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Abstract

Various applications involve assigning discrete label values to a collection of
objects based on some pairwise noisy data. Due to the discrete—and hence
nonconvex—structure of the problem, computing the optimal assignment (e.g.,
maximum-likelihood assignment) becomes intractable at first sight. This pa-
per makes progress towards efficient computation by focusing on a concrete
joint alignment problem; that is, the problem of recovering n discrete variables
xi 2 f1; : : : ; mg, 1 � i � n, given noisy observations of their modulo differ-
ences fxi�xj modmg. We propose a low-complexity and model-free nonconvex
procedure, which operates in a lifted space by representing distinct label values
in orthogonal directions and attempts to optimize quadratic functions over hyper-
cubes. Starting with a first guess computed via a spectral method, the algorithm
successively refines the iterates via projected power iterations. We prove that for
a broad class of statistical models, the proposed projected power method makes
no error—and hence converges to the maximum-likelihood estimate—in a suit-
able regime. Numerical experiments have been carried out on both synthetic
and real data to demonstrate the practicality of our algorithm. We expect this
algorithmic framework to be effective for a broad range of discrete assignment
problems. © 2018 Wiley Periodicals, Inc.

1 Introduction
1.1 Nonconvex Optimization

Nonconvex optimization permeates almost all fields of science and engineering
applications. For instance, consider the structured recovery problem where one
wishes to recover some structured inputs x D Œxi �1�i�n from noisy samples y .
The recovery procedure often involves solving some optimization problem (e.g.,
maximum-likelihood estimation)

maximize´2Rn `.´Iy/ subject to ´ 2 S;(1.1)
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where the objective function `.´Iy/ measures how well a candidate ´ fits the sam-
ples. Unfortunately, this program (1.1) may be highly nonconvex, depending on
the choices of the goodness-of-fit measure `.�/ as well as the feasible set S. In
contrast to convex optimization, which has become the cornerstone of modern al-
gorithm design, nonconvex problems are in general daunting to solve. Part of the
challenges arises from the existence of (possibly exponentially many) local station-
ary points; in fact, oftentimes even checking local optimality for a feasible point
proves NP-hard.

Despite the general intractability, recent years have seen progress on noncon-
vex procedures for several classes of problems, including low-rank matrix recov-
ery [24,45,50,51,56,64,75,80,84,89,90], phase retrieval [11,13,17,25,56,61,68,
74, 81, 86, 87], dictionary learning [72, 73], blind deconvolution [54, 56], and em-
pirical risk minimization [58], to name just a few. For example, we have learned
that several problems of this kind provably enjoy benign geometric structure when
the sample complexity is sufficiently large in the sense that all local stationary
points (except for the global optimum) become saddle points and are not difficult
to escape [7, 34, 53, 72, 73]. For the problem of solving certain random systems
of quadratic equations, this phenomenon arises as long as the number of equa-
tions or sample size exceeds the order of n log3 n, with n denoting the number of
unknowns [74].1 We have also learned that it is possible to minimize certain non-
convex random functionals—closely associated with the famous phase retrieval
problem—even when there may be multiple local minima [13, 17]. In such prob-
lems, one can find a reasonably large basin of attraction around the global solution,
in which a first-order method converges geometrically fast. More importantly, the
existence of such a basin is often guaranteed even in the most challenging regime
with minimal sample complexity. Take the phase retrieval problem as an exam-
ple: this basin exists as soon as the sample size is about the order of n [17]. This
motivates the development of an efficient two-stage paradigm that consists of a
carefully designed initialization scheme to enter the basin, followed by an iterative
refinement procedure that is expected to converge within a logarithmic number of
iterations [13, 17]; see also [50, 51] for related ideas in matrix completion.

In the present work, we extend the knowledge of nonconvex optimization by
studying a class of assignment problems in which each xi is represented on a finite
alphabet, as detailed in the next subsection. Unlike the aforementioned problems
like phase retrieval that are inherently continuous in nature, in this work we are
preoccupied with an input space that is discrete and already nonconvex to start
with. We would like to contribute to understanding what is possible to solve in this
setting.

1.2 A Joint Alignment Problem
This paper primarily focuses on the following joint discrete alignment problem.

Consider a collection of n variables fxig1�i�n, where each variable can take m

1 This geometric property alone is not sufficient to ensure rapid convergence of an algorithm.



1650 Y. CHEN AND E. J. CANDÈS

different possible values, namely, xi 2 Œm� WD f1; : : : ; mg. Imagine we obtain a
set of pairwise difference samples fyi;j j .i; j / 2 �g over some symmetric2 index
set � � Œn� � Œn�, where yi;j is a noisy measurement of the modulo difference of
the incident variables

(1.2) yi;j  xi � xj mod m; .i; j / 2 �:

For example, one might obtain a set of data fyi;j g where only 50% of them are
consistent with the truth xi � xj mod m. The goal is to simultaneously recover all
fxig based on the measurements fyi;j g up to some unrecoverable global offset.3

To tackle this problem, one is often led to the program

maximizef´i g

X
.i;j /2�

`.´i ; j́ Iyi;j /

subject to ´i 2 f1; : : : ; mg; i D 1; : : : ; n;

(1.3)

where `
�
´i ; j́ Iyi;j

�
is some function that evaluates how consistent the observed

sample yi;j corresponds to the candidate solution .´i ; j́ /. For instance, one pos-
sibility for ` may be

`.´i ; j́ I yi;j / D

(
1 if ´i � j́ D yi;j mod m;

0 otherwise;
(1.4)

under which the program (1.3) seeks a solution that maximizes the agreement be-
tween the paiwise observations and the recovery. Throughout the rest of the paper,
we set `.´i ; j́ Iyi;j / � 0 whenever .i; j / … �.

This joint alignment problem finds applications in multiple domains. To begin
with, the binary case (i.e., m D 2) deserves special attention, as it reduces to
a graph partitioning problem. For instance, in a community detection scenario
in which one wishes to partition all users into two clusters, the variables fxig to
recover indicate the cluster assignments for each user, while yi;j represents the
friendship between two users i and j (e.g., [1, 16, 20–22, 26, 27, 36, 39, 46, 49, 60,
62]). This allows us to model, for example, the haplotype phasing problem arising
in computational genomics [21, 70]. Another example is the problem of water-fat
separation in magnetic resonance imaging (more precisely, in Dixon imaging). A
crucial step is to determine, at each image pixel i , the phasor (associated with the
field inhomogeneity) out of two possible candidates, represented by xi D 1 and
xi D 2, respectively. The task takes as input some precomputed pairwise cost
functions �`.xi ; xj /, which provides information about whether xi D xj at pixels
i and j ; see [6, 41, 88] for details.

2 We say � is symmetric if .i; j / 2 � implies .j; i/ 2 � for any i and j .
3 Specifically, it is impossible to distinguish the m sets of inputs fxi g1�i�n, fxi � 1g1�i�n,

: : : , fxi �mC 1g1�i�n even if we obtain perfect measurements of all pairwise differences fxi �
xj mod m W 1 � i; j � ng.
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Moving beyond the binary case, this problem is motivated by the need of jointly
aligning multiple images/shapes/pictures that arises in various fields. Imagine a
sequence of images of the same physical instance (e.g., a building or a molecule),
where each xi represents the orientation of the camera when taking the i th image.
A variety of computer vision tasks (e.g., 3D reconstruction from multiple scenes)
and structural biology applications (e.g., cryo-electron microscopy) rely upon joint
alignment of these images, or, equivalently, joint recovery of the camera orien-
tations associated with each image. Practically, it is often easier to estimate the
relative camera orientation between a pair of images using raw features [4,44, 82].
The problem then boils down to this: how to jointly aggregate such pairwise infor-
mation in order to improve the collection of camera pose estimates?

1.3 Our Contributions
In this work, we propose to solve the problem (1.3) via a novel model-free non-

convex procedure. Informally, the procedure starts by lifting each variable xi 2 Œm�
to higher dimensions such that distinct values are represented in orthogonal direc-
tions, and then encoding the goodness-of-fit measure `.xi ; xj Iyi;j / for each .i; j /
by an m � m matrix. This way of representation allows us to recast (1.3) as a
constrained quadratic program or, equivalently, a constrained principal component
analysis (PCA) problem. We then attempt optimization by means of projected
power iterations, following an initial guess obtained via suitable low-rank factor-
ization. This procedure proves effective for a broad family of statistical models,
and might be interesting for many other Boolean assignment problems beyond joint
alignment.

2 Algorithm: Projected Power Method
In this section, we present a nonconvex procedure to solve the nonconvex prob-

lem (1.3), which entails a series of projected power iterations over a higher-dimen-
sional space. In what follows, this algorithm will be termed a projected power
method (PPM).

2.1 Matrix Representation
The formulation (1.3) admits an alternative matrix representation that is often

more amenable to computation. To begin with, each state ´i 2 f1; : : : ; mg can be
represented by a binary-valued vector ´i 2 f0; 1gm such that

(2.1) ´i D j ” ´i D ej 2 Rm;

where

e1 D

2664
1

0
:::

0

3775; e2 D

2664
0

1
:::

0

3775; : : : ; em D

2664
0

0
:::

1

3775



1652 Y. CHEN AND E. J. CANDÈS

are the canonical basis vectors. In addition, for each pair .i; j /, one can introduce
an input matrix Li;j 2 Rm�m to encode `.´i ; j́ Iyi;j / given all possible input
combinations of .´i ; j́ /; that is,

.Li;j /˛;ˇ WD `.´i D ˛; j́ D ˇI yi;j /; 1 � ˛; ˇ � m:(2.2)

Take the choice (1.4) of ` for example:

(2.3) .Li;j /˛;ˇ D

(
1; if ˛ � ˇ D yi;j mod m;

0; otherwise;
8.i; j / 2 �I

in words, Li;j is a cyclic permutation matrix obtained by circularly shifting the
identity matrix Im 2 Rm�m by yi;j positions. By convention, we take Li;i � 0
for all 1 � i � n and Li;j � 0 for all .i; j / … �.

The preceding notation enables the quadratic form representation

`.´i ; j́ Iyi;j / D ´
T
iLi;j j́ :

For notational simplicity, we stack all the ´i ’s and the Li;j ’s into a concatenated
vector and matrix

(2.4) ´ D

264´1:::
´n

375 2 Rnm and L D

264L1;1 : : : L1;n
:::

: : :
:::

Ln;1 : : : Ln;n

375 2 Rnm�nm;

respectively, representing the states and log-likelihoods altogether. As a conse-
quence, our problem can be succinctly recast as a constrained quadratic program:

maximize´ ´TL´

subject to ´i 2 fe1; : : : ; emg; i D 1; : : : ; n:
(2.5)

This representation is appealing due to the simplicity of the objective function re-
gardless of the landscape of `. � ; �/, which allows one to focus on quadratic opti-
mization rather than optimizing the (possibly complicated) function `. � ; �/ directly.

There are other families ofL that also lead to the problem (1.3). We single out a
simple, yet important family obtained by enforcing global scaling and offset of L.
Specifically, the solution to (2.5) remains unchanged if each Li;j is replaced by4

(2.6) Li;j  aLi;j C b � 11
T; .i; j / 2 �;

for some numerical values a > 0 and b 2 R. Another important instance in this
family is the debiased version of L—denoted by Ldebias—defined as

Ldebias
i;j D Li;j �

1TLi;j 1

m2
� 11T; 1 � i; j � n;(2.7)

which essentially removes the empirical average of Li;j in each block.

4 This is because ´T
i .aLi;j C b11

T/ j́ D a´
T
iLi;j j́ C b given that 1T´i D 1

T
j́ D 1.
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2.2 Algorithm
One can interpret the quadratic program (2.5) as finding the principal compo-

nent of L subject to certain structural constraints. This motivates us to tackle this
constrained PCA problem by means of a power method, with the assistance of ap-
propriate regularization to enforce the structural constraints. More precisely, we
consider the following procedure, which starts from a suitable initialization ´.0/

and follows the update rule

(2.8) ´.tC1/ D P�n.�tL´
.t// 8t � 0;

for some scaling parameter �t 2 RC [ f1g. Here, P�n represents blockwise
projection onto the standard simplex; namely, for any vector ´ D Œ´i �1�i�n 2

Rnm,

(2.9) P�n.´/ WD

264P�.´1/
:::

P�.´n/;

375
where P�.´i / is the projection of ´i 2 Rm onto the standard simplex

(2.10) � WD fs 2 Rm j 1Ts D 1; s is nonnegativeg:

In particular, when �t D 1, P�.�t´i / reduces to a rounding procedure. Specif-
ically, if the largest entry of ´i is strictly larger than its second largest entry, then
one has

(2.11) lim
�t!1

P�.�t´i / D ej

with j denoting the index of the largest entry of ´i ; see Fact 5.3 for a justification.
The key advantage of the PPM is its computational efficiency: the most expen-

sive step in each iteration lies in matrix multiplication, which can be completed
in nearly linear time, i.e., in time O.j�jm logm/.5 This arises from the fact that
each block Li;j is circulant, so we can compute a matrix-vector product using at
most two m-point FFTs. The projection step P� can be performed in O.m logm/
flops via a sorting-based algorithm (e.g., [31, fig. 1]), and hence P�n.�/ is much
cheaper than the matrix-vector multiplication L´.t/ given that j�j � n occurs in
most applications.

One important step towards guaranteeing rapid convergence is to identify a de-
cent initial guess ´.0/. This is accomplished by low-rank factorization as follows:

(1) Compute the best rank-m approximation of the input matrix L, namely,

(2.12) yL WD arg min
M W rank.M/�m

kM �LkF;

5 Here and throughout, the standard notion f .n/ D O.g.n// or f .n/ . g.n/ means there exists
a constant c > 0 such that jf .n/j � cg.n/; f .n/ D o.g.n// means limn!1 f .n/=g.n/ D 0;
f .n/ & g.n/means there exists a constant c > 0 such that jf .n/j � cg.n/; and f .n/ � g.n/means
there exist constants c1; c2 > 0 such that c1g.n/ � jf .n/j � c2g.n/.
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where k � k represents the Frobenius norm.
(2) Pick a random column ý of yL and set the initial guess as ´.0/ D P�n.�0ý/.

Remark 2.1. Alternatively, one can take yL to be the best rank-.m� 1/ approxima-
tion of the debiased input matrix Ldebias defined in (2.7), which can be computed
in a slightly faster manner.

Remark 2.2. A natural question arises as to whether the algorithm works with an
arbitrary initial point. This question has been studied by [3] for the more special
stochastic block models, which shows that under some (suboptimal) conditions,
all second-order critical points correspond to the truth and hence an arbitrary ini-
tialization works. However, the condition presented therein is much more stringent
than the optimal threshold [1,60]. Moreover, it is unclear whether a local algorithm
like the PPM can achieve optimal computation time without proper initialization.
All of this would be interesting for future investigation.

The main motivation comes from the (approximate) low-rank structure of the
input matrix L. As we shall shortly see, in many scenarios the data matrix is
approximately of rank m if the samples are noise-free. Therefore, a low-rank ap-
proximation of L serves as a denoised version of the data, which is expected to
reveal much information about the truth.

The low-rank factorization step can be performed efficiently via the method of
orthogonal iteration (also called the “block power method”) [37, sec. 7.3.2]. Each
power iteration consists of a matrix product of the form LU as well as a QR de-
composition of some matrix V , where U ;V 2 Rnm�m. The matrix product can be
computed in O.j�jm2 logm/ flops with the assistance of m-point FFTs, whereas
the QR decomposition takes time O.nm3/. In summary, each power iteration runs
in time O.j�jm2 logmC nm3/. Consequently, the matrix product constitutes the
main computational cost when m . .j�j logm/=n, while the QR decomposition
becomes the bottleneck when m� j�j logm=n.

It is noteworthy that both the initialization and the refinement we propose are
model-free, which do not make any assumptions on the data model. The whole
algorithm is summarized in Algorithm 1. There is of course the question of what
sequence f�tg to use, which we defer to Section 3.

The proposed two-step algorithm, which is based on proper initialization fol-
lowed by successive projection onto the product of simplices, is a new paradigm
for solving a class of discrete optimization problems. As we will detail in the next
section, it is provably effective for a family of statistical models. On the other hand,
we remark that there exist many algorithms of a similar flavor to tackle other gen-
eralized eigenproblems, including but not limited to sparse PCA [40,48,85], water-
fat separation [88], the hidden clique problem [28], phase synchronization [9, 55],
cone-constrained PCA [29], and automatic network analysis [83]. These algo-
rithms are variants of the projected power method, which combine proper power
iterations with additional procedures to promote sparsity or enforce other feasibil-
ity constraints. For instance, Deshpande et al. [29] show that under some simple
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Algorithm 1 Projected power method.
Input: the input matrix L D ŒLi;j �1�i;j�n; the scaling factors f�tgt�0.

Initialize ´.0/ to be P�n.�0ý/ as defined in (2.9), where ý is a random column
of the best rank-m approximation yL of L.

Loop: for t D 0; 1; : : : ; T � 1 do

(2.13) ´.tC1/ D P�n.�tL´
.t//;

where P�n.�/ is as defined in (2.9).

Output: fyxig1�i�n, where yxi is the index of the largest entry of the block ´.T /i .

models, cone-constrained PCA can be efficiently computed using a generalized
projected power method, provided that the cone constraint is convex. The current
work adds a new instance to this growing family of nonconvex methods.

3 Statistical Models and Main Results
This section explores the performance guarantees of the projected power method.

We assume that � is obtained via random sampling at an observation rate pobs
so that each .i; j /, i > j , is included in � independently with probability pobs,
and � is assumed to be independent of the measurement noise. In addition, we
assume that the samples fyi;j j i > j g are independently generated. While the
independence noise assumption may not hold in reality, it serves as a starting point
for us to develop a quantitative theoretical understanding for the effectiveness of
the projected power method. This is also a common assumption in the literature
(e.g., [9, 18, 43, 55, 63, 71, 82]).

With the above assumptions in mind, the MLE is exactly given by (1.3), with
`.´i ; j́ Iyi;j / representing the log-likelihood (or some other equivalent function)
of the candidate solution .´i ; j́ / given the outcome yi;j . Our key finding is that the
PPM is not only much more practical than computing the MLE directly,6 but also
capable of achieving nearly identical statistical accuracy as the MLE in a variety
of scenarios.

Before proceeding to our results, we find it convenient to introduce a block
sparsity metric. Specifically, the block sparsity of a vector h D fhig1�i�n is
defined and denoted by

khk�;0 WD

nX
iD1

Ifhi ¤ 0g;

6 Finding the MLE here is an NP-hard problem, and in general cannot be solved within polyno-
mial time. Practically, one might attempt to compute it via convex relaxation (e.g., [4,18,43]), which
is much more expensive than the PPM.
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where If�g is the indicator function. Since one can only hope to recover x up to
some global offset, we define the misclassification rate as the normalized block
sparsity of the estimation error modulo the global shift

(3.1) MCR.yx;x/ WD
1

n
min
0�l<m

kyx � shiftl.x/k�;0:

Here, shiftl.x/ WD Œshiftl.xi /�1�i�n 2 Rmn, where shiftl.xi / 2 Rm is obtained
by circularly shifting the entries of xi 2 Rm by l positions. Additionally, we let
log.�/ represent the natural logarithm throughout this paper.

3.1 Random Corruption Model
While our goal is to accommodate a general class of noise models, it is helpful

to start with a concrete and simple example—termed a random corruption model—
such that

(3.2) yi;j D

(
xi � xj mod m; with probability �0;
Unif.m/; otherwise;

.i; j / 2 �;

with Unif.m/ being the uniform distribution over f0; 1; : : : ; m � 1g. We will term
the parameter �0 the noncorruption rate, since with probability 1��0 the observa-
tion behaves like a random noise carrying no information whatsoever. Under this
single-parameter model, one can write

`.´i ; j́ Iyi;j / D

(
log
�
�0 C

1��0

m

�
; if ´i � j́ D yi;j mod m;

log
�
1��0

m

�
; otherwise;

(3.3)

for all .i; j / 2 �. Apart from its mathematical simplicity, the random corruption
model somehow corresponds to the worst-case situation since the uniform noise
enjoys the highest entropy among all distributions over a fixed range, thus forming
a reasonable benchmark for practitioners.

Additionally, while Algorithm 1 can certainly be implemented using the formu-
lation

(3.4) .Li;j /˛;ˇ D

(
log

�
�0 C

1��0

m

�
; if ˛ � ˇ D yi;j mod m;

log
�
1��0

m

�
; otherwise;

.i; j / 2 �;

we recommend taking (2.3) as the input matrix in this case. It is easy to verify that
(3.4) and (2.3) are equivalent up to global scaling and offset, but (2.3) is parameter
free and hence practically more appealing.

We show that the PPM is guaranteed to work even when the noncorruption rate
�0 is vanishingly small, which corresponds to the scenario where almost all ac-
quired measurements behave like random noise. A formal statement is this:

THEOREM 3.1. Consider the random corruption model (3.2) and the input matrix
L given in (2.3). Fixm > 0, and suppose pobs > .c1 logn/=n and �t > c2=�2.L/
for some sufficiently large constants c1; c2 > 0. Then there exists some absolute
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constant 0 < � < 1 such that with probability approaching 1 as n scales, the
iterates of Algorithm 1 obey

(3.5) MCR.´.t/;x/ � 0:49�t 8t � 0;

provided that the noncorruption rate �0 exceeds7

(3.6) �0 > 2

s
1:01 logn
mnpobs

:

Remark 3.2. Here and throughout, �i .L/ is the i th largest singular value of L. In
fact, one can often replace �2.L/ with �i .L/ for other 2 � i < m. But �1.L/ is
usually not a good choice unless we employ the debiased version of L instead, be-
cause �1.L/ typically corresponds to the “direct current” component of L, which
could be excessively large. In addition, we note that �i .L/ .i � m/ have been
computed during spectral initialization and, as a result, will not result in extra com-
putational cost.

Remark 3.3. As will be seen in Section 6, a stronger version of error contraction
arises such that

(3.7) MCR.´.tC1/;x/ � �MCR.´.t/;x/ if MCR.´.t/;x/ � 0:49:

This is a uniform result in the sense that (3.7) occurs simultaneously for all ´.t/ 2
�n obeying MCR.´.t/;x/ � 0:49, regardless of the preceding iterates f´.0/; : : : ;
´.t�1/g and the statistical dependency between ´.t/ and fyi;j g. In particular, if
�t D 1, one has ´.t/ 2 fe1; : : : ; emgn, and hence f´.t/g forms a sequence of
feasible iterates with increasing accuracy. In this case, the iterates become accurate
whenever MCR.´.t/;x/ < 1=n.

Remark 3.4. The contraction rate � can actually be as small as O.1=�20npobs/,
which is at most O.1= logn/ if m is fixed and if the condition (3.6) holds.

According to Theorem 3.1, convergence to the ground truth can be expected
in at most O.logn/ iterations. This together with the per-iteration cost (which
is on the order of j�j since Li;j is a cyclic permutation matrix) shows that the
computational complexity of the iterative stage is at most O.j�j logn/. This is
nearly optimal since even reading all the data and likelihood values take time about
the order of j�j. All of this happens as soon as the corruption rate does not exceed
1 �O.

p
logn=mnpobs/, uncovering the remarkable ability of the PPM to tolerate

and correct dense input errors.
As we shall see later in Section 6, Theorem 3.1 holds as long as the algorithm

starts with any initial guess ´.0/ obeying

(3.8) MCR.´.0/;x/ � 0:49;

7 Theorem 3.1 continues to hold if we replace 1.01 with any other constant in (1,1).
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regardless of whether ´.0/ is independent of the data fyi;j g or not. Therefore, it
often suffices to run the power method for a constant number of iterations during
the initialization stage, which can be completed in O.j�j/ flops when m is fixed.
The broader implication is that Algorithm 1 remains successful if one adopts other
initialization that can enter the basin of attraction.

Finally, our result is sharp: to be sure, the error correction capability of the pro-
jected power method is statistically optimal, as revealed by the following converse
result.

THEOREM 3.5. Consider the random corruption model (3.2) with any fixedm > 0,
and suppose pobs > c1 logn=n for some sufficiently large constant c1 > 0. If 8

(3.9) �0 < 2

s
0:99 logn
mnpobs

;

then the minimax probability of error

inf
yx

max
xi2Œm�;1�i�n

P .MCR.yx;x/ > 0 j x/! 1 as n!1;

where the infimum is taken over all estimators and x is the vector representation
of fxig as before.

As mentioned before, the binary case m D 2 bears some similarity to the
community detection problem in the presence of two communities. Arguably
the most popular model for community detection is the stochastic block model
(SBM), where any two vertices within the same cluster or across different clus-
ters are connected by an edge with probability p or q, respectively. The as-
ymptotic limits for both exact and partial recovery have been extensively stud-
ied [1,2,10,26,38,39,57,60]. We note, however, that the primary focus of commu-
nity detection lies in the sparse regime p; q � 1=n or logarithmic sparse regime
(i.e., p; q � logn=n), which is in contrast to the joint alignment problem in which
the measurements are often considerably denser. There are, however, a few the-
oretical results that cover the dense regime, e.g., [60]. To facilitate comparison,
consider the case where p D 1C�0

2
and q D 1��0

2
for some �0 > 0; then the SBM

reduces to the random corruption model with pobs D 1. One can easily verify
that the limit �0 D

p
2 logn=n we derive matches the recovery threshold given

in9 [60, thm. 2.5 and prop. 2.9].

8 Theorem 3.5 continues to hold if we replace 0.99 with any other constant between 0 and 1.
9 Note that the model studied in [60] is an SBM with 2n vertices with n vertices belonging to

each cluster. Therefore, the threshold characterization [60, prop. 2.9] should read

�
p
n=2

p � q
exp

�
�
n.p � q/2

4�2

�
! 0

when applied to our setting, with � WD
p
p.1 � q/C q.1 � p/ �

p
1=2.
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3.2 More General Noise Models
The theoretical guarantees we develop for the random corruption model are spe-

cial instances of a set of more general results. In this subsection, we cover a far
more general class of noise models such that

(3.10) yi;j
ind.
D xi � xj C �i;j mod m; .i; j / 2 �;

where the additive noise �i;j (i > j ) are i.i.d. random variables supported on
f0; 1; : : : ; m � 1g. In what follows, we define P0.�/ to be the distribution of �i;j ,
i.e.,

(3.11) P0.y/ D P .�i;j D y/; 0 � y < m:

For instance, the random corruption model (3.2) is a special case of (3.10) with the
noise distribution

(3.12) P0.y/ D

(
�0 C

1��0

m
; if y D 0;

1��0

m
; if y D 1; : : : ; m � 1:

To simplify notation, we set P0.y/ D P0.y mod m/ for all y … f0; : : : ; m � 1g
throughout the paper. Unless otherwise noted, we take �j;i D ��i;j for all .i; j / 2
�, and restrict attention to the class of symmetric noise distributions obeying

(3.13) P0.y/ D P0.m � y/; y D 1; : : : ; m � 1;

which largely simplifies the exposition.

Key Metrics
The feasibility of accurate recovery necessarily depends on the noise distribution

or, more precisely, the distinguishability of the output distributions fyi;j g given
distinct inputs. In particular, there are m distributions fPlg0�l<m that we would
like to emphasize, where Pl.�/ represents the distribution of yi;j conditional on
xi � xj D l . Alternatively, Pl is also the l-shifted distribution of the noise �i;j
given by

(3.14) Pl.y/ WD P .yi;j D y j xi � xj D l/ D P .�i;j D y � l/:

Here and below, we write a � b and a � b mod m interchangeably whenever it is
clear from the context, and adopt the cyclic notation cl D clCm (l 2 Z) for any
quantity taking the form cl .

We would like to quantify the distinguishability of these distributions via some
distance metric. One candidate is the Kullback-Leibler (KL) divergence defined by

KL.Pi k Pl/ WD
X

y
Pi .y/ log

Pi .y/

Pl.y/
; 0 � i; l < m;(3.15)

which plays an important role in our main theory.
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Performance Guarantees
We now proceed to the main findings. To simplify matters, we shall concern

ourselves primarily with the kind of noise distributions obeying the following as-
sumption.

ASSUMPTION 3.6. mminy P0.y/ is bounded away from 0.

Remark 3.7. When m D O.1/, one can replace mminy P0.y/ with miny P0.y/ in
Assumption 3.6. However, if m is allowed to scale with n—which is the case in
Section 3.4—then the prefactor m cannot be dropped.

In words, Assumption 3.6 ensures that the noise density is not much lower than
the average density 1=m at any point. The reason that we introduce this assumption
is twofold. To begin with, this enables us to preclude the case where the entries of
L—or equivalently, the log-likelihoods—are too wild. For instance, if P0.y/ D 0
for some y, then logP0.y/ D �1, resulting in computational instability. The
other reason is to simplify the analysis and exposition slightly, making it easier
for the reader. We note, however, that this assumption is not crucial and can be
dropped by means of a slight modification of the algorithm, which will be detailed
later.

Another assumption that we would like to introduce is more subtle:

ASSUMPTION 3.8. KLmax=KLmin is bounded, where

(3.16) KLmin WD min
1�l<m

KL.P0 k Pl/ and KLmax WD max
1�l<m

KL.P0 k Pl/:

Roughly speaking, Assumption 3.8 states that the mutual distances of the m
possible output distributions fPlg1�l�m lie within a reasonable dynamic range, so
that one cannot find a pair of them that are considerably more separated than other
pairs. Alternatively, it is understood that the variation of the log-likelihood ratio,
as we will show later, is often governed by the KL divergence between the two
corresponding distributions. From this point of view, Assumption 3.8 tells us that
there is no submatrix of L that is significantly more volatile than the remaining
parts, which often leads to enhanced stability when computing the power iteration.

With these assumptions in place, we are positioned to state our main result. It
is not hard to see that Theorem 3.1 is an immediate consequence of the following
theorem.

THEOREM 3.9. Fixm > 0, and assume pobs > c1 logn=n and �t > c2=�2.L/ for
some sufficiently large constants c1; c2 > 0. Under Assumptions 3.6 and 3.8, there
exist some absolute constants 0 < �; � < 1 such that with probability tending to 1
as n scales, the iterates of Algorithm 1 with the input matrix (2.2) or (2.7) obey

(3.17) MCR.´.t/;x/ � ��t 8t � 0;
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provided that10

(3.18) KLmin �
4:01 logn
npobs

:

Remark 3.10. Alternatively, Theorem 3.9 can be stated in terms of other divergence
metrics like the squared Hellinger distance H2. � ; �/. Specifically, Theorem 3.9
holds if the minimum squared Hellinger distance obeys

(3.19) H2min WD min
1�l<m

H2.P0; Pl/ >
1:01 logn
npobs

;

where H2.P;Q/ WD 1
2

P
y.
p
P.y/ �

p
Q.y//2. We will see later in Lemma 5.5

that KLmin � 4H2min, which justifies the equivalence between (3.18) and (3.19).

The recovery condition (3.18) is nonasymptotic and takes the form of a mini-
mum KL divergence criterion. This is consistent with the understanding that the
hardness of exact recovery often arises in differentiating minimally separated out-
put distributions. Within at most O.logn/ projected power iterations, the PPM
returns an estimate with absolutely no error as soon as the minimum KL diver-
gence exceeds some threshold. This threshold can be remarkably small when pobs
is large or, equivalently, when we have many pairwise measurements available.

Theorem 3.9 accommodates a broad class of noise models. Here we highlight
a few examples to illustrate its generality. To begin with, it is self-evident that the
random corruption model belongs to this class with KLmax=KLmin D 1. Beyond
this simple model, we list two important families that satisfy Assumption 3.8 and
that are of broad practical interest. This list, however, is by no means exhaustive.

(1) A class of distributions that obey

(3.20) KLmin D KL.P0 k P1/ or KLmin D KL.P0 k P�1/:

This says that the output distributions are the closest when the two corre-
sponding inputs are minimally separated.

(2) A class of unimodal distributions that satisfy

(3.21) P0.0/ � P0.1/ � � � � � P0.bm=2c/:

This says that the likelihood decays as the distance to the truth increases.

LEMMA 3.11. Fix m > 0, and suppose Assumption 3.6 holds. Then the noise
distribution satisfying either (3.20) or (3.21) obeys Assumption 3.8.

PROOF. See Appendix B. �

10 Theorem 3.9 remains valid if we replace 4.01 by any other constant in (4,1).
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Why Algorithm 1 Works
We pause here to gain some insights into Algorithm 1, in particular, why the

minimum KL divergence has emerged as a key metric. Without loss of generality,
we assume x1 D � � � D xn D 1 to simplify the presentation.

Recall that Algorithm 1 attempts to find the constrained principal component
of L. To enable successful recovery, one would naturally hope the structure of
the data matrix L to reveal much information about the truth. In the limit of large
samples, it is helpful to start by looking at the mean of Li;j , which is given by

EŒLi;j �˛;ˇ D pobsEy�P0
ŒlogP˛�ˇ .y/�

D pobsEy�P0

�
log

P˛�ˇ .y/

P0.y/

�
C pobsEy�P0

�
logP0.y/

�
D pobsŒ�KL˛�ˇ �H.P0/�(3.22)

for any i ¤ j and 1 � ˛; ˇ � m; here and throughout,

H.P0/ WD �
X
y

P0.y/ logP0.y/

is the entropy functional, and

KLl WD KL.P0 k Pl/; 0 � l < m:(3.23)

We can thus write

(3.24) EŒL� D pobs

26666664

0 K � � � � � � K

K 0
: : :

: : :
:::

:::
: : :

: : :
: : :

:::
:::

: : :
: : : 0 K

K : : : : : : K 0

37777775
with K 2 Rm�m denoting a circulant matrix

(3.25) K WD

26664
�KL0 �KLm�1 � � � �KL1
�KL1 �KL0 � � � �KL2
:::

: : :
: : :

:::

�KLm�1 � � � �KL1 �KL0

37775
„ ƒ‚ …

WDK0

�H.P0/1 � 1T:

It is easy to see that the largest entries of K lie on the main diagonal, due to the
fact that

�KL0 D 0 and � KLl D �KL.P0 k Pl/ < 0 .1 � l < m/:

Consequently, for any column of EŒL�, knowledge of the largest entries in each
block reveals the relative positions across all fxig. Take the second column of EŒL�
for example: all but the first blocks of this column attain the maximum values in
their second entries, telling us that x2 D � � � D xn.
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Given the noisy nature of the acquired data, one would further need to ensure
that the true structure stands out from the noise. This hinges upon understanding
when L can serve as a reasonably good proxy for EŒL� in the (projected) power
iterations. Since we are interested in identifying the largest entries, the signal con-
tained in each block—which is essentially the mean separation between the largest
and second largest entries—is of size

pobs min
1�l<m

Ey�P0
ŒlogP0.y/ � logPl.y/� D pobs min

1�l<m
KLl D pobsKLmin:

The total signal strength is thus given by npobsKLmin. In addition, the variance in
each measurement is bounded by

max
1�l<m

Vary�P0
ŒlogP0.y/ � logPl.y/�

.a/

. max
1�l<m

KLl D KLmax;

where the inequality (a) will be demonstrated later in Lemma 5.5. From the semi-
circle law, the perturbation can be controlled by

(3.26) kL � EŒL�k D O
�p
npobsKLmax

�
;

where k � k is the spectral norm. This cannot exceed the size of the signal, namely,

npobs KLmin &
p
npobsKLmax:

This condition reduces to
KLmin &

1

npobs
under Assumption 3.8, which is consistent with Theorem 3.9 up to some logarith-
mic factor.

Optimality
The preceding performance guarantee turns out to be information theoretically

optimal in the asymptotic regime. In fact, the KL divergence threshold given in
Theorem 3.9 is arbitrarily close to the information limit, a level below which every
procedure is bound to fail in a minimax sense. We formalize this finding as a
converse result:

THEOREM 3.12. Fix m > 0. Let fPl;n W 0 � l < mgn�1 be a sequence of prob-
ability measures supported on a finite set Y , where infy2Y;n;p Pl;n.y/ is bounded
away from 0. Suppose that there exists 1 � l < m such that

KL.P0;n k Pl;n/ D min
1�j<m

KL.P0;n k Pj;n/ WD KLmin;n

for all sufficiently large n, and that pobs >
c0 logn
n

for some sufficiently large con-
stant c0 > 0. If 11

(3.27) KLmin;n <
3:99 logn
npobs

;

11 Theorem 3.12 continues to hold if we replace 3.99 with any other constant between 0 and 4.
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then the minimax probability of error

(3.28) inf
yx

max
xi2Œm�;1�i�n

P .MCR.yx;x/ > 0 j x/! 1 as n!1;

where the infimum is over all possible estimators and x is the vector representation
of fxig as usual.

3.3 Extension: Removing Assumption 3.6
We return to Assumption 3.6. As mentioned before, an exceedingly small P0.y/

might result in unstable log-likelihoods, which suggests we regularize the data be-
fore running the algorithm. To this end, one alternative is to introduce a little more
entropy to the samples so as to regularize the noise density; namely, we add a small
level of random noise to yield

(3.29) zyi;j
ind:
D

(
yi;j with probability 1 � &;
Unif.m/ otherwise;

for some appropriate small constant & > 0. The distribution of the new data zyi;j
given xi � xj D l is thus given by

(3.30) zPl  .1 � &/Pl C & Unif.m/;

which effectively bumps minP0.y/ up to .1 � &/minP0.y/ C &=m. We then
propose to run Algorithm 1 using the new data fzyi;j g and f zPlg, leading to the
following performance guarantee.

THEOREM 3.13. Take & > 0 to be some sufficiently small constant, and suppose
that Algorithm 1 operates upon fzyi;j g and f zPlg. Then Theorem 3.9 holds without
Assumption 3.6.

PROOF. See Appendix A. �

3.4 Extension: Large-m Case
So far our study has focused on the case where the alphabet size m does not

scale with n. There are, however, no shortage of situations wherem is so large that
it cannot be treated as a fixed constant. The encouraging news is that Algorithm 1
appears surprisingly competitive for the large-m case as well. Once again, we
begin with the random corruption model, and our analysis developed for fixed m
immediately applies here.

THEOREM 3.14. Suppose m & logn, m D O.poly.n//, and pobs � c1 log2 n=n
for some sufficiently large constant c1 > 0. Then Theorem 3.1 continues to hold
with probability at least 0:99, as long as (3.6) is replaced by

(3.31) �0 >
c3

p
npobs

for some universal constant c3 > 0. Here, 0:99 is arbitrary and can be replaced
by any constant between 0 and 1.
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The main message of Theorem 3.14 is that the error correction capability of the
proposed method improves as the number n of unknowns grows. The quantitative
bound (3.31) implies successful recovery even when an overwhelming fraction of
the measurements are corrupted. Notably, when m is exceedingly large, Theorem
3.14 might shed light on the continuous joint alignment problem. In particular,
there are two cases worth emphasizing:

� When m� n (e.g., m & n10), the random corruption model converges to
the following continuous spike model as n scales:

(3.32)

xi 2 Œ0; 1/; 1 � i � n;

yi;j D

(
xi � xj mod 1 with probability �0;
Unif.0; 1/ otherwise;

.i; j / 2 �:

This coincides with the setting studied in [71,82] over the orthogonal group
SO.2/, under the name of synchronization [3,9,55]. It has been shown that
the leading eigenvector of a certain data matrix becomes positively corre-
lated with the truth as long as �0 > 1=

p
nwhen pobs D 1 [71]. In addition,

a generalized power method—which is equivalent to the projected gradi-
ent descent—provably converges to the solution of the nonconvex least-
squares estimation as long as the size of the noise is below some thresh-
old [9,55]. When it comes to exact recovery, Wang and Singer proved that
semidefinite relaxation succeeds as long as �0 > 0:457 [82, thm. 4.1], a
constant threshold regardless of n. In contrast, the exact recovery perfor-
mance of our approach—which operates over a lifted discrete space rather
than SO.2/—improves with n, allowing �0 to be arbitrarily small when n
is sufficiently large. On the other hand, the model (3.32) is reminiscent of
the more general robust PCA problem [12, 14], which consists in recover-
ing a low-rank matrix when a fraction of observed entries are corrupted.
We have learned from the literature [19, 32] that perfect reconstruction
is feasible and tractable even though a dominant portion of the observed
entries may suffer from random corruption, which is consistent with our
finding in Theorem 3.14.
� In the preceding spike model, the probability density of each measurement

experiences an impulse around the truth. In a variety of realistic scenar-
ios, however, the noise density might be more smooth than spiky. Such
smoothness conditions can be modeled by enforcing P0.´/ � P0.´C 1/

for all ´, so as to rule out any sharp jump. To satisfy this condition, we
can at most take m �

p
npobs in view of Theorem 3.14. In some sense,

this uncovers the “resolution” of our estimator under the “smooth” noise
model: if we constrain the input domain to be the unit interval by letting
xi D 1; : : : ; m represent the grid points 0; 1

m
; : : : ; m�1

m
, respectively, then
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the PPM can recover each variable up to a resolution of
1

m
�

1
p
npobs

:(3.33)

Notably, the discrete random corruption model has been investigated in prior liter-
ature [18, 43], with the best theoretical support derived for convex programming.
Specifically, it has been shown by [18] that convex relaxation is guaranteed to
work as soon as �0 & log2 n=

p
npobs. In comparison, this is more stringent than

the recovery condition (3.31) we develop for the PPM by some logarithmic factor.
Furthermore, Theorem 3.14 is an immediate consequence of a more general result:

THEOREM 3.15. Assume m & logn, m D O.poly.n//, and pobs > c1 log5 n=n
for some sufficiently large constant c1 > 0. Suppose that L is replaced by Ldebias

when computing the initial guess ´.0/ and � � c3
p
m=�m.L

debias/ for some suffi-
ciently large constant c3 > 0. Then Theorem 3.9 continues to hold with probability
exceeding 0:99 provided that (3.18) is replaced by

(3.34)
KL2min

max1�l<m
log P0

Pl

2
1

�
c3

npobs

for some universal constant c3 > 0. Here,log
P0

Pl


1

WD

X
y

ˇ̌̌̌
log

P0.y/

Pl.y/

ˇ̌̌̌
;

and 0:99 can be replaced by any constant in between 0 and 1.

Some brief interpretations of (3.34) are in order. As discussed before, the quan-
tity KLmin represents the strength of the signal. The term maxl klog.P0=Pl/k21, in
contrast, controls the variability of each block of the data matrix Li;j ; to be more
precise,

EŒkLi;j � EŒLi;j �k
2� . max

1�l<m

log
P0

Pl

2
1

;

as we will demonstrate in the proof. Thus, the left-hand side of (3.34) can be
regarded as the signal-to-noise ratio (SNR) experienced in each block Li;j . The
recovery criterion is thus in terms of a lower threshold on the SNR, which can
be vanishingly small in the regime considered in Theorem 3.15. We note that
the general alignment problem has been studied in [4] as well, although the focus
therein is to show the stability of semidefinite relaxation in the presence of random
vertex noise.

We caution, however, that the performance guarantees presented in this subsec-
tion are in general not information-theoretically optimal. For instance, it has been
shown in [23] that the MLE succeeds as long as

�0 &

s
logn
mnpobs
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in the regime where m � npobs= logn; that is, the performance of the MLE im-
proves asm increases. It is noteworthy that none of the polynomial algorithms pro-
posed in prior works achieve optimal scaling in m. It remains to be seen whether
this arises due to some drawback of the algorithms or due to the existence of some
inherent information-computation gap.

4 Numerical Experiments
This section examines the empirical performance of the projected power method

on both synthetic instances and real image data. While the statistical assumptions
(i.e., the i.i.d. noise model) underlying our theory typically do not hold in practi-
cal applications (e.g., shape alignment and graph matching), our numerical experi-
ments show that the PPM developed based on our statistical models enjoy favorable
performances when applied to real datasets.

4.1 Synthetic Experiments
To begin with, we conduct a series of Monte Carlo trials for various problem

sizes under the random corruption model (3.2). Specifically, we vary the number
n of unknowns, the input corruption rate 1 � �0, and the alphabet size m, with
the observation rate set to be pobs D 1 throughout. For each .n; �0; m/-tuple, 20
Monte Carlo trials are conducted. In each trial, we draw each xi uniformly at ran-
dom over Œm�, generate a set of measurements fyi;j g1�i;j�n according to (3.2),
and record the misclassification rate MCR.yx;x/ of Algorithm 1. The mean em-
pirical misclassification rate is then calculated by averaging over 20 Monte Carlo
trials.

Figure 4.1 depicts the mean empirical misclassification rate whenm D 2; 10; 20,
and accounts for two choices of the scaling factors: (1) �t � 10=�2.L/ and (2)
�t � 1. In particular, the solid lines locate the asymptotic phase transitions for
exact recovery predicted by our theory. In all cases, the empirical phase transition
curves come closer to the analytical prediction as the problem size n increases.

Another noise model that we have studied numerically is a modified Gaussian
model. Specifically, we setm D 5; 9; 15, and the random noise �i;j is generated in
such a way that

(4.1) Pf�i;j D ´g / exp
�
�
´2

2�2

�
; �

m � 1

2
� ´ �

m � 1

2
;

where � controls the flatness of the noise density. We vary the parameters .�; n;m/,
take pobs D 1, and experiment on two choices of scaling factors �t � 20=�m.L/

and �t �1. The mean misclassification rate of the PPM is reported in Figure 4.2,
where the empirical phase transition matches the theory very well.

4.2 Joint Shape Alignment
Next, we return to the motivating application (i.e., joint image/shape alignment)

of this work, and validate the applicability of the PPM on two datasets drawn from
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FIGURE 4.1. The empirical mean misclassification rate of Algorithm 1
under the random corruption model.
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FIGURE 4.2. The empirical mean misclassification rate of Algorithm 1
under the modified Gaussian model.

the ShapeNet repository [15]: (a) the Chair dataset (03001627) and (b) the Plane
dataset (02691156). Specifically, n D 50 shapes are taken from each dataset, and
we randomly sample 8192 points from each shape as input features. Each shape
is rotated in the x´-plane by a random continuous angle �i 2 Œ0; 360ı/. Since the
shapes in these datasets have high quality and low noise, we perturb the shape data
by adding independent Gaussian noise N .0; 0:22/ to each coordinate of each point
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FIGURE 4.3. The performance of the PPM on a Chair dataset of n D 50
shapes: (left) the first 20 input shapes; (right) the first 20 shapes after
alignment.
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FIGURE 4.4. The cumulative distributions of the absolute angular esti-
mation errors on: (left) the Plane dataset, and (right) the Chair dataset.

and use the perturbed data as inputs. This makes the task more challenging; for
instance, the resulting SNR on the Chair dataset is around 0.945 (since the mean
square values of each coordinate of the samples is 0.0378).

To apply the projected power method, we discretize the angular domain Œ0; 360ı/
by m D 32 points, so that xi D j .1 � j � 32/ represents an angle �i D
j 360ı=32. Following the procedure adopted in [44],12 we compute the pairwise
cost (i.e., �`.´i ; j́ /) using some nearest-neighbor distance metric; to be precise,
we set �`.´i ; j́ / as the average nearest-neighbor squared distance between the
samples of the i th and j th shapes, after they are rotated by ´i

32
360ı and j́

32
360ı, re-

spectively. Such pairwise cost functions have been widely used in computer graph-
ics and vision, and one can regard it as assuming that the average nearest-neighbor
distance follows some Gaussian distribution. Careful readers might remark that we
have not specified fyi;j g in this experiment. Practically, oftentimes we only have

12 https://github.com/huangqx/map_synchronization/

https://github.com/huangqx/map_synchronization/
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access to some pairwise potential/cost functions rather than fyi;j g. Fortunately, all
we need to run the algorithm is `.´i ; j́ / or some proxy of `.´i ; j́ /.

Figure 4.3 shows the first 20 representative shapes before and after joint align-
ment in the Chair dataset. As one can see, the shapes are aligned in a reasonably
good manner. More quantitatively, Figure 4.4 displays the cumulative distributions
of the absolute angular estimation errors for both datasets. We have also reported
in Figure 4.4 the performance of semidefinite programming (SDP)—that is, the
MatchLift algorithm presented in [18]. Note that the angular errors are measured
as the distance to the undiscretized angles f�ig and are hence somewhat contin-
uous. We see that for the PPM, 70% (resp., 44%) of the estimates on the Plane
(resp., Chair) dataset have an error of 5:5ı or lower, while the proportion is 48%
(resp., 44%) for the SDP formulation. Recall that the resolution of the discretiza-
tion is 360ı=32 � 11ı, which would mean that all estimates with an error less than
5:5ı are, in some sense, perfect recoveries.

Computationally, it takes around 2.4 seconds to run the PPM, while SDP (im-
plemented using the alternating direction method of multipliers (ADMM)) runs in
895.6 seconds. All experiments are carried out on a MacBook Pro equipped with
a 2.9 GHz Intel Core i5 and 8GB of memory.

4.3 Joint Graph Matching
The PPM is applicable to other combinatorial problems beyond joint alignment.

We present here an example called joint graph matching [18, 33, 43, 52, 63, 69].
Consider a collection of n images, each containing m feature points, and suppose
that there exists a one-to-one correspondence between the feature points in any pair
of images. Many off-the-shelf algorithms are able to compute feature correspon-
dence over the points in two images, and the joint matching problem concerns the
recovery of a collection of globally consistent feature matches given these noisy
pairwise matches. To put it mathematically, one can think of the ground truth as n
permutation matrices fX i 2 Rm�mg1�i�n, each representing the feature mapping
between an image and a reference, and the true feature correspondence over the
i th and j th images can be represented by X iXT

j . The provided pairwise matches
between the features of two images are encoded by Li;j 2 Rm�m, which is a
noisy version of X iXT

j . The goal is then to recover fX ig—up to some global
permutation—given a set of pairwise observations fLi;j g. See [18, 43] for more
detailed problem formulations as well as theoretical guarantees for convex relax-
ation.

This problem differs from joint alignment in that the ground truthX i is anm�m
permutation matrix. In light of this, we make two modifications to the algorithm:
(i) we maintain the iterates Z t D ŒZ ti �1�i�n as nm �m matrices and replace P�
by P….�/, which projects each Z ti 2 Rm�m to the set of permutation matrices (via
the Jonker-Volgenant algorithm [47]), which corresponds to hard rounding (i.e.,
�t D 1) in power iterations; (ii) the initial guess Z .0/ 2 Rnm�m is taken to be
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(a) initial pairwise matches (CMU House) (b) optimized matches (CMU House)

(c) initial pairwise matches (CMU Hotel) (d) optimized matches (CMU Hotel)

FIGURE 4.5. Comparisons between the input matches and the outputs
of the PPM on the CMU House and Hotel datasets, with 3 representative
images shown for each dataset. The yellow dots refer to the manually
labeled feature points, while the green (resp., red) lines represent the set
of matches consistent (resp., inconsistent) with the ground truth.

the projection of a random column block of yL (which is the rank-m approximation
of L).

We first apply the PPM on two benchmark image datasets: (1) the CMU House
dataset consisting of n D 111 images of a house, and (2) the CMU Hotel dataset
consisting of n D 101 images of a hotel. Each image contains m D 30 feature
points that have been labeled consistently across all images. The initial pairwise
matches, which are obtained through the Jonker-Volgenant algorithm, have mis-
matching rates of 13.36% (resp., 12.94%) for the House (resp., Hotel) dataset. Our
algorithm allows us to lower the mismatching rate to 3.25% (resp., 4.81%) for
House (resp., Hotel). Some representative results from each dataset are depicted in
Figure 4.5.

Next, we turn to three shape datasets: (1) the Hand dataset containing n D 20

shapes, (2) the Fourleg dataset containing n D 20 shapes, and (3) the Human
dataset containing n D 18 shapes, all of which are drawn from the collection
SHREC07 [35]. We set m D 64, m D 96, and m D 64 feature points for
Hand, Fourleg, and Human datasets, respectively, and follow the shape sampling
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FIGURE 4.6. The fraction of correspondences whose normalized geo-
desic errors are smaller than some threshold �.

Hand Fourleg Human
SDP 455.5 sec 1389.6 sec 368.9 sec
PPM 35.1 sec 76.8 sec 40.8 sec

TABLE 4.1. Runtime of SDP (implemented using ADMM) and the
PPM on 3 benchmark datasets, when carried out on a MacBook Pro
equipped with a 2.9 GHz i5 and 8GB of memory.

and pairwise matching procedures described in [43].13 To evaluate the matching
performance, we report the fraction of output matches whose normalized geodesic
errors (see [43,52]) are below some threshold �, with � ranging from 0 to 0.25. For
the sake of comparisons, we plot in Figure 4.6 the quality of the initial matches,
the matches returned by the projected power method, as well as the matches re-
turned by semidefinite relaxation [18, 43]. The computation runtime is reported
in Table 4.1. The numerical results demonstrate that the projected power method
is significantly faster than SDP, while achieving a joint matching performance as
competitive as SDP.

5 Preliminaries and Notation
Starting from this section, we turn attention to the analyses of the main results.

Before proceeding, we gather a few preliminary facts and notations that will be
useful throughout.

5.1 Projection onto the Standard Simplex
Firstly, our algorithm involves projection onto the standard simplex �. In light

of this, we single out several elementary facts concerning � and P� as follows.
Here and throughout, kak is the `2-norm of a vector a.

13 https://github.com/huangqx/CSP_Codes

https://github.com/huangqx/CSP_Codes
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FACT 5.1. Suppose that a D Œa1; : : : ; am�T obeys aCel 2 � for some 1 � l � m.
Then kak �

p
2.

PROOF. The feasibility condition requires 0 �
P
i Wi¤l ai D �al � 1 and

ai � 0 for all i ¤ l . Therefore, it is easy to check that
P
i Wi¤l a

2
i �

P
i Wi¤l ai � 1,

and hence kak2 D a2
l
C
P
i Wi¤l a

2
i � 2. �

FACT 5.2. For any vector v 2 Rm and any value ı, one has

(5.1) P�.v/ D P�.vC ı1/:

PROOF. For any x 2 �,

kvC ı1 � xk2 D kv � xk2 C ı2k1k2 C 2ı.v � x/T1

D kv � xk2 C ı2nC 2ı.vT1 � 1/:

Hence, P�.vC ı1/ D arg minx2�kv C ı1 � xk
2 D arg minx2�kv � xk

2 D

P�.v/. �

FACT 5.3. For any nonzero vector v D Œvi �1�i�m, let v.1/ and v.2/ be its largest
and second largest entries, respectively. Suppose vj D v.1/. If� > 1=.v.1/�v.2//,
then

(5.2) P�.�v/ D ej :

PROOF. By convexity of �, we have P�.�v/ D ej if and only if, for any
x D Œxi �1�i�m 2 �,

.x � ej /
T.�v � ej / � 0:

Since

xTv D xj v.1/ C
X
i Wi¤j

xivi � xj v.1/ C v.2/
X
i Wi¤j

xi D xj v.1/ C v.2/.1 � xj /;

we see that

.x � ej /
T.�v � ej / � .1 � xj /.1 � �.v.1/ � v.2/// � 0: �

In words, Fact 5.2 claims that a global offset does not alter the projection P�.�/,
while Fact 5.3 reveals that a large scaling factor � results in sufficient separation
between the largest entry and the remaining ones. See Figure 5.1 for a graphical
illustration.

5.2 Properties of the Likelihood Ratios
Next, we study the log-likelihood ratio statistics. The first result makes a con-

nection between the KL divergence and other properties of the log-likelihood ratio.
Here and below, for any two distributions P and Q supported on Y , the total vari-
ation distance between them is defined by TV.P;Q/ WD 1

2

P
y2Y jP.y/ �Q.y/j.
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FIGURE 5.1. Illustration of Facts 5.2 and 5.3 on a two-dimensional stan-
dard simplex. (a) For any v, P�.v/ D P�.vC 0:5 � 1/; (b) for any
vector v 2 R2 obeying v1 > v2, one has P�.�v/ D e1 when � is
sufficiently large.

LEMMA 5.4.

(1) Consider two probability distributions P and Q over a finite set Y . Thenˇ̌̌̌
log

Q.y/

P.y/

ˇ̌̌̌
�

2TV.P;Q/
minfP .y/;Q.y/g

�

p
2KL.P k Q/

minfP.y/;Q.y/g
:(5.3)

(2) In addition, if both maxy2Y
P.y/
Q.y/

� �0 and maxy2Y
Q.y/
P.y/

� �0 hold, then

(5.4) Ey�P

��
log

P.y/

Q.y/

�2�
� 2�20 KL.Q k P /:

PROOF. See Appendix C. �

In particular, when KL.P k Q/ is small, one almost attains equality in (5.4), as
stated below.

LEMMA 5.5. Consider two probability distributions P and Q on a finite set Y
such that P.y/ and Q.y/ are both bounded away from 0. If KL.P k Q/ � " for
some 0 < " < 1, then one has

KL.P k Q/ D
1C �1."/

2
Vary�P

�
log

P.y/

Q.y/

�
(5.5)

and

H2.P;Q/ D
1C �2."/

4
KL.P k Q/;(5.6)

where �1 and �2 are functions satisfying j�1."/j; j�2."/j � c0
p
" for some univer-

sal constant c0 > 0.

PROOF. See Appendix D. �
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5.3 Block Random Matrices
Additionally, the data matrix L is assumed to have independent blocks. It is

thus crucial to control the fluctuation of such random block matrices, for which the
following lemma proves useful.

LEMMA 5.6. Let M WD ŒM i;j �1�i;j�n be any random symmetric block matrix,
where fM i;j 2 Rm�m j i � j g are independently generated. Suppose that
m D O.poly.n//, EŒM i;j � D 0, maxi;j kM i;j k � K, and PfM i;j D 0g D pobs
for some pobs & logn=n. Then with probability exceeding 1 �O.n�10/,

kMk . K
p
npobs:(5.7)

PROOF. See Appendix E. �

Lemma 5.6 immediately leads to an upper estimate on the fluctuations of L and
Ldebias.

LEMMA 5.7. Suppose m D O.poly.n//, and definelog
P0

Pl


1

WD

X
y

ˇ̌̌̌
log

P0.y/

Pl.y/

ˇ̌̌̌
:

If pobs & logn=n, then with probability exceeding 1 � O.n�10/, the matrices L
and Ldebias given respectively in (2.2) and (2.7) satisfy

(5.8)
kL � EŒL�k D kLdebias

� EŒLdebias�k

.
�
1

m

Xm�1

lD1

log
P0

Pl


1

�
p
npobs:

PROOF. See Appendix F. �

5.4 Other Notation
For any vector h D Œhi �1�i�n 2 Rmn with hi 2 Rm, we denote by hi;j the

j th component of hi . For any m � n matrix A D Œai;j �1�i�m;1�j�n and any
matrix B, the Kronecker product A ˝B is defined as

A ˝B WD

264a1;1B : : : a1;nB
:::

: : :
:::

am;1B : : : am;nB:

375
6 Iterative Stage

We establish the performance guarantees of our two-stage algorithm in a reverse
order. Specifically, we demonstrate in this section that the iterative refinement stage
achieves exact recovery, provided that the initial guess is reasonably close to the
truth. The analysis for the initialization is deferred to Section 7.
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6.1 Error Contraction
This section mainly consists of establishing the following claim, which concerns

error contraction of iterative refinement in the presence of an appropriate initial
guess.

THEOREM 6.1. Under the conditions of Theorem 3.9 or Theorem 3.15, there exist
some absolute constants 0 < �; c1 < 1 such that with probability exceeding 1 �
O.n�5/,

(6.1) kP�n.�L´/ � xk�;0 � �min
˚
k´ � xk�;0; k´ � xk

2
	

holds simultaneously for all ´ 2 �n obeying14

(6.2) min
�
k´ � xk

kxk
;
k´ � xk�;0

kxk�;0

�
� 0:49

KLmin

KLmax
;

provided that

(6.3) � >
c5

npobs KLmin

for some sufficiently large constant c5 > 0.

At each iteration, the PPM produces a more accurate estimate as long as the
iterates f´.t/g stay within a reasonable neighborhood surrounding x. Here and
below, we term this neighborhood a basin of attraction. In fact, if the initial guess
´.0/ successfully lands within this basin, then the subsequent iterates will never
jump out of it. To see this, observe that for any ´.t/ obeying

k´.t/ � xk

kxk
� 0:49

KLmin

KLmax
or
k´.t/ � xk�;0

kxk�;0
� 0:49

KLmin

KLmax
;

the inequality (6.1) implies error contraction

k´.tC1/ � xk�;0 � �k´
.t/
� xk�;0:

Moreover, since kxk�;0 D kxk
2
D n, one has

k´.tC1/ � xk�;0

kxk�;0
< min

�
k´.t/ � xk�;0

kxk�;0
;
k´.t/ � xk2

kxk2

�
� min

�
k´.t/ � xk�;0

kxk�;0
;
k´.t/ � xk

kxk

�
� 0:49

KLmin

KLmax
;

precluding the possibility that ´.tC1/ leaves the basin. As a result, invoking the
preceding theorem iteratively we arrive at

k´.t/ � xk�;0 � �
t
k´.0/ � xk�;0;

14 The numerical constant 0.49 is arbitrary and can be replaced by any other constant in between
0 and 0.5.
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indicating that the estimation error reduces to 0 within at most logarithmic itera-
tions.

Remark 6.2. In fact, the contraction rate � can be as small as O. 1
npobs KLmin

/ D

O. 1
logn/ in the scenario considered in Theorem 3.9 or

O

�
max
l

log
P0

Pl

2
1

� �
npobs KL2min

��
in the case studied in Theorem 3.15.

Furthermore, we emphasize that Theorem 6.1 is a uniform result; namely, it
holds simultaneously for all ´ within the basin, regardless of whether ´ is indepen-
dent of the data fyi;j g or not. Consequently, the theory and the analyses remain
valid for other initialization schemes that can produce a suitable first guess.

The rest of the section is thus devoted to establishing Theorem 6.1. The proofs
for the two scenarios—the fixedm case and the largem case—follow almost iden-
tical arguments, and hence we shall merge the analyses.

6.2 Analysis
We outline the key steps for the proof of Theorem 6.1. Before continuing, it is

helpful to introduce additional assumptions and notation that will be used through-
out. From now on, we will assume xi D e1 for all 1 � i � n without loss of
generality. We shall denote h D fhig1�i�n 2 Rnm and w D fwig1�i�n 2 Rnm

as

(6.4) h WD ´ � x and w WD L´;

and set

k´ khk�;0;(6.5)

�´
khk

kxk
D
khk
p
n
;(6.6)

k�´ min
�
khk�;0;

khk2

kxk2
kxk�;0

�
D minfk; �2ng:(6.7)

One of the key metrics that will play an important role in our proof is the fol-
lowing separation measure:

S .a/´ min
2�l�m

.a1 � al/;(6.8)

which is defined for any vector a D Œal �1�l�m 2 Rm. This metric is important
because, by Fact 5.3, the projection of a block �wi onto the standard simplex �
returns the correct solution—that is, P�.�wi / D e1—as long as S .wi / > 0 and
� is sufficiently large. As such, our aim is to show that the vector w given in (6.4)
obeys

(6.9) S .wi / > 0:01npobs KLmin 8i 2 I � f1; : : : ; ng;
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for some index set I of size
jIj � n � �k�;

where 0 < � < 1 is bounded away from 1 (which will be specified later). This
taken collectively with Fact 5.3 implies P�.�wi / D xi D e1 for every i 2 I and,
as a result,

kP�n.�w/ � xk�;0 �
X
i…I

kP�.�wi / � xik0 D n � jIj

� �k� D �min
�
khk�;0;

khk2

kxk2
kxk�;0

�
;

provided that the scaling factor obeys � > 100=.npobs KLmin/.
We will organize the proof of the claim (6.9) based on the size / block sparsity

of h, leaving us with two separate regimes to deal with:
� the large-error regime,

(6.10) � < min
�
k

n
; �

�
� 0:49

KLmin

KLmax
;

� the small-error regime,

(6.11) min
�
k

n
; �

�
� �:

Here, one can take � > 0 to be any (small) positive constant independent of n.
In what follows, the input matrix L takes either the original form (2.2) or the
debiased form (2.7). The version (2.3) tailored to the random corruption model
will be discussed in Section 6.4.

(1) Large-error regime. Suppose that ´ falls within the regime (6.10). In order
to control S .wi /, we decompose w D L´ into a few terms that are easier to work
with. Specifically, setting

xh WD
1

n

nX
iD1

hi and zL WD L � EŒL�;(6.12)

we can expand

w D L´ D .EŒL�C zL/.x C h/

D EŒL�x„ƒ‚…
WDt

C EŒL�hC zLx C zLh„ ƒ‚ …
WDr

:(6.13)

This allows us to lower-bound the separation for the i th component by

(6.14)

S .wi / D S .ti C r i / � S .ti /CS .r i /

D S .ti /C min
2�l�m

.ri;1 � ri;l/

� S .ti / � 2kr ik1:
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With this in mind, attention naturally turns to controlling S .ti / and kr ik1.
The first quantity S .ti / admits a closed-form expression. From (3.25) and

(6.13) one sees that

ti D pobs

�X
j Wj¤i

Kxj

�
D pobs.n � 1/Ke1:

It is self-evident that S .Ke1/ D KLmin, giving the formula

(6.15) S .ti / D pobs.n � 1/S .Ke1/ D pobs.n � 1/KLmin :

We are now faced with the problem of estimating kr ik1. To this end, we make
the following observation, which holds uniformly over all ´ residing within this
regime:

LEMMA 6.3. Consider the regime (6.10). Suppose m D O.poly.n//, pobs &
logn=n, and

(6.16)
KL2max˚

1
m

Pm�1
lD1

log P0

Pl


1

	2 > c2

npobs

for a sufficiently large constant c2 > 0. With probability exceeding 1 � O.n�10/,
the index set

(6.17) I WD
�
1 � i � n

ˇ̌̌
kr ik1 � npobs KLmax min

�
k

n
; �

�
C ˛npobs KLmax

�
has cardinality exceeding n � �k� for some 0 < � < 1 bounded away from 1,
where k� D minfk; �2ng and ˛ > 0 is some arbitrarily small constant.

In particular, if m is fixed and if Assumption 3.6 holds, then (6.16) can be re-
placed by

(6.18) KLmax >
c4

npobs

for some sufficiently large constant c4 > 0.

PROOF. See Appendix G. �

Combining Lemma 6.3 with the preceding bounds (6.14) and (6.15), we obtain

S .wi / � .n � 1/pobs KLmin�2npobs KLmax min
�
k

n
; �

�
� 2˛npobs KLmax

> 0:01npobs KLmin

for all i 2 I as given in (6.17), provided that
(1) minfk

n
; �g � 0:49 KLmin

KLmax
,

(2) KLmax =KLmin is bounded,
(3) ˛ is sufficiently small, and
(4) n is sufficiently large.

This concludes the treatment for the large-error regime.
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(2) Small-error regime. We now turn to the second regime obeying (6.11).
Similarly, we find it convenient to decompose w as

(6.19) w D Lx CLh D Lx„ƒ‚…
WDs

C EŒL�hC zLh„ ƒ‚ …
WDq

:

We then lower-bound the separation measure by controlling si and qi separately,
i.e.,

(6.20) S .wi / � S .si /CS .qi / � S .si / � 2kqik1:

We start by obtaining uniform control over the separation of all components of s:

LEMMA 6.4. Suppose that Assumption 3.6 holds and that pobs > c0 logn=n for
some sufficiently large constant c0 > 0 .

(1) Fix m > 0, and let � > 0 be any sufficiently small constant. Under Condi-
tion (3.18), one has

(6.21) S .si / > �npobs KLmin; 1 � i � n;

with probability exceeding 1�C6 expf�c6� log.nm/g�c7n�10, whereC6; c6; c7 >
0 are some absolute constants.

(2) There exist some constants c4; c5; c6 > 0 such that

(6.22) S .si / > c4npobs KLmin; 1 � i � n;

with probability 1 �O.m�10n�10/ provided that

(6.23)

KL2min

max0�l<m Vary�P0

�
log P0.y/

Pl .y/

� � c5 log.mn/
npobs

and

KLmin �
c6
˚
maxl;y

ˇ̌
log P0.y/

Pl .y/

ˇ̌	
log.mn/

npobs
:

PROOF. See Appendix H. �

The next step comes down to controlling kqik1. This can be accomplished by
using a similar argument to that for Lemma 6.3, as summarized below.

LEMMA 6.5. Consider the regime (6.11). Then Lemma 6.3 continues to hold if r
is replaced by q.

Remark 6.6. Notably, Lemma 6.5 does not rely on the definition of the small-error
regime.
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Putting the inequality (6.20) and Lemma 6.5 together yields

(6.24)

S .wi / � S .si / � 2npobs KLmax min
�
k

n
; �

�
� 2˛npobs KLmax

� S .si / � 2.� C ˛/npobs KLmax

� S .si / �

�
2.� C ˛/

KLmax

KLmin

�
npobs KLmin

for all i 2 I with high probability, where (6.24) follows from the definition of the
small-error regime. Recall that KLmax=KLmin is bounded according to Assumption
3.8. Picking � and ˛ to be sufficiently small constants and applying Lemma 6.4,
we arrive at (6.9).

To summarize, we have established the claim (6.9)—and hence the error contrac-
tion—as long as (a) m is fixed and Condition (3.18) is satisfied, or (b) the con-
ditions (6.16) and (6.23) hold. Interestingly, one can simplify Case (b) when
pobs & log5 n=n, leading to a matching condition to Theorem 3.15.

LEMMA 6.7. Suppose m & logn, m D poly.n/, and pobs � c6 log5 n=n for some
sufficiently large constant c6 > 0. The inequalities (6.16) and (6.23) hold under
Condition (3.34) in addition to Assumptions 3.6–3.8.

PROOF. See Appendix I. �

6.3 Choice of the Scaling Factor �
So far we have proved the result under the scaling factor condition (6.3) given

in Theorem 6.1. To conclude the analysis for Theorem 3.9 and Theorem 3.15, it
remains to convert it to conditions in terms of the singular value �i .�/.

To begin with, it follows from (3.24) that

L D EŒL�C .L � EŒL�/ D pobs11
T
˝K � pobsIn ˝K C .L � EŒL�/;

which leads to an upper estimate

�i .L/ � �i .pobs11
T
˝K /C kpobsIn ˝Kk C kL � EŒL�k

D npobs�i .K /C pobskKk C kL � EŒL�k:(6.25)

Since K is circulant, its eigenvalues are given by

�l D
Xm�1

iD0
.�KLi �H.P0// exp

�
j
2�il

m

�
; 0 � l < m;

with j D
p
�1. In fact, except for �0, one can simplify

�l D �
Xm�1

iD0
KLi exp

�
j
2�il

m

�
; 1 � l < m;

which are eigenvalues of K0 (see (3.25)) as well. This leads to the upper bounds

�2.K / �

rXm�1

jD1
�2j � kK

0
kF � mKLmax . mKLmin;(6.26)
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�m.K / �

r
1

m � 1

Xm�1

jD1
�2j �

r
1

m � 1
kK0
k2F �

s
m2 KL2max

m � 1

�
p
2mKLmax .

p
mKLmin;(6.27)

where both (6.26) and (6.27) follow from Assumption 3.8. In addition, it is im-
mediate to see that (6.25) and (6.27) remain valid if we replace L with Ldebias and
take K D 1

pobs
EŒLdebias

i;j � (i ¤ j ) instead.
To bound the remaining terms on the right-hand side of (6.25), we consider two

separate cases:
(i) When m is fixed, it follows from (3.25) that

kKk � kK0k CmH.P0/ � mKLmaxCm logm D O.1/:

When combined with Lemma 5.7, this yields

pobskKk C kzLk . pobs C

�
1

m

Xm�1

lD1

log
P0

Pl


1

�
p
npobs

. pobs C
p
npobs KLmax;(6.28)

where the last inequality follows from (G.11). Putting this together with
(6.25) and (6.26) and using Assumption 3.8, we get

�2.L/ . npobsmKLminCpobs C
p
npobs KLmax � npobs KLmin :(6.29)

Thus, one would satisfy (6.3) by taking � � c12=�2.L/ for some suffi-
ciently large c12 > 0.

(ii) When m D O.poly.n//, we consider Ldebias and set K D 1
pobs

EŒLdebias
i;j �.

According to (F.2), one hasLdebias
i;j

 � 1

m

m�1X
lD1

log
P0

Pl


1

;

thus indicating that

pobskKk D
E
�
Ldebias
i;j

� � 1

m

Xm�1

lD1

log
P0

Pl


1

:(6.30)

This together with Lemma 5.7 gives

pobskKk C kL
debias

� EŒLdebias�k

.
�
1

m

Xm�1

lD1

log
P0

Pl


1

��
1C
p
npobs

�
�

�
1

m

Xm�1

lD1

log
P0

Pl


1

�
p
npobs . npobs KLmin(6.31)

under the condition (3.34). Combine all of this to derive

�m.L
debias/ .

p
mnpobs KLminCnpobs KLmin �

p
mnpobs KLmin;
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thus justifying (6.3) as long as � � c12
p
m=�m.L

debias/ for some suffi-
ciently large constant c12 > 0.

6.4 Consequences for Random Corruption Models
Having obtained the qualitative behavior of the iterative stage for general mod-

els, we can now specialize it to the random corruption model (3.2). Before contin-
uing, it is straightforward to compute two metrics:

KLmin D KLmax D

�
�0 C

1 � �0

m

�
log

�0 C
1��0

m
1��0

m

C
1 � �0

m
log

1��0

m

�0 C
1��0

m

D �0 log
1C .m � 1/�0

1 � �0

and log
P0

Pl


1

D 2

ˇ̌̌̌
ˇlog

�0 C
1��0

m
1��0

m

ˇ̌̌̌
ˇ D 2 log

1C .m � 1/�0

1 � �0
:

(1) When m is fixed and �0 is small, it is not hard to see that

KLmin D KLmax � m�
2
0 ;

which taken collectively with (3.18) leads to (3.6).
(2) When m & logn and m D O.poly.n//, the condition (3.34) reduces to

�20 & 1=.npobs/, which coincides with (3.31). In fact, one can also eas-
ily verify (6.23) under Condition (3.31), assuming that pobs & log2 n=n.
This improves slightly upon the condition pobs & log5 n=n required in the
general theorem.

Next, we demonstrate that the algorithm with the input matrix (2.3) undergoes
the same trajectory as the version using (2.2). To avoid confusion, we shall letLrcm

denote the matrix (2.3), and set

wrcm
WD Lrcm´:

As discussed before, there are some constants a > 0 and b such that Lrcm
i;j D

aLi;j C b11
T for all .i; j / 2 �; indicating that

wrcm
i D awi C zbi1; 1 � i � n;

for some numerical values fzbig. In view of Fact 5.2, the projection P� remains
unchanged up to global shift. This justifies the equivalence between the two input
matrices when running Algorithm 1.

Finally, one would have to adjust the scaling factor accordingly. It is straight-
forward to show that the scaling factor condition (6.3) can be translated into � >
c5=.npobs�0/ when the input matrix (2.3) is employed. Observe that (6.25) con-
tinues to hold as long as we set K D �0Im C .1 � �0/11

T. We can also verify
that

(6.32) �2.K / D �0; kKk � 1; and kL � EŒL�k .
p
npobs;
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where the last inequality follows from Lemma 5.6. These taken collectively with
(6.25) lead to

(6.33) �2.L/ . npobs�0 C pobs�0 C
p
npobs . npobs�0

under the condition (3.31). This justifies the choice � & 1=�2.L/ as advertised.

7 Spectral Initialization
We come back to assess the performance of spectral initialization by establishing

the theorem below. Similar to the definition (3.1), we introduce the counterpart of
`2 distance modulo the global offset as

dist.yx;x/ WD min
0�l<m

kyx � shiftl.x/k:

THEOREM 7.1. Fix ı > 0, and suppose that pobs & logn=n. Under Assump-
tions 3.6 and 3.8, there are some universal constants c1; c2; c3 > 0 such that with
probability at least 1 � �, the initial estimate ´.0/ of Algorithm 1 obeys

(7.1) dist.´.0/;x/ � ıkxk and MCR.´.0/;x/ � ı2=2

in the following scenarios:
(i) the random corruption model with m D O.poly.n//, provided that L is

given by (2.3) and that

(7.2) �0 �
c1

ı
p
�

1
p
pobsn

I

(ii) the general model with a fixedm, provided thatL is given by (2.2) and that

(7.3) KLmin �
c2

ı2�

1

pobsn
I

(iii) the general model with m D O.poly.n//, provided that L is replaced by
Ldebias (given in (2.7)) and that

(7.4)
KL2min

max1�l<m
log P0

Pl

2
1

�
c3

ı2�

1

pobsn
:

The main reason for the success of spectral initialization is that the low-rank
approximation of L (resp., Ldebias) produces a decent estimate of EŒL� (resp.,
EŒLdebias�) and, as discussed before, EŒL� (resp., EŒLdebias�) reveals the structure
of the truth. In what follows, we will first prove the result for general L, and then
specialize it to the three choices considered in the theorem. As usual, we suppose
without loss of generality that xi D e1, 1 � i � n.

To begin with, we set K D 1
pobs

EŒLi;j � (i ¤ j ) as before and write

L D pobs11
T
˝K � pobsIn ˝K C .L � EŒL�/;(7.5)
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where the first term on the right-hand side of (7.5) has rank at most m. If we let yL
be the best rank-m approximation of L, then matrix perturbation theory gives

kyL �Lk � kpobs11
T
˝K �Lk:

Hence, the triangle inequality yields

kyL � pobs11
T
˝Kk � kyL �Lk C kL � pobs11

T
˝Kk

� 2kL � pobs11
T
˝Kk

.i/
� 2kpobsIn ˝Kk C 2kL � EŒL�k

�D 2pobskKk C 2kL � EŒL�k WD L;(7.6)

where (i) follows from (7.5). This together with the facts rank.yL/ � m and
rank.K / � m gives

kyL � pobs11
T
˝Kk2F � 2mk

yL � pobs11
T
˝Kk2 � 2m2L:

Further, letK W;1 (resp., 1˝K W;1) be the first column ofK (resp., 1˝K ). When
ý is taken to be a random column of yL, it is straightforward to verify that

EŒdist2.ý; pobs1˝K W;1/� �
1

nm
kyL � pobs11

T
˝Kk2F �

22
L

n
;

where the expectation is w.r.t. the randomness in picking the column (see Section
2.2). Apply Markov’s inequality to deduce that, with probability at least 1 � �,

(7.7) dist.ý; pobs1˝K W;1/ �

p
2Lp
�n

:

For simplicity of presentation, we shall assume

ký � pobs1˝K W;1k D dist.ý; pobs1˝K W;1/

from now on. We shall pay particular attention to the index set

J WD
�
i 2 Œn�

ˇ̌̌̌
kýi � pobsK W;1k �

p
2

ı
p
n
ký � pobs1˝K W;1k

D

p
2

ı
p
n

dist.ý; pobs1˝K W;1/

�
;

which consists of all blocks whose estimation errors are not much larger than the
average estimation error. It is easily seen that the set J satisfies

(7.8) jJ j � .1 � ı2=2/n
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and hence contains most blocks. This comes from the fact that

ký � pobs1˝K W;1k
2
�

X
i…J
kýi � pobsK W;1k

2

> .n � jJ j/ �
2

ı2n
ký � pobs1˝K W;1k

2;

which can only happen if (7.8) holds. The `1 error in each block can also be
bounded by

kýi � pobsK W;1k1 � kýi � pobsK W;1k

�

p
2

ı
p
n

dist.ý; pobs1˝K W;1/; i 2 J :
(7.9)

If the above `1 error is sufficiently small for each i 2 J , then the projection
operation recovers the truth for all blocks falling in J . Specifically, adopting the
separation measure S .�/ as defined in (6.8), we obtain

S .ýi / � S .pobsK W;1/CS .ýi � pobsK W;1/

� pobsS .K W;1/ � 2kýi � pobsK W;1k1:

If

(7.10) kýi � pobsK W;1k1 � c5pobsS .K W;1/; i 2 J ;

for some constant 0 < c5 < 1
2

, then it would follow from Fact 5.3 that

´
.0/
i D P�.�0ýi / D e1; i 2 J ;

as long as �0 > 1
.1�2c5/pobsS .K W;1/

: This taken collectively with Fact 5.1 further
reveals that

(7.11)

(
dist.´.0/;x/ �

p
2 �
p
n � jJ j � ı

p
n D ıkxk;

MCR.´.0/;x/ � .n � jJ j/=n � ı2=2;

as claimed. As a result, everything boils down to proving (7.10). In view of (7.7)
and (7.9), this condition (7.10) would hold if

(7.12) L � c6ı
p
� npobsS .K W;1/

for some sufficiently small constant c6 > 0.
To finish up, we establish (7.12) for the three scenarios considered in Theorem

7.1:
(i) The random corruption model with L given by (2.3). A simple calculation

gives S .K W;1/ D �0, and it follows from (6.32) that L . pnpobs. Thus,
the condition (7.12) would hold under the assumption (7.2).

(ii) The general model with fixed m and with L given by (2.2). Observe that
S .K W;1/ D KLmin, and recall from (6.28) that L . pobsC

p
npobs KLmax:

Thus, we necessarily have (7.12) under the condition (7.3) and Assumption
3.8.



PROJECTED POWER METHOD 1687

(iii) The general model with m D O.poly.n// and with L replaced by Ldebias,
in which S .K W;1/ D KLmin. It has been shown in (6.31) that

Ldebias .
�
1

m

Xm�1

lD1

log
P0

Pl


1

�
p
npobs:

As a consequence, we establish (7.12) under the assumption (7.4).
Finally, repeating the analyses for the scaling factor in Section 6 justifies the

choice of �0 as suggested in the main theorems. This finishes the proof.

8 Minimax Lower Bound
This section proves the minimax lower bound as claimed in Theorem 3.12. Once

this is done, we can apply it to the random corruption model, which immediately
establishes Theorem 3.5 using exactly the same calculation as in Section 6.4.

To prove Theorem 3.12, it suffices to analyze the maximum likelihood (ML)
rule, which minimizes the Bayesian error probability when we impose a uniform
prior over all possible inputs. Before continuing, we provide an asymptotic es-
timate on the tail exponent of the likelihood ratio test, which proves crucial in
bounding the probability of error of ML decoding.

LEMMA 8.1. Let fPngn�1 and fQngn�1 be two sequences of probability measures
on a fixed finite set Y , where minn;y Pn.y/ and minn;yQn.y/ are both bounded
away from 0. Let fyj;n W 1 � j � ngn�1 be a triangular array of independent
random variables such that yj;n � Pn. If we define

�n WD KL.Pn k Qn/ and �2n WD Vary�Pn

�
log

Qn.y/

Pn.y/

�
;

then for any given constant � > 0,

P

�
1

n

Xn

jD1
log

Qn.yj;n/

Pn.yj;n/
C �n > ��n

�
D exp

�
�.1C on.1//n

�2�2n
2�2n

�
D exp

�
�
1C on.1/

4
�2n�n

�
(8.1)

and

P

�
1

n

Xn

jD1
log

Qn.yj;n/

Pn.yj;n/
C �n < ���n

�
D exp

�
�.1C on.1//n

�2�2n
2�2n

�
D exp

�
�
1C on.1/

4
�2n�n

�
(8.2)

hold as long as �
2
n

�2
n

�
logn
n

and �n �
logn
n

.

PROOF. This lemma is a consequence of the moderate deviation theory. See
Appendix J. �
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Remark 8.2. The asymptotic limits presented in Lemma 8.1 correspond to the
Gaussian tail, meaning that some sort of the central limit theorem holds in this
regime.

We shall now freeze the input to be x1 D � � � D xn D 1 and consider the
conditional error probability of the ML rule. Without loss of generality, we assume
P0;n and P1;n are minimally separated, namely,

(8.3) KL.P0;n k P1;n/ D KLmin;n:

In what follows, we will suppress the dependence on n whenever clear from the
context, and let xML represent the ML estimate. We claim that it suffices to prove
Theorem 3.12 for the boundary regime where

(8.4) KLmin �
logn
npobs

and KLmin �
3:99 logn
npobs

:

In fact, suppose instead that the error probability

Pe WD PfMCR.xML;x/ > 0g

tends to 1 in the regime (8.4) but is bounded away from 1 when KLmin D o
� logn
npobs

�
.

Then this indicates that, in the regime (8.4), one can always add extra noise15 to
yi;j to decrease KLmin while significantly improving the success probability, which
results in a contradiction. Moreover, when Pn.y/ and Qn.y/ are both bounded
away from 0, it follows from Lemma 5.5 that

(8.5)

Vary�P0;n

�
log

P1;n.y/

P0;n.y/

�
� KLmin �

logn
npobs

and

KL2min

Vary�P0;n

�
log P1;n.y/

P0;n.y/

� � logn
npobs

:

Consider a set V1 D f1; : : : ; ıng for some small constant ı > 0. We first single
out a subset V2 � V1 such that the local likelihood ratio score—when restricted to
samples over the subgraph induced by V1—is sufficiently large. More precisely,
we take

V2 WD
�
i 2 V1

ˇ̌̌̌ X
j Wj2V1

log
P1.yi;j /

P0.yi;j /
> �2ınpobs KL.P0 k P1/

�
I

here and throughout, we set P1.yi;j /=P0.yi;j / D 1 for any .i; j / … � for no-
tational simplicity. Recall that for each i , the ML rule favors P1 (resp., xi D 2)

15 For instance, we can let

zyi;j D

(
yi;j ; with probability �0;

Unif.m/; otherwise

with �0 controlling the noise level.
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against P0 (resp., xi D 1) if and only ifX
j

log
P1.yi;j /

P0.yi;j /
> 0;

which would happen ifX
j W j2V1

log
P1.yi;j /

P0.yi;j /
> �2ınpobs KL.P0 k P1/ and

X
j W j…V1

log
P1.yi;j /

P0.yi;j /
> 2ınpobs KL.P0 k P1/:

Thus, conditional on V2 we can lower-bound the probability of error by

Pe � P

�
9i 2 V2 W

X
j

log
P1.yi;j /

P0.yi;j /
> 0

�

� P

�
9i 2 V2 W

X
j W j2V1

log
P1.yi;j /

P0.yi;j /
> �2ınpobs KL.P0 k P1/

and
X

j W j…V1

log
P1.yi;j /

P0.yi;j /
> 2ınpobs KL.P0 k P1/

�

D P

�
9i 2 V2 W

X
j W j…V1

log
P1.yi;j /

P0.yi;j /
> 2ınpobs KL.P0 k P1/

�
;(8.6)

where the last identity comes from the definition of V2.
We pause to remark on why (8.6) facilitates analysis. To begin with, V2 de-

pends only on those samples lying within the subgraph induced by V1 and is thus
independent of

P
j…V1

logŒP1.yi;j /=P0.yi;j /�. More importantly, the scores�
si WD

X
j W j…V1

log
P1.yi;j /

P0.yi;j /

�
are statistically independent across all i 2 V1 as they rely on distinct samples.
These allow us to derive that, conditional on V2,

(8.6) D 1 �
Y
i2V2

�
1 � P

� X
j Wj…V1

log
P1.yi;j /

P0.yi;j /
> 2ınpobs KL.P0 k P1/

��

� 1 �

�
1 � exp

�
�.1C o.1//.1C 2ı/2npobs

KLmin

4

��jV2j

(8.7)

� 1 � exp
�
�jV2j exp

�
�.1C o.1//.1C 2ı/2npobs

KLmin

4

��
;(8.8)

where the last line results from the elementary inequality 1 � x � e�x . To see
why (8.7) holds, we note that according to the Chernoff bound, the number of
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samples linking each i and SV1 (i.e., jfj … V1 W .i; j / 2 �gj) is at most npobs with
high probability, provided that (i) npobs

logn is sufficiently large, and (ii) n is sufficiently
large. These taken collectively with Lemma 8.1 and (8.5) yield

P

�X
j W j…V1

log
P1.yi;j /

P0.yi;j /
> 2ınpobs KL.P0 k P1/

�
� exp

�
�.1C o.1//.1C 2ı/2npobs

KLmin

4

�
;

thus justifying (8.7).
To establish Theorem 3.12, we would need to show that (8.8) (and hence Pe) is

lower-bounded by 1 � o.1/ or, equivalently,

jV2j exp
˚
�.1C o.1//.1C 2ı/2npobs KLmin =4

	
!1:

This condition would hold if

(8.9) .1C 2ı/2npobs KLmin =4 < .1 � ı/ logn

and

(8.10) jV2j D .1 � o.1//jV1j D .1 � o.1//ın;

since under the above two hypotheses one has

jV2j exp
˚
�.1C 2ı/2npobs KLmin =4

	
� jV2j expf�.1 � ı/ logng

� ı expflogn � .1 � ı/ logng

� ını !1:

The first condition (8.9) is a consequence of (3.27) as long as ı is sufficiently small.
It remains to verify the second condition (8.10).

When npobs > c0 logn for some sufficiently large constant c0 > 0, each i 2
V1 is connected to at least .1 � ı/pobsjV1j vertices in V1 with high probability,
meaning that the number of random variables involved in the sumX

j W j2V1

log
P1.yi;j /

P0.yi;j /

concentrates around jV1jpobs. Lemma 8.1 thus implies that

P

�X
j W j2V1

log
P1.yi;j /

P0.yi;j /
� �2ınpobs KL.P0kP1/

�
D P

�X
j W j2V1

log
P1.yi;j /

P0.yi;j /
� �2jV1jpobs KL.P0kP1/

�
� expf�c4.jV1jpobs/KLming � expf�c5.ınpobs/KLming
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for some constants c4; c5 > 0, provided that n is sufficiently large. This gives rise
to an upper bound

EŒjV1nV2j� D jV1j � P
�X

j W j2V1

log
P1.yi;j /

P0.yi;j /
� �2ınKL.P0kP1/

�
� ın � expf�c5ınpobs KLming

.i/
D ın � n�‚.ı/ D o.n/;

where (i) arises from the condition (8.4). As a result, Markov’s inequality implies
that with probability approaching 1,

jV1nV2j D o.n/

or, equivalently, jV2j D .1 � o.1//ın: This finishes the proof of Theorem 3.12.

9 Discussion
We have developed an efficient nonconvex paradigm for a class of discrete as-

signment problems. There are numerous questions we leave open that might be
interesting for future investigation. For instance, it can be seen from Figure 4.1
and Figure 4.2 that the algorithm returns reasonably good estimates even when we
are below the information limits. A natural question is this: how can we charac-
terize the accuracy of the algorithm if one is satisfied with approximate solutions?
In addition, this work assumes the index set � of the pairwise samples are drawn
uniformly at random. Depending on the application scenarios, we might encounter
other measurement patterns that cannot be modeled in this random manner; for
example, the samples might only come from nearby objects and hence the sam-
pling pattern might be highly local (see, e.g., [21, 36]). Can we determine the
performance of the algorithm for more general sampling set �? Moreover, the
log-likelihood functions we incorporate in the data matrix L might be imperfect.
Further study could help in understanding the stability of the algorithm in the pres-
ence of model mismatch.

Returning to Assumption 3.8, we remark that this assumption is imposed pri-
marily out of computational concern. In fact, KLmax =KLmin being exceedingly
large might actually be a favorable case from an information-theoretic viewpoint,
as it indicates that the hypothesis corresponding to KLmax is much easier to pre-
clude compared to other hypotheses. It would be interesting to establish rigorously
the performance of the PPM without this assumption and, in case it becomes sub-
optimal, how shall we modify the algorithm so as to be more adaptive to the most
general class of noise models.

Moving beyond joint alignment, we are interested in seeing the potential benefits
of the PPM on other discrete problems. For instance, the joint alignment problem
falls under the category of maximum a posteriori (MAP) inference in a discrete
Markov random field, which spans numerous applications including segmentation,
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object detection, error correcting codes, and so on [8, 42, 65]. Specifically, con-
sider n discrete variables xi 2 Œm�, 1 � i � n. We are given a set of unitary
potential functions (or prior distributions) f i .xi /g1�i�n as well as a collection
of pairwise potential functions (or likelihood functions) f i;j .xi ; xj /g.i;j /2G over
some graph G. The goal is to compute the MAP assignment

xMAP WD arg max
´

nY
iD1

 i .´i /
Y

.i;j /2G

 i;j .´i ; j́ /

D arg max
´

� nX
iD1

log i .´i /C
X

.i;j /2G

log i;j .´i ; j́ /

�
:

Similarly to (2.1) and (2.2), one can introduce the vector ´i D ej to represent
´i D j , and use a matrix Li;j 2 Rm�m to encode each pairwise log-potential
function log i;j . � ; �/, .i; j / 2 G. The unitary potential function  i .�/ can also be
encoded by a diagonal matrix Li;i 2 Rm�m

(9.1) .Li;i /˛;˛ D log i .˛/; 1 � ˛ � m

so that log .´i / D ´T
iLi;i´i . This enables a quadratic form representation of

MAP estimation:

maximize´ ´TL´

subject to ´i 2 fe1; : : : ; emg; 1 � i � n:

As such, we expect the PPM to be effective in solving many instances of such MAP
inference problems. One of the key questions amounts to finding an appropriate
initialization that allows efficient exploitation of the unitary prior belief  i .�/. We
leave this for future work.

Appendix A Proof of Theorem 3.13
We will concentrate on proving the case where Assumption 3.6 is violated. Set

ymax WD arg maxy P0.y/ and ymin WD arg miny P0.y/. Since m is fixed, it is seen
that P0.ymax/ � 1: We also have P0.ymin/ ! 0. Denoting by � WD P0.ymax/

P0.ymin/
the

dynamic range of P0 and introducing the metric

d.P k Q/ WD
X

y
P.y/

ˇ̌̌̌
log

P.y/

Q.y/

ˇ̌̌̌
;

we obtain

max
l
d.P0kPl/ D max

l

X
y

P0.y/

ˇ̌̌̌
log

P0.y/

Pl.y/

ˇ̌̌̌
� P0.ymax/

ˇ̌̌̌
log

P0.ymax/

P0.ymin/

ˇ̌̌̌
� log � � 1:
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The elementary inequality KL.P k Q/ � d.P k Q/, together with the second
Pinsker’s inequality KL.P k Q/C

p
2KL.P k Q/ � d.P k Q/ [79, Lemma 2.5],

reveals that
KLmax � max

l
d.P0 k Pl/ � log �:

Making use of Assumption 3.8 we get

(A.1) d.P0 k Pl/ � KLmin � KLmax � log �; 1 � l < m:

Next, for each 1 � l < m we single out an element

yl WD arg max
y
P0.y/

ˇ̌̌̌
log

P0.y/

Pl.y/

ˇ̌̌̌
:

This element is important because, when m is fixed,

d.P0 k Pl/ � P0.yl/

ˇ̌̌̌
log

P0.yl/

Pl.yl/

ˇ̌̌̌
. P0.yl/ log �:

As a result, (A.1) would only happen if P0.yl/ � 1 and P0.yl /
Pl .yl /

!1.

We are now ready to prove the theorem. With Pl replaced by zPl as defined in
(3.30), one has

KL. zP0 k zPl/ � 2TV2. zP0; zPl/ �
1

2
. zP0.yl/ � zPl.yl//

2

� .P0.yl/ � Pl.yl//
2
� P 20 .yl/ � 1;

which exceeds the threshold 4:01 logn=.npobs/ as long as pobs � c1 logn=n for
some sufficiently large constant c1. In addition, since zP0.y/ is bounded away
from both 0 and 1, it is easy to see that KL. zP0 k zPl/ . 1 for any l and, hence,
Assumption 3.8 remains valid. Invoking Theorem 3.9 concludes the proof.

Appendix B Proof of Lemma 3.11
(1) It suffices to prove the case where KLmin D KL.P0 k P1/. Suppose that

jP0.y0/ � Pl.y0/j D maxj;y jP0.y/ � Pj .y/j

for some 0 � l; y0 < m. In view of Pinsker’s inequality [79, lemma 2.5],

KL.P0 k P1/ � 2TV2.P0; P1/ D 2
�
1

2

m�1X
yD0

jP0.y/ � P1.y/j

�2

D
1

2

�m�1X
yD0

jP0.y/ � P0.y � 1/j

�2
�
1

2
jP0.y0/ � P0.y0 � l/j

2
D
1

2
maxj;y jP0.y/ � Pj .y/j2:(B.1)
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In addition, for any 1 � j < m,

KL.P0 k Pj /
.a/
� �2.P0 k Pj / WD

X
y

.P0.y/ � Pj .y//
2

Pj .y/

.b/
�

X
y

.P0.y/ � Pj .y//
2

.c/

. maxj;y jP0.y/ � Pj .y/j2;(B.2)

where (a) comes from [66, eqn. (5)], (b) is a consequence of Assumption 3.6, and
(c) follows sincem is fixed. Combining (B.1) and (B.2) establishes KLmin � KLmax.

(2) Suppose P0.y�/ D miny P0.y/ for y� D bm=2c and KL.P0 k Pl/ D
KLmin for some 0 < l � y�. Applying Pinsker’s inequality again gives

KL.P0 k Pl/ � 2TV2.P0; Pl/ D
1

2

�m�1X
yD0

jPl.y/ � P0.y/j

�2

D
1

2

�m�1X
yD0

jP0.y � l/ � P0.y/j

�2

�
1

2

�
jP0.y

�/ � P0.y
�
� l/j C

dy�=le�1X
kD1

jP0.kl/ � P0..k � 1/l/j

�2
�
1

2

�
jP0.y

�/ � P0..dy
�=le � 1/l/j

C

dy�=le�1X
kD1

jP0.kl/ � P0..k � 1/l/j

�2
(B.3)

�
1

2
jP0.y

�/ � P0.0/j
2
D
1

2
max
y
jP0.0/ � P0.y/j

2

D
1

2
max
j;y
jP0.y/ � Pj .y/j

2;(B.4)

where (B.3) follows from the unimodality assumption, and the last line results
from the facts P0.0/ D maxj;y Pj .y/ and P0.y�/ D minj;y Pj .y/. These taken
collectively with (B.2) finish the proof.

Appendix C Proof of Lemma 5.4
(1) Since log.1C x/ � x for any x � 0, we getˇ̌̌̌

log
Q.y/

P.y/

ˇ̌̌̌
D

8<:log
�
1C Q.y/�P.y/

P.y/

�
; if Q.y/ � P.y/;

log
�
1C P.y/�Q.y/

Q.y/

�
; otherwise
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�
jQ.y/ � P.y/j

minfP.y/;Q.y/g
(C.1)

�
2TV.P;Q/

minfP.y/;Q.y/g
�

p
2KL.P k Q/

minfP.y/;Q.y/g
;(C.2)

where the last inequality comes from Pinsker’s inequality.
(2) Using the inequality (C.1) once again as well as the definition of �0, we

obtain

Ey�P

"�
log

P.y/

Q.y/

�2#
D

X
y
P.y/

�
log

P.y/

Q.y/

�2
�

X
y
P.y/

jP.y/ �Q.y/j2

min
˚
P 2.y/;Q2.y/

	 DX
y

jP.y/ �Q.y/j2

min
n
P.y/
Q.y/

; Q.y/
P.y/

o
Q.y/

(C.3)

� �0
X

y

.Q.y/ � P.y//2

Q.y/
:(C.4)

Note that
P
y
.Q.y/�P.y//2

Q.y/
is exactly the �2 divergence between P and Q, which

satisfies [30, prop. 2]

(C.5) �2.P k Q/ � 2�0 KL.P k Q/:

Substitution into (C.4) concludes the proof.

Appendix D Proof of Lemma 5.5
For notational simplicity, let

� WD Ey�P

�
log

P.y/

Q.y/

�
D KL.P k Q/ and � D

s
Vary�P

�
log

P.y/

Q.y/

�
:

We first recall from our calculation in (C.2) that

max
�
jQ.y/ � P.y/j

Q.y/
;
jQ.y/ � P.y/j

P.y/

�
�

p
2�

minfP.y/;Q.y/g
D O.

p
�/;

where the last identity follows since P.y/ and Q.y/ are all bounded away from 0.
Here and below, the notation f .�/ D O.

p
�/ means jf .�/j � c0

p
� for some

universal constant c0 > 0. This fact tells us that

(D.1)
P.y/

Q.y/
;
Q.y/

P.y/
2 Œ1˙O.

p
�/�;
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thus indicating that

log
�
Q.y/

P.y/

�
D log

�
1C

Q.y/ � P.y/

P.y/

�
D
Q.y/ � P.y/

P.y/
CO

�
jQ.y/ � P.y/j2

P 2.y/

�
D .1CO.

p
�//

Q.y/ � P.y/

P.y/
:

All of this allows one to write

�2 D Ey�P

��
log

Q.y/

P.y/

�2�
� �2

D .1CO.
p
�//Ey�P

��
Q.y/ � P.y/

P.y/

�2�
� �2

(a)
D .1CO.

p
�//Ey�Q

��
Q.y/ � P.y/

Q.y/

�2�
� �2

D
�
1CO.

p
�/
�
�2.P k Q/ � �2

D 2.1CO.
p
�//�:

Here, (a) arises due to (D.1), as the difference Q.y/=P.y/ can be absorbed into
the prefactor 1C O.�/ by adjusting the constant in O.�/ appropriately. The last
line follows since, by [30, prop. 2],

�

�2.P k Q/
D

KL.P k Q/
�2.P k Q/

D

�
1CO

�
max

�
max
y

Q.y/

P.y/
;max
y

P.y/

Q.y/

���
1

2

D
�
1CO

�p
�
��1
2
:

Furthermore, it follows from [23, Fact 1] that

.4 � logR/H2.P;Q/ � KL.P k Q/ � .4C 2 logR/H2.P;Q/;

where

R WD max
�

max
y

P.y/

Q.y/
;max
y

Q.y/

P.y/

�
:

In view of (D.1), it is seen that logR D O.
p
�/, thus establishing (5.6).

Appendix E Proof of Lemma 5.6
It is tempting to invoke the matrix Bernstein inequality [78] to analyze random

block matrices, but it loses a logarithmic factor in comparison to the bound ad-
vertised in Lemma 5.6. As it turns out, it would be better to resort to Talagrand’s
inequality [76].
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The starting point is to use the standard moment method and reduce to the case
with independent entries (which has been studied in [5, 67]). Specifically, a stan-
dard symmetrization argument [77, sec. 2.3] gives

(E.1) EŒkMk� �
p
2�EŒkBk�;

where we obtain B D ŒBi;j �1�i;j�n WD Œgi;jM i;j �1�i;j�n by inserting i.i.d.
standard Gaussian variables fgi;j j i � j g in front of fM i;j g. In order to upper-
bound kBk, we further recognize that kBk2p � Tr.B2p/ for all p 2 Z. Expanding
B2p as a sum over cycles of length 2p and conditioning onM , we have

EŒTr.B2p/ jM �

D

X
1�i1;:::;i2p�n

EŒTr.Bi1;i2Bi2;i3 : : :Bi2p�1;i2p
Bi2pi1/ jM �

D

X
1�i1;:::;i2p�n

Tr.M i1;i2 : : :M i2p;i1/E

�Y2p

jD1
gij ;ijC1

�
(E.2)

with the cyclic notation i2pC1 D i1. The summands that are nonvanishing are
those in which each distinct edge is visited an even number of times [77], and
these summands obey EŒ

Q2p
jD1 gij ;ijC1

� � 0. As a result,

(E.2) �
X

1�i1;:::;i2p�n

m

�Y2p

jD1
kM ij ;ijC1

k

�
E

�Y2p

jD1
gij ;ijC1

�
:(E.3)

We note that the right-hand side of (E.3) is equal to m �EŒTr.Z2p/ jM �, where
Z WD Œgi;j kM i;j k�1�i;j�n. Following the argument in [5, sec. 2] and setting
p D logn, one derives

.EŒTr.Z2p/ jM �/
1

2p . � CK
p
2 logn;

where � WD
q

maxi
P
j kM i;j k

2, and K is the upper bound on maxi;j kM i;j k.
Putting all of this together, we obtain

EŒkBk jM � � .EŒkBk2p jM �/
1

2p � .EŒTr.B2p/ jM �/
1

2p

� m
1

2p � .EŒTr.Z2p/ jM �/
1

2p . � CK
p

logn;(E.4)

where the last inequality follows since m1=.logn/ . 1 as long as m D nO.1/.
Combining (E.1) and (E.4) and undoing the conditional expectation yields

(E.5) EŒkMk� �
p
2�EŒkBk� . EŒ� CK

p
logn�:

Furthermore, Markov’s inequality gives PfkMk � 2EŒkMk�g � 1=2 and hence

(E.6) MedianŒkMk� � 2EŒkMk� . EŒ� CK
p

logn�:
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Now that we have controlled the expected spectral norm of M , we can obtain
concentration results by means of Talagrand’s inequality [76]. See [77, pp. 73–75]
for an introduction.

PROPOSITION E.1 (Talagrand’s inequality). Let � D �1 � � � � � �N and P D
�1 � � � � � �N form a product probability measure. Each �l is equipped with a
norm k � k, and supxl2�l

kxlk � K holds for all 1 � l � N . Define

d.x; y/ WD

p
NX
lD1

kxl � ylk
2

for any x; y 2 �, and let f W �! R be a 1-Lipschitz convex function with respect
to d. � ; �/. Then there exist some absolute constants C; c > 0 such that

(E.7) Pfjf .x/ �MedianŒf .x/�j � �Kg � C exp.�c�2/ 8�:

Let�1; : : : ; �N represent the sample spaces forM1;1; : : : ;Mn;n, respectively,
and take k � k to be the spectral norm. Clearly, for anyM ; �M 2 Rnm�nm, one has

ˇ̌
kMk � k�Mkˇ̌ � kM � �Mk �rX

i�j
kM i;j �

�M i;j k
2 WD d.M ; �M /:

Consequently, Talagrand’s inequality together with (E.6) implies that with proba-
bility 1 �O.n�11/,

(E.8) kMk . MedianŒkMk�CK
p

logn . EŒ��CK
p

logn:

Finally, if PfM i;j D 0g D pobs for some pobs & logn=n, then the Chernoff
bound when combined with the union bound indicates thatX

j
kM i;j k

2
� K2

X
j

IfM i;j D 0g . K2npobs; 1 � i � n;

with probability 1 �O.n�10/, which in turn gives

EŒ�� . .1 �O.n�10//

q
K2npobs CO.n

�10/K
p
n . K

p
npobs:

This together with (E.8) as well as the assumption pobs & logn=n concludes the
proof.

Appendix F Proof of Lemma 5.7
The first step is to see that

L � EŒL� D Ldebias
� EŒLdebias�;
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where Ldebias is a debiased version of L given in (2.7). This can be shown by
recognizing that

1TLi;j 1 D
X

1�˛;ˇ�m

`.´i D ˛; j́ D ˇIyi;j /

D

X
1�˛;ˇ�m

log P .�i;j D yi;j � .˛ � ˇ//

D m

m�1X
´D0

log P .�i;j D ´/

for any i ¤ j , which is a fixed constant independent of yi;j .
The main advantage to work with Ldebias is that each entry of Ldebias can be

written as a linear combination of the log-likelihood ratios. Specifically, for any
1 � ˛; ˇ � m,

�
Ldebias
i;j

�
˛;ˇ
D `.´i D ˛; j́ D ˇI yi;j / �

1

m

m�1X
lD0

logPl
�
yi;j

�
D log P˛�ˇ

�
yi;j

�
�
1

m

m�1X
lD0

logP˛�ˇCl.yi;j /

D
1

m

m�1X
lD1

log
P˛�ˇ

�
yi;j

�
P˛�ˇCl.yi;j /

D
1

m

m�1X
lD1

log
P0
�
yi;j � ˛ C ˇ

�
Pl
�
yi;j � ˛ C ˇ

� :(F.1)

Since Ldebias
i;j is circulant, its spectral norm is bounded by the `1 norm of any of its

column:

Ldebias
i;j

 � mX
˛D1

ˇ̌�
Ldebias
i;j

�
˛;1

ˇ̌
�
1

m

m�1X
lD1

mX
˛D1

ˇ̌̌̌
ˇlog

P0
�
yi;j � ˛ C 1

�
Pl
�
yi;j � ˛ C 1

� ˇ̌̌̌ˇ
D
1

m

m�1X
lD1

mX
yD1

ˇ̌̌̌
log

P0.y/

Pl.y/

ˇ̌̌̌
�
1

m

m�1X
lD1

log
P0

Pl


1

:(F.2)

To finish up, apply Lemma 5.6 to arrive at

kL � EŒL�k D kLdebias
� EŒLdebias�k .

�
max
i;j
kLdebias

i;j k
�p
npobs

.
�
1

m

m�1X
lD1

log
P0

Pl


1

�
p
npobs:
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Appendix G Proofs of Lemma 6.3 and Lemma 6.5
Proof of Lemma 6.3.

In view of (6.13), for each 1 � i � n one has

kr ik1 � kEŒL�hk1 C kgik;(G.1)

where g WD zL´. In what follows, we will look at each term on the right-hand side
of (G.1) separately.

� The first term on the right-hand side of (G.1). The feasibility constraint
´i ;xi 2 � implies 1Thj D 0, which enables us to express the i th block of
f WD 1

pobs
EŒL�h as

f i D
X
j Wj¤i

Khj D
X
j Wj¤i

K0hj ;

with K0 defined in (3.25). By letting hj;n1 WD Œhj;2; : : : ; hj;m�
T and de-

noting by K W;l (resp., K l;W) the l th column (resp., row) of K , we see that

f i D K
0
W;1

� X
j Wj¤i

hj;1

�
CK0

X
j Wj¤i

�
0

hj;n1

�
:(G.2)

Recall from the feasibility constraint that hj;1 � 0 and hj;n1 � 0. Since
K0 is a nonpositive matrix, one sees that the first term on the right-hand
side of (G.2) is nonnegative, whereas the second term is nonpositive. As a
result, the l th entry of f i—denoted by fi;l—is bounded in magnitude by

jfi;l j D

ˇ̌̌̌
K0l;1

� X
j Wj¤i

hj;1

�
CK0

l;W

X
j Wj¤i

�
0

hj;n1

�ˇ̌̌̌

� max
�ˇ̌
K0l;1

ˇ̌ X
j Wj¤i

jhj;1j;

ˇ̌̌̌
K0
l;W �

X
j Wj¤i

�
0

hj;n1

�ˇ̌̌̌�

� max
�

KLmax

X
j Wj¤i

jhj;1j; KLmax

X
j Wj¤i

ˇ̌
1Thj;n1

ˇ̌�
D KLmax

X
j Wj¤i

jhj;1j;

where the last identity arises since 1Thj;n1 D �hj;1. Setting

xh D Œxhi �1�i�m WD
1

n

nX
iD1

hi ;

we obtain

kf ik1 � KLmax

Xn

jD1
jhj;1j D nKLmax jxh1j � nKLmax kxhk1:
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If we can further prove that

(G.3) kxhk1 � min
�
k

n
; �

�
;

then we will arrive at the upper bound

kEŒL�hk1 D kpobsf ik1 � npobs KLmax kxhk1

� npobs KLmax min
�
k

n
; �

�
:

(G.4)

To see why (G.3) holds, we observe that (i) the constraint ´i 2 � implies
jhi;l j � 1, revealing that

kxhk1 � max
1�l�m

1

n

Xn

iD1
jhi;l j �

1

n
khk�;0 D

k

n
;

and (ii) by Cauchy-Schwarz,

kxhk1 D
1

n

�Im � � � Im
�
h

1
�
1

n
.
p
n � khk/ D �:

� It remains to bound the second term on the right-hand side of (G.1). Mak-
ing use of Lemma 5.7 gives

kgk � kzLkk´k .
�
1

m

m�1X
lD1

log
P0

Pl


1

�
p
npobs

p
n(G.5)

with probability 1 � O.n�10/. Let kgk.1/ � kgk.2/ � � � � � kgk.n/
denote the order statistics of kg1k, : : : , kgnk. Then, for any 0 < � < 1,

kgk2.�k�/ �
1

�k�

�k�X
iD1

kgk2.i/ �
1

�k�
kgk2

.
n2pobs

˚
1
m

Pm�1
lD1

log P0

Pl


1

	2
�k�

;(G.6)

where k� is defined in (6.7). In addition, we have k=n � � and �2 � �2

for some constant 0 < � < 1 in the large-error regime (6.10), and hence

k� D minfk; �2ng � �2n:

Substitution into (G.6) yields

kgk.�k�/ .
�
1

m

m�1X
lD1

log
P0

Pl


1

�
n

r
pobs

�k�

�

�
1

m

m�1X
lD1

log
P0

Pl


1

�r
pobsn

�2�
:(G.7)
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Consequently, if we denote by I the index set of those blocks gi satisfying

kgik .
�
1

m

m�1X
lD1

log
P0

Pl


1

�r
pobsn

�2�
;

then one has
jIj � n � �k�:

We are now ready to upper-bound kr ik1. For each i 2 I as defined above,

(G.1) � npobs KLmax min
�
k

n
; �

�
CO

��
1

m

m�1X
lD1

log
P0

Pl


1

�r
npobs

�2�

�
� npobs KLmax min

�
k

n
; �

�
C ˛npobs KLmax(G.8)

for some arbitrarily small constant ˛ > 0, with the proviso that

(G.9) npobs KLmax � c9

�
1

m

m�1X
lD1

log
P0

Pl


1

�r
pobsn

�2�

for some sufficiently large constant c9 > 0. Since � > 0 is assumed to be a fixed
positive constant, the condition (G.9) can be satisfied if we pick

� D c5

˚
1
m

Pm�1
lD1

log P0

Pl


1

	2
npobs KL2max

for some sufficiently large constant c5 > 0. Furthermore, in order to guarantee
� < 1, one would need

(G.10)
KL2max˚

1
m

Pm�1
lD1

log P0

Pl


1

	2 � c10

pobsn

for some sufficiently large constant c10 > 0.
It is noteworthy that if m is fixed and if minl;y Pl.y/ is bounded away from 0,

then log
P0

Pl


1

�

X
yWP0.y/�Pl .y/

log
�
1C

P0.y/ � Pl.y/

Pl.y/

�

C

X
yWP0.y/<Pl .y/

log
�
1C

Pl.y/ � P0.y/

P0.y/

�

�
1

minl;y Pl.y/

X
y

jP0.y/ � Pl.y/j � TV.P0; Pl/

.a/

.
p

KL.P0kPl/ �
p

KLmax;(G.11)
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where (a) comes from Pinsker’s inequality. Thus, in this case (G.10) would follow
if KLmax � 1=.npobs/.

Proof of Lemma 6.5.
This part can be shown by using a similar argument to that for the proof of

Lemma 6.3. Specifically, from the definition (6.19) we have

kqik1 � kEŒL�hk1 C kygik � npobs KLmax min
�
k

n
; �

�
C kygik;(G.12)

where yg WD zLh, and the last inequality is due to (G.4). Similar to (G.5) and (G.6),
we get

kygk � kzLkkhk .
�
1

m

m�1X
lD1

log
P0

Pl


1

�
p
npobs.�

p
n/;

kygk.�k�/ �
1p
�k�
kygk �

˚
1
m

Pm�1
lD1

log P0

Pl


1

	
.�
p
n/
p
npobsp

�k�

.b/

.
�
1

m

m�1X
lD1

log
P0

Pl


1

�r
npobs

�
;

where (b) arises since

�
p
n

p
k�
D
khk
p
k

(c)
�

p
2khk�;0
p
k

�
p
2; if k � �2nI

�
p
n

p
k�
D

�
p
n

p
�2n

D 1; if k > �2n:

Here, (c) results from Fact 5.1. One can thus find an index set I with cardinality
jIj � n � �k� such that

(G.13) kygik .
�
1

m

m�1X
lD1

log
P0

Pl


1

�r
npobs

�
; i 2 I;

where the right-hand side of (G.13) is identical to that of (G.7). Putting these
bounds together and repeating the same argument as in (G.8)–(G.11) complete the
proof.

Appendix H Proof of Lemma 6.4
By definition, for each 1 � i � n one has

si;1 � si;l D
X

j W .i;j /2�

log
P0.yi;j /

Pl�1.yi;j /
; 2 � l � m;
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which is a sum of independent log-likelihood ratio statistics. The main ingredient
to control si;1 � si;l is to establish the following lemma.

LEMMA H.1. Consider two sequences of probability distributions fPig and fQig
on a finite set Y . Generate n independent random variables yi � Pi .

(1) For any  � 0,

(H.1) P

�Xn

iD1
log

Pi .yi /

Qi .yi /
� 

�
� exp

�
�

Xn

iD1
H2.Pi ;Qi /C

1

2


�
;

where H2.Pi ;Qi / WD 1
2

P
y.
p
Pi .y/ �

p
Qi .y//

2.

(2) Suppose that
ˇ̌̌
log Qi .yi /

Pi .yi /

ˇ̌̌
� K. If

min
1�i�n

KL.Pi k Qi / �

c2

(
1

n

sXn

iD1
Varyi�Pi

�
log

Qi .yi /

Pi .yi /

�
log.mn/C

K log.mn/
n

)
for some sufficiently large constant c2 > 0, thenXn

iD1
log

Qi .yi /

Pi .yi /
� �

1

2
n min
1�i�n

KL.Pi k Qi /(H.2)

with probability at least 1 �O.m�11n�11/.

We start from the case where m is fixed. When pobs > c0 logn=n for some
sufficiently large c0 > 0, it follows from the Chernoff bound that

(H.3) jfj W .i; j / 2 �gj � .1 � �/npobs; 1 � i � n;

with probability at least 1 �O.n�10/, where � > 0 is some small constant. Taken
together, Lemma H.1(1) (with  set to be 2�npobsH2min), (H.3), and the union bound
give

si;1 � si;l > 2�npobsH2min; 1 � i � n; 2 � l � m;

or, equivalently,

(H.4) S .si / > 2�npobsH2min; 1 � i � n;

with probability exceeding 1 � mn expf�.1 � 2�/npobsH2ming. As a result, (H.4)
would follow with probability at least 1� expf�� log.mn/g �O.n�10/ as long as

(H.5) H2min �
1C �

1 � 2�
�

lognC logm
npobs

:

It remains to translate these results into a version based on the KL divergence.
Under Assumption 3.6, from [23, fact 1] we have that H2.P0; Pl/ and KL.P0 k Pl/
are orderwise equivalent. This allows us to rewrite (H.4) as

(H.6) S .si / > c5�npobs KLmin; 1 � i � n;
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for some constant c5 > 0. In addition, Lemma 5.5 and [23, fact 1] reveal that

H2min �
1

4
.1 � c6

p
KLmin/KLmin and H2min � c8KLmin

for some constants c6; c8 > 0. As a result, (H.5) would hold if�
1 � c6

p
KLmin

�
KLmin

4
�
1C �

1 � 2�
�

lognC logm
npobs

(H.7)

or

c8 KLmin �
1C �

1 � 2�
�

lognC logm
npobs

:(H.8)

When both logn
npobs

and � are sufficiently small, it is not hard to show that (H.7) is a
consequence of KLmin � 4:01 logn=.npobs/.

Finally, the second part (6.23) of Lemma 6.4 is straightforward by combining
(H.3), Lemma H.1(2), and the union bound.

PROOF OF LEMMA H.1.

(1) For any  � 0, taking the Chernoff bound we obtain

P

� nX
iD1

log
Qi .yi /

Pi .yi /
� �

�
�

Qn
iD1Ey�Pi

�
exp

�
1
2

log Qi .y/
Pi .y/

��
exp

�
�
1
2

�

D exp
�
1

2


� nY
iD1

�
1 � H2.Pi ;Qi /

�
;

where the last identity follows since

Ey�P

�
exp

�
1

2
log

Q.y/

P.y/

��
D Ey�P

"s
Q.y/

P.y/

#
D

X
y

p
P.y/Q.y/

D

X
y

1

2

˚
P.y/CQ.y/ �

�p
P.y/ �

p
Q.y/

�2	
D 1 � H2.P;Q/:

By observing that 1 � H2.Pi ;Qi / � exp
˚
�H2.Pi ;Qi /

	
the claim (6.21) then

follows.
(2) Taking expectation gives

nX
iD1

Eyi�Pi

�
log

Qi .yi /

Pi .yi /

�
D �KL.Pi k Qi /:
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From our assumption jlog.Qi .yi /=Pi .yi //j � K, the Bernstein inequality ensures
the existence of some constants c0; c1 > 0 such that

(H.9)

nX
iD1

�
log

Qi .yi /

Pi .yi /
C KL.Pi k Qi /

�

� c0

p
nX
iD1

Varyi�Pi

�
log

Qi .yi /

Pi .yi /

�
log.mn/

C c1 max
i

ˇ̌̌̌
log

Qi .yi /

Pi .yi /

ˇ̌̌̌
log.mn/

with probability at least 1 � O.m�11n�11/. This taken collectively with the as-
sumption

n min
1�i�n

KL.Pi k Qi /�

p
nX
iD1

Varyi�Pi

�
log

Qi .yi /

Pi .yi /

�
log.mn/CK log.mn/

establishes (H.2). �

Appendix I Proof of Lemma 6.7
To begin with, (6.16) is an immediate consequence of (3.34) and Assumption

3.8. Next,

KLmax

maxl;y
ˇ̌
log P0.y/

Pl .y/

ˇ̌ � KLmax

max1�l<m
log P0

Pl


1

.a/
�

1
p
npobs

.b/
&

log.mn/
npobs

:

where (a) arises from (3.34) together with Assumption 3.8, and (b) follows as soon
as pobs & log2.mn/

n
. This establishes the second property of (6.23).

Next, we turn to the first condition of (6.23). If maxy P0.y/ . 1= log.mn/
holds, then we can derive

Vary�P0

�
log

P0.y/

Pl.y/

�
�

X
y

P0.y/

�
log

P0.y/

Pl.y/

�2
.

1

log.mn/

X
y

�
log

P0.y/

Pl.y/

�2
�

1

log.mn/

log
P0

Pl

2;
which together with (3.34) implies that

KL2min

max0�l<m Vary�P0

�
log P0.y/

Pl .y/

� & log.mn/ �
KL2min

max1�l<m
log P0

Pl

2
�
c4 log.mn/
npobs

:

(I.1)
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Finally, consider the complement regime in which maxy P0.y/ � 1
log.mn/ ,

which obeys maxy P0.y/ � 1=m as long as m & log.n/. Suppose P0.y0/ D
maxy P0.y/ and

P0.y0/

Pl.y0/
D max

j;y

P0.y/

Pj .y/

hold for some l and y0; it follows from the preceding inequality maxy P0.y/� 1
m

that P0.y0/
Pl .y0/

� 2.
Under Assumption 3.8, the KL divergence is lower-bounded by

KLmin � KLl & H2.P0; Pl/ �
1

2

�p
P0.y0/ �

p
Pl.y0/

�2
� P0.y0/�

1

log.mn/
:

Moreover, the assumption m D nO.1/ taken collectively with Assumption 3.6 en-
sures

max
j;y

ˇ̌̌̌
log

P0.y/

Pj .y/

ˇ̌̌̌
. logn;

allowing one to bound

Vary�P0

�
log

P0.y/

Pl.y/

�
� max

j;y

ˇ̌̌̌
log

P0.y/

Pj .y/

ˇ̌̌̌2
. log2 n:

Combining the above inequalities we obtain

KL2min

max0�l<m Vary�P0

�
log P0.y/

Pl .y/

� � 1

log2.mn/

log2 n
&

1

log4.mn/
&

log.mn/
npobs

;

as long as pobs & log5.mn/
n

, as claimed.

Appendix J Proof of Lemma 8.1
For the sake of conciseness, we will only prove (8.1), as (8.2) can be shown

using the same argument. We recognize that (8.1) can be established by demon-
strating the moderate deviation principle with respect to

Sn D

nX
iD1

�
�i;n � E

�
�i;n

��
where �i;n WD

log Qn.yi;n/
Pn.yi;n/

�n
:

To be precise, the main step is to invoke [59, thm. 6] to deduce that 0

an log P

�
p
an
Sn
p
n
> �

�
D �.1C on.1//

�2

2
(J.1)
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for any constant � > 0, where

(J.2) an WD
�2n
n�2n

:

In fact, one can connect the event
˚p
an

Snp
n
> �

	
with the likelihood ratio test

because

P

�
p
an
Sn
p
n
> �

�
D P

8<:
nX
iD1

log Qn.yi;n/

Pn.yi;n/
C �n

�n
> n

�n

�n
�

9=;
D P

(
nX
iD1

log
Qn.yi;n/

Pn.yi;n/
> .� � 1/n�n

)
:

This reveals that (J.1) is equivalent to

P

�Xn

iD1
log

Qn.yi;n/

Pn.yi;n/
> .� � 1/n�n

�
D exp

�
�.1C on.1//n

�2�2n
2�2n

�
(J.3)

as claimed in the first identity of (8.1). Moreover, by Lemma 5.5, we see that
2�n D .1 C O.

p
�n//�

2
n in the regime considered herein, leading to the second

identity of (8.1). Hence, it suffices to prove (J.1).
In order to apply [59, thm. 6], we need to check that the double indexed sequence

f�i;n � EŒ�i;n� W i � ngn�1

satisfies the conditions required therein. First of all, the independence assumption
gives

v2 WD sup
i;n

n
VarŒ�i;n�C 2

X
j>i
jCov.�i;n; �j;n/j

o
D sup

i;n

fVarŒ�i;n�g D 1 <1:

Second,
VarŒSn�
n

D

Pn
iD1 VarŒ�i;n�

n
D 1 > 0:

Third, it follows from Lemma 5.4 that

Mn WD sup
i

j�i;nj D
supi

ˇ̌̌
log Qn.yi;n/

Pn.yi;n/

ˇ̌̌
�n

�
1

minfPn.yi;n/;Qn.yi;n/g

p
2�n

�n

�

p
�n

�n
:(J.4)

The assumption �2
n

�2
n

�
logn
n

further gives

an D
�2n
n�2n

�
1

logn
D on.1/:
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Moreover, making use of the bound (J.4) as well as the assumptions

�2n
�2n
�

logn
n

and �n &
logn
n
;

we derive

nan

M 2
n log4 n

&
n
�2

n

n�2
n

�n

�2
n

� log4 n
D

�4n

�3n log4 n
D
�4n
�4n
�
�n

log4 n
&

n

log5 n
!1:

With these conditions in place, we can invoke [59, thm. 6] to establish (J.1).
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