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Abstract

The Muon optimizer, a matrix-structured algorithm that leverages spectral orthogonalization of
gradients, is a milestone in the pretraining of large language models. However, the underlying mechanisms
of Muon—particularly the role of gradient orthogonalization—remain poorly understood, with very few
works providing end-to-end analyses that rigorously explain its advantages in concrete applications. We
take a step by studying the effectiveness of a simplified variant of Muon through two case studies: matrix
factorization, and in-context learning of linear transformers. For both problems, we prove that simplified
Muon converges linearly with iteration complexities independent of the relevant condition number, provably
outperforming gradient descent and Adam. Our analysis reveals that the Muon dynamics decouple into a
collection of independent scalar sequences in the spectral domain, each exhibiting similar convergence
behavior. Our theory formalizes the preconditioning effect induced by spectral orthogonalization, offering
insight into Muon’s effectiveness in these matrix optimization problems and potentially beyond.

1 Introduction

The emergence of Muon—a matrix-structured, spectrum-aware optimizer recently proposed by Jordan et al.
(2024)—has marked a milestone in the pretraining of large language models (LLMs) and beyond. Standing
for MomentUm Orthogonalized by Newton-Schulz and leveraging spectral orthogonalization of gradients,
Muon was initially shown to set new training speed records on benchmarks like CIFAR-10 and NanoGPT,
outperforming conventional optimizers (Jordan et al., 2024). Subsequent work has scaled Muon to multi-
billion-parameter LLMs, demonstrating approximately a twofold improvement in training efficiency over the
AdamW optimizer (Liu et al., 2025). Such empirical advances have positioned Muon as a compelling alternative
to established optimizers such as Adam and AdamW, and have motivated theoretical investigation into the
mechanisms underlying Muon’s practical efficiency.

1.1 The Muon algorithm and prior theory

Setting the stage, consider an unconstrained optimization problem:
minimizex  f(X), (1)
where X € R™*"™ is a matrix variable. At each iteration ¢ > 0, Muon executes the following update:

B; =V f(X}) + pBi-1, (2a)
Xiy1 = Xy — ny msign(By), (2b)
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where B; represents an auxiliary momentum-like iterate that aggregates the current gradient with exponentially
discounted past gradients, 0 < p < 1 controls the degree of momentum (exponential averaging), 7 > 0 stands
for the learning rate at iteration ¢, and msign(-) denotes the matrix sign function defined as

msign(Z) = argmoin {IIZ — Ol : either OO" =T or O'O = I}. (3)

Equivalently, if a matrix Z has compact singular value decomposition (SVD) Z = UzX ZVZT —where Uy
(resp. Vz) denotes the left (resp. right) singular matrix—then its matrix sign is given by msign(Z) = UV, ,
although in practice msign(-) is computed efficiently using Newton-Schulz iterations (Jordan et al., 2024;
Higham, 2008). A notable special case of (2a) arises when momentum is disabled by setting p = 0, yielding
the simplified update rule

X1 = X, — e msign (VF(Xy)), t=0,1,--- (4)

This important variant is commonly referred to as simplified Muon or the spectral gradient method. Turning
off momentum substantially simplifies theoretical analysis (An et al., 2025; Shen et al., 2025; Davis and
Drusvyatskiy, 2025; Su, 2025), while often retaining comparable empirical performance to its momentum-
based counterpart for nonstochastic settings (Shen et al., 2025). In contrast to standard optimizers like
Adam (Kingma, 2015) and AdamW (Loshchilov and Hutter, 2019) that apply independent per-coordinate
preconditioning, a distinguishing feature of Muon or spectral gradient methods lies in the use of gradient
orthogonalization: update directions are obtained by spectrally orthogonalizing the gradient estimates.

Motivated by Muon’s remarkable empirical success, the past year has witnessed a surge of theoretical
efforts aimed at elucidating the mechanisms behind its effectiveness from diverse perspectives. From an
optimization standpoint, Li and Hong (2025); Shen et al. (2025) established convergence guarantees of Muon
on smooth objectives. In particular, Shen et al. (2025) showed that Muon’s convergence is governed by the
gradient Lipschitz parameter defined w.r.t. the spectral norm, which can sometimes be substantially smaller
than its Euclidean counterpart and hence offers a potential explanation for Muon’s accelerated convergence.
Kovalev (2025) interpreted Muon as a trust region method with non-Euclidean trust regions and derived
tighter convergence rates for certain function classes. Complementing this line of work, Chen et al. (2025)
showed that: Muon (with decoupled weight decay) approximately enforces a spectral norm constraint on
weight updates, which implicitly reduces the worst-case smoothness of the optimization landscape and enables
the use of larger learning rates. Stepping beyond worst-case convergence guarantees, Davis and Drusvyatskiy
(2025) compared the one-step progress of spectral updates (as in (4)) relative to Euclidean gradient updates,
and showed that Muon yields a larger one-step reduction in the objective than gradient descent (GD) when the
gradient rank exceeds the activation rank. Another recent work Su (2025) introduced an “isotropic curvature
model”—proposed through heuristic arguments and validated empirically in transformer training—and
derived gradient orthogonalization iterations as the optimal updates under certain assumptions.

Despite these theoretical pursuits, however, the theoretical foundation of Muon remains far from complete.
In particular, very few existing results were able to offer end-to-end, rigorous analyses that provably
demonstrate Muon’s advantages over classical optimizers in concrete applications.

1.2 This paper: preconditioning with Muon

In this work, we take a step towards theoretically justifying the effectiveness of Muon by investigating its
preconditioning effect—a core feature built into its design via spectral orthogonalization—that is hypothesized
to make the optimizer better align with the geometry of neural networks (Jordan et al., 2024; Bernstein and
Newhouse, 2024b; Vasudeva et al., 2025; Lau et al., 2025). Rather than tackling the most general settings,
we focus on two concrete, yet fundamental, matrix optimization problems: (a) matrix factorization, and (b)
in-context learning of linear transformers. By focusing on these stylized applications, we develop end-to-end
convergence theory unveiling provable advantages of Muon over classical optimizers like GD and Adam. Our
main contributions are summarized below.



problem algorithm iterations paper

simplified Muon exactly-parameterized logé this work (Theorem 1)

over-parameterized log L this work (Theorem 1)

matrix exactly-parameterized rlog L Chi et al. (2019)
factorization GD over-parameterized k*log X | Stéger and Soltanolkotabi (2021)

lower bound K log % folklore

SignGD lower bound K this work (Theorem 2)

simplified Muon | exactly-parameterized log L this work (Theorem 3)

in-context learning GD lower bound Velogt d’Aspremont et al. (2021)
SignGD lower bound K this work (Theorem 4)

Table 1: Summary of convergence theory for simplified Muon, GD and SignGD for both matrix factorization
and in-context learning tasks. We report the numbers of iterations required to achieve e-accuracy; only the
orders are shown, with all preconstants omitted.

e Matriz factorization. We show in Theorem 1 that simplified Muon converges linearly, encompassing both
exactly-parameterized and over-parameterized settings. Notably, Muon’s iteration complexity is provably
independent of the condition number x of the matrix to be factorized—a stark contrast to both GD and
SignGD (a simplified variant of Adam with momentum disabled), whose iteration complexities scale at
least linearly with & (cf. Theorem 2).

e In-context learning of linear transformers. Akin to the matrix factorization case, we establish linear
convergence of simplified Muon in Theorem 3, with an iteration complexity independent of the condition
number of the target covariance matrix. This contrasts sharply with both GD and SignGD, for which we
develop iteration complexity lower bounds (cf. Theorem 4) that scale polynomially with the condition
number of interest.

See Table 1 for more detailed comparisons. For both problems, our results reveal that by normalizing
the gradient spectrum at each iteration, Muon exhibits preconditioning benefits that yield provably faster,
condition-number-free, convergence rates. These theoretical findings are complemented by a series of numerical
experiments that corroborate the preconditioning benefits of Muon. At a more technical level, our analyses
uncover that the dynamics of Muon decouple into a collection of independent scalar sequences in the spectral
domain, each associated with one eigenvalue of the target matrix and exhibiting similar convergence behavior.
While our theory is restricted to two simple matrix optimization problems and by no means exhaustive, we
expect the preconditioning effect of Muon to manifest in broader applications.

1.3 Additional related work

We now provide additional discussion of related prior work. The convergence analyses in Li and Hong (2025);
Shen et al. (2025); Chen et al. (2025) were motivated in part by Bernstein and Newhouse (2024b), which
interpreted (some simplified variants of) Adam, Shampoo, and Prodigy as steepest descent under certain norm
constraints. It is noteworthy that the idea of spectral initialization of gradients has appeared in earlier designs
of optimizers (e.g., Carlson et al. (2015a,b,c); Tuddenham et al. (2022)). Another line of research studied the
implicit bias of Muon. For example, Fan et al. (2025) showed that in multi-class linear classification, Muon
(or its idealized variant with exact orthogonal updates) converges to solutions that maximize the margin
w.r.t. the spectral norm of the weight matrix, which contrasts with the biases of SGD or Adam that favor
max-margin solutions w.r.t. Euclidean or coordinate-wise norms. Moreover, spectrum-aware optimizers
like Muon were shown to improve generalization on tasks with imbalanced or long-tailed data distributions
(Vasudeva et al., 2025; Wang et al., 2025), as Muon (with the aid of spectral orthogonalization) tends to learn



all principal components of the data at a more uniform rate instead of over-emphasizing the dominant features.
Further insights were provided by Zhang et al. (2025), who demonstrated statistical benefits of layer-wise
preconditioning in simplified settings, and by Wang et al. (2025); Vasudeva et al. (2025), who showed that
Muon yields a more isotropic singular value spectrum than Adam. Moreover, Tveit et al. (2025) reported
that Muon accelerates grokking, offering further evidence of its practical advantages in long-horizon training
dynamics. There have also been discussions drawing connections between Muon and other second-order
methods—for example, Jordan et al. (2024); Shah et al. (2025) noted that Muon’s update can be interpreted
as an approximate form of Shampoo (Gupta et al., 2018). Lastly, several prior work derived Muon and closely
related methods from alternative theoretical perspectives, with some of these studies even predating the
formal introduction of Muon (Pethick et al., 2025; Carlson et al., 2015¢; Lau et al., 2025; Bernstein and
Newhouse, 2024a,b; An et al., 2025).

Moving beyond Muon, it is worth noting that preconditioning has emerged as a powerful tool for accelerating
nonconvex matrix factorization. Tong et al. (2021a) introduced ScaledGD, with a nonsmooth version presented
in Tong et al. (2021b). They proved that in the exactly-parameterized regime with spectral initialization,
ScaledGD achieves linear convergence at a rate independent of the condition number. Subsequent work by
Zhang et al. (2021, 2023) extended these results to the over-parameterized setting, demonstrating condition-
number-free convergence when suitably initialized. Xu et al. (2023) showed that ScaledGD remains effective
under small random initialization, further broadening the scope of condition-number-free guarantees.

1.4 Notation

We also introduce a set of useful notation. For any matrix M, we denote by o;(M) the i-th largest singular
value of M, let opin (M) be its smallest singular value, and we let | M|| (resp. || M||r) represent its spectral
norm (resp. Frobenius norm). For any k < d, we let Oy denote the set of orthonormal matrices in R4xk,
For any set of scalars (aq, ..., aq), we denote by diag{ai,...,aq} the diagonal matrix whose diagonal entries
are ai, ..., aq. Finally, for any scalar « € R, we define the sign function as sign(z) = 1 if z > 0, sign(z) = 0 if
x =0, and sign(z) = -1 if x < 0.

2 Main results: two case studies

In this section, we carry out both theoretical and empirical studies on two simple yet fundamental matrix
optimization problems. Here and throughout, we shall focus on analyzing simplified Muon described in
Equation (4), which discards the momentum term and thereby facilitates analysis.

2.1 Matrix factorization

The first problem considered herein is symmetric matrix factorization, which can be formulated as

N 1 2
minimize fU) = ZHUUT - M*||;. (5)

Here, M* € R%*4 is a rank-r positive semidefinite matrix, and U € R?*¥ is a (possibly over-parameterized)
factor containing k (k > r) columns. In a nutshell, we seek to factorize the target matrix M* as UU T by
solving the optimization problem (5). Throughout, we let M* = V*A*V*T be the eigen-decomposition of
M*, where A* = diag{\},..., \}} contains the nonzero eigenvalues A\j > --- > \* > 0, and V* € R4*" is an
orthonormal matrix whose columns correspond to the associated eigenvectors. The condition number of M*
is defined and denoted by

K= A/AL



2.1.1 Convergence guarantees for Muon

When applied to the matrix factorization problem (5), the simplified Muon algorithm (4) yields a straightforward
closed-form update rule

U1 = U; — e msign (UU,] — MOU,),  t=0,1,--- (6)

For both the exactly-parameterized (i.e., k = r) and over-parameterized (i.e., k > r, or even k > d) settings,
we establish rapid convergence of simplified Muon to the ground truth, as formalized in the theorem below.

Theorem 1. Suppose that A .. > AT > --- > XX > 0, and consider any 0 < € < A%

max -’

(a) Consider the case with k > d. Set the learning rates as ny = Cy\/Noaxp® for 1/2 < p < 1, with C,

uniformly sampled from the interval [1,2]. Set the initialization as Uy = aO, where 0 < a < Cyv/Afax
and OO = I,;. Then with probability 1, it holds that ||UTU1T - M*H < ¢ as long as

1 8\
T > 1 max |
_1—p0g< € ) ™

(b) Consider the case with r < k < d. Set the learning rates as ny = Cy i1/ Noaxp® for 2/3 < p < 1, with
Cy.+ independently and uniformly sampled from the interval [1,2]. Set the initialization Uy = aO for
some a > 0, where O € Oyxy 15 an orthonormal matriz sampled uniformly at random from Ogxy. Then
with probability at least 0.99, we have ||UTU:,T — M*H < e as soon as

= [ty (22550)]

provided that « is sufficiently small.

Remark 1. Careful readers may note that our theory for the regime r < k < d requires more restrictive
conditions than those in the regime with k > d. We believe that these restrictions are not fundamental and
can potentially be relaxed via more refined analyses, which we leave for future work.

Remarkably, Theorem 1 uncovers that when applied to matrix factorization, the iteration complexity
of Muon is entirely independent from the condition number x of the target matrix X™*, and scales only
logarithmically with the inverse accuracy level 1/e (thereby establishing linear convergence for Muon). This
finding suggests that the gradient orthogonalization step in Muon serves as an effective preconditioner,
accelerating convergence by mitigating ill-conditioning in the gradient search directions. Even in the presence
of overparameterization, Muon is guaranteed to achieve condition-number-free linear convergence.

We also briefly explain the rationale for using exponentially decaying learning rates. In contrast to GD—
where the distance moved in each iteration depends on both the gradient norm and the learning rate—each
Muon iteration moves a fixed distance determined solely by the learning rate 7. Consequently, to achieve
linear convergence, the length of each movement—mnamely, n;,—must decrease geometrically over iterations.

2.1.2 Comparisons with other optimizers

To better demonstrate the preconditioning benefits offered by Muon, we compare its convergence theory
established in Theorem 1 against two prominent baselines: gradient descent, and a simplified variant of
Adam with momentum turned off. Notably, the latter two optimizers are unable to achieve the desirable
condition-number-free convergence rates.

Let us begin by examining GD, whose convergence properties for matrix factorization have been extensively
studied. More precisely, consider the following GD update rule:

(GD) Ui =U; — nt((UtUtT — M*)Ut), t=0,1,--- 9)



The state-of-the-art convergence theory for this algorithm can be summarized as follows: by taking the
learning rates 7; = ©(1/A%), GD yields |[U:U,” — M*|| < ¢ in

{O(mlog(l/e)) iterations if k = r (exactly-parameterized), (10)

O(min{x3log(1/e), \f/e)} iterations if k > r (over-parameterized);

see, e.g., Chi et al. (2019); Stéger and Soltanolkotabi (2021); Zhuo et al. (2024); Xiong et al. (2023); Xu et al.
(2024) for more details. This implies that GD cannot attain condition-number-free convergence guarantees
without compromising linear convergence.

Next, let us turn attention to a simplified variant of Adam given by

(SignGD) Ui = U, — g sign (DU, — MMUY), t=0,1,--- (11)

where the sign function sign(-) is applied entrywise. This algorithm (11), which disables momentum in
Adam, is also referred to as SignGD. Note that SignGD is more amenable to theoretical analysis than its
momentum-based counterpart, while still capturing several core features of Adam like entrywise preconditioning
(Bernstein and Newhouse, 2024b). To demonstrate the provable advantage of Muon over SignGD, we establish
the following lower bound on the iteration complexity of (11).

Theorem 2. Let rq € (0,1/16] be a universal constant. Consider the SignGD algorithm (11) with any
non-increasing, positive learning rate sequence {m}1>0 satisfying no < ro. Then, one can find a ground-truth
matriz M* with condition number k, along with an initialization Uy obeying HUOU(;r — M*HF < rg, such

.2
that: for any given € < 40997%, f(Ur) < e cannot happen unless

T>’f“_1
- 4

In words, this lower bound demonstrates that a momentum-free variant of Adam may incur at least a
linear dependency on  in the iteration complexity. The proof of this lower bound is deferred to Section C.

2.1.3 Intuition

Thus far, we have established the advantage of simplified Muon over a simplified variant of Adam (i.e., SignGD).
In this subsection, we seek to provide some intuitive explanations about their differences in convergence rates.
To streamline the presentation, we restrict our discussion to the exactly-parameterized regime where k = r.

Decoupling of Muon dynamics into independent scalar sequences. To build intuition for the working
mechanism of simplified Muon, we adopt for the moment a simplifying assumption:

U =V*%,R", forallt>1 (12)

for some diagonal matrix 3, = diag{o14,...,0,¢} € R™*" and some orthonormal matrix R € O,,. In words,
(12) asserts that each Muon iterate U has its singular subspace perfectly aligned with the true subspace V*.
Although this assumption may appear overly restrictive at first glance, it will be approximately justified in
our analysis in Section 3.
Under this simplifying assumption (12), the update rule (6) satisfies
Uis1 = U, — e msign (UU, — MU)

=V*S,R" — npmsign (V*Z,R'RE,V*T - VAV V*E,RT)

=V*S,R" —n msign (V*(Z} — A*S)R")

=V*3,R" — 1, V*diag-sign(=Z?} — A*S)R', (13)



where for any diagonal matrix ¥ = {0y, ..., 0.}, we define diag(X) = {sign(o1),...,sign(c,)}. If we write
Uiy = V31 RT according to (12), then it readily follows from Equation (13) that

i1 = By — n diag-sign(TF — A*D,). (14)

Crucially, all terms in Equation (14) are diagonal, thereby allowing it to be decomposed into r independent
scalar recursions:

Oit+1 = 04t — Mt sign (01-37,5 - A;Ui,t), t=0,1,--- (15)

for each 1 < i < r, each associated with one eigenvalue of M*. Noteworthily, the r scalar sequences in (15)
evolve completely independently, with no interaction across sequences.

Owing to its simplicity, the scalar recursion in (15) admits a straightforward analysis. As we shall formally
establish in Section 3.1, elementary calculations give

Jz'z,t+1 - )‘:| = O( A;naxnt) = O(A:naxpt)7 (16)

provided that the learning rates decay exponentially as 7, = Cy)y/ A% p". This linear convergence feature—
with the convergence rate p a numerical constant within [1/2, 1)—mitigates the imbalance between large and
small eigenvalues, thereby paving the way for condition-number-free convergence.

This intuition further hints at a connection between Muon and the scaled gradient descent (ScaledGD)
method (Tong et al., 2021a). We formalize this connection and discuss its implications in Appendix A.

Why do SignGD and Adam fail? As illustrated in Theorem 2, the convergence rate of SignGD (a simplified
variant of Adam) is sensitive to the condition number of M*. This arises because SignGD employs a per-
coordinate preconditioner, which disregards the richer curvature structure of the problem and hence fails to
adapt as effectively as Muon.

To see this more formally, denote by u; = vec(U,) the flattened iterate, where vec(Z) stacks the rows
of a matrix Z into a single column vector. Invoking the identities vec(AX B) = (A ® BT )vec(X) and
msign(Z) = Z(Z " Z)~/? for Z € R¥*", we can express the Muon update (6) as

w1 =u — (I @ (VU TV F(U)) ) vec(VF(UL)), (17)

where I ® (Vf(U;)"Vf(U;))~/? can be interpreted as a blockwise preconditioner. Crucially, this precondi-
tioning matrix is not diagonal, even in the limit when U; converges to the truth.
In contrast, SignGD and Adam employ diagonal preconditioners. For instance, the SignGD update (11) can
be expressed as
U1 = ug — N diag {|vec(Vf(Ut))|*1} vec(Vf(Ut))7 (18)

where |z|~! denotes the entrywise inverse of the entrywise magnitude of a vector z. This diagonal precondi-
tioner completely neglects cross-coordinate curvature. Consequently, Adam fails to adapt to the geometry of
the matrix factorization problem, leading to slow convergence when M ™ is ill-conditioned.

2.1.4 Numerical experiments

We now carry out a series of numerical experiments to validate the theoretical separation in convergence
rates between Muon, GD, and SignGD, with results displayed in Figure 1. In the top row (a—c) of Figure 1, we
investigate the impact of the condition number « € {1,5,25,125,625}, while fixing the matrix dimension to
d = 100, target rank r = 2, and search rank k = 2. In the bottom row (d—f) of Figure 1, we evaluate the
effect of search rank k € {2, 3,100}, fixing the condition number x = 1, matrix dimension d = 100, and target
rank 7 = 2. All experiments adopt a more robust exponentially decaying learning rate schedule: the learning
rate is reduced by a factor of 0.3 if the loss does not decrease for 50 consecutive iterations.

Across all settings, Muon exhibits fast and stable convergence, reaching machine-level precision within a few
hundred to a few thousand iterations—even under large condition numbers or severe rank over-specification.
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Figure 1: Numerical convergence behavior of Muon, SignGD, and GD on matrix factorization tasks under
varying condition numbers and search ranks.

In contrast, both GD and SignGD experience significant slowdowns as the condition number increases or
the search rank grows. These results underscore the robustness of Muon vis-a-vis ill-conditioning and over-
parameterization. Moreover, while our theoretical guarantees for Muon require small initialization, we observe
that in practice Muon converges robustly even with moderately sized initialization. In all experiments, we use
an initialization scale of @ = 0.1. Rigorously elucidating why Muon remains stable and convergent under a
broader range of initialization is an important direction for future work.

2.2 In-context learning with linear transformers

Next, we turn to the second case study, motivated by in-context learning with linear transformers. Let us
first state the optimization problem before describing the motivation. Let {z;}¥, C R? be a fixed set of N
vectors. Define the empirical covariance matrix as

1
S = N Z%%T, (19)
which is assumed to be invertible throughout. We aim to solve the following optimization problem:

minimize  f(Q) = %tr((SQ _1S(sQ-1)"). (20)

QcRdxd
This is a simple quadratic optimization problem with @* = §~! the minimizer. Letting x(S) denote the

condition number of the matrix S, we see that the quadratic form induced by (20) has an effective condition
number that scales as

K= K(S)>. (21)

Motivation: in-context learning of a single-layer linear transformer. In-context learning (ICL)
refers to the phenomenon whereby a pretrained model can make predictions from a prompt on the fly (Brown



et al., 2020). More specifically, the prompt contains a sequence of N labeled examples (i.e., the context),
followed by a query token, and the model must infer the query label from the context at inference time
without updating its parameters. Transformers (Vaswani et al., 2017) arise as a natural model class that
supports ICL. Here, we focus on a special case: in-context fixed-design linear regression, where the set of
possible input vectors {z;}; C R? is fixed with empirical covariance S, and each task is indexed by a vector
w € R? with corresponding labels 4, ; = w ' ;. At a high level, the context can be summarized by the vector
% Zf\il Yw,iTi = Sw. Given a query x4 € R4, a simple in-context predictor uses a shared meta-parameter
Q € R¥4 to map the query to an effective readout Qz, and predicts via the bilinear form
Uq = (Sw)"'Qzq = w' SQx,,.

Averaging the squared prediction risk over tasks with E[w] = 0 and E[ww "] = I, and over uniformly sampled
queries &4 ~ Unif{x1,..., N}, yields the expected loss that coincides with the objective function in (20).
Moreover, this predictor can be realized by a single-layer linear transformer (attention without softmax)
under a standard reparameterization (Zhang et al., 2024a; Huang et al., 2023). See Section D for more details.

Convergence guarantees for Muon. When applied to the optimization problem (20), the update rule of
the simplified Muon algorithm admits a closed-form expression as follows:

Qi1 = Q¢ — 1y msign (SthS — 5’2), t=0,1,--- (22)

Encouragingly, this algorithm is guaranteed to converge linearly at a rate independent of x, as asserted by
our theory below.

Theorem 3. Let the initialization be Qo = 0 and set the learning rate schedule as n; = Umi?(s) pt for some

quantities C,, > 1 and p € [1/2,1). Then, for any € > 0, simplified Muon (22) achieves |Qr — Q*|| =
|Qr — S71|| < ¢ as long as

1 C
> U )
T> > log (Umin(s)6> (23)

This theorem establishes that the number of iterations needed for simplified Muon to yield e-accuracy
is independent of the condition number x underlying this quadratic optimization problem. Akin to the
matrix factorization counterpart, the Muon dynamics admit a decomposition into a set of independent scalar
sequences in the spectral domain, each evolving at a comparable rate of convergence irrespective of the
magnitude of the associated eigenvalue, a feature that we shall rigorize in the proof presented in Section 4.

Comparisons with other optimizers. To demonstrate the provable benefits of Muon compared against
other optimizers, we discuss in this subsection the convergence rate of GD and SignGD.
When applied to this problem (20), GD follows the update rule

(GD) Qt+1 :Qt _nt(SQQtS—SQ)7 t:()71’ (24)

Given that this problem is a strongly convex quadratic optimization problem, classical optimization theory
already reveals that the number of iterations needed for GD to achieve e-accuracy is lower bounded by (see,

e.g., d’Aspremont et al. (2021))
Q (Vrlog(1/e)) .

This lower bound for GD scales proportionally with 1/, unveiling the unavoidable dependency of its iteration
complexity on the condition number.

We then switch attention to SignGD (recall that this is a variant of Adam with momentum turned off),
which adopts the update rule

(SignGD) Qi1 = Q¢ — 1y sign (S2Qt5 — 52), t=0,1,--- (25)

where the sign(-) operator is applied entrywise.
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Figure 2: Numerical convergence behavior of Muon, SignGD, and GD on in-context learning problems with
one-layer linear transformers under varying condition numbers.

Theorem 4. Consider the SignGD algorithm (25) with any non-increasing, positive learning rate schedule
{m}i>0. Consider any 0 < e < V2no/k. Then, there exists an empirical covariance matriz S, along with an
initialization Qq, such that |Qr — Q*||lr < € cannot happen unless

sl
=73

In words, Theorem 4 rigorously establishes that the SignGD algorithm cannot achieve condition-number-
free convergence for solving this problem, and is therefore substantially outperformed by Muon. The proof of
Theorem 4 is provided in Section E.

Numerical experiments. We now evaluate and compare the numerical convergence performance of Muon,
SignGD, and GD on in-context learning tasks with one-layer linear transformers. We vary the condition number
k€ {1,5,25,125,625} while fixing the matrix dimension to d = 100. All experiments use an exponential
decay learning rate schedule: the learning rate is reduced by a factor of 0.3 whenever the loss fails to decrease
for 50 consecutive iterations. Muon achieves rapid convergence across all condition numbers and reaches
machine precision within a few hundred steps. In contrast, SignGD and GD suffer from significantly slower
rates, particularly under ill-conditioned settings, thereby validating the robustness and efficiency of Muon for
ill-conditioned problems.

3 Analysis for matrix factorization (proof of Theorem 1)

In this section, we establish our convergence guarantees for Muon applied to matrix factorization (i.e.,
Theorem 1). Our analysis is structured into several parts. Firstly, we analyze the dynamics of Muon for a
special scalar case. Secondly, building on this scalar recurrence analysis, we establish the desirable convergence
assuming that U; has its singular subspace perfectly aligned with V*. With these preparations in place,
Steps 3 and 4 then prove the full convergence theory for the cases with k > d and r < k < d, respectively.

3.1 Step 1: dynamics of Muon in the scalar case

Before delving into the general case, let us first consider a special case that aims at solving the following
scalar optimization problem:

e 2 %2
minimize (u® =A%), (26)

where A* > 0. Evidently, this problem can be viewed as a 1-dimensional special case of (5). The Muon
algorithm (6) applied to (26) follows the scalar dynamic below:

Uga1 = Ug — 7 SIGN ((uf — N uy), t=0,1,--- (27)

10



where ug € R indicates the initialization.
In order to analyze the dynamics of (27), we first demonstrate in the following lemma that with probability
1, the iterates u; never reach 0, as long as (), is randomly generated.

Lemma 1. Consider any update sequence taking the form of uii1 = us + mes¢ for t > 0, where ug # 0
is the initialization, and s; € {1,—1} for all t > 0. The learning rates are taken as ny = Cyr/Noaxp® for
some X5 > 0 and p € [1/2,1), where the prefactor C,, is uniformly sampled from the interval [1,2] and is
independent of ug. Then, with probability 1, one has uy # 0 for all t > 0.

The fact that {u;} never hits 0 eliminates the need to analyze this undesirable stationary point. We are
now positioned to develop theoretical convergence guarantees for the scalar dynamics (27).

Lemma 2 (Convergence of scalar Muon). Consider the scalar updates in (27), where 0 < \* < \f ... Set
the learning rate schedule to be ny = Cyr/Noaxp' for some quantities 1/2 < p <1 and C,, > 1. Assume that

0 < |uo| < Cp/Atax = Mo. Then, with probability 1, for all t > 0, it holds that

“ut+1| -V )‘*‘ <n <2 )‘maxp ) (283’)
‘ut—O—l AT < 8% (28Db)

maxp

In words, Lemma 2 reveals that Muon converges linearly at a rate p for this scalar case. Remarkably,
analyzing this scalar case not only addresses this special setting, but also sheds light on the spectral dynamics
underlying Muon for the more general case, as detailed in subsequent subsections.

Proof of Lemma 1. Regarding ¢t = 0, we have ug # 0 by assumption. For any ¢t > 1, we can express u; by
expanding the recurrence relation:

t—1 t—1
up = Ug + Z SpMk = o + Cpr/ 0k ax (Z s;cpk> =:ug + C 5. (29)
k=0 k=0

If S; = 0, we have u; = ug # 0. Otherwise, the condition u; = 0 is equivalent to C,, = —ug/S;. In other
words, for any given ¢t and any fixed sequence {Sk}};;%, there exists exactly one value of C), that can make u;
equal 0.

Let C be the set containing all such critical values for all possible ¢ and {s;}:

c-U U { zskp #o} (30)
t=1se{—1,1}* Vo maka 0 SkP

which is clearly a countable set given that the set of time steps and the set of possible sign sequences are
both countable. Therefore, when C,, is uniformly sampled from the interval [1,2], the probability of this
continuous random variable taking values in a countable set is 0, i.e.,

PE>0:u,=0)<P(C,eC)=0. (31)
Thus, it follows that, with probability 1, u; % 0 holds for all ¢ > 0. O

Proof of Lemma 2. First, Lemma 1 tells us that with probability 1, u; # 0 for all ¢ > 0. Moreover, if u? = \*,
then the iterate has reached the optimal solution, and will stay unchanged thereafter. Consequently, it suffices
in the sequel to analyze the case where (u? — )\*)ut # 0.

To proceed, observe that

(u2 — XNy = (g — V) (g + VA ). (32)
e If u; > 0, then u;(u; +vA*) > 0, and hence

sign ((uf — A\*)ug) = sign(uy — Vr). (33a)
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o If uy <0, then u(uy — \/)T*) > 0, and as a result,
sign ((uf — M)uy) = sign(ue + V). (33b)
This implies that in both of the above cases, the search direction is the sign of the difference between u; and
its nearest root of A*. In light of this, we find it helpful to define
Ay = [lue| — VA¥. (34)
Making use of Equations (27) and (33) allows one to easily verify that
Appr = |A — | < max{A, — g, }- (35)
Armed with this inequality, we are ready to prove the claim (28a), which we accomplish by induction.

e Base case (t =0). Given that VA* < /A%, and |ug| < ng, we have
A0:|‘U0‘7v)\*|§|U0|+\/>\*§7}0+\/>\;nax§2770, (36)

where we have used 1y = C, 0}, for C;, > 1. Combining this with (35) at ¢t = 0 gives

Ay < max{Ag — 10,70} < max{no,n0} = 10, (37)
which establishes the claim (28a) for ¢ = 0.

e Inductive step. Assume Ay < 1, for some ¢t > 0. Then in view of Equation (35),

Apro <max{Ai1 — Nep1, M1} < max{n, — N1, Mot} (38)

Equipped with our assumptions 7;41 = pn; and 1/2 < p < 1, we obtain

Nt — N1 = (1= p)ne < pne = M1, (39)
which taken together with Equation (38) yields

Apro < Mpgq.

This establishes the claim (28a) for iteration ¢ 4 2, which in turn finishes the proof of the claim (28a)
for all ¢ > 0 by induction.

Lastly, with inequality (28a) in place, we can readily demonstrate that, for any ¢ > 0,
uyy = N = [Juer] = V[ (Jugpa] + VA*) < A (Apgr +2VA%) < 8Af 0! (40)

as claimed, where the last inequality holds since A* < A%, and A1 < = O/ Mool < 24/ Max O

3.2 Step 2: dynamics of Muon with perfectly initialized column space

Next, we extend our analysis beyond the scalar case to another special case involving a particular—albeit
often impractical—choice of initialization. As will become clear momentarily, the general case is intimately
connected to this special setting.
More precisely, suppose that the initialization can be decomposed as

Uy = V*3,0,, (41)
where ¢ = diag{01.0,...,0.0} is a diagonal matrix in R"*", and Ojix € R**" is some arbitrary orthonormal
matrix with & > r obeying Oi:itOin;t = I,.. Armed with this initialization, we can establish convergence
guarantees of Muon by extending the scalar analysis in Lemma 2, as formalized in the lemma below.

12



Lemma 3. Suppose that Uy satisfies (41). Then for allt > 0, U; can be decomposed as
U, =V*3,0.] for some X, = diag{o1¢,...,00¢} € R™*". (42a)

init

In particular, for everyt >0 and 1 < i <r, one has
i1 = 05 — nesign ((07, — A})ois). (42b)

Importantly, Lemma 3 reveals that: if the initialization has its left singular subspace perfectly aligned
with the desired V*, then along the entire trajectory, the “spectrum” of each Muon iterate decouples into r
scalar sequences, each resembling the dynamics analyzed in Lemma 2. Therefore, invoking Lemma 2 yields

|07 01 = A< 8! (43a)

m.

for all ¢ > 0, with the proviso that |o; 0| < no for all 1 <4 < r. Taking this collectively with property (42a)
leads to the following convergence bound for all ¢ > 0:

(Ut Uly — M*|| = |[V*E2, VT = VAV || = max |07, — AJ| < 8\axp' (43b)

1<i<r m
Proof of Lemma 3. Let us prove this lemma by induction.
e Base case with t = 0. This holds trivially given our assumption (41).

e Inductive step. Assuming the induction hypothesis (42a) holds at time ¢, we can compute the gradient

as
ViU, = (UU, — M")U, = V*(Z? - A*)%,0,] (44)

init*

Given that both 3; and A* are diagonal matrices, the matrix sign of V f(U;) is given by
msign (V f(U;)) = V* diag-sign (37 — A*)Z;) Oy (45)

Here, we recall that diag-sign(D) = diag{sign(D1,1),...,sign(D, )} for any diagonal matrix D =
diag{D11,..., D, ,}. As a consequence,

U1 = U, — nymsign (Vf(Uy)) = V* (2 — 1, diag-sign (T — A*)E;)) Oy (46)
Thus, this validates the claim (42a) for ¢t + 1 and demonstrates that
i1 = Xy — 1, diag-sign ((Et2 - A*)Zt),
as claimed in (42b).

The proof is thus complete by induction. O

3.3 Step 3: analysis for the case with £ > d

Turning to the general case, we begin by analyzing the scenario with £ > d. In this setting, we find it
convenient to work with the decomposition M* = V*A*V*T with A* = diag{\],..., A5}, where we take
r = d and allow some of the eigenvalues in {A},..., A5} to be zero.

Recall the initialization Uy = aO, where O € R4*¥ is an arbitrary orthonormal matrix obeying OO T = I,
and a < 19. One can express Uy alternatively as

Uy = a0 = V*(al))V*TO = V*(al;)0,,, (47)

where O Oiie = V*TOOTV* = I,. This indicates that the initialization Up satisfies Condition (41).

init
Therefore, by applying Lemma 3 and inequality (43b), we see that with probability 1, |UTU%— -M *H <e

holds as long as
1 AL
T > log (8 max).
1—p €
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3.4 Step 4: analysis for the case with » < k < d

We now switch attention to the case with » < k < d, which is substantially more challenging to analyze
than the preceding setting. Here, we shall employ a random orthonormal initialization Uy = aO obeying
07O = I,. Our proof arguments unfold in several steps, as described below.

Step 4.1: initial subspace alignment. A key property that we would like to establish is that: after
the first Muon iteration, U; is already well aligned with the eigenspace V*. Note that when initialized at
Uy = a0, the gradient takes the following form

Gy = Vf(Uy) = (UU, — M*)Uy = —aM*O0 + >0, (48)
——
=Q
where @ denotes the leading term for small enough «. Let us decompose G into two components as

Gy =Gy <r +Go>r,

where G <, is the best rank-r approximation of Gy (i.e., it is composed of the r leading singular components
of Gy), and Gy, consists of the remaining k — r singular components. Given that Go <, and Gy >, are
orthogonal to each other, the matrix sign of Gy admits the following decomposition:

msign(Go) = msign(Go, <) + msign(Go > ). (49)

As it turns out, msign(Gy, <) and msign(Q) can be fairly close for small enough «, as asserted by the
following lemma. The proof is postponed to Section B.1.

Lemma 4. There exists some universal constant co > 0 such that, with probability at least 0.995,

162/ dr
|| msign(Go <) — msign(Q || <=0
0Ny

holds as long as 4a® < co\:/V/dr.

In addition, given that G <, and Gy, -, are orthogonal to each other, Lemma 22 in Section F reveals the
existence of a matrix Gy € R%*¥ such that

éo,gr =Q and (51a)
|| msign(Go) — msign(Go)|| < V2 || msign(Go <) — msign(Q)|| < 16\/300;\2*\/%. (51b)
Taking this together with the first iteration U; = aO — ng msign(Gy) leads to
U, =a0 — no(msign(éo) + Ro) = -1 msign(éo) + Ry, (52a)
where the residual terms Ry, R; satisfy
[Ro < S0V Ry <o V2ROV (52b)

CQ)\*

T

Co )\; - ’

provided that a < coAk/(324/2)},

max

dr).
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Step 4.2: construction of an auxiliary trajectory. To facilitate analysis, we find it helpful to construct
an auxiliary trajectory {U;};>1 as follows:

U, = —1)0 msign(CNJO)7 (53a)
ﬁ't—O—l = ﬁt — Tt mSign (vf(ﬁt))7 t= 13 27 e (53b)

In words, this auxiliary trajectory is also generated by simplified Muon in (6), but with a slightly modified
initialization that discards the residual term R; appearing in the original iteration (52a). In particular, it
follows from (52b) that

|0, - UL = | Rl < 20 (54)

Next, we demonstrate that the dynamics of this auxiliary trajectory {ﬁt}t21 can be decomposed into a
collection of independent scalar dynamics, akin to Step 2. To see this, we first claim that with high probability,
msign(Q) can be decomposed as

msign(Q) = V*O'" (55)
for some matrix Q' € R**" obeying O'T O’ = I,..
Proof of property (55). Observe that
— msign(Q) = msign(M*0) = msign(V*A*B) = V*A*B(B"A*’B)'/? = V* msign(A*B),
where we take B = V*TO. Lemma 10 asserts that with probability at least 0.995, o,.(A*B) > 0, thus
implying that (msign(A*B))T € Okxr. This completes the proof. O

Armed with this property, we can readily repeat the analysis in Step 2 to establish convergence guarantees
for {U;}. It can be easily seen from (55) and our construction of Gy that: there exist two orthonormal
matrices V' € Ogxr and R € Oy« such that

Vii,=V*  R.,=0', and  msign(Gy) = VR, (56)

where M. 1., denotes the first  columns of a matrix M. In the meantime, Condition (56) allows us to express
the ground truth as

X*=V*AV*T = VAV, (57)
where A, € R¥*F is an augmented diagonal matrix A,y = diag{\},..., A} with Af; =+ =\ = 0.

Recall that Uy = —n msign(Go) = —noVRT (cf. (53a)). Combining this together with Equation (57),
we can readily invoke Lemma 3 to show that: for each ¢ > 1, U; can be decomposed as

U, =VZ,R' for some 3, = diag{d1¢,...,0%:} € RFxk (58a)
where ;1| =m0 (1 <i<k), and for every t > 1 and 1 < i <k,
Gite1 = 0ip — nesign ((57, — A})Tis). (58b)

Repeating the same convergence analysis for (43) tells us that (see Lemma 11 for a slight extension that
accounts for random learning rates): for every ¢ > 0 and every 1 < i < k one has

-~ * 8 *
G741 — ATl < WAmaxptv (59a)
. 8
U1 Uy — M™|| < W)‘:ﬂaxpt' (59b)
Consequently, one achieves o
|UrU; — M*|| <e/2 (60)

167,
as long as T' > %p log (ﬁ)
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Step 4.3: proximity between the original and auxiliary trajectories. With the desirable convergence
property of {U;} in place, it remains to show that the original iterates {U;} remain close to the auxiliary
iterates. First, we bound the differences between U; and ﬁt, as well as between their associated gradients, in
the following lemma; the proof is deferred to Section B.2.

Lemma 5. Assume that omin(V f(Uy)), O’min(Vf(ﬁt)) > 0. Then it holds that

~ 147\* ~
U1 — Upga|| < <1+77t(1_p) S ) U — Uy |. (61)

2o'min(vf(ﬁt))
In addition, we have max { [|U]| , Hﬁt”} < Lli:;‘”‘.
Repeating the analysis of Lemma 1 (Nwhich we omit here for brevity), we can easily see that with probability
one, omin(Vf(Uy)) > 0 and omin(Vf(Uz)) > 0 hold for all ¢ > 1. Lemma 5 then tells us that

_ 147A% [7
U - 1 \ max U, - U
|Ur - Ur|| < H ( 0 (1 —p)2Umin(vf(Ut))> I .

T-1 *3/2 N
. { (1 . 204Nmibep' ) }||U1 gy
t=1 (1 - p)2Umin(vf(Ut))

= HT
< 201y, (62)

where we have used 1 = C 11/ Noaxp' < 24/ Moaxp’ as well as (54).

In order to invoke (62) to control HUT - ﬁT” and II7, a crucial step is to lower bound Jmin(Vf(ﬁt)) =
ming <;< \(Eﬁt — M), as accomplished by the following lemma. See Section B.3 for the proof.

Lemma 6. Consider any 0 < & < %()\* )3/2. Then for every step t > 1, we have

min

2(k—r)€/§+ 12re
D VY

. t
max min max P

P <amin (VF(U41)) < ]—‘t> < (63)

where F; represents all events that happen up to and including time t.

One can then exploit Lemma 6 to establish high-probability upper bounds on the quantity II7 defined in
(62). The resulting bounds are stated in the lemma below, whose proof is deferred to Section B.4.

Lemma 7. Consider any ¢ € (0,1). Then, with probability at least 1 — §, the following results hold.
(i) If k = r, then

1
Iy <exp (O <Tlog (%) + log 5>) . (64)
(it) If k > r, then
k— 1
In particular, if T = [ﬁ log ((116:\;:“)3"5)1 and 0 = poly(e/ N} .x), then with probability at least 1 — § one has
Ao re e

< ()\;knax><mq:) with o = 0] ﬁlog <(17p)€) log (17;;)) , if k=r.

“\ e "0 (ke log? () + 1k los (s ) log (U52)) ik

(1-p) (1—p)e 1-p (1—p)e 1-p

(66)
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Taking this lemma together with (62) yields: with probability at least 1 — 0.001(g/\%,,.), we have

max

. \* Cexp (1 —p)€
—Up|| <20 fmax ) < =P8
|Ur —Url| < O‘( e ) = 167/ N o7

provided that

Cex
1—p)e € P
a§3(2 A’i) (A* ) . (68)

max max

Step 4.4: putting everything together. Invoking (59b), (67) and Lemma 5, and applying the union
bound, we conclude that with probability at least 0.99,

|UcUF - M| < 0207 - M| + |UnUF - 0207
|Gx0F ||+ (10wl -+ |Gl [0 — O

IN

(69)
<y W N A-pe
277 T 16 A
provided that « is sufficiently small. This completes the proof.
4 Analysis for linear transformers (proof of Theorem 3)
Recall that the gradient of f(Q) w.r.t. Q is given by
ViQ)=S(SQ-1I)S=S°QS — S> (70)

To proceed, let us denote the eigen-decomposition of S as § = V*A*V*T where A* = diag{\}, ..., A5} is a
diagonal matrix containing the eigenvalues {A*} of S, and V* consists of orthonormal columns corresponding
to the eigenvectors of S. As a key step of this proof, we would like to show that:

Lemma 8. For each t > 0, the simplified Muon iterates (22) can be decomposed as

Q=Vev+’ (T1la)
for some diagonal matric ©; = diag{b1,1,...,04.}. In particular, {®,} evolves according to
O 1 = O, — n, diag-sign(A*O; — I), t=0,1,--- (71b)

where diag-sign(M ) = diag{sign(M11),...,sign(Mgq)} for any diagonal matric M = diag{M 1,...,Mgq}.

Proof of Lemma 8. The base case with t = 0 holds trivially, since the initialization Qg = 0 is equivalent to
taking Ag = 0. Assuming the inductive hypothesis (71a) holds at step ¢, we have

VH(Q:) = 5°Q,S — 8? = V* (A0, - A)V*T,
and as a result,
Q41 = Q¢ — mr msign (VL(Qy))
= Q; — n, msign (V*(A**©, — A*2)V*T)
= Q, — 1, V* diag-sign(A*©, — A*H)V*T (72)
= V*(©, — n, diag-sign(A**©; — A*?))V*T
= V*(©, — n, diag-sign(A*©; — I))V*T.

This implies the decomposition Q11 = V*®,,1V* T, where the diagonal matrix ©,,; can be computed as
O;1 = O — nysign(A*O; — I). The proof is thus complete by induction. O
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Importantly, Lemma 8 indicates that the Muon dynamics can be decomposed into a collection of scalar
sequences obeying

Oi 141 =0y — nesign(Aj6i — 1), t=20,1,--- (73)

for each 1 <7 < d. As it turns out, the convergence rate of each scalar sequence {6;;}+>0 can be analyzed
through the following lemma.

Lemma 9. Consider a scalar sequence {6;}:>0 C R obeying
011 = O — nysign(A*0; — 1),

where the scalar \* satisfies \* > A\, > 0. Set the learning rate schedule to be ny = ﬁ” pt for some

min

quantities 1/2 < p < 1 and C,, > 1. With the initialization 8y = 0, one has

1 C
01 — G <m= )\*" Pt for allt > 0. (74)

To finish up, applying Lemma 9 to each scalar sequence {0; ;};>0, we arrive at

1
Oi 41 — e < ;. (75)

K2

@1 — 57| = @141 — (A")!] = max

1<i<d

Thus, in order to ensure HQT - 8! || < ¢, it suffices to take T' > ﬁlp log (Jmfz’s)s).

Proof of Lemma 9. The proof is analogous to the proof of Lemma 2. Define the metric

1
b — —

At = It

. (76)

To bound A, we first observe that

1 1 . N
Opy1 — > =0; — > — N sign(A*0; — 1)

P S P R N R o
—t—)\*—UtSIgn t T = sign t T - -

If 6, = 1/X\*, then it is readily seen from (77) and sign(0) = 0 that Ay = 0 < n,. If instead 6, # 1/A*, then
it follows from (77) that

1
b~ 5

Appr = | Ay — | < max{Ay — ng, me}. (78)

In summary, this inequality (78) holds for both cases, which coincides with the bound (35) in the proof of
Lemma 2.
When ¢ = 0, it holds that

1 C C
Ay =|Ag— 10| = F_)\J _)\*772770-

Then, repeating the same arguments as in the proof of Lemma 2, we conclude that

1 C
Or41 — i Appr <y = )\*T_] P’
as claimed. O

18



5 Discussion

In this paper, we have rigorously characterized the preconditioning benefits of Muon for two matrix optimization
problems: matrix factorization, and in-context learning of linear transformers. Our theory implies that Muon’s
spectral orthogonalization acts as a form of adaptive preconditioners, effectively transforming its dynamics into
independent scalar sequences in the spectral domain, each converging at a comparable rate. Both theoretical
analyses and empirical studies suggest that Muon yields better-conditioned optimization trajectories, achieving
faster convergence than GD and Adam. We anticipate that this preconditioning mechanism plays a key role
in accelerating various matrix-structured optimization problems, and that it may inform the design of new
spectrum-aware optimization algorithms.

As noted previously, our theoretical analysis is limited to two simple problems. This naturally opens up
various avenues for future research. We conclude by highlighting two important directions.

e FEzxtension to other matrixz-structured problems. Given the limited scope of our analysis to two problems,
a natural next step is to investigate whether the preconditioning effect of Muon generalizes to other
matrix-structured tasks. In addition to other nonconvex matrix factorization problems described in Chi
et al. (2019), one potential example is the matrix linear regression problem given by

minimizeyy cgmxn |[WX — Y||12J ,

which generalizes classical linear regression to a matrix setting. This problem not only serves as a
useful testbed for theoretical analysis, but also captures the training dynamics of linear layers in neural
networks. Recent papers have begun to explore this space: Davis and Drusvyatskiy (2025) derived a
criterion under which Muon outperforms GD in a single step, while Das et al. (2024) investigated the
preconditioning effect of Adam in the vector case. Extending these insights to broader matrix-valued
problems could illuminate how Muon interacts with layer-wise structures and whether spectrum-aware
optimizers yield more efficient or stable training.

e Toward a general theory. Another important direction is to develop a unified theoretical framework
that elucidates the preconditioning and acceleration effects of Muon under broad, practically relevant
conditions, such as gradient Lipschitz continuity. While recent research has made progress in this
direction (Davis and Drusvyatskiy, 2025; Su, 2025; Shen et al., 2025), existing analyses remain limited
in several key aspects: some rely on idealized models, others impose intricate per-iteration conditions
whose validity has yet to be rigorously established, and many fall short of explaining the observed
empirical advantage of Muon over classical optimizers. Overcoming these limitations will require deeper
insight into both the geometry of the loss landscape—especially in transformer architectures—and the
way in which Muon’s updates dynamically reshape the optimization trajectories. It would also be of
great interest to investigate whether important structural properties arising in neural network training,
such as block Hessians (Zhang et al., 2024b), can be efficiently exploited by Muon.
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A Connection between Muon and ScaledGD for matrix factorization

A provably efficient preconditioned optimizer for matrix factorization is ScaledGD (Tong et al., 2021a), which
also achieves convergence rates independent of the condition number. As it turns out, there are some inherent
connections between Muon and ScaledGD. More concretely, the update rule of simplified Muon yields

Upir = Uy =iV (U)(VIO) TV IU)) = U =iV i (0) (U] AFU) 7, (79)
where A; := U;U,” — M*. In comparison, the update rule of ScaledGD is given by
Ui = U, = BV U) (U] U) (80)

for some learning rate B; > 0. In other words, Muon constructs its preconditioner from the gradient, whereas
ScaledGD builds its preconditioner from the iterate itself. In the idealistic case where A? ~ ¢,U;U," for some
scalar ¢; > 0, (79) can be simplified as

U1 ~ U, — e,V F(U) (U U,) 7 (81)

which coincides with the ScaledGD update (80) up to proper scaling of the learning rate.
In general, the condition A? ~ ¢;U,U," cannot possibly hold, but it offers some useful insight in the local
regime U, U; =~ M*. Adopting once again the simplifying assumption (12), we derive

A=V (ZF-A) VT and UU, =V*'E VT = VAV (82)
To ensure A? ~ U,U,", one needs to show that (X2 — A*)? ~ ¢;A*, or equivalently,
(07, = A\))* = e, 1<i<r.

Given that 07, — Xf = (03,c — \/AT) (04t + /AF) = 2} (04,c — 4/AF), this condition is equivalent to

Mo —/N) ~e,  1<i<r (83)
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Figure 3: Numerical comparison of the preconditioners of Muon and ScaledGD for matrix factorization at
various training steps along a Muon trajectory.

To justify the approximate feasibility of (83), observe that at each iteration, the scalar sequence {co;:} in
(15) moves by a fixed length (i.e., either 7, or —n;) irrespective of the gradient size. In the local region where
0+ = A7, the scalar sequence is expected to follow a zigzag trajectory oscillating around A}. Under random
initialization, one may thus anticipate E[|o;; — 1/Af]] o< 1, a scale that is independent of the magnitude of
Ar. This intuition suggests that in the local region, the Muon update may be approximated by ScaledGD.
Note, however, that these arguments are heuristic in nature; a fully rigorous analysis of their connections is
left for future work.

To further understand the connection between Muon and ScaledGD, we conduct experiments to visualize
and compare their corresponding preconditioners over the course of a Muon trajectory, as shown in Figure 3.
We consider a matrix factorization task with dimension d = 10 and target and search ranks r = k = 5,
initialized with a small scale o = 107!, We also adopt the same learning rate schedule as in previous
experiments. At each step ¢, the Muon preconditioner is defined as Hyyon: = I ® (Vf(Ut)TVf(Ut))l/Q,
while the ScaledGD preconditioner takes the form Hgcaeacnt = I ® (UtTUt). Throughout training, both
preconditioners display a consistent block-diagonal pattern—highlighting their structural similarity and
revealing the implicit connection between the two methods. Importantly, the non-diagonal structure of these
preconditioners also hints at why methods using diagonal preconditioners, such as Adam, are not well-suited

for this setting.
B Proof of auxiliary lemmas for matrix factorization

B.1 Proof of Lemma 4
The difference between msign(Go, <) and msign(Q) can be bounded by

. . (1) 2
H msign(Go,<,) — msugn(Q)H < min{o,(Q), 0 (Go.<r)} |Go,<» — Q|
Y2 G- Q)
T on(@—af T
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(iii) 6 + — 2(0r11(Q)+0741(Go))
< min{o,(Q),0,(Go)}—max{o,+1(Q),0r+1(Go)} HGO B Q”

o (Q) — a?

. 2a°

v 6+ 570) 203

- o (Q)—a
6

W 60° + 5 gas ) 1603

la*0]|

) 84

@- 7@ ™)

provided that o,.(Q) > 4a3. Here, (i) follows from Lemma 17; (ii) is valid since, by Weyl’s inequality,
0(Go,<r) = 0:(Go) > 0,(Q) — [[@*0O|| = 0,(Q) — o?; (85)

(iii) applies Lemma 19; (iv) results from Equation (85), the fact 0,.+1(Q) = 0, as well as the following property
(by Weyl’s inequality):

0r41(Go) £ 0741(Q) + 00| = [0’ 0| = o

(v) follows since O is orthonormal; and (vi) holds as long as 0,.(Q) > 4a3.
To continue upper bounding (84), we develop a lower bound on ¢, (Q) in the lemma below, whose proof
is provided in Section B.5.

Lemma 10. There exists some universal constant co > 0 such that, with probability at least 0.995,

Co)\*
or(M*0O) > . 86
(M°0)> (56)
Lemma 10 taken together with inequality (85) tells us that, with probability exceeding 0.995,
CoaN:
oy =ao,(M*O) > L. 87
(@) o ) T (87)
Therefore, if 4a% < coA*/v/dr, then we establish that
. . 16a3 16a2V/dr
| msign(Go <) —~msign(@)]| < = < o (88)
B.2 Proof of Lemma 5
To begin with, the update rule (6) allows us to upper bound the size of U, as
t—1 t—1
: 2y Mhax _ 4V Mhax
Ui = HU =3 msign (VF(U)| < 00l + Y ome S+ =2 < S0 (oo

provided that o < 24/X% .. /(1 — p). The same argument applies to U,, yielding
~ 4/ X5
[T < === (89b)
—p
Then, it follows from (6) and our construction (53) that
HUt+1 — ﬁt—&-lH < HUt — ﬁf” + ntH msign (V f(U;)) — msign (Vf(ﬁt))H

Lemga 18 HUt B ﬁtH n nt3||vf(Ut) - VNf(Ut)H
Umin(vf(Ut))
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147)\* ~
< <1+nt mox >||Ut — Uy, (90)
(1-p)

26min(VF(Uy))

where the second line relies on our assumption that omin(Vf(Uy)), 0min(VF(Uy)) > 0, and the last inequality
invokes the triangle inequality and (89) to obtain

V() - V)| = ||(UU] — M)U, — (U, - M*)U,|
<0 - MU - G| + |JU]|UU, - GO |
= (Hﬁtﬁfll + | M| + 2max { [T, Hﬁtllz}) U - U]

A9N; ~
S max Ut _ Ut .
|,
B.3 Proof of Lemma 6
Define the following quantity
gie = (@7 = N)Tie|-
We would like to first control g; 411 for a single i, followed by a union bound to cover all indices {1,--- , k}.

Consider any fix ¢, and recall from (58) that the update rule for 7; 411 is

Gitr1 = 0ip — nesign ((57, — A})Tis), (91)
where 7; is uniform sampled from [\/A% 0", 21/ Naaxp’]. Thus, conditional on past randomness, ;41 is

uniformly distributed over [i,¢ — 28i¢\/Nyaxf's it — Sist/Muaxp'], Where s;, = sign ((67, — A})di,); in

other words, ; ;11 is uniformly sampled from an interval of length /A% .. p". We now divide into two cases

based on whether A¥ =0 or A} > 0.

Case 1: A\ =0. In this case, one has g; ++1 = |7;,¢+1|®, which implies that

2V

P(git+1 <e|F) = IP’(|51,t+1| < Ve ]:t) < \/)\*7 e (92)
maxF
Case 2: \; > 0. For this case, we first claim that for any 0 < e < 2(A\#)%/2, it holds that
- 2e 2e 2e
gi,th — |0'i,t| S |:O, )\*:| U l:\/A:—X(,\/)\;-i-M . (93)
Without loss of generality, assume that ; ; > 0. To justifies this property (93), consider two sub-cases:
e If 5,1 > \/A] + 5=, then we have
~2 o\~ 2 *
Git = (050 = AN])0it 2 ——= "/ A} 22 > (94)

VAE

(2
o If f\—f <O < AJAF — %, then it follows that

~ - o~ IO 2 2
git = (VA +Git) (VA —Git)Fie > VAV = Git)Gie > \/f)\—i <\/E— ;) >, (95)

7

provided that 0 < e < 1(AF)3/2.

26



Combining the above two subcases, one can easily see that

~ 12e/AF 12¢
P (g; <el|F)<P|]|o; € VAT — — VA + Fi ) < <
(g t+1 | t) (l ’t+1| |: :| [ /\* )\*:| | t) )\fnax mm mp
To finish up, apply the union bound over all indices ¢ € {1,...,k} to arrive at
P (Umin(vf(ﬁt+l)) < 8) < Z P(gii41 <€) + Z P(gi,e41 <€)
i AF=0 i A >0

< 2(k —r)e 12re

B A*max ¢ A;‘111’1 )\;nax

B.4 Proof of Lemma 7

Recall that F; encompasses what happens up to time ¢, and hence ﬁt is fully determined by F;_;. Define
204N\i3/2 pt

_ o _ G =
C = T X; =log <1+ amin(Vf(ﬁt))>’ St ZXt’ (96)

which allows us to write Il = €97, In the sequel, we intend to control St by invoking the Chernoff-type
arguments and bounding (conditional) moment generating functions (MGFs).

Step 1: a general connection between MGF and tail bounds. For any nonnegative random variable
Z and any 6 > 0, the MGF obeys

E ] =1+ / 0e’"P(Z > T1)dr. (97)
0
This follows from integration by parts, namely, E = [T eZdF(z) =1+ [ 0e""P(Z > T)dr.

Step 2: a conditional tail bound on X;. For any 7 > 0, the definition of X; indicates that

zn = ooy < 2o (98)

With this equivalence in mind, applying Lemma 6 to oyin(V f (ﬁt)) reveals that, for all 7 > 0,

2( — 7“) \3/ Ct 127’Ct 1
\/)\maxpt ! \3/67— -1 mm )‘:naxptil(eT 1) 7 .

(99)

P(Xt 2 T ‘ -thl) S mln{

Step 3: an MGF bound for the case with k =r. When k = r, the first term in (99) vanishes. Define

*3/2 ¢
12rC, _ 12r _294)\maxp _ 1 _ 3528rkp -1 (100)

Ax*nm Mol Moo Mo (L=p)2 pt7t (1=p)2 =7

which is independent of ¢. Then, it follows from (99) that

]P)(Xt 27’ |J_'.t71) <min{1, 4 1} (101)
er —

Let 70 :=log(1 + A), which satisfies 1 = ,0 —o—. For 7 > 79, it is seen that €7 — 1 > €7 /2 due to the fact that
= log(1 + A) > log(2). Hence, it holds. that, for all 7 > 79,

A
e” —1

P(X; > 7| Fiq) < < 24e77. (102)
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Next, substitute this tail bound into (97) to show that: for any 6 € (0, 1),
TO oo
E [eeX‘ | .7-}_1} =1 —|—/ 0T P(X, > 7 | Fy_q)dr +/ 0T P(X, > 1 | Fy_q)dr
0 7o

T0 oo
<1 —|—/ 0?7 dr —|—/ 0’7 . 2Ae~"dr
0 oo (103)
=1+ (!0 —1)+ 2A9/ e~ (1=07qr

0

2A0
— 07’0 _(1_9)7—0
[ + 71 y e .

Recall the identity e™ =1+ A, we have

2A0 20 20
010 _ 0 —(1-0)10 _ —-(1-0) ~ 0
e (1+A)° T4¢ 7170A(1+A) _7170(14-14), (104)

since A(1+ A)~(1=9 < (1 + A)?. As a result, we arrive at
0X 20 0 0
E[e"* | Fiq] < I+ (14 A4)Y <3(1+ A) (105)
for any 0 € (0,1/2].

Step 4: Chernoff bound on Sy when k =r. For any 6 € (0,1/2], apply (105) recursively to obtain

T—-2

T—1
E [egsﬂ —E lH SX| — R H X R [eaxT_l \]"T—z]
t=1 t=1
T—2 106
t=1

< (B31+4)7)" "

Markov’s inequality yields, for any u > 0,
P(Sr > u) < e ™ E [e?7] < exp (- u+ (T —1)log(3) + (T — 1) log(1 + A)).

Choosing
T-1

1 1
u=(T—-1)log(1+ A)+ log(3) + 7 log 5 (107)

then gives P(Sy > u) < §. Taking 6 = 1/2, we obtain that with probability at least 1 — ¢,
1 K 1
St < (T —1)log(1+ A)2(T — 1) log(3) + 2log 5= O (Tlog (m> + log 5) . (108)
Exponentiating both sides yields

Il = exp(St) < exp (O (T log (%) + log ;)) , (109)

thereby completing the proof of Part (i) of Lemma 7.
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Step 5: an MGF bound for the case with k£ > r. When k > r, define

2(k — \3/C 12rC 35287k
Ay = (k—n)VC: _ 2(k — 3), Ay = : - P (110)
)‘:nax p 3 A:nln A1‘}5118.)( =1 (1 - p>
Then it is readily seen from (99) that
. Ay Ao
P(X: > 71| Fic1) Smln{l, (= 1)1/ + 67_1}. (111)

Let 71 ¢ := log(1 + A:{”t) and 7o := log(1 + A2), and set 79 := max{7y 4, 72}. For 7 > 79, we have
P(X; >7 | Fi1) <2Y3A4) 6773 4+ 24077, (112)

given that e” — 1 > €7 /2. Invoke (97) to show that, for any 6 € (0,1/3),

E[eext | ft—l]

IN

T0O oo
1+/ 9697df+/ e (213 A1 473 4+ 24577 dr
0

70

=m0 4 21/3A17t0/ e~ /3=07qr 4 2A20/ e~ (1=07q, (113)

21/3A1 ta (1/3 9)7_0 + 2A20 (179)7_0
1/3-0 1-6°

Now, recognizing that 71 ; = log(1 4+ A3 ;) and 75 = log(1 + A3), we can further derive
0 < eI < (14 A3 )P (14 Ay)°, (114)
and also (since 79 > 71 ; and 19 > 7»)
Ay e B70m0 < Ay (14 AT )T < (14 A3 )7, Apem (70T < (14 A,)°. (115)
Substitution into (113) reveals that, for any given 6 € (0,1/6],
E[e®X | Fiq] < C1(1+ A3 )% (1+ Ap)?, (116)

where C] is a constant given by C; =1+ 12/;3% + 1 9

Step 6: Chernoff bound on S; when k > r. Iterating conditional expectations as before and invoking
(116), we arrive at

T-1
e"57) < TT (Ca(1 + 42)°(1+ 43,)%)
t=1
. (117)
= exp ((T —1)log (C1) + 6(T — 1) log(1 + Az) + 6 > log(1 + A‘i})) :
t=1

Akin to Step 4, Markov’s inequality then yields

T-1
P(St > u) < exp <—9u + (T —1)log (C1) +6(T — 1) log(1 + Az) + 6 Z log(1 + A:{”t)> :
t=1
Clearly, choosing
T-1
u= (T —1)log(l+ As) + Z log(1+ A7)+

t=1

—1 1 1
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yields P(Sp > u) < ¢§. Taking 6 = 1/6 above and recognizing the facts that

T-1

— 8(k —r)3 1
Z log(1 + Ai’,t) = Z log (1 + th_g> =0 <T2 log; + T'log(k — r)) ,
t=1 t=1

log(1 + Az) = O(log (f,;))

we can use p > 2/3 to demonstrate that

Sp <O (T2+Tlog (W) +10g(1$>7
—p

with probability at least 1 — §, and as a consequence,

7 = exp(Sr) < exp (0 <T2 + T'log (W) + log ;)) . (119)

This establishes Part (ii) of Lemma 7.

B.5 Proof of Lemma 10
Recalling that M* = V*A*V*T we can derive
0. (M*0) = 0, (A*V*TO) > \s -0, (V*TO) > N - 0,.(V*TO. 1.,), (120)

where O. 1., € R¥*" is composed of the first r columns of O.

To proceed, observe that O. ;.. has the same distribution as G(GTG)_1/2, where G € R%*" ig a random
matrix with i.i.d. standard Gaussian entries. Hence, it suffices to develop a high-probability lower bound for
0. (V*TG(GTG)~1/?). Towards this end, we first make the observation that

o (V@)

o, (VTG(GTG) ) 2 0,(VTG)o, ((GTG)?) =
g1 (G)

(121)

It is clearly seen that V*TG is also a random matrix with i.i.d. standard Gaussian entries. In view of
Lemmas 20 and 21, there exists some universal constant ¢y > 0 such that

o (V*TG) < 1/\r ¢

& = 122
o(G) 0 Vd Vdr (122)
holds with probability at least 0.995. Taking the above arguments together, we arrive at
Co)\*
o-(M*O) > L 123
( ) Vi (123)

with probability at least 0.995.

B.6 Scalar dynamics with time-varying prefactors in learning rates

This subsection presents a slight extension of Lemma 2 to accommodate slightly broader learning rates.
Lemma 11. Consider the scalar updates in (27), where 0 < X\* < Xt . Set the learning rate schedule to be

Nt = Cpiv/ Noaxh' for some1 < Cpy<2and2/3<p<1.
Assume that 0 < |ug| < n9. Then, with probability 1, for all t > 0, it holds that

— 2
||ut| - >‘*| < 1— P )‘rrlaxpt7 (1243“)
4 4
2 * * t
W< [ S ot 124b
i | <(1—p)2 1—p> g (1240)
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Proof of Lemma 11. Similarly to the proof of Lemma 2, define Ay := ||u| — \/)T*|, which satisfies (see (35))
A1 = A — ). (125)

Next, define the tail sum S; ==Y oo, n5. We claim for the moment that
A < 5, for all t > 0. (126)

Once Equation (126) is established, the first claim (124a) follows immediately since

St = § :C"]»S \% A?naxp‘S <2 V )‘:nax E pé = ip )‘:naxptﬂ (127)
s=t s=t

where we have used C,, ; < 2 for all s > 0.
It remains to prove the claim (126), which we accomplish by induction.

e Base case (t =0). Recalling that vA* < /A% and |ug| < 1o, we have

A0 = “u0| \/)‘7*‘ < ‘u0| + \//\7* <o+ \/Amax = 2\/)\max + \/)\max = 3\/)‘max7 (128)

which follows since 1p = Cy .01/ Aoax < 24/ Aoax- Moreover, since C, s > 1 for all s, we obtain
oo oo . o0 . 1
= Zﬁs = Z CU,S \% )‘;naxp > \% )‘:nax Zp = m V )‘ﬁlax >3 \% A;na)m (129)
s=0 s=0 s=0

with the proviso that p > 2/3. Therefore, Sy > 3/

max —

> Ay, thus validating the base case.

e Inductive step. Now assume that Ay < .S; for some ¢ > 0. To bound A1, we divide into two cases.

— Case 1: A; > n;. In this case, Equation (125) yields Ayy; = Ay — g <S¢ — 1y = Siy1, which
holds since Sy+1 = Sy —

— Case 2: Ay < n;. In this case, Equation (125) yields A¢y1 = n — Ay < 1. Thus it suffices to show
that 1y < S;41. Given that () ; <2 and C) s > 1 for all s, we derive

Cnt\/ maxp <2 max 7
St+1 Z Ns > V )‘Elax Z p \/ )‘;naxp >2 maxp’

s=t+1 s=t+1

provided that p > 2/3. This establishes that A1 < Siy1.

Combining these cases justifies Equation (126) at time ¢ + 1, which in turn establishes the claim (126).

Equipped with Equation (124a), we can now readily prove Equation (124b). For any ¢ > 0,
[uf — A = [Jue] = VA (Jue] + VA*) = A (Ar +2VA) < A(Ar + 20/ M ax)» (130)

where we used A\* < \*

max"*

2 4 4
|U? - A*| < Tp )‘maxp ( V A;(naxp +2 V Afnax) < ( + 1_) A’I;laxpt

- p)? p

as claimed. O]

Applying Equation (124a) leads to
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C Lower bound for SignGD in matrix factorization (Proof of Theo-
rem 2)

In this proof, we first establish a convergence lower bound for a two-dimensional quadratic optimization
problem, and then show that a 2 x 2 matrix factorization instance can be reduced to this problem, thereby
inheriting the same lower bound.

Step 1: a convergence lower bound for a quadratic optimization problem. Specifically, consider
the following 2-dimensional quadratic minimization problem:
1

L. _ LT
minimize f(z)= 5% Hz, (131)

where the matrix H is symmetric positive semidefinite given by

1 (k+1 k-1
H_Q(Fa—l I{-l-l) (132)
with two eigenvalues k > 1 and 1. Clearly, the condition number of this matrix (or the Hessian of f(-)) is &,

and the optimal objective value of the problem (131) is 0, attained at z = 0. When applied to this problem,
the SignGD algorithm proceeds as

2411 = Z¢ — Ny Sign (Vf(zt)) =z — e sign(H zy), t=0,1,--- (133)

where 7; > 0 is the learning rate at iteration ¢, and the sign(-) operator is applied entrywise.
We now present a convergence lower bound for SignGD on this structured quadratic objective. The proof
is deferred to Section C.1.

Lemma 12. Consider solving the problem (131) using SignGD (cf. (183)). Let {m:}+>0 be any non-increasing
sequence of learning rates, and consider any accuracy level obeying 0 < € < ng/k. Then, one can find an
initialization zo € [—2n9, 210]% such that ||z||2 < € can only happen after t > =71

Step 2: reduction of matrix factorization to quadratic optimization. Next, we demonstrate that a
2 x 2 instance of matrix factorization can be reduced to the quadratic optimization problem studied in Step 1.
To be precise, consider the following matrix factorization problem:

e 1 T 2 . 1 /k+1 k-1
minimize F(U)_ZHUU —HHF, WlthH—2<%_1 K;—I—l)’HZl' (134)

Set U* = H'/? to be the symmetric square root of H. The SignGD algorithm proceeds as
U1 = U, — nesign (VE(Uy)) = U; — mysign (UU, — H)U;), t=0,1,- (135)

where sign(-) is applied entrywise. The following lemma—whose proof is provided in Section C.2—develops a
lower bound on the iteration complexity of SignGD.

Lemma 13. Consider any learning rate sequence {n:} that is non-increasing in t. Then, there exists a

2
universal constant ro € (0,1/16) such that: for any target accuracy € > 0 satisfying e < 40%% and any initial
1o < 19, one can find an initialization Uy obeying |[Up — U*||r < 1o such that the SignGD trajectory (135)
cannot yield F(Ur) < € unless
k—1

T>
- 4

(136)

This concludes the proof of Theorem 2.
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C.1 Proof of Lemma 12

The proof is carried out in the following steps.
Step 1: a rotated basis aligned with the sign geometry. For each ¢ > 0, define

- 1 —~
,=R'z with R" = \ﬁ (_11 1) ; and H = (H 1) ) (137)

In words, z; = [Z1.4, Eg’t]—'— is obtained by rotating the original iterate z;. These allow one to express both the
objective value and its gradient at iteration ¢ as

1 +—~_
f(z) = §ZtTHZt =

DN | =

1 (kz14 — 2
(k32,+72,), Vf(z)=Hz =RHZ = ﬂ<ﬁii +z§i)‘ (138)

It is easily seen that s; := sign(V f(2;)) € {£1}2. Thus, the SignGD update in the rotated basis becomes
Zip1 = R’ (Zt - 77t$t) =2z — ntRTSt- (139)
Given that there are only 4 possibilities in {£1}2, there are also only 4 possible update directions:

V2,0) if 84 =
V2 0) if s; =
0,—V?2) if s =
,\@) if sy =

This implies that in the eigenbasis (i.e., the above rotated coordinate system), each step of SignGD updates
exactly one coordinate—either 27 ; or Zs +, but never both.

1»)

(

(-1,

( (140)
(-

17)

(
LD
R s, (
(0 11).

Step 2: a condition that governs the sign patterns of the updates. As it turns out, there exists a
condition—based on the ratio of |z1 ;| and |Z2 ;| —that determines when SignGD updates each coordinate.

Lemma 14. Consider any iteration t.

o If |[kz1,4| > |22, then
Zi41 = 21,0 — V20 sign(Z1,e), Zot41 = Za¢- (141)

o If |[kz1 4| < |22, then
gl,t-l-l = 517“ 227t+1 = 52715 — \/éﬁt sign(EQ,t). (142)

Proof of Lemma 1/. According to (138), the signs of the two coordinates of V f(z;) differ when
(Klth — g27t)(l'€g1,t + Zg,t) <0 = (Iigl,t)Q < E’%J <~ |/£517t| < |22,t|- (143)

If |kZ1 4] > |Z2,|, then both components of V f(z;) have signs equal to sign(z1,), and hence the update vector
is (+1/2,0) in the rotated basis. If instead |rZ; ¢| < |Z2.|, then the signs of the two components of V f(z;)
are equal to —sign(z2) and sign(Zza), respectively, and hence the update vector in the rotated basis is

(0,£v2). O

Step 3: a learning rate barrier. We now develop a general lower bound for the following sequence that
updates one coordinate at a time. Specifically, consider a sequence x; = [r14,224]", t > 0, that follows the
update rule below:

o If |z14| < |z24|/K, then xo 441 = x2p —m and X1 441 = T14;

o If |z14| > |z2,4|/K, then 1 441 = x1,¢ — 1 and X2 141 = Toy.
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o If |z14| = |z2,4|/K, then 1 441 and z3,41 can be chosen arbitrarily.

Lemma 15. Consider the above sequence {xi}o<i<r for any finite T. Let {m}i>0 be a non-increasing
sequence of learning rates. For any target accuracy 0 < € < ng/k, there exists an initialization xy € [0,n0]?
such that zo2+ < ke can only happen when 1, < 4e.

Proof of Lemma 15. Let us initialize at @y = [z1,0, HE]T, where 1 o is defined recursively as follows.
e Let Ty = min{T, max{¢ : m, > 4e}}; choose z1 1, € [2¢, N7, — 2¢].
e Define the previous iterates backward:

Tt = Nt — T1,t+1, fOrt:T()_ 1,T0_2,...,0. (144)

Now we show by induction that z1 ; € [2¢,m; — 2¢] for all 0 < ¢ < Tj. The base case with ¢ = T holds trivially
by construction. Assume the induction hypothesis holds at ¢ + 1, i.e., x1 441 € [2€, 41 — 2¢]. Then it follows
from the assumption 7y > ny41 that

Tip =M — T1e41 = M — Ne1 + 26 2 26 > 0,
Tip =1 — T141 <N — 26, (145)

thus justifying the induction hypothesis at t. Hence, we establish by induction that z;+ € [2¢,n; — 2¢] holds
for all 0 <t¢ < Tp. As immediate consequences, for all 0 <t < T one has: (i) z1,4 > ¢; (ii) the update rule
described above for {x;} always applies only to the first coordinate z1 ¢, with xo ¢ frozen at ke (given that
|z1.4|/|z2,¢| > €/(ke) = 1/k). This concludes the proof. O

Step 4: putting all this together. Let us initialize SignGD to 2o = 2z, with g constructed in the proof
of Lemma 15. Clearly, one has Zy € [0, v/2n9]?, which together with zo = RZy gives 2z € [0, 210]?. Moreover,
it is seen from Lemma 14 that { (%ZM, %Egﬁt)} follows the same dynamics as {x;} in Lemma 15—and
1
V2
most 4e, with each iteration changing the coordinate by at most /21, the number of iterations needs to at

least exceed

hence —=%2 + = ke—Dbefore 1y drops below 4e. To reduce z3; from V2ke to below ¢ using learning rates at

\/§I€E—5>Ii—1

42 T 47 (146)

thus completing the proof.

C.2 Proof of Lemma 13

The proof comprises several steps as described below. Throughout this proof, we shall focus on initializations
residing within the following subspace:

s::{(z 2);(a,b)eR2}. (147)
a b

b a> € S, we shall refer to (a,b) as its induced parameters.

Step 1: invariance of the set S under SignGD updates. We first show that, when initialized in S, the
entire trajectory of SignGD stays within S.

For any U = <

Lemma 16 (Invariance of S). If U € S, then VF(U) € S and sign(VF(U)) € §. Consequently, Uy € S
implies Uy € S for all t.
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Proof of Lemma 16. Note that any U € S can be written as

a b . 1 1
U:<b a)zaI—|—bJ7 WlthI—< 1) andJ—<1 ) (148)

As can be easily verified, products of such matrices from S remain in S. As a result, UU " = U? € S, so
(UU' — H) € S, and multiplying by U € S yields VF(U) = (UU" — H)U € 8. If a matrix has equal
diagonals and equal off-diagonals, then applying sign(-) entrywise preserves these equalities. O

Consequently, it suffices to focus on analyzing the dynamics within S.

Step 2: equivalent updates of induced parameters. Set

o 1 1 -1 T (R
R_\/§<1 1), and hence R HR—< 1>. (149)

For any U € S with induced parameters (a,b), one can easily verify that
RTUR = diag{\1, )2},  with \y =a+0b, \g=a—b. (150)

Define
)\I = \/E, )\5 = ]., 61 = )\1 - \/E, 52 = AQ - ]., (151)

where \* and A} correspond to the two eigenvalues of U* = H'/2. These allow us to convert the gradient
into ezract diagonal form as

RTVF(U)R = diag{g1 (M), 92(M\2)}, with g1 (\) == (A2 — K)A, ga(N\) = (A2 — DA (152)
Equivalently, the gradient in the original basis can be expressed as

g1(A1) + g2(A2)
2

Gqa G,
G, Gq

Gy = g1(A1) — 92(>\2). (153)

VF(U) = ( 5

) , with G4 =
Given that the update is entrywise, the induced parameter update on (a,b) can be written as
at+1 = a¢ — T]t Sign(Gdﬂg), bt—‘rl = bt — 77,5 Sign(GO,t). (154)

Step 3: local gradient signs. Next, expand g;(-) (resp. g2(+)) around A} = /K (resp. A5 = 1) as
g1(VE+61) = (VE+01)* = &) (VE + 01) = (VK1 + 67)(VE + 61) = 2601 + 3v/KST + 65, (155a)
92(1482) = ((1 4 82)* — 1) (1 + 82) = (202 + 63)(1 + 02) = 202 + 363 + &5. (155b)
Fix a universal radius ro € (0,1/16) and consider the local region with
|01] < Vkro, 12| < 1o (156)

In this region, the higher-order terms are dominated by the linear terms: indeed, using Equation (155a) and
|01] < v/kro, we can derive

1
[3v/07 + 07| < (3v/kd1 + |01]%) 0] < (3kr0 + krg) [61] < 55161 (157)
for o < 1/16, which allows us to express

1
91(VE + 1) = 2k61 + Aq for some |A;] < §/<;|(51|. (158a)
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Similarly, it follows from Equation (155b) and |d2| < ro that
1
92(1 4+ 62) =250 + Ay for some |Ag| < 5\52|. (158b)

Recall the expressions of Gq and G, in (153), which combined with (158) yields

A+ A
G = K61 + 65 + % (159a)
A —A
Go = Kby — 0y + 1T2 (159D)
Moreover, it follows from Equations (158a) and (158b) that
A+ A A+ A 1
] 128 Bl Rel < L) 4 oal). (160)
As a result, one has
sign(Gq) = sign(kd1 + d2), sign(G,) = sign(kdy — d2), (161)
provided that
. 1
mln{|K51 + (52|, |/€(S1 — (52‘} > Z(KZ|(51‘ + |52|) (162)

Step 4: SignGD exhibiting matching dynamics as in Lemma 12. Define

_ (sien(Gay) >
St = (sign(Goyt)) S {:l:l} . (163)

The iterative updates of the (a,b) parameters described in (154) can be written compactly as

Ut41 = U — Mt St with Uy = (Zz) . (164)

Such update rules can be translated into updates over the eigenvalues. More specifically, set the eigenvalues
of U, to be /k + 61, and 1 + d2 4, which combined with the fact that U, € S gives

R'U.R = diag{\/k + 614, 1 + 024 }. (165)
A little algebra then allows us to translate Equation (164) into
(St+1 = 5,5 — ﬁtRTSt Wlth ﬁt = \/ﬁnt, (166)

where &; = [61,4,02,] ", and {7;} is clearly also a non-increasing learning rate sequence.

The above update rule (166) bears similarity with the one (139) analyzed in Lemma 12. By initializing
dp to be zj as in the proof of Lemma 12—except that 7 is replaced with 7); and e replaced with ¢, (to be
specified shortly) in the construction of this initialization—we see from the proof of Lemma 12 that

K[d1,0] > 2[02,0],

which satisfies the condition described in (162). Thus, combining it with Equation (161) leads to

_ Sigﬂ(lﬁdLO + 5270) _ = T sign(mSLo + 5270)
S0 = <sign(/<;5170 — 52’0) = 61 - 60 nOR sign(mh,o — (5270) ’ (167)
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which is precisely the update rule of z; in the proof of Lemma 12. Continuing these arguments and taking
advantage of the properties derived in the proof of Lemma 12, we can readily see that: for any t < Ty with
To == min { max{t : 7y > 4¢,}, [“7]}, one has

K|01¢| > 2|02,

which obeys the condition described in Equation (162) and in turns results in

~ (sign(kd1,¢ + 2,t) s ~pT sign(k01,¢ + 02,¢)
8 = <sign(/£51’t — d2.¢) = Orr1 =0, —Tp R sign(kd1 ¢ —024) )" (168)

Consequently, by construction (again see the proof of Lemma 12) one has

82t > Keg for every t < 1. (169)
Step 5: connecting F(U) with d;-updates. On S, the objective admits an exact eigen-form:

FU)=~-((A—r)?+(A3—1)%) = %((2\/&51 +67)% + (262 + 63)?). (170)

| =

where as before we take the eigenvalues of U to be \/k + 01 and 1+ 2. In the local region described in
Equation (156) with ro < 1/16, we have |d2] < rg < 1/16, hence

3
1205 + 62| > 2|0a| — 62 > 5102 (171)
Substitution into Equation (170) yields the local lower bound:

1
FU) > Z(252 +82)2 > 52, (172)

&l©

Therefore, any iterate Ur obeying F(Ur) < e necessarily satisfies
4
Bor] < V2. (173)
As a consequence, setting the target level ¢, in Step 4 as ¢, = %ﬁ, we see from Lemma 12 that

k—1
T >
- 4 )

provided that (d1,,02,) satisfies Condition (156). To finish up, it suffices to note that Condition (156) is
guaranteed as long as

1

6

This follows from the fact that, for all ¢ > T, we have 614 € [2e4,m — 2¢4] and 024 = ke, according to the
proof of Lemma 12.

4
Mo < To, fi@ngﬁx/gﬁroé

D Derivation of the training objective in Section 2.2

In this section, we provide a more detailed explanation of how the objective (20) arises from the framework of
in-context learning (ICL). A common way to formalize ICL is to place a distribution over tasks (Garg et al.,
2022), viewing each task as a function h drawn from a function class . A prompt consists of N input-label
pairs followed by a query:

P = (z1,h(x1),..., 2N, h(ZN), 2q),
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where inputs x; and query x, are sampled independently from certain data distribution Dy, and the task
function h is drawn from h ~ Dy.

A model is said to have in-context learned the function class H if, when presented with a fresh task h’
drawn from H and a corresponding fresh prompt, it can reliably predict the output h'(z4) without updating
its parameters. To understand how models acquire this ability through training, Garg et al. (2022) proposed
a meta-learning protocol: at each training step, a task h and a sequence of data points are sampled to form
a prompt, and the model parameters are updated to minimize the prediction error on the query. They
empirically demonstrated that transformers trained in this manner can in-context learn, e.g., linear function
classes. Motivated by these findings, a growing body of theoretical work has adopted this framework to study
the optimization dynamics (Ahn et al., 2023; Zhang et al., 2024a; Huang et al., 2023).

Our instantiation: linear tasks with a fixed support set. Let us focus on linear regression tasks, where
h(x) = w 'z for a task parameterized by vector w € R%. We adopt the fixed-design setting (Yang et al., 2024):
the first N input tokens {z;}¥.; C R? in the prompt are fixed, with empirical covariance S = % Zfil iz .
We draw w ~ D with E[w] = 0 and E[ww "] = I, and generate noiseless labels y,, ; = w ' ;. The query is
sampled uniformly from the support set, i.e., €4 ~ Unif{x;,...,xy}. Following standard ICL practice (Garg

et al., 2022; Zhang et al., 2024a; Ahn et al., 2023), we embed the prompt as

E. - * T2 N Tq ) o R+ X(N+1) (174)
w Ywi1 Yw2 ° Yw.N 0 .

The goal of ICL training is to optimize a model in order to reliably predict wTa:q from F.,.

Single-layer linear transformer. A standard single-layer transformer with input E,, computes its output
using softmax attention (Vaswani et al., 2017):

T
Fsoftmax(WK; WQ; WV; Ew) = WVEw - softmax ((WKEw) (WQEW)> 5

v

where Wg, Wo, Wy € REHDX(d+1) represent the key, query, and value weight matrices, v > 0 is a
normalization factor, and the softmax operator softmax(-) is applied column-wise. In this work, we consider a
simplified model that is more amenable to theoretical analysis and commonly adopted in existing theoretical
literature for ICL (Zhang et al., 2024a; Ahn et al., 2023; Huang et al., 2023). Specifically, we remove the
softmax nonlinearity and merge Wg, Wy, into a single Wi, and take v = N, resulting in

E; WKQ Ew )

Einear(WV;WKQ;Ew) = WVEw( N

(175)

Furthermore, we take Wy and Wk to be the following specific forms as adopted in (Huang et al., 2023;
Yang et al., 2024; Huang et al., 2025):

_ Ogxa 04 _ Q 04
wo= (g ) wee=(o )
Therefore, the model can be parameterized by @, and the prediction for z is read off from the bottom-right
entry:
Ya = Uq(Q; Bw) = [Fiinear(Q; Ew)](dt1),(N+1)- (176)

By direct calculation, this admits a simplified closed-form expression:

~ E.E,} Al
Ja=(0; 1) ( N “’) ( (gr )a:q = %Z(w—rwi)x:qu =w'SQx,.

i=1
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in-context learning objective. The training goal is to optimize @ to minimize the expected squared
prediction risk, where the randomness comes from w and x4 across prompts. Therefore,

N
_1 ~ T..)2 L 21 T
Q)= JEwa, [(yq ~w'z) ] =N ;1 1SQx; — x5 = §tr((SQ -NS(SQ-1)"). (177)
Minimizing this objective is exactly equivalent to solving the quadratic optimization problem (20).

E Lower bounds for SignGD in ICL (Proof of Theorem 4)

Consider any k > 2. In what follows, we will construct an instance (i.e., a covariance matrix S obeying
k(S)? = k), on which SignGD needs Q(k) iterations to achieve the target accuracy.

Step 1: construction of a 2-dimensional instance. Let d = 2 and define the rotation matrix

R % (_11 1) . (178)

1/3
S—R (Ko (1)) R'. (179)

Set the covariance matrix to be

It then follows that x(S) = xk'/3, hence x(S)? = .

Step 2: invariance of a 2-dimensional slice. Define the set

S = {Q(a,b) = (Z Z) . (a,b) € R?}. (180)
We now claim that: if Q; € S, then Q11 remains within S.

Proof. To justify this claim, we first note that for any Q € S, @ commutes with Rdiag(-)R", hence Q
commutes with S (cf. (179)), and therefore SQS € S. The gradient of the objective f(-) is

V£(Q) = 8%QS — S?, (181)

which also falls within & whenever Q € S. Additionally, the entrywise sign map preserves the structure
(‘; Z), and as a result, sign(Vf(Q)) € S. These taken together prove that Q1 € S. O

Thus, it suffices to analyze the induced dynamics within S. In what follows, we shall write Q; = Q(a¢, b;),

with (a¢, b) the induced parameters.

Step 3: an equivalent form of the objective. Any Q(a,b) € S is diagonalizable in the basis R:

0
q2

Q(a,b) =R (%1 ) R", where ¢1=a+band g =a—0b. (182)

Recall the diagonal form of S in (179). Letting oy = x'/% and o3 = 1, we can write

o o K 1
f(Q(@ab)) = ?1(01(11 - 1)2 + ?2(02112 - 1)2 = §(Q1 - 571/3)2 + §(Q2 - 1)2- (183)
Similarly, if we express the solution Q* = S~ as
* *( Kk 1K QT 0 T * * * * * *
Q" =Q" (", b')=R 0 ¢ R, where ¢f =a*+b" and g5 =a* — b, (184)
2
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then it can be easily verified that

*:Cﬁ‘g@:”—l/;“, b*:qu‘ﬁz’i_l/s_l. (185)

Gg=r1 g=1 = a

Now, let us define the error coordinates
_(z\ _ fa—a"
z = <22) = <b— b*) , (186)

G- =(a—a")+b=0)=21+20 and @ —q¢ =(a—a*)—(b—0") =21 — 2.

allowing us to write

It then follows from Equation (183) that

_k o 1o 1 v (k+l k-1 T B
f(Q(a,b))f 2(zl+22) +2(zl 29)° = 2z <K_1 n—i—l)zz Hz = ¢g(2), (187)
where )
_1(rk+1 k-1
H._2(H_1 n+1>' (188)

In particular, g(+) is a quadratic function with minimizer z = 0 and gradient Vg(z) = 2H z.

Step 4: SignGD exhibiting matching dynamics as in Lemma 12. Given the invariance of S and the
fact that (a,b:) are the diagonal and off-diagonal entries of @y, the Muon update induces

zip1 = zp — g sign(H zy), t=0,1,2,..., (189)

where z; is defined by Equation (186) w.r.t. the ¢-th iterate, and H is given in Equation (188). This matches
precisely the SignGD recursion studied in Lemma 12.

Therefore, for any non-increasing {n: }+>0 and any 0 < ¢ < V2m0 /K, Lemma 12 guarantees that one can
choose an initialization zg € [0,2n0]? such that |2¢]|2 < &/+/2 can only occur after

Kk—1
t> . 190
> (190)
Step 5: translating it back to Q;. Recalling that Q; = Q(a¢,b) and Q* = Q(a*, b*), we have
1Q: — Q"IIF = 2(ar — a*)? +2(b; = b)* = 2| z[3, = Qi — Q*llr = V2|22 (191)

Hence, with the above-mentioned initialization, achieving | Q; — Q*||r < € requires at least (k —1)/4 iterations.
This establishes the SignGD lower bound claimed in Theorem 4.

F Technical lemmas

In this section, we gather a couple of technical lemmas that are useful in our analysis. We begin with three
lemmas concerned with perturbation bounds for matrix signs and rank-r approximations.

Lemma 17 (Adapted from Theorem 2.1 in Li and Sun (2006)). For arbitrary two matrices X, Y € R™*"
of the same rank r, we have

2
min{o,.(X), oY)

|Imsign(X) — msign(Y)|| < 7 IX-Y|. (192)
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Lemma 18 (Adapted from Theorem 2 in Li (1995)). For arbitrary two matrices X, Y € R™*™ (m > n) of
full column rank, we have

[Imsign(X) — msign(Y)]| <

< XYl (193

Lemma 19 (Adapted from Equation (4.4) in Wedin (1972)). For any two matrices X,Y € R™*™  denote
the best rank-r approzimations by X..,Y,, respectively. We define the eigengap § = min{c,(X),0.(Y)} —
max{o,+1(X),0,+1(Y)}. Then, we have

IX, — Y, < |X -] (3+ ”T“(X);"T“(Y)). (194)

Next, we gather two lemmas regarding the singular values of Gaussian random matrices.

Lemma 20 (Adapted from Theorem 6.1 in Wainwright (2019)). Suppose that G € R"*% js q standard
Gaussian matriz, where di > dy. Then, it holds that

P(|G|| > 3+/d1) < exp(—d1/2). (195)
Lemma 21 (Adapted from Equation (3.2) in Rudelson and Vershynin (2010)). Suppose that the entries of
the G € R4 are i.i.d. standard Gaussian random variables. Then, for any e > 0,

P(0min(G) < ed™/?) <e. (196)

Finally, we show that for any two orthonormal matrices in Oy, with r < d, it is plausible to augment
each into a square orthonormal matrix, without increasing their spectral-norm difference by much. See
Section F.1 for the proof of this result.

Lemma 22. Let O1,02 € Ogyx, where r < d. Then there exist Ry, Ry € Ogx(a—r) such that

Al ::[OlaRl] e ded7 A2 = [027R2] S deda
and  ||A; — As|| < V2|01 — Oy

F.1 Proof of Lemma 22

Denote by S; := span(O;) the r-dimensional subspace spanned by the columns of O;. Let 61,...,0, € [0,7/2]
represent the principal angles between & and Sy (see, e.g., Golub and Van Loan (2013, Chapter 6.4.3) and
Chen et al. (2021, Section 2.2)). Define O ax == maxi<;<, 6;.

Step 1: computing distance between two subspaces. Consider any pair of orthonormal bases
Q1,Q; € R¥" with span(Q;) = S;. Classical matrix perturbation theory (e.g., Edelman et al. (1998,
Section 4.3)) asserts that

0
inf — Q| = 2si (ﬂ) 197
Q1,Q2€04« riSPan(lgl)=51,Span(Q2)=82 ||Q1 QQH St 2 ( )
thus implying that
gmax
2sin<T) <0y — 0. (198)

Additionally, let S; denote the (d — r)-dimensional orthogonal complement of S;. The maximum principal
angle between Sll and 82L is again Oyax. This implies that

em X
inf |B1 — Bs|| = 2sin( = ) (199)
B1,B2€0 5 (a—ry: span(B1)=8i"span(B2)=83 2
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Step 2: choosing orthogonal complements with controlled distance. By Equation (199), one can
find orthonormal bases Ry € R¥(4=") (resp. Ry € RYX(4=7)) of Si (resp. S5-) such that

. emax
IR, — Ry = zsm(7). (200)

Combining Equations (198) and (200) yields

|R1 — Rz|| < [|O1 — O2]. (201)

By construction, A; := [O;, R;] forms a square orthogonal matrix.

Step 3: bounding the distance between A; and A,. Observe that

A — Ay =[0, - 03, R, — Ry).

For any = = { } € R? with &7 € R” and x5 € R%", it holds that

1
T2
(A1 — AQ).’B = (01 — 02):31 + (R1 — RQ).TQ.
This allows one to establish that

A1 — Aof* = sup [|(A; — Az)z|?

llzll2=1

2
< sup (|01 = Oslllws + | B: — Rol221l)

llzll2=1

2
< sw (|01 = Oallllz]l2 + 1101 = Osf|2l2) (by Equation (201))

llzll2=1

2
= |01 — Os|* sup (||lz1]l2 + [|l2]l2)

lz]|2=1

<2(|0; — 0,

where the last line holds since, by Cauchy-Schwarz, |x1||2 + ||®2|l2 < V2+v/][Z1]3 + |z2]]3 = Vv2|/z||3. This
completes the proof.
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