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Nonconvex problems are everywhere

Maximum likelihood is usually nonconvex

maximizex `(x;y) → may be nonconvex

subj. to x ∈ S → may be nonconvex

• low-rank matrix completion

• graph clustering

• dictionary learning

• graph matching

• ...
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Nonconvex optimization may be super scary

There may be bumps everywhere and exponentially many local optima

e.g. 1-layer neural net (Auer, Herbster, Warmuth ’96; Vu ’98)
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Solving discrete problems is hard

Finding maximum cut in a graph is

maximizex x>Wx

subj. to x2
i = 1, i = 1, · · · , n

Fig credit: coding horror
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Convex relaxation

Can relax into convex problems by

• finding convex surrogates (e.g. compressed sensing, matrix completion)

• lifting the problem into higher dimensions (e.g. Max-Cut, phase retrieval)
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Example of lifting: Max-Cut

Goemans, Williamson ’95

maximizex x>Wx

subj. to x2
i = 1, i = 1, · · · , n

let X be xx>

maximizeX 〈X,W 〉
subj. to Xi,i = 1, i = 1, · · · , n

X � 0

Problem: explosion in dimensions (Rn → Rn×n)
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How about solving nonconvex problems directly without lifting?

This talk: an efficient paradigm for discrete problems
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Joint alignment from pairwise differences

• n unknown variables: x1, · · · , xn
• m possible states: xi ∈ {1, 2, · · · ,m}
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Joint alignment from pairwise differences

• Measurements: pairwise differences

yi,j
ind.
= xi − xj + ηi,j︸︷︷︸

noise

mod m, i 6= j

xi − xj mod m

— e.g. random corruption model
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Joint alignment from pairwise di↵erences

• Measurements: pairwise di↵erences

yi,j
ind.
= xi � xj + ⌘i,j|{z}

noise

mod m

xi � xj mod m

— e.g. random corruption model

• ⇡0: non-corruption rate

• Goal: recover {xi} (up to global offset)

Bandeira, Charikar, Singer, Zhu ’13; Chen, Guibas, Huang ’14
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Motivation: community recovery

Community structures are common in many social networks

Fig. credit: The Future Buzz Fig. credit: S. Papadopoulos

Community recovery: partition users into several clusters
based on their friendships / similarities
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Motivation: genome phasing

• phase info xi for each SNP:
(1) xi = 0: maternally inherited (2) xi = 1: paternally inherited

• paired reads: whether 2 SNPs are on same phase (xi ⊕ xj)

Phasing: retrieve phase info (haplotype) of all SNPs from paired reads
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Motivation: multi-image alignment

Jointly align a collection of images/shapes of the same physical object



Motivation: multi-image alignment

Jointly align a collection of images/shapes of the same physical object

• xi: angle of rotation associated with each shape



Motivation: multi-image alignment

Step 1: compute pairwise estimates of relative angles of rotations {xi − xj}

...

Step 2: aggregate these pairwise information for joint alignment
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Many other related applications ...

• Structure from motion in computer vision

• Cryo-EM in structural biology

• Water-fat separation in MRI

• ...



Maximum likelihood estimates (MLE)

maximize{xi}
∑

i,j

` (xi, xj ; yi,j)

subj. to xi ∈ {1, · · · ,m} , 1 ≤ i ≤ n

• Log-likelihood function ` may be complicated

• Discrete input space

• Looks daunting
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Alternative representation of discrete variables

Discrete variables → orthogonal vectors in higher-dimensional space
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Matrix representation

Pairwise sample yi,j → encode `(xi, xj) by Li,j ∈ Rm×m

[Li,j ]α,β = `(xi = α, xj = β)

• e.g. random corruption model

yi,j =

{
xi − xj , w.p. π0

Unif(m), else
⇒ `(xi, xj) =

{
log(π0 + 1−π0

m
), if xi − xj = yi,j

log( 1−π0
m

), else

Nonconvex optimization is everywhere

For instance, maximum likelihood estimation is nonconvex in numerous problems

maximizex `(x; y)

subject to x 2 S

• matrix completion

• phase retrieval

• dictionary learning

• blind deconvolution

• robust PCA

• ...
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How to solve nonconvex constrained PCA?

PCA

maximizex x>Lx

subj. to ‖x‖ = 1

Constrained PCA

maximizex x>Lx

subj. to xi ∈ {e1, · · · , em}

Power method:

for t = 1, 2, · · ·

z(t) = Lz(t−1)

z(t) ← normalize
(
z(t)
)

Projected power method:

for t = 1, 2, · · ·

z(t) = Lz(t−1)

z(t) ← Project∆n

(
µz(t)

)

• µ: scaling factor
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Projection onto standard simplex

maximizex={xi} x>Lx s.t. xi ∈ {e1, · · · , em}

z(t) = Lz(t−1)

z(t) ← Project∆n

(
µz(t)

)

∆n is convex hull of feasibility set,

i.e.
{
z = [zi]1≤i≤n | ∀i : 1>zi = 1; zi ≥ 0

}

µz
(t)
1 µz

(t)
2

· · ·

µz
(t)
n
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Initialization?

L = E[L]︸︷︷︸
approx. low-rank

+ L− E [L]

L̂

Spectral initialization

1. L̂ ← rank-m approximation of L

2. z(0) ← Project∆n(µẑ), where ẑ is a

random column of L̂
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Summary of projected power method (PPM)

1. Spectral initialization

2. For t = 1, 2, · · ·

z(t) ← Project∆n

(
µLz(t−1)

)



Random corruption model
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yi,j = 4 (or yi,j = �2)

1

Theorem (C. & Candès ’16) Fix m > 0 and set µ & 1/σ2(L). With high
prob., PPM recovers the truth exactly within O(log n) iterations if

• signal-to-noise ratio (SNR) not too small: π0 > 2
√

logn
mn
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Implications

Theorem (C. & Candès ’16) · · · PPM succeeds within O(log n) iterations
if

non-corruption rate π0 > 2

√
log n

mn

• PPM succeeds even when most (i.e. 1−O
(√

logn
n

)
) entries are

corrupted

• Nearly linear time algorithm

• Works for any initialization obeying ‖z(0) − x‖ < 0.5‖x‖
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Empirical misclassification rate
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More general noise models

yi,j = xi − xj + ηi,j mod m, where ηi,j
i.i.d.∼ P0

Distributions of yi,j under different hypotheses

P0 P1 P9

xi − xj = 0 xi − xj = 1 xi − xj = 9
⇓ ⇓

KL(P0 ‖ P1) KL(P0 ‖ P9)

Theorem (C. & Candès ’16) Fix m > 0 and set µ & 1/σ2(L). Under mild
conditions, PPM succeeds within O(logn) iterations with high prob., provided that

KLmin := min
1≤l<m

KL(P0 ‖ Pl) >
4 logn

n
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Empirical misclassification rate

Modified Gaussian noise model:
P {ηi,j = z} ∝ exp

(
− z2

2σ2

)
, |z| ≤ m−1

2
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PPM is information-theoretically optimal

Theorem (Chen-Candès’16) Fix m > 0. No method achieves exact
recovery if

KLmin <
4 log n

n
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Large-m case: random corruption model

yi,j =

{
xi − xj , with prob. π0

Unif(m), else

Theorem (C. & Candès ’16) Suppose log n . m . poly(n). PPM
succeeds if

π0 &
1√
n

• Spiky model: when m� n, model converges to

xi ∈ [0, 1), yi,j =

{
xi − xj , with prob. π0

Unif(0, 1), else

– Succeeds even if a dominant fraction 1−O(1/
√
n) of inputs are

corrupted

Singer’09; Wang & Singer’12; Bandeira et al’14; Boumal’16; Liu et al’16, Perry et
al’16 ...



Large-m case: random corruption model

yi,j =

{
xi − xj , with prob. π0

Unif(m), else

Theorem (C. & Candès ’16) Suppose log n . m . poly(n). PPM
succeeds if

π0 &
1√
n

• Spiky model: when m� n, model converges to

xi ∈ [0, 1), yi,j =

{
xi − xj , with prob. π0

Unif(0, 1), else

– Succeeds even if a dominant fraction 1−O(1/
√
n) of inputs are

corrupted

Singer’09; Wang & Singer’12; Bandeira et al’14; Boumal’16; Liu et al’16, Perry et
al’16 ...



Large-m case: random corruption model

yi,j =

{
xi − xj , with prob. π0

Unif(m), else

Theorem (C. & Candès ’16) Suppose log n . m . poly(n). PPM
succeeds if

π0 &
1√
n

• Spiky model: when m� n, model converges to

xi ∈ [0, 1), yi,j =

{
xi − xj , with prob. π0

Unif(0, 1), else

– Succeeds even if a dominant fraction 1−O(1/
√
n) of inputs are

corrupted

Singer’09; Wang & Singer’12; Bandeira et al’14; Boumal’16; Liu et al’16, Perry et
al’16 ...



Joint shape alignment: Chair dataset from ShapeNet1

20 representative 3D shapes (out of 50)

pairwise cost −`i,j(xi, xj):

avg nearest-neighbor squared distance aligned shapes

1We add extra noise to each point of the shapes to make it more challenging.
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Joint shape alignment: angular estimation errors2
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2We add extra noise to each point of the shapes to make it more challenging.



Joint graph matching: CMU House dataset

9/11/2016 CMU Image Data Base: house

http://vasc.ri.cmu.edu/idb/html/motion/house/ 1/2

Home | PNG Resources | Other Image Databases

house

Description
111 images of a toy house

Thumbnails

          

          

          

          

          

          

          

          

          

          

          

Download

111 images of a toy house

...

input matches optimized matches

3 representative images
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Dixon imaging in body MRI

Zhang et al., Magn. Reson. Med., 2016

2 phasor candidates for field inhomogeneity at each voxel

candidate 1

candidate 2

optimize some

pariwise cost

function

recovery

maximize
∑

`(xi, xj)

subject to xi ∈ {1, 2}
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Dixon imaging in body MRI

Zhang et al., Magn. Reson. Med., 2016

Representative cases of water signal recovery

commercial software projected power method



Another important issue: missing data + sample locality



Nodes often have locality

Most prior work: (almost) equally likely to sample between any pair of
nodes

– Condon et al., Jalali et al., Chen et al., Abbe et al., Mossel et al., Hajek et al., Chin

et al...

More realistically: samples come mainly (or exclusively) from nearby nodes

In new technologies like 10x-Genomics: (1) n ∼ 105 SNPs; (2) linking range ∼ 100

SNPs
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SNPs



Modeling locality via graphs

• Constraint graph G
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• Random sampling: pick m randomly chosen edges of G
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Modeling locality via constraint graph

Global / long-range measurements

constraint graph randomly picked edges

Local measurements
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Information and computation limits

1. How many samples are needed to recover {xi} reliably (up to global
offset)?

2. How to extend our paradigm to deal with locality efficiently?

Global samples Local samples

prior works

Encouraging news: one can obtain efficient recovery within linear time
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Spectral-Stitching: Stage 1

Start by running spectral method on core complete subgraphs

L = E[L]︸︷︷︸
low-rank

+ L− E [L]

• Compute low-rank approximation of L (sample matrix restricted to the

subgraph)
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Spectral-Stitching: Stage 1

Split all nodes into overlapping subsets and run spectral methods separately

• Approximate solution within each subgraph

• Inconsistent global phases across subgraphs
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Spectral-Stitching: Stage 2

Calibrate phases across subgraphs by checking their correlations

Purpose of Stages 1-2: obtain approximate solution of all nodes
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Spectral-Stitching: Stage 3

Clean up all remaining errors by iterative refinement (e.g. projected power
method)

• local refinement using all samples

Projected power method 43/ 50



Main results: rings

Theorem: minimum sample complexity = 0.5n logn
1−exp{−Chernoff−info)

Info and comput. limits meet!
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An insensitivity phenomenon

complete graph

ring

small-world

Info and comput. limits are identical for many spatially invariant graphs
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Empirical success rate vs. sample size

n = 100, 000, input error rate = 0.2

10 Monte Carlo runs to get each point

Each run takes ∼6.4 sec on a Mac Pro
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Extension: beyond spatially invariant graphs
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Infomation and comput. limits achievable by same algorithm
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Extension: beyond pairwise measurements

New technologies (e.g. 10x) provide multi-linked reads from same
chromosome, not just two

Algorithm and theory can be easily extended to see performance gain0.2 0.4 0.6 0.8 1
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Real data (haplotype phasing)

NA12878 WGS dataset from 10x genomics (# SNPs n : 34240 ∼ 191829)

Short switch error rate vs. coverage depth (Spectral-Stitching vs. 10X
algorithm)

(green circle: improvement; red circle: loss of performance)

Fig. credit: Prof. David Tse, Stanford

1) # SNPs unphased; 2) relative N50

3) short switch error rate; 4) long switch error rate

(green circle: improvement; red circle: loss of performance)

Fig. credit: Prof. David Tse, Stanford
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Concluding remarks

• Nonconvex procedures are efficient for many discrete optimization
problems

• Information limits can be achieved in linear time for a broad family of
models

Papers:

1. “The projected power method: an efficient algorithm for joint alignment from
pairwise differences”, Y. Chen and E. Candès, 2016

2. “Community recovery in graphs with locality”, Y. Chen, G. Kamath, C. Suh,
and D. Tse, International Conference on Machine Learning, 2016

3. “Resolving phase ambiguity in dual-echo Dixon imaging using a projected

power method”, T. Zhang et al, Magnetic Resonance in Medicine, 2016


