◦ rank: r

◦ sparsity: k

◦ SVD: Σ = UΛU>, where U = [u1, · · · ,ur]
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• Convex Relaxation

minimizeM trace (M)︸ ︷︷ ︸
low rank

+ λ‖M‖1︸ ︷︷ ︸
sparsity

s.t. ‖A (M)− y‖1 ≤ ε︸︷︷︸
noise bound

,

M � 0.

◦ coincides with Li and Voroninski for rank-1 cases

Convex Relaxation for Simultaneous Structure
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Exact Recovery for Simultaneous Structure

minimize tr (M) + λ ‖M‖1 s.t. A (M) = y, M � 0

Theorem 3 (Simultaneous Structure). SDP with λ ∈
[

1
n,

1
NΣ

]
is exact with

high probability, provided that

m &
r log n

λ2
(1)

where NΣ := max

{
‖sign (ΣΩ)‖ ,

√
k
∑r

i=1‖ui‖21
r

}
.

• Exact recovery with appropriate regularization parameters

• Question: how good is the storage complexity (1)?
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Compressible Covariance Matrices: Near-Optimal Recovery

Definition (Compressible Matrices)

• non-zero entries of ui exhibit power-law decays

◦ ‖ui‖1 = O(poly log(n)).
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Compressible Covariance Matrices: Near-Optimal Recovery

Definition (Compressible Matrices)

• non-zero entries of ui exhibit power-law decays

◦ ‖ui‖1 = O(poly log(n)).

Corollary 1 (Compressible Case). For compressible covariance matrices, SDP
with λ ≈ 1√

k
is exact w.h.p., provided that

m & kr · poly log(n).

• Near-Minimal Measurements!

◦ degree-of-freedom: Θ(kr)
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• noise: ‖η‖1 ≤ ε

• imperfect structural assumption: Σ = ΣΩ︸︷︷︸
simultaneous sparse and low-rank

+ Σc︸︷︷︸
residuals

Stability and Robustness
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• noise: ‖η‖1 ≤ ε

• imperfect structural assumption: Σ = ΣΩ︸︷︷︸
simultaneous sparse and low-rank

+ Σc︸︷︷︸
residuals

Theorem 4. Under the same λ as in Theorem 1 or Corollary 1,

∥∥∥Σ̂−ΣΩ

∥∥∥
F
.

1√
r

 ‖Σc‖∗ + λ ‖Σc‖1︸ ︷︷ ︸
due to imperfect structure

+
ε

m︸︷︷︸
due to noise

• stable against bounded noise

• robust against imperfect structural assumptions

Stability and Robustness
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Mixed-Norm RIP (for Low-Rank and Joint Structure)

• Restricted Isometry Property: a powerful notion for compressed sensing

∀X in some class : ‖B (X)‖2 ≈ ‖X‖F .

◦ unfortunately, it does NOT hold for quadratic models
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Mixed-Norm RIP (for Low-Rank and Joint Structure)

• Restricted Isometry Property: a powerful notion for compressed sensing

∀X in some class : ‖B (X)‖2 ≈ ‖X‖F .

◦ unfortunately, it does NOT hold for quadratic models

• A Mixed-norm Variant: RIP-`2/`1

∀X in some class : ‖B (X)‖1 ≈ ‖X‖F .

Page 25



Mixed-Norm RIP (for Low-Rank and Joint Structure)

• Restricted Isometry Property: a powerful notion for compressed sensing

∀X in some class : ‖B (X)‖2 ≈ ‖X‖F .

◦ unfortunately, it does NOT hold for quadratic models

• A Mixed-norm Variant: RIP-`2/`1

∀X in some class : ‖B (X)‖1 ≈ ‖X‖F .

◦ does NOT hold for A, but hold after A is debiased

◦ A very simple proof for PhaseLift!

Page 25



Piet Mondrian

Concluding Remarks

• Our approach / analysis works for other structural models

◦ Sparse covariance matrix

◦ Low-Rank plus Sparse matrix

• The way ahead

◦ Sparse inverse covariance matrix

◦ Beyond sub-Gaussian sampling

◦ Online recovery algorithms
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Q&A

Full-length version available at arXiv:

Exact and Stable Covariance Estimation from Quadratic Sampling
via Convex Programming

http://arxiv.org/abs/1310.0807

Thank You! Questions?
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