Non-asymptotic theory for diffusion models

Yuxin Chen

Wharton Statistics & Data Science

*= equal contributions

Gen Li* CUHK

Yu Huang^{*} UPenn

Timofey Efimov CMU

Yuting Wei UPenn

Yuejie Chi CMU

The era of generative AI

Generative models

training data

• Given training data $X^{\text{train},i} \sim p_{\text{data}}$ $(1 \le i \le N)$ in \mathbb{R}^d from a general distribution

Generative models

- Given training data $X^{\text{train},i} \sim p_{\text{data}}$ $(1 \le i \le N)$ in \mathbb{R}^d from a general distribution
- Generate new samples $Y \sim p_{\text{data}}$

fig. credit: LeewayHertz

Inspired by nonequilibrium thermodynamics

— Sohl-Dickstein, Weiss, Maheswaranathan, Ganguli '15

Preliminaries: score-based diffusion models

• forward process: (progressively) diffuse data into noise

- forward process: (progressively) diffuse data into noise
- reverse process: convert pure noise into data-like distributions

- forward process: (progressively) diffuse data into noise
- reverse process: convert pure noise into data-like distributions

- forward process: (progressively) diffuse data into noise
- reverse process: convert pure noise into data-like distributions

Goal:
$$Y_t \stackrel{\mathrm{d}}{\approx} X_t$$
, $t = T, \cdots, 1$

1. score learning/matching: learn estimates $s_t(\cdot)$ for $\nabla \log p_{X_t}(\cdot)$

- 1. score learning/matching: learn estimates $s_t(\cdot)$ for $\nabla \log p_{X_t}(\cdot)$
- 2. data generation: sampling w/ the aid of score estimates $\{s_t(\cdot)\}$

- 1. score learning/matching: learn estimates $s_t(\cdot)$ for $\nabla \log p_{X_t}(\cdot)$
- 2. data generation: sampling w/ the aid of score estimates $\{s_t(\cdot)\}$

— Ho, Jain, Abbeel '20

$$X_0 \sim p_{\mathsf{data}}, \quad X_t = \sqrt{1 - \beta_t} X_{t-1} + \sqrt{\beta_t} \mathcal{N}(0, I_d), \quad 1 \le t \le T$$

1. A <u>stochastic</u> sampler: <u>denoising diffusion probabilistic models</u>

— Ho, Jain, Abbeel '20

$$X_0 \sim p_{\mathsf{data}}, \quad X_t = \sqrt{1 - \beta_t} X_{t-1} + \sqrt{\beta_t} \mathcal{N}(0, I_d), \quad 1 \le t \le T$$

- 1. A <u>stochastic</u> sampler: <u>denoising diffusion probabilistic models</u> DDPM
 - $Y_T \sim \mathcal{N}(0, I_d)$
- $Y_{t-1} = \Psi_t(Y_t, \text{noise}), \quad t = T, \cdots, 1$

— Ho, Jain, Abbeel '20

$$X_0 \sim p_{\mathsf{data}}, \quad X_t = \sqrt{1 - \beta_t} X_{t-1} + \sqrt{\beta_t} \mathcal{N}(0, I_d), \quad 1 \le t \le T$$

1. A <u>stochastic</u> sampler: $V_T \sim \mathcal{N}(0 \ L)$ Label{eq:stochastic} denoising diffusion probabilistic models DDPM

$$Y_{t-1} = \underbrace{\frac{1}{\sqrt{1-\beta_t}} \left(Y_t + \beta_t s_t(Y_t)\right)}_{\text{deterministic component}} + \underbrace{\sqrt{\frac{\beta_t}{1-\beta_t}} \mathcal{N}(0, I_d)}_{\text{random component}}, \quad t = T, \cdots, 1$$

Two mainstream approaches

— Song, Sohl-Dickstein, Kingma, Kumar, Ermon, Poole '20 — Song, Meng, Ermon '20

$$X_0 \sim p_{\mathsf{data}}, \quad X_t = \sqrt{1 - \beta_t} X_{t-1} + \sqrt{\beta_t} \mathcal{N}(0, I_d), \quad 1 \le t \le T$$

2. A <u>deterministic</u> sampler: based on <u>probability flow ODE</u> or DDIM

Two mainstream approaches

— Song, Sohl-Dickstein, Kingma, Kumar, Ermon, Poole '20 — Song, Meng, Ermon '20

$$X_0 \sim p_{\mathsf{data}}, \quad X_t = \sqrt{1 - \beta_t} X_{t-1} + \sqrt{\beta_t} \mathcal{N}(0, I_d), \quad 1 \le t \le T$$

2. A <u>deterministic</u> sampler: based on **probability flow ODE** or DDIM

$$Y_T \sim \mathcal{N}(0, I_d)$$

 $Y_{t-1} = \Phi_t(Y_t), \quad t = T, \cdots, 1$

Two mainstream approaches

— Song, Sohl-Dickstein, Kingma, Kumar, Ermon, Poole '20 — Song, Meng, Ermon '20

$$X_0 \sim p_{\mathsf{data}}, \quad X_t = \sqrt{1 - \beta_t} X_{t-1} + \sqrt{\beta_t} \mathcal{N}(0, I_d), \quad 1 \leq t \leq T$$

2. A <u>deterministic</u> sampler: based on <u>probability flow ODE</u> or DDIM

$$Y_T \sim \mathcal{N}(0, I_d)$$

$$Y_{t-1} = \underbrace{\frac{1}{\sqrt{1 - \beta_t}} \left(Y_t + \frac{\beta_t}{2} s_t(Y_t) \right)}_{\text{purely deterministic}}, \qquad t = T, \cdots, 1$$

Interpretations: continuous-time limits

forward process (marginal: $q_t := p_{X_t}$)

$$\begin{split} X_t &= \sqrt{1 - \beta_t} X_{t-1} + \sqrt{\beta_t} \mathcal{N}(0, I_d) \\ \Longrightarrow \quad \mathrm{d}X_t &= -\frac{1}{2} \beta(t) X_t \mathrm{d}t + \sqrt{\beta(t)} \mathrm{d}W_t \quad (\mathrm{SDE}) \end{split}$$

Interpretations: continuous-time limits

forward process

$$\begin{pmatrix} X_t = \sqrt{1 - \beta_t} X_{t-1} + \sqrt{\beta_t} \mathcal{N}(0, I_d) \\ \implies dX_t = -\frac{1}{2} \beta(t) X_t dt + \sqrt{\beta(t)} dW_t \quad \text{(SDE)} \end{pmatrix}$$

$$\| \text{marginals}$$
DDPM-type
stochastic sampler
(time-reversed SDE, Anderson '82)
$$\begin{cases} Y_{t-1} = \frac{1}{\sqrt{1 - \beta_t}} (Y_t + \beta_t \nabla \log q_t(Y_t)) + \sqrt{\frac{\beta_t}{1 - \beta_t}} \mathcal{N}(0, I_d) \\ \implies dY_t = \left(-\frac{1}{2} \beta(t) Y_t - \beta(t) \nabla \log q_t(Y_t) \right) dt + \sqrt{\beta(t)} d\widetilde{W}_t \quad \text{(reversed)} \end{cases}$$

Interpretations: continuous-time limits

forward process

$$\begin{pmatrix} X_t = \sqrt{1 - \beta_t} X_{t-1} + \sqrt{\beta_t} \mathcal{N}(0, I_d) \\ \Rightarrow dX_t = -\frac{1}{2} \beta(t) X_t dt + \sqrt{\beta(t)} dW_t \quad \text{(SDE)} \end{pmatrix}$$

$$\| \text{marginals}$$
DDPM-type
stochastic sampler
(time-reversed SDE, Anderson '82)
$$\begin{cases} Y_{t-1} = \frac{1}{\sqrt{1 - \beta_t}} \left(Y_t + \beta_t \nabla \log q_t(Y_t) \right) + \sqrt{\frac{\beta_t}{1 - \beta_t}} \mathcal{N}(0, I_d) \\ \Rightarrow dY_t = \left(-\frac{1}{2} \beta(t) Y_t - \beta(t) \nabla \log q_t(Y_t) \right) dt + \sqrt{\beta(t)} d\widetilde{W}_t \quad \text{(reversed)} \end{cases}$$

$$\| \text{marginals}$$
deterministic sampler
(probability flow ODE)
$$\begin{cases} Y_{t-1} = \frac{1}{\sqrt{1 - \beta_t}} \left(Y_t + \frac{\beta_t}{2} \nabla \log q_t(Y_t) \right) \\ \Rightarrow dY_t = \left(-\frac{1}{2} \beta(t) Y_t - \frac{1}{2} \beta(t) \nabla \log q_t(Y_t) \right) dt \quad \text{(reversed)} \end{cases}$$

Key takeaway: in continuous-time limits, sampling is feasible once perfect score functions are available

- almost <u>no restriction</u> on target data distributions

Key takeaway: in continuous-time limits, sampling is feasible once perfect score functions are available

- almost <u>no restriction</u> on target data distributions

Questions:

- what happens in discrete time? effect of discretization error
- what if we only have imperfect scores? effect of score error

Towards mathematical theory for diffusion models

• hard to develop full-fledged end-to-end theory

Towards mathematical theory for diffusion models

- score learning $\leftarrow \mathbf{X} \rightarrow$ generative sampling

 $\bullet\,$ hard to develop full-fledged ${\bf end}{-}{\bf to}{-}{\bf end}$ theory

≫ decouple

• score learning $\leftarrow \mathbf{X} \rightarrow \mathbf{generative sampling}$

This talk:

- 1. non-asymptotic convergence theory in discrete time
- 2. acceleration?

Part 1: sharp convergence theory for probability flow ODE

"A sharp convergence theory for the probability flow ODEs of diffusion models," G. Li, Y. Wei, Y. Chi, Y. Chen, arXiv:2408.02320, 2024

"Towards non-asymptotic convergence for diffusion-based generative models," G. Li, Y. Wei, Y. Chen, Y. Chi, arXiv:2306.09251, ICLR 2024

— Li, Lu, Tan '22 — Chen, Lee, Lu '22 — Chen, Chewi, Li, Li, Salim, Zhang '22 — Chen, Daras, Dimakis '23 — Chen, Chewi, Lee, Li, Lu, Salim '23 — Benton, De Bortoli, Doucet, Deligiannidis '23

discrete-time diffusion process

continuous-time limits via SDE/ODE toolbox (e.g., Girsanov thm)

— Li, Lu, Tan '22 — Chen, Lee, Lu '22 — Chen, Chewi, Li, Li, Salim, Zhang '22 — Chen, Chewi, Li, Li, Salim '23 — Chen, Chewi, Lee, Li, Lu, Salim '23 — Benton, De Bortoli, Doucet, Deligiannidis '23

— Li, Lu, Tan '22 — Chen, Lee, Lu '22 — Chen, Chewi, Li, Li, Salim, Zhang '22 — Chen, Chewi, Li, Li, Salim '23 — Chen, Chewi, Lee, Li, Lu, Salim '23 — Benton, De Bortoli, Doucet, Deligiannidis '23

Analogy: (stochastic) gradient descent vs. gradient flow, TD learning via ODE

— Li, Lu, Tan '22 — Chen, Lee, Lu '22 — Chen, Chewi, Li, Li, Salim, Zhang '22 — Chen, Chewi, Li, Li, Salim '23 — Chen, Chewi, Lee, Li, Lu, Salim '23 — Benton, De Bortoli, Doucet, Deligiannidis '23

- Built upon toolboxes from SDE/ODE
- Existing analyses highly inadequate for deterministic samplers

Can we develop a versatile non-asymptotic framework that

- analyzes discrete-time processes directly
- accommodates both deterministic & stochastic samplers?
$\mathbb{P}(\|X_0\|_2 \leq T^{c_R}) = 1$ for arbitrarily large const $c_R > 0$

 $\mathbb{P}(\|X_0\|_2 \leq T^{c_R}) = 1$ for arbitrarily large const $c_R > 0$

• support size can be very large

 $\mathbb{P}(\|X_0\|_2 \leq T^{c_R}) = 1$ for arbitrarily large const $c_R > 0$

- support size can be very large
- very general: no need of assumptions like log-concavity, smoothness, etc

Assumptions: score estimates $\{s_t(\cdot)\}$

• ℓ_2 score estimation error: $s_t^{\star}(X) \coloneqq \nabla \log p_{X_t}(X)$,

$$\frac{1}{T}\sum_{t=1}^{T} \mathop{\mathbb{E}}_{X \sim p_{X_t}} \left[\|s_t(X) - s_t^{\star}(X)\|_2^2 \right] \leq \varepsilon_{\mathsf{score}}^2$$

Assumptions: score estimates $\{s_t(\cdot)\}$

• ℓ_2 score estimation error: $s_t^{\star}(X) \coloneqq \nabla \log p_{X_t}(X)$,

$$\frac{1}{T}\sum_{t=1}^{T} \mathop{\mathbb{E}}_{\boldsymbol{X} \sim p_{X_t}} \left[\|s_t(\boldsymbol{X}) - s_t^\star(\boldsymbol{X})\|_2^2 \right] \leq \varepsilon_{\mathsf{score}}^2$$

 $\circ\;$ much weaker than $\textit{pointwise}\;$ score error assumption

Assumptions: score estimates $\{s_t(\cdot)\}$

• ℓ_2 score estimation error: $s_t^{\star}(X) \coloneqq \nabla \log p_{X_t}(X)$,

$$\frac{1}{T}\sum_{t=1}^{T} \mathop{\mathbb{E}}_{\boldsymbol{X} \sim p_{X_t}} \left[\|s_t(\boldsymbol{X}) - s_t^\star(\boldsymbol{X})\|_2^2 \right] \leq \varepsilon_{\mathsf{score}}^2$$

- $\circ\;$ much weaker than *pointwise* score error assumption
- this assumption alone is sufficient for DDPM but insufficient for DDIM (i.e., counterexamples exist)

• ℓ_2 score estimation error: $s_t^{\star}(X) \coloneqq \nabla \log p_{X_t}(X)$,

$$\frac{1}{T}\sum_{t=1}^{T} \mathop{\mathbb{E}}_{X \sim p_{X_t}} \left[\|s_t(X) - s_t^\star(X)\|_2^2 \right] \leq \varepsilon_{\mathsf{score}}^2$$

- much weaker than *pointwise* score error assumption
- this assumption alone is sufficient for DDPM but insufficient for DDIM (i.e., counterexamples exist)
- Jacobian estimation error:

$$\frac{1}{T}\sum_{t=1}^{T} \mathop{\mathbb{E}}_{X \sim p_{X_t}} \left[\left\| \frac{\partial s_t}{\partial X}(X) - \frac{\partial s_t^{\star}}{\partial X}(X) \right\| \right] \leq \varepsilon_{\mathsf{Jacobi}}$$

$$X_0 \sim p_{\text{data}}, \quad X_t = \sqrt{1 - \beta_t} X_{t-1} + \sqrt{\beta_t} \mathcal{N}(0, I_d)$$

For some large constants $c_0, c_1 > 0$,

$$\beta_1 = \frac{1}{T^{c_0}}$$
$$\beta_t = \frac{c_1 \log T}{T} \min\left\{\beta_1 \left(1 + \frac{c_1 \log T}{T}\right)^t, 1\right\}$$

- 2 phases: (i) exponentially growing; (ii) flat
- common choice in diffusion model theory (e.g., Benton et al. '23)

$$X_t = \sqrt{1 - \beta_t} X_{t-1} + \sqrt{\beta_t} \mathcal{N}(0, I_d), \qquad t = 1, \cdots, T$$
$$Y_{t-1} = \frac{1}{\sqrt{1 - \beta_t}} \left(Y_t + \frac{\beta_t}{2} s_t(Y_t) \right), \qquad t = T, \cdots, 1$$
(1)

Theorem 1 (Li, Wei, Chi, Chen '24)

The probability flow ODE sampler (1) obeys (up to log factor) $\mathsf{TV}(p_{X_1}, p_{Y_1}) \lesssim \frac{d}{T} + \sqrt{d}\varepsilon_{\mathsf{score}} + d\varepsilon_{\mathsf{Jacobi}}$

provided that $T \gtrsim d^2 \operatorname{polylog}(T)$

$$X_t = \sqrt{1 - \beta_t} X_{t-1} + \sqrt{\beta_t} \mathcal{N}(0, I_d), \qquad t = 1, \cdots, T$$
$$Y_{t-1} = \frac{1}{\sqrt{1 - \beta_t}} \left(Y_t + \frac{\beta_t}{2} s_t(Y_t) \right), \qquad t = T, \cdots, 1$$
(1)

Theorem 1 (Li, Wei, Chi, Chen '24)

The probability flow ODE sampler (1) obeys (up to log factor) $\mathsf{TV}(p_{X_1}, p_{Y_1}) \lesssim \frac{d}{T} + \sqrt{d}\varepsilon_{\mathsf{score}} + d\varepsilon_{\mathsf{Jacobi}}$

provided that $T \gtrsim d^2 \operatorname{polylog}(T)$

- iteration complexity: d/ε for small enough ε

to yield TV dist $\leq \varepsilon$

$$X_t = \sqrt{1 - \beta_t} X_{t-1} + \sqrt{\beta_t} \mathcal{N}(0, I_d), \qquad t = 1, \cdots, T$$
$$Y_{t-1} = \frac{1}{\sqrt{1 - \beta_t}} \left(Y_t + \frac{\beta_t}{2} s_t(Y_t) \right), \qquad t = T, \cdots, 1$$
(1)

Theorem 1 (Li, Wei, Chi, Chen '24)

The probability flow ODE sampler (1) obeys (up to log factor) $\mathsf{TV}(p_{X_1}, p_{Y_1}) \lesssim \frac{d}{T} + \sqrt{d}\varepsilon_{\mathsf{score}} + d\varepsilon_{\mathsf{Jacobi}}$

provided that $T \gtrsim d^2 \operatorname{polylog}(T)$

• iteration complexity: d/ε for small enough ε

to yield TV dist $\leq\!\varepsilon$

• stability: $\mathsf{TV}(p_{X_1}, p_{Y_1}) \propto \text{error measures } \varepsilon_{\mathsf{score}}$ and $\varepsilon_{\mathsf{Jacobi}}$

$$X_t = \sqrt{1 - \beta_t} X_{t-1} + \sqrt{\beta_t} \mathcal{N}(0, I_d), \qquad t = 1, \cdots, T$$
$$Y_{t-1} = \frac{1}{\sqrt{1 - \beta_t}} \left(Y_t + \frac{\beta_t}{2} s_t(Y_t) \right), \qquad t = T, \cdots, 1$$
(1)

Theorem 1 (Li, Wei, Chi, Chen '24)

The probability flow ODE sampler (1) obeys (up to log factor) $\mathsf{TV}(p_{X_1}, p_{Y_1}) \lesssim \frac{d}{T} + \sqrt{d}\varepsilon_{\mathsf{score}} + d\varepsilon_{\mathsf{Jacobi}}$

provided that $T \gtrsim d^2 \operatorname{polylog}(T)$

• general data distribution: no need of smoothness, log-concavity

$$X_t = \sqrt{1 - \beta_t} X_{t-1} + \sqrt{\beta_t} \mathcal{N}(0, I_d), \qquad t = 1, \cdots, T$$
$$Y_{t-1} = \frac{1}{\sqrt{1 - \beta_t}} \left(Y_t + \frac{\beta_t}{2} s_t(Y_t) \right), \qquad t = T, \cdots, 1$$
(1)

Theorem 1 (Li, Wei, Chi, Chen '24)

The probability flow ODE sampler (1) obeys (up to log factor) $\mathsf{TV}(p_{X_1}, p_{Y_1}) \lesssim \frac{d}{T} + \sqrt{d}\varepsilon_{\mathsf{score}} + d\varepsilon_{\mathsf{Jacobi}}$

provided that $T \gtrsim d^2 \operatorname{polylog}(T)$

• general data distribution: no need of smoothness, log-concavity

Comparison w/ prior probability flow ODE theory

• Chen, Daras, Dimakis '23: no concrete poly dependency

ours: d/ε exponential in smoothness parameter ours: independent of smoothness pars needs exact score functions

ours: allow score errors

Comparison w/ prior probability flow ODE theory

• Chen, Daras, Dimakis '23: no concrete poly dependency

needs exact score functions

ours: allow score errors

• Chen, Chewi, Lee, Li, Lu, Salim '23: requires additional stochastic correction steps & smoothness

different from probability flow ODE

Comparison w/ prior probability flow ODE theory

• Chen, Daras, Dimakis '23: no concrete poly dependency

- Chen, Chewi, Lee, Li, Lu, Salim '23: requires additional stochastic correction steps & smoothness
 different from probability flow ODE
- Huang, Huang, Lin '24: suboptimal d-dependency (i.e., d^2/ε)

$$X_t = \sqrt{1 - \beta_t} X_{t-1} + \sqrt{\beta_t} \mathcal{N}(0, I), \quad Y_{t-1} = \underbrace{\frac{1}{\sqrt{1 - \beta_t}} Y_t + \frac{\beta_t}{2\sqrt{1 - \beta_t}} s_t(Y_t)}_{=: \Phi_t(Y_t)}$$

 $\mathsf{TV}\big(p_{X_t}, p_{Y_t}\big) \approx 0$

$$X_t = \sqrt{1 - \beta_t} X_{t-1} + \sqrt{\beta_t} \mathcal{N}(0, I), \quad Y_{t-1} = \underbrace{\frac{1}{\sqrt{1 - \beta_t}} Y_t + \frac{\beta_t}{2\sqrt{1 - \beta_t}} s_t(Y_t)}_{=:\Phi_t(Y_t)}$$

$$\mathsf{TV}(p_{X_t}, p_{Y_t}) \approx 0 \qquad \Longleftrightarrow \qquad \frac{p_{Y_t}(y_t)}{p_{X_t}(y_t)} \approx 1 \quad \forall y_t \in \mathcal{E}_t \text{ (some "typical" set)}$$

$$X_t = \sqrt{1 - \beta_t} X_{t-1} + \sqrt{\beta_t} \mathcal{N}(0, I), \quad Y_{t-1} = \underbrace{\frac{1}{\sqrt{1 - \beta_t}} Y_t + \frac{\beta_t}{2\sqrt{1 - \beta_t}} s_t(Y_t)}_{=:\Phi_t(Y_t)}$$

$$\mathsf{TV}(p_{X_t}, p_{Y_t}) \approx 0 \quad \Leftarrow \quad \frac{p_{Y_t}(y_t)}{p_{X_t}(y_t)} \approx 1 \quad \forall y_t \in \mathcal{E}_t \text{ (some "typical" set)}$$

$$t-1$$
 t T

$$X_t = \sqrt{1 - \beta_t} X_{t-1} + \sqrt{\beta_t} \mathcal{N}(0, I), \quad Y_{t-1} = \underbrace{\frac{1}{\sqrt{1 - \beta_t}} Y_t + \frac{\beta_t}{2\sqrt{1 - \beta_t}} s_t(Y_t)}_{=:\Phi_t(Y_t)}$$

$$\mathsf{TV}(p_{X_t}, p_{Y_t}) \approx 0 \qquad \Longleftrightarrow \qquad \frac{p_{Y_t}(y_t)}{p_{X_t}(y_t)} \approx 1 \quad \forall y_t \in \mathcal{E}_t \text{ (some "typical" set)}$$

$$X_t = \sqrt{1 - \beta_t} X_{t-1} + \sqrt{\beta_t} \mathcal{N}(0, I), \quad Y_{t-1} = \underbrace{\frac{1}{\sqrt{1 - \beta_t}} Y_t + \frac{\beta_t}{2\sqrt{1 - \beta_t}} s_t(Y_t)}_{=:\Phi_t(Y_t)}$$

$$\mathsf{TV}(p_{X_t}, p_{Y_t}) \approx 0 \qquad \Longleftrightarrow \qquad \frac{p_{Y_t}(y_t)}{p_{X_t}(y_t)} \approx 1 \quad \forall y_t \in \mathcal{E}_t \text{ (some "typical" set)}$$

$$\frac{t-1}{p_{Y_{t-1}}(\Phi_t(y_t))} = \underbrace{\frac{p_{Y_{t-1}}(\Phi_t(y_t))}{p_{Y_t}(y_t)}}_{\text{relation btw } Y_t \& Y_{t-1}} \left(\underbrace{\frac{p_{X_{t-1}}(\Phi_t(y_t))}{p_{X_t}(y_t)}}_{\text{relation btw } X_t \& X_{t-1}}\right)^{-1} \frac{p_{Y_t}(y_t)}{p_{X_t}(y_t)}$$

$$X_t = \sqrt{1 - \beta_t} X_{t-1} + \sqrt{\beta_t} \mathcal{N}(0, I), \quad Y_{t-1} = \underbrace{\frac{1}{\sqrt{1 - \beta_t}} Y_t + \frac{\beta_t}{2\sqrt{1 - \beta_t}} s_t(Y_t)}_{=:\Phi_t(Y_t)}$$

$$\mathsf{TV}(p_{X_t}, p_{Y_t}) pprox 0 \qquad \Longleftrightarrow \qquad \frac{p_{Y_t}(y_t)}{p_{X_t}(y_t)} pprox 1 \quad \forall y_t \in \mathcal{E}_t \text{ (some "typical" set)}$$

$$\frac{t-1}{p_{Y_{t-1}}(\Phi_t(y_t))} = \underbrace{\frac{p_{Y_{t-1}}(\Phi_t(y_t))}{p_{Y_t}(y_t)}}_{\text{relation btw } Y_t \& Y_{t-1}} \left(\underbrace{\frac{p_{X_{t-1}}(\Phi_t(y_t))}{p_{X_t}(y_t)}}_{\text{relation btw } X_t \& X_{t-1}}\right)^{-1} \frac{p_{Y_t}(y_t)}{p_{X_t}(y_t)}$$
$$\frac{p_{\Phi_t(Y_t)}(\Phi_t(y_t))}{p_{Y_t}(y_t)} = \det\left(\frac{\partial \Phi_t}{\partial y_t}\right)^{-1}$$
22/38

$$X_t = \sqrt{1 - \beta_t} X_{t-1} + \sqrt{\beta_t} \mathcal{N}(0, I), \quad Y_{t-1} = \underbrace{\frac{1}{\sqrt{1 - \beta_t}} Y_t + \frac{\beta_t}{2\sqrt{1 - \beta_t}} s_t(Y_t)}_{=:\Phi_t(Y_t)}$$

$$\mathsf{TV}(p_{X_t}, p_{Y_t}) \approx 0 \qquad \Longleftrightarrow \qquad \frac{p_{Y_t}(y_t)}{p_{X_t}(y_t)} \approx 1 \quad \forall y_t \in \mathcal{E}_t \text{ (some "typical" set)}$$

$$\frac{t-1}{p_{Y_{t-1}}(\Phi_t(y_t))} = \underbrace{\frac{p_{Y_{t-1}}(\Phi_t(y_t))}{p_{Y_t}(y_t)}}_{\text{relation btw } Y_t \& Y_{t-1}} \left(\underbrace{\frac{p_{X_{t-1}}(\Phi_t(y_t))}{p_{X_t}(y_t)}}_{\text{relation btw } X_t \& X_{t-1}}\right)^{-1} \frac{p_{Y_t}(y_t)}{p_{X_t}(y_t)}$$
$$\frac{p_{\Phi_t(Y_t)}(\Phi_t(y_t))}{p_{Y_t}(y_t)} = \det\left(\frac{\partial \Phi_t}{\partial y_t}\right)^{-1} \quad \text{some concentration bounds}$$

Part 2: acceleration

"Accelerating convergence of score-based diffusion models, provably," G. Li*, Y. Huang*, T. Efimov, Y. Wei, Y. Chi, Y. Chen, arXiv:2403.03852, 2024

Diffusion-based sampling is often slow

— Song, Meng, Ermon '20

Diffusion-based sampling is often slow

50K 32×32 images: DDPM (20h) vs. single-step GANs (< 1min)

— Song, Meng, Ermon '20

• Training-based: distill pre-trained diffusion model into another

requires additional training

model that can be executed rapidly

 e.g., progressive distillation (Salimans et al. '22), consistency model (Song et al. '23), ...

• **Training-free:** directly invoke pre-trained diffusion models (particularly score estimates) for sampling w/o additional training

 $\circ\,$ e.g., DPM-Solver/++ (Lu et al. '22), UniPC (Zhao et al. '23), \ldots

Can we design a training-free deterministic sampler that converges provably faster than probability flow ODE?

$$\underline{Y_t^-} = \Phi_t(Y_t), \qquad Y_{t-1} = \Psi_t(Y_t, \underline{Y_t^-}) \qquad \text{for } t = T, \cdots, 1$$
 (2)

$$\underline{Y_t}^- = \Phi_t(Y_t), \qquad Y_{t-1} = \Psi_t(Y_t, \underline{Y_t}^-) \qquad \text{for } t = T, \cdots, 1$$
 (2)

$$\Psi_t(Y_t, Y_t^-) = \frac{1}{\sqrt{\alpha_t}} \left(\underbrace{Y_t + \frac{1 - \alpha_t}{2} s_t(Y_t)}_{\text{original DDIM}} \right)$$

• compute a midpoint Y_t^- ; update based on both Y_t and $Y_t^$ estimate of Y_{t+1} using Y_t provide 2nd-order info

Proposed accelerated deterministic sampler

$$Y_t^- = \Phi_t(Y_t), \qquad Y_{t-1} = \Psi_t(Y_t, Y_t^-) \qquad \text{for } t = T, \cdots, 1$$
 (2)

$$\begin{split} \Phi_t(Y_t) &= \sqrt{\alpha_{t+1}} \left(Y_t - \frac{1 - \alpha_{t+1}}{2} s_t(Y_t) \right) \\ \Psi_t(Y_t, Y_t^-) &= \frac{1}{\sqrt{\alpha_t}} \left(\underbrace{Y_t + \frac{1 - \alpha_t}{2} s_t(Y_t)}_{\text{original DDIM}} + \underbrace{\frac{(1 - \alpha_t)^2}{4(1 - \alpha_{t+1})} \left(s_t(Y_t) - \sqrt{\alpha_{t+1}} s_{t+1}(Y_t^-) \right)}_{\text{"momentum"}} \right) \end{split}$$

- compute a midpoint Y_t^- ; update based on both Y_t and $Y_t^$ estimate of Y_{t+1} using Y_t provide 2nd-order info
- 2 score function evaluations per iteration

sampled images with 5 NFEs: crisper and less noisy

• ℓ_2 score estimation error:

$$\frac{1}{T}\sum_{t=1}^{T} \mathop{\mathbb{E}}_{X \sim p_{X_t}} \left[\|s_t(X) - s_t^{\star}(X)\|_2^2 \right] \le \varepsilon_{\mathsf{score}}^2$$

• Jacobian estimation error:

$$\frac{1}{T}\sum_{t=1}^{T} \mathop{\mathbb{E}}_{X \sim p_{X_t}} \left[\left\| \frac{\partial s_t}{\partial X}(X) - \frac{\partial s_t^{\star}}{\partial X}(X) \right\| \right] \leq \varepsilon_{\mathsf{Jacobi}}$$

• $\mathbb{P}(||X_0||_2 \leq T^{c_R}) = 1$ for arbitrarily large const $c_R > 0$

Theorem 2 (Li, Huang, Efimov, Wei, Chi, Chen '24)

Our accelerated deterministic sampler (2) obeys (up to log factor)

$$\mathsf{TV}(p_{X_1}, p_{Y_1}) \lesssim rac{d^6}{T^2} + \sqrt{d} \varepsilon_{\mathsf{score}} + d\varepsilon_{\mathsf{Jacobi}}$$
Theorem 2 (Li, Huang, Efimov, Wei, Chi, Chen '24)

Our accelerated deterministic sampler (2) obeys (up to log factor)

$$\mathsf{TV}(p_{X_1}, p_{Y_1}) \lesssim rac{d^6}{T^2} + \sqrt{d}arepsilon_{\mathsf{score}} + darepsilon_{\mathsf{Jacobi}}$$

• iteration complexity : $\frac{\text{poly}(d)}{\sqrt{\epsilon}}$

to yield TV dist $\leq \varepsilon$

• outperforms vanilla DDIM (iteration complexity: $poly(d)/\varepsilon$)

Theorem 2 (Li, Huang, Efimov, Wei, Chi, Chen '24)

Our accelerated deterministic sampler (2) obeys (up to log factor)

$$\mathsf{TV}(p_{X_1}, p_{Y_1}) \lesssim rac{d^6}{T^2} + \sqrt{d}arepsilon_{\mathsf{score}} + darepsilon_{\mathsf{Jacobi}}$$

• iteration complexity : $\frac{\text{poly}(d)}{\sqrt{\epsilon}}$

to yield TV dist $\leq \varepsilon$

 \circ outperforms vanilla DDIM (iteration complexity: $\mathrm{poly}(d)/arepsilon)$

- stability: TV distance propotional to $\varepsilon_{\text{score}} + \varepsilon_{\text{Jacobi}}$
- minimal assumptions on data distributions

Theorem 2 (Li, Huang, Efimov, Wei, Chi, Chen '24)

Our accelerated deterministic sampler (2) obeys (up to log factor)

$$\mathsf{TV}(p_{X_1}, p_{Y_1}) \lesssim rac{d^6}{T^2} + \sqrt{d}arepsilon_{\mathsf{score}} + darepsilon_{\mathsf{Jacobi}}$$

• iteration complexity : $\frac{\text{poly}(d)}{\sqrt{\epsilon}}$

to yield TV dist $\leq \varepsilon$

- \circ outperforms vanilla DDIM (iteration complexity: $\mathrm{poly}(d)/arepsilon)$
- stability: TV distance propotional to $\varepsilon_{\rm score}~+\,\varepsilon_{\rm Jacobi}$
- minimal assumptions on data distributions
- *d*-dependency: might be improvable to $\frac{d^4}{T^2}$ (ongoing work)

$$X_t \stackrel{\mathrm{d}}{=} \sqrt{\overline{\alpha}_t} X_0 + \sqrt{1 - \overline{\alpha}_t} \, \mathcal{N}(0, I_d) \qquad \text{with } \overline{\alpha}_t \coloneqq \prod_{k=1}^t (1 - \beta_k)$$

$$X_t \stackrel{\mathrm{d}}{=} \sqrt{\overline{\alpha}_t} X_0 + \sqrt{1 - \overline{\alpha}_t} \, \mathcal{N}(0, I_d) \qquad \text{with } \overline{\alpha}_t \coloneqq \prod_{k=1}^t (1 - \beta_k)$$

General form for $0 < \gamma < 1$:

$$X(\gamma) \coloneqq \sqrt{\gamma} X_0 + \sqrt{1 - \gamma} \mathcal{N}(0, I_d)$$
$$s_{\gamma}^{\star}(x) \coloneqq \nabla \log p_{X(\gamma)}(x)$$

$$X_t \stackrel{\mathrm{d}}{=} \sqrt{\overline{\alpha}_t} X_0 + \sqrt{1 - \overline{\alpha}_t} \, \mathcal{N}(0, I_d) \qquad \text{with } \overline{\alpha}_t \coloneqq \prod\nolimits_{k=1}^t (1 - \beta_k)$$

General form for $0 < \gamma < 1$:

$$X(\gamma) \coloneqq \sqrt{\gamma} X_0 + \sqrt{1 - \gamma} \mathcal{N}(0, I_d)$$
$$s_{\gamma}^{\star}(x) \coloneqq \nabla \log p_{X(\gamma)}(x)$$

$$\implies X(\overline{\alpha_t}) \stackrel{\mathrm{d}}{=} X_t, \ s_{\overline{\alpha_t}}^{\star} = s_t^{\star}$$

$$X_t \stackrel{\mathrm{d}}{=} \sqrt{\overline{\alpha}_t} X_0 + \sqrt{1 - \overline{\alpha}_t} \, \mathcal{N}(0, I_d) \qquad \text{with } \overline{\alpha}_t \coloneqq \prod\nolimits_{k=1}^t (1 - \beta_k)$$

General form for $0 < \gamma < 1$:

$$X(\gamma) \coloneqq \sqrt{\gamma} X_0 + \sqrt{1 - \gamma} \mathcal{N}(0, I_d)$$

$$s_{\gamma}^{\star}(x) \coloneqq \nabla \log p_{X(\gamma)}(x)$$

=

$$\implies X(\overline{\alpha_t}) \stackrel{\mathrm{d}}{=} X_t, \ s_{\overline{\alpha_t}}^\star = s_t^\star$$

A key reversed relation $X(\overline{\alpha}_{t-1}) \to X(\overline{\alpha}_t)$:

$$X(\overline{\alpha}_{t-1}) = \frac{1}{\sqrt{\alpha_t}} X(\overline{\alpha}_t) + \frac{\sqrt{\overline{\alpha}_{t-1}}}{2} \int_{\overline{\alpha}_t}^{\overline{\alpha}_{t-1}} \frac{1}{\sqrt{\gamma^3}} s_{\gamma}^{\star} (X(\gamma)) \mathrm{d}\gamma$$

$$X_t \stackrel{\mathrm{d}}{=} \sqrt{\overline{\alpha}_t} X_0 + \sqrt{1 - \overline{\alpha}_t} \, \mathcal{N}(0, I_d) \qquad \text{with } \overline{\alpha}_t \coloneqq \prod\nolimits_{k=1}^t (1 - \beta_k)$$

General form for $0 < \gamma < 1$:

$$X(\gamma) \coloneqq \sqrt{\gamma} X_0 + \sqrt{1 - \gamma} \mathcal{N}(0, I_d)$$

$$s_{\gamma}^{\star}(x) \coloneqq \nabla \log p_{X(\gamma)}(x)$$

$$\implies X(\overline{\alpha_t}) \stackrel{\mathrm{d}}{=} X_t, \ s_{\overline{\alpha_t}}^\star = s_t^\star$$

A key reversed relation $X(\overline{\alpha}_{t-1}) \to X(\overline{\alpha}_t)$:

$$X(\overline{\alpha}_{t-1}) = \frac{1}{\sqrt{\alpha_t}} X(\overline{\alpha}_t) + \frac{\sqrt{\overline{\alpha}_{t-1}}}{2} \int_{\overline{\alpha}_t}^{\overline{\alpha}_{t-1}} \frac{1}{\sqrt{\gamma^3}} s_{\gamma}^{\star} (X(\gamma)) \mathrm{d}\gamma$$

"solution" to probability flow ODE

$$X(\overline{\alpha}_{t-1}) = \frac{1}{\sqrt{\alpha_t}} X(\overline{\alpha}_t) + \frac{\sqrt{\overline{\alpha}_{t-1}}}{2} \int_{\overline{\alpha}_t}^{\overline{\alpha}_{t-1}} \frac{1}{\sqrt{\gamma^3}} \underbrace{s_{\gamma}^{\star} (X(\gamma))}_{\text{approximated by}?} d\gamma$$

$$X(\overline{\alpha}_{t-1}) = \frac{1}{\sqrt{\alpha_t}} X(\overline{\alpha}_t) + \frac{\sqrt{\overline{\alpha}_{t-1}}}{2} \int_{\overline{\alpha}_t}^{\overline{\alpha}_{t-1}} \frac{1}{\sqrt{\gamma^3}} \underbrace{s_{\gamma}^{\star}(X(\gamma))}_{\text{approximated by}?} d\gamma$$

Scheme 1: $s_{\gamma}^{\star}(X(\gamma)) \approx s_{\overline{\alpha}_{t}}^{\star}(X(\overline{\alpha}_{t})) \approx s_{t}(X_{t})$ $\implies X(\overline{\alpha}_{t-1}) \approx \frac{1}{\sqrt{\alpha_{t}}} \left(X(\overline{\alpha}_{t}) + \frac{1-\alpha_{t}}{2} s_{t}(X_{t}) \right) \quad \text{original DDIM}$

$$X(\overline{\alpha}_{t-1}) = \frac{1}{\sqrt{\alpha_t}} X(\overline{\alpha}_t) + \frac{\sqrt{\overline{\alpha}_{t-1}}}{2} \int_{\overline{\alpha}_t}^{\overline{\alpha}_{t-1}} \frac{1}{\sqrt{\gamma^3}} \underbrace{s_{\gamma}^{\star}(X(\gamma))}_{\text{approximated by}?} d\gamma$$

Scheme 1:
$$s_{\gamma}^{\star}(X(\gamma)) \approx s_{\overline{\alpha}_{t}}^{\star}(X(\overline{\alpha}_{t})) \approx s_{t}(X_{t})$$

 $\implies X(\overline{\alpha}_{t-1}) \approx \frac{1}{\sqrt{\alpha_{t}}} \left(X(\overline{\alpha}_{t}) + \frac{1-\alpha_{t}}{2}s_{t}(X_{t}) \right) \quad \text{original DDIM}$

refined approximation?

$$X(\overline{\alpha}_{t-1}) = \frac{1}{\sqrt{\alpha_t}} X(\overline{\alpha}_t) + \frac{\sqrt{\overline{\alpha}_{t-1}}}{2} \int_{\overline{\alpha}_t}^{\overline{\alpha}_{t-1}} \frac{1}{\sqrt{\gamma^3}} \underbrace{s_{\gamma}^{\star}(X(\gamma))}_{\text{approximated by}?} d\gamma$$

Scheme 1:
$$s_{\gamma}^{\star}(X(\gamma)) \approx s_{\overline{\alpha}_{t}}^{\star}(X(\overline{\alpha}_{t})) \approx s_{t}(X_{t})$$

 $\implies X(\overline{\alpha}_{t-1}) \approx \frac{1}{\sqrt{\alpha_{t}}} \left(X(\overline{\alpha}_{t}) + \frac{1-\alpha_{t}}{2}s_{t}(X_{t}) \right) \quad \text{original DDIM}$

refined approximation?

$$s_{\gamma}^{\star}(X(\gamma)) \approx s_{\overline{\alpha}_{t}}^{\star}(X(\overline{\alpha}_{t})) + \frac{\mathrm{d}s_{\gamma}^{\star}(X(\gamma))}{\mathrm{d}\gamma}(\gamma - \overline{\alpha}_{t})$$
$$\approx s_{t}(X_{t}) + \frac{\gamma - \overline{\alpha}_{t}}{\overline{\alpha}_{t} - \overline{\alpha}_{t+1}} \left(s_{t}(X_{t}) - s_{t+1}(X_{t+1})\right)$$

32/38

$$X(\overline{\alpha}_{t-1}) = \frac{1}{\sqrt{\alpha_t}} X(\overline{\alpha}_t) + \frac{\sqrt{\overline{\alpha}_{t-1}}}{2} \int_{\overline{\alpha}_t}^{\overline{\alpha}_{t-1}} \frac{1}{\sqrt{\gamma^3}} \underbrace{s_{\gamma}^{\star}(X(\gamma))}_{\text{approximated by}?} d\gamma$$

Scheme 1:
$$s_{\gamma}^{\star}(X(\gamma)) \approx s_{\overline{\alpha}_{t}}^{\star}(X(\overline{\alpha}_{t})) \approx s_{t}(X_{t})$$

 $\implies X(\overline{\alpha}_{t-1}) \approx \frac{1}{\sqrt{\alpha_{t}}} \left(X(\overline{\alpha}_{t}) + \frac{1-\alpha_{t}}{2} s_{t}(X_{t}) \right) \text{ original DDIM}$

Scheme 2:
$$s_{\gamma}^{\star}(X(\gamma)) \approx s_t(X_t) + \frac{\gamma - \overline{\alpha}_t}{\overline{\alpha}_t - \overline{\alpha}_{t+1}} \left(s_t(X_t) - s_{t+1}(X_{t+1}) \right)$$

 $\implies X(\overline{\alpha}_{t-1}) \approx \frac{1}{\sqrt{\alpha_t}} \left(X(\overline{\alpha}_t) + \frac{1 - \alpha_t}{2} s_t(X_t) \right)$
 $+ \frac{1}{\sqrt{\alpha_t}} \left(\frac{(1 - \alpha_t)^2}{4(1 - \alpha_{t+1})} \left(s_t(X_t) - \sqrt{\alpha_{t+1}} s_{t+1}(X_{t+1}) \right) \right)$ Ours

$$X(\overline{\alpha}_{t-1}) = \frac{1}{\sqrt{\alpha_t}} X(\overline{\alpha}_t) + \frac{\sqrt{\overline{\alpha}_{t-1}}}{2} \int_{\overline{\alpha}_t}^{\overline{\alpha}_{t-1}} \frac{1}{\sqrt{\gamma^3}} \underbrace{s_{\gamma}^{\star}(X(\gamma))}_{\text{approximated by}?} d\gamma$$

Scheme 1:
$$s_{\gamma}^{\star}(X(\gamma)) \approx s_{\overline{\alpha}_{t}}^{\star}(X(\overline{\alpha}_{t})) \approx s_{t}(X_{t})$$

 $\implies X(\overline{\alpha}_{t-1}) \approx \frac{1}{\sqrt{\alpha_{t}}} \left(X(\overline{\alpha}_{t}) + \frac{1-\alpha_{t}}{2}s_{t}(X_{t}) \right) \text{ original DDIM}$

Scheme 2:
$$s_{\gamma}^{\star}(X(\gamma)) \approx s_t(X_t) + \frac{\gamma - \overline{\alpha}_t}{\overline{\alpha}_t - \overline{\alpha}_{t+1}} \left(s_t(X_t) - s_{t+1}(X_{t+1}) \right)$$

 $\implies X(\overline{\alpha}_{t-1}) \approx \frac{1}{\sqrt{\alpha_t}} \left(X(\overline{\alpha}_t) + \frac{1 - \alpha_t}{2} s_t(X_t) \right)$
 $+ \frac{1}{\sqrt{\alpha_t}} \left(\frac{(1 - \alpha_t)^2}{4(1 - \alpha_{t+1})} \left(s_t(X_t) - \sqrt{\alpha_{t+1}} s_{t+1}(X_{t+1}) \right) \right)$ Ours

— similar in spirit to DPM-Solver-2 (Lu et al '22) $_{\scriptstyle 32/38}$

Can we design a training-free <u>stochastic</u> sampler that converges provably faster than DDPM?

$$Y_t^+ = \Phi_t(Y_t, Z_t), \quad Y_{t-1} = \Psi_t(Y_t^+, Z_t^+) \quad \text{ with } Z_t, Z_t^+ \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, I_d)$$
(3)

• compute a midpoint Y_t^+ ; then compute Y_{t-1} using Y_t^+ (similar to extragradient method)

$$Y_t^+ = \Phi_t(Y_t, Z_t), \quad Y_{t-1} = \Psi_t(Y_t^+, Z_t^+) \quad \text{ with } Z_t, Z_t^+ \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, I_d) \quad \textbf{(3)}$$

$$\begin{split} \Phi_t(x,z) &= x + \sqrt{\frac{1-\alpha_t}{2}}z \quad \text{injecting additional noise} \\ \Psi_t(y,z) &= \frac{1}{\sqrt{\alpha_t}} \bigg(y + (1-\alpha_t)s_t(y) + \sqrt{\frac{1-\alpha_t}{2}}z \bigg) \quad \text{same as DDPM} \end{split}$$

• compute a midpoint Y_t^+ ; then compute Y_{t-1} using Y_t^+ (similar to extragradient method)

$$Y_t^+ = \Phi_t(Y_t, Z_t), \quad Y_{t-1} = \Psi_t(Y_t^+, Z_t^+) \quad \text{ with } Z_t, Z_t^+ \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, I_d) \quad \textbf{(3)}$$

$$\begin{split} \Phi_t(x,z) &= x + \sqrt{\frac{1-\alpha_t}{2}}z \quad \text{injecting additional noise} \\ \Psi_t(y,z) &= \frac{1}{\sqrt{\alpha_t}} \left(y + (1-\alpha_t)s_t(y) + \sqrt{\frac{1-\alpha_t}{2}}z \right) \quad \text{same as DDPM} \end{split}$$

- compute a midpoint Y_t^+ ; then compute Y_{t-1} using Y_t^+ (similar to extragradient method)
- 1 score function evaluation per iteration

Main result: accelerated stochastic sampler

Theorem 3 (Li, Huang, Efimov, Wei, Chi, Chen '24)

The accelerated stochastic sampler (3) obeys (up to log factor)

$$\mathsf{TV}(p_{X_1}, p_{Y_1}) \lesssim \sqrt{\mathsf{KL}(p_{X_1} \parallel p_{Y_1})} \lesssim \frac{d^3}{T} + \sqrt{d}\varepsilon_{\mathsf{score}}$$

Theorem 3 (Li, Huang, Efimov, Wei, Chi, Chen '24)

The accelerated stochastic sampler (3) obeys (up to log factor)

$$\mathsf{TV}(p_{X_1}, p_{Y_1}) \lesssim \sqrt{\mathsf{KL}(p_{X_1} \parallel p_{Y_1})} \lesssim \frac{d^3}{T} + \sqrt{d}\varepsilon_{\mathsf{score}}$$

- iteration complexity: poly(d)/ε
 outperforms vanilla DDPM (iteration complexity: d/ε²)
 Chen et al. '23, Li et el. 23, Benton et al. '23
- general data distributions
- ℓ_2 score error assumption suffices (no need of Jacobians)

Theorem 3 (Li, Huang, Efimov, Wei, Chi, Chen '24)

The accelerated stochastic sampler (3) obeys (up to log factor)

$$\mathsf{TV}(p_{X_1}, p_{Y_1}) \lesssim \sqrt{\mathsf{KL}(p_{X_1} \parallel p_{Y_1})} \lesssim \frac{d^3}{T} + \sqrt{d}\varepsilon_{\mathsf{score}}$$

- iteration complexity: poly(d)/ε
 outperforms vanilla DDPM (iteration complexity: d/ε²)
 Chen et al. '23, Li et el. 23, Benton et al. '23
- general data distributions
- ℓ_2 score error assumption suffices (no need of Jacobians)
- intuition: higher-order approx. of $p_{\boldsymbol{X}_{t-1}|\boldsymbol{X}_t}$ via simply adding noise

characterizing $p_{X_{t-1}|X_t=x_t} \approx \mathcal{N}(\mu_t^{\star}(x_t), \Sigma_t^{\star}(x_t))$

characterizing
$$p_{X_{t-1}|X_t=x_t} \approx \mathcal{N}(\mu_t^{\star}(x_t), \Sigma_t^{\star}(x_t))$$

•
$$\mu_t^{\star}(x_t) = \frac{1}{\sqrt{\alpha_t}} (x_t + (1 - \alpha_t) s_t^{\star}(x_t))$$

characterizing
$$p_{X_{t-1}|X_t=x_t} \approx \mathcal{N}(\mu_t^{\star}(x_t), \Sigma_t^{\star}(x_t))$$

• $\mu_t^{\star}(x_t) = \frac{1}{\sqrt{\alpha_t}} \left(x_t + (1 - \alpha_t) s_t^{\star}(x_t) \right)$
• $\Sigma_t^{\star}(x_t) = \frac{1 - \alpha_t}{\alpha_t} \left(I + \frac{1 - \alpha_t}{2} \frac{\partial s_t^{\star}}{\partial X}(x_t) \right) \left(I + \frac{1 - \alpha_t}{2} \frac{\partial s_t^{\star}}{\partial X}(x_t) \right)^{\top}$
DDPM analysis uses simpler approx I (Li et al., 2023)

characterizing
$$p_{X_{t-1}|X_t=x_t} \approx \mathcal{N}(\mu_t^{\star}(x_t), \Sigma_t^{\star}(x_t))$$

• $\mu_t^{\star}(x_t) = \frac{1}{\sqrt{\alpha_t}} (x_t + (1 - \alpha_t) s_t^{\star}(x_t))$
• $\Sigma_t^{\star}(x_t) = \frac{1 - \alpha_t}{\alpha_t} \underbrace{\left(I + \frac{1 - \alpha_t}{2} \frac{\partial s_t^{\star}}{\partial X}(x_t)\right) \left(I + \frac{1 - \alpha_t}{2} \frac{\partial s_t^{\star}}{\partial X}(x_t)\right)^{\top}}_{\text{DDPM analysis uses simpler approx } I \text{ (Li et al., 2023)}}$

constructing $p_{Y_{t-1}|Y_t=x_t} \approx \mathcal{N}(\mu_t^{\star}(x_t), \Sigma_t^{\star}(x_t))$:

characterizing
$$p_{X_{t-1}|X_t=x_t} \approx \mathcal{N}(\mu_t^{\star}(x_t), \Sigma_t^{\star}(x_t))$$

• $\mu_t^{\star}(x_t) = \frac{1}{\sqrt{\alpha_t}} (x_t + (1 - \alpha_t) s_t^{\star}(x_t))$
• $\Sigma_t^{\star}(x_t) = \frac{1 - \alpha_t}{\alpha_t} \left(I + \frac{1 - \alpha_t}{2} \frac{\partial s_t^{\star}}{\partial X}(x_t) \right) \left(I + \frac{1 - \alpha_t}{2} \frac{\partial s_t^{\star}}{\partial X}(x_t) \right)^{\top}$
DDPM analysis uses simpler approx I (Li et al., 2023)

constructing
$$p_{Y_{t-1}|Y_t=x_t} \approx \mathcal{N}(\mu_t^{\star}(x_t), \Sigma_t^{\star}(x_t))$$
:

$$Y_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\underbrace{Y_t + \sqrt{\frac{1-\alpha_t}{2}} Z_t}_{\Phi(Y_t, Z_t)} + \sqrt{\frac{1-\alpha_t}{2}} Z_t^+ + (1-\alpha_t) \underbrace{\left(s_t^\star(Y_t) + \sqrt{\frac{1-\alpha_t}{2}} \frac{\partial s_t^\star}{\partial X}(Y_t) Z_t \right)}_{\text{first-order } \approx s_t^\star \left(\Phi(Y_t, Z_t) \right)} \right)$$

36/38

characterizing
$$p_{X_{t-1}|X_t=x_t} \approx \mathcal{N}(\mu_t^{\star}(x_t), \Sigma_t^{\star}(x_t))$$

• $\mu_t^{\star}(x_t) = \frac{1}{\sqrt{\alpha_t}} (x_t + (1 - \alpha_t) s_t^{\star}(x_t))$
• $\Sigma_t^{\star}(x_t) = \frac{1 - \alpha_t}{\alpha_t} \underbrace{\left(I + \frac{1 - \alpha_t}{2} \frac{\partial s_t^{\star}}{\partial X}(x_t)\right) \left(I + \frac{1 - \alpha_t}{2} \frac{\partial s_t^{\star}}{\partial X}(x_t)\right)^{\top}}_{\text{DDPM analysis uses simpler approx } I \text{ (Li et al., 2023)}}$

constructing
$$p_{Y_{t-1}|Y_t=x_t} \approx \mathcal{N}(\mu_t^{\star}(x_t), \Sigma_t^{\star}(x_t))$$
:

$$Y_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\underbrace{Y_t + \sqrt{\frac{1-\alpha_t}{2}} Z_t}_{\Phi(Y_t, Z_t)} + \sqrt{\frac{1-\alpha_t}{2}} Z_t^+ + (1-\alpha_t) \underbrace{\left(s_t^*(Y_t) + \sqrt{\frac{1-\alpha_t}{2}} \frac{\partial s_t^*}{\partial X}(Y_t) Z_t \right)}_{\text{first-order } \approx s_t^* \left(\Phi(Y_t, Z_t) \right)} \right) \\ \approx \Psi_t \left(\Phi_t(Y_t, Z_t), Z_t^+ \right) \qquad \text{(Ours)}$$

36/38

- Sharp convergence theory for probability flow ODE
- New schemes via higher-order approximation to achieve provable acceleration in score-based diffusion models

- Sharp convergence theory for probability flow ODE
- New schemes via higher-order approximation to achieve provable acceleration in score-based diffusion models

Future directions:

- better dimension-dependency for accelerated samplers?
- acceleration via higher-order ODE/SDE? e.g., DPM-Solver-3 (third-order ODE)
- end-to-end theory to account for score learning + sampling?

Papers:

"A sharp convergence theory for the probability flow ODEs of diffusion models," G. Li, Y. Wei, Y. Chi, Y. Chen, arXiv:2408.02320, 2024

"Towards non-asymptotic convergence for diffusion-based generative models," G. Li, Y. Wei, Y. Chen, Y. Chi, arXiv:2306.09251, ICLR 2024

"Accelerating convergence of score-based diffusion models, provably," G. Li*, Y. Huang*, T. Efimov, Y. Wei, Y. Chi, Y. Chen, arXiv:2403.03852, 2024 (*=equal contributions)