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Abstract—This paper develops an upper bound on the end-
to-end transmission capacity of multi-hop wireless networks,
in which all nodes are randomly distributed. Potential source-
destination paths are dynamically selected from a pool of ran-
domly located relays, from which a closed-form bound on the
outage probability is derived in terms of the number of potential
paths. This in turn gives an upper bound on the number of
successful transmissions that can occur per unit area, which is
known as the transmission capacity. The upper bound results
from assuming independence among the potential paths, and can
be viewed as the maximum diversity case. A useful aspect of the
upper bound is its simple form for an arbitrary-sized network,
which allows us to immediately observe how the number of hops
and other network traits affect spatial throughput. Our analysis
indicates that predetermined routing approach (such as nearest-
neighbor) cannot achieve optimal throughput: more hops are
not necessarily helpful in interference-limited networks compared
with single-hop direct transmission.

I. INTRODUCTION

In a distributed wireless network with random node lo-

cations, determining the precise network capacity is a long-

standing open problem that includes many other simpler open

problems as special cases. Therefore, suboptimal analytical

approaches that provide insight into the achievable throughput

and inform improved protocol design are well-motivated, even

if they fall short of strict upper bounds. Multihop routing

is generally considered necessary in large wireless networks,

both to insure connectivity and to improve the throughput

via spatial reuse and diversity (cooperation) gains. In this

paper we explore optimal multihop strategies by considering

dynamic path selection. Pre-determined routing strategies such

as nearest-neighbor routing, although they may perform fairly

well on average, are generally not optimal for a given network

state (which includes node positions and all the channels

between them). In this paper, we are interested in how the

inherent randomness in the network can be better harvested

to improve the end-to-end success probability and hence

throughput over more static approaches.

A. Related Work and Motivation

The best-known metric for studying end-to-end network

capacity is the transport capacity approach pioneered by [1]

and extended by numerous other researchers to more general

operating regimes, e.g. [2], [3], [4]. In these works, nearest

neighbor multihop routing has been shown to be order optimal
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in the power-limited regime, while hopping across clusters

with distributed MIMO can achieve order-optimal throughput

in bandwidth-limited and power-inefficient regimes. However,

most of these results only can be proven to hold for asymp-

totically large networks. Separately, multihop capacity can

be studied in a line network without explicitly considering

additional interference [5], [6]. This approach is helpful in

comparing the impact of additional hops in bandwidth and

power-limited networks, but fails to account for the interfer-

ence inherent in a large wireless network.
If node locations are modelled as a homogeneous Poisson

point process (HPPP), a number of convenient results can

be applied from stochastic geometry, e.g. [7], in particular

to compute outage probability relative to an SINR threshold.

These expressions can be inverted to give the maximum

transmit intensity at a specified outage probability, which

yields the transmission capacity of the network [8]. While

the transmission capacity can often be expressed in closed-

form without resorting to asymptotics, it is a single-hop or

“snapshot” metric. Recent work [9], [10] has considered trans-

mission capacity (and outage probability) with two-hop relay

selection, but more general multi-hop routing has not proven

tractable unless several other strong assumptions are made,

e.g. that all relays are on a straight line and all outages are

independent [11], [12]. The outage of a predetermined route

does not preclude the possibility of successful communication

over other routes. In fact, we will show that since a pool

of randomly located relays with varying channels provides

more potential routes, the more randomness in the network,

the better.

B. Contributions
This work determines a closed-form upper bound on trans-

mission capacity as a function of outage constraint ε and the

number of relays m for a general class of multi-hop routing

strategies. This is given in Corollary 2, which follows from

Lemma 1 on the number of possible S − D routes in the

network, which is the main technical result in the paper.

These results assume a general exponential form of success

probability, which captures most commonly used channel

models as special cases (including path loss, Rayleigh fading,

and Nakagami).
Instead of predetermined routing, dynamic selection from

random relay sets under varying channel states are taken into

consideration in order to get diversity gain. We have also

derived a lower bound on the end-to-end outage probability

(Corollary 1), which can be expressed as an exponential func-

tion with respect to the expected number of potential paths.
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This result implies that higher throughput can be achieved

when the correlation between the states of different hops is

low and hence randomness and opportunism is high. The

basic approach is to map all relay combinations to a higher

dimensional space and focusing on the level set with respect

to the success probability function.

II. MODELS AND PRELIMINARIES

A. Models and Assumptions

We assume that the locations of all sources are a realization

of HPPP Ξt of intensity λt, and a fixed-portion set of relays

are also randomly deployed in the plane with homogeneous

Poisson distribution independent of Ξt with spatial density
1−γ

γ λt, where γ ∈ (0, 1) is a fixed constant. Suppose each

session uses k hops with the assistance of the relays, and

transmission rate b ≈ log(1 + β) is required for successful

transmission, where β is therefore the required SINR. Since b
is simply a constant function of β, we ignore it for simplicity.

Thus, denoting by ε as the target end-to-end outage probability,

transmission capacity [8] can be defined as:

Cm(ε) = (1− ε) max
Pr(SIR<β)≤ε

λt

k
. (1)

This follows because each hop requires a time slot, so the

overall throughput must be normalized by k. Here, only one

transmitter per route can be active at a time. It should be noted

that “pipelining” or intraroute spatial reuse does not change

the capacity in a network perspective [11]. This primary met-

ric characterizes the maximum end-to-end contention density

thinned by the success probability 1−ε, which determines the

maximum expected throughput per unit area.

Suppose that all transmitters employ equal amounts of

power, the network is interference-limited, and that every

destination node is a distance R from the source node. Relays

can be selected from all nodes in the feasible region. For point-

to-point transmission from node i to node j at a distance rij ,

the requirement for successful reception is expressed in terms

of signal-to-interference ratio (SIR) constraint:

SIRij =
‖hij‖2 r−α

ij∑
k �=i ‖hkj‖2 r−α

kj

≥ β (2)

where α denotes the path loss exponent, and hij the i.i.d.

fading factor experienced by the path from i to j.

If the locations of the interference nodes follow an HPPP, (2)

often suggests an exact or approximate exponential form for

single-hop success probability. That is, given that the packet

is transmitted from node i to next hop receiver j over distance

rij and spatial density λt, the success probability is given as:

g0(rij , λt) = G exp(−λtKr2
ij), (3)

where G and K are variables which depends on specific

channel models and which are independent of rij and λt. This

is true for Rayleigh fading, Nakagami fading, and path loss

models without fading. We omit the detailed derivation here

but note that for Rayleigh fading:

KRF = 2πβ
2
α Γ

(
2
α

)
Γ

(
1− 2

α

)
/α, GRF = 1; (4)

with Γ(z) =
∫∞
0

tz−1 exp(−t)dt being the Gamma function;

for path loss model:

KPL = πβ
2
α , GPL = 1. (5)

Moreover, G can be different from 1 in some regime with

Nakagami fading. For the rest of paper, we leave the results

in terms of the general form (3).

III. GENERAL TRANSMISSION CAPACITY ANALYSIS

A. General Outage Probability Analysis

Suppose that m relays are used by a typical S − D pair.

We will build a connection between the outage probability

and the expected number of relay sets that can connect the

source and destination. Suppose that there is a transmission

pair with source and destination located at (−R/2, 0) and

(R/2, 0), respectively. Conditional on this typical pair, the

spatial point process is still a HPPP with the same statis-

tics. With the ith(1 ≤ i ≤ m) relay located at (xi, yi),
let Zm = (x1, y1, . . . , xm, ym) denote the location of this

specific relay set. From Slivnyak’s theorem, conditional on

a typical transmission pair or finite number of nodes, the

rest of the point process is still a homogeneous Poisson with

the same density. Therefore, all relay combinations form a

homogeneous point process in a 2m-dimensional space R2m.

We assume the effective spatial density to be λ̃. Assume

that each relay combination Zm can successfully assist in

communications between the end-to-end transmission pair

with probability gm(Zm, λt). If we call the relay set that can

successfully complete forwarding a potential relay set, the

expected number of potential relay sets in a hypercube B,

denoted by NB , can be expressed as:

lim
v2m(B)→0

E(NB) = λ̃mgm(Zm, λt)v2m(B), (6)

where v2m(B) denotes the Lebesgue measure of B. Let Nm be

the number of existing potential relay sets with the assistance

of m relays. It should be noted that E(Nm) characterizes

the expected number of different routes that can successfully

forward the packets for each S − D pair. A larger E(Nm)
typically gives lower outage, since more successful routes can

be expected to exist. The following theorem provides an outage

probability bound for all success probability function gm(·).
Theorem 1. Assume that all end-to-end transmissions are
achieved via m+1 hops with m relays. The end-to-end outage
probability p

(m)
out for any S − D pair can be lower bounded

as:
p
(m)
out ≥ exp(−E(Nm)) (7)

Proof: Let the high-dimensional feasible region F for

relay sets be the allowable range to select relays from. Denote

by A the event that there is no relay set within F that can

successfully complete forwarding. Ignoring the edge effect, we

attempt to approximately divide F into n disjoint hypercubes

Fi(1≤i≤n) each of equal volume. For sufficiently large n,

this approximation is exact. Let Ai(1≤i≤n) be the event that

there exists no potential relay set within Fi that can complete

forwarding. Hence, A =
⋂n

i=1Ai. Consider two realization of

ISIT 2010, Austin, Texas, U.S.A., June 13 - 18, 2010

1719



higher-dimensional point process ω and ω′, and let ω � ω′ if

ω′ can be obtained from ω by adding points. An event Ai is

said to be decreasing if for every ω � ω′, IAi (ω) ≤ IAi (ω′)
with IAi

denoting the indicator function of Ai, it can be noted

that Ai(1≤i≤n) are all decreasing events. The Harris-FKG

inequality [13] yields

P(A) = P

(
n⋂

i=1

Ai

)
≥

n∏
i=1

P(Ai). (8)

Consider the hypercube Fi as [(x1, y1, . . . , xm, ym), (x1 +
δx1, y1+δy1, . . . , xm+δxm, ym+δym)] when δxi→0, δyi→0.

Define Zi = (x1, y1, . . . , xm, ym). We can approximate the

void probability if the Lebesgue measure v2m(Fi) is small:

P(Ai) ≈ 1− gm(Zi, λt)
m∏

i=1

(
1− exp(−λ̃δxiδyi)

)

≈ exp
(
−λ̃mgm(Zi, λt)v2m(Fi)

)
(9)

Let n →∞, then we can get the following lower bound

P(A) ≥ lim
n→∞

n∏
i=1

P(Ai)

= exp

(
−λ̃mgm(Zi, λt) lim

n→∞

n∑
i=1

v2m(Fi)

)

= exp(−E(Nm)) (10)

It is immediate to find that the lower bound can only be

obtained when all potential relay sets forms a Poisson point

process, i.e., all potential points are independently scattered

in the high-dimensional region. This indicates that lower cor-

relation between different possible routes reduces the outage

probability in essence by maximizing diversity. We can expect

that this bound is tight and reasonable for small m (e.g. the

bound is exact for single relay case) but may be loose for large

m. This is because for a fixed pool of relays, the correlation

between different routes increases when the number of relays

m grows, i.e. for large m, many possible routes may share

a couple of links. The expected number of different routes

E [Nm] will be exactly calculated in the following subsection.

B. A Simple Upper Bound on Transmission Capacity

Now we begin to concentrate on the success probability of

exponential forms. If a specific route is selected for packet

delivery over m relays with hop distances r1, r2, . . . , rm+1,

respectively, the probability for successful reception can be

found as the product of each hop’s success probability:

m+1∏
i=1

g0(ri, λt) = Gm+1 exp

(
−λtK

m+1∑
i=1

r2
i

)
.

Here, we assume independence among each hop. This is

reasonable because orthogonality among different subslots

typically guarantees low correlation among different hops.

Suppose that the source and destination nodes are located

at (−R/2, 0) and (R/2, 0). In the m relay case with the

ith(1 ≤ i ≤ m) relay located at (xi, yi), let Zm =

(x1, y1, . . . , xm, ym) denote the locations of the specific relay

set, then we can define the corresponding distance statistics:

dm(Zm) Δ=(x1 +
R

2
)2 +

m−1∑
i=1

(xi − xi+1)2 + (xm − R

2
)2

+ y2
1 +

m−1∑
i=1

(yi − yi+1)2 + y2
m. (11)

This is the sum of squares of hop distances. Hence, the routing

success probability for a specific set of relays with location

Zm can be explicitly expressed as:

gm(Zm, λt) = Gm+1 exp(−λtKdm(Zm)). (12)

For those relay sets with large dm(Zm), the communication

process becomes fragile and difficult to maintain due to low

reception probability and large distance. Practical protocols

usually search potential routes inside a locally finite area

instead of from the infinite space. In order to leave the analysis

general, we impose a constraint dm(Zm) ≤ Dm for the m
relay case, where Dm →∞ reverts to the unconstrained case.

A reasonably small constraint Dm is sufficient to achieve an

aggregate rate arbitrarily close to capacity upper bound.

Besides, since only one transmitter is active at a time per

route, each node is used as a relay by some S − D pair

with probability γ in each subslot. Thus, the pool of relays

in each hop can be treated as the original HPPP Ξ thinned by

probability γ. Hence, the location of all relay sets in R2m is

a realization of a point process with effective spatial density

λm(1− γ)m. This leads to the following lemma.

Lemma 1. If all end-to-end transmissions are achieved via
m+1 hops with the constraint dm(Zm) ≤ Dm (Zm ∈ R2m),
the expected number of potential relay sets can be given as:

E(Nm) =
Gm+1πm(1− γ)m

γmKm(m + 1)

{
exp

(
−λγKR2

m + 1

)
−

exp (−λγKDm)
m−1∑

0

1
i!

(
λγK

(
Dm − R2

m + 1

))i
}

.

Proof: The key point is that the isosurface of dm(Zm)
forms a high-dimensional elliptical surface. See Appendix.

This result indicates that larger m typically provides more

diversity, because it provides more potential combinations

of different relays, and the dynamically changing channel

states provide more opportunities for a successful route. A

larger feasible range for route selection Dm also increases the

expectation, but since Dm mainly occurs in an exponentially

vanishing term, a finite range is enough to approach the limits.

Corollary 1. Assume that all end-to-end transmissions are
achieved via m + 1 hops. If only a single transmission
is allowed in each hop, the outage probability under the
constraint dm(Zm)≤Dm (Zm∈R2m) can be lower bounded
as:

p
(m)
out ≥ exp

{
−Gm+1πm(1− γ)m

γmKm(m + 1)

{
exp

(
−λγKR2

m + 1

)
−

exp (−λγKDm)
m−1∑

0

(λγK)i

i!

(
Dm − R2

m + 1

)i
}}

. (13)
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This corollary provides a closed-form lower bound on the

end-to-end outage probability without retransmissions. Espe-

cially for sufficiently large Dm, the lower bound reduces to:

p
(m)
out ≥ exp

{
−Gm+1πm(1− γ)m

γmKm(m + 1)
exp

(
−λγKR2

m + 1

)}
,

which gives a clear characterization for “low-coherence” rout-

ing. As expected, multi-hop routing with the help of randomly

deployed relays improves the success probability by providing

diversity gain. Randomness in both relay locations and channel

states brings more opportunities for us to exploit.

It should be noted that unlike the single hop scenario [8],

our bound for outage probability is not globally monotone with

λ if Dm�∞. For sufficiently large Dm, Taylor expansion in-

dicates that the outage probability is monotonically decreasing

in [0, λ0] and increasing in [λ0,∞], where

λ0 =
1

γK
(
Dm − R2

m+1

) ln
(m + 1)Dm

R2
. (14)

Taking the inverse over (λ0,∞) will yield the following

bounds on maximum contention density.

Corollary 2. If all end-to-end transmissions are achieved via
m + 1 hops, the transmission capacity can be upper bounded
as:

Cm(ε) ≤
m ln Gπ(1−γ)

Kγ + lnG− ln(m + 1)− ln ln 1
ε

KR2
(1− ε)

Δ= Cub
m(ε), (15)

where ε ≥ exp
(
−Gm+1πm(1−γ)m

γmKm(m+1)

)
.

Proof: Letting Dm → ∞, and setting the outage proba-

bility equal to ε, (13) can be simplified as:

ε ≥ exp
{
−Gm+1πm(1− γ)m

γmKm(m + 1)
exp

(
− λγ

m + 1
KR2

)}
.

Notice that the effective spatial density is λγ/(m + 1) and

that ε is monotone in λ, we can immediately derive (15).

Furthermore, in order to make sure Cm(ε) > 0, we obtain

the constraint on ε in the corollary.

Let Cub
m(ε) be the bound under Dm constraint. When Dm �

∞ but is reasonably large, a simple approximation yields:

Cub
m(ε) + Θ{exp{−Cub(ε)K(m + 1)Dm}} = Cub

m(ε) (16)

which implies the gap between the general bound and that

with distance constraints will decay exponentially fast in Dm.

IV. DISCUSSION

The analytical framework developed in this paper provides a

simple closed-form upper bound to characterize the maximum

achievable throughput with dynamic routing selection. Since

Θ(ln(m + 1)) is negligible compared with Θ(m) when m
grows, the transmission capacity bound exhibits near linear

scaling behavior with respect to the number of hops m + 1.

This gain arises from the increasing diversity as m grows,

because more hops means more choices of potentially suc-

cessful routes. We caution that this gain is likely to become

increasingly optimistic for large m, since longer potential

routes will result in higher correlation that is not modeled,

especially in a high-interference environment. Also, employing

a large number of hops is likely to increase protocol overhead

in practice quite substantially, which is not considered here.

The proper choice of m under realistic correlation and protocol

overhead models is an interesting topic for future research.

Another interesting result is that the transmission capacity

bound is not sensitive to the outage constraint ε in the low

outage regime, because the double logarithm as in ln ln 1
ε

largely reduces its sensitivity. This is quite different from

single-hop transmission capacity, where the throughput ex-

hibits linear scaling with ε [8]. Moreover, the Corollary 2

implies that increasing the portion of relay nodes will only

logarithmically increase throughput. A large pool of relay sets

is necessary to guarantee multi-hop selection, but bringing in

too many relays may only provide limited throughput incre-

ment but incur substantial resource overhead. Additionally, the

gap between constrained maximum density and unconstrained

capacity bound is subject to exponential decay in (m+1)Dm.

Hence, searching within a local and finite region is enough to

approach the limit with a reasonable hop-distance constraint

Dm.

This transmission capacity bound also makes clear that ran-

domness and dynamic routing selection may be of significant

importance. In fact, predetermined routing is unlikely to ap-

proach the throughput bound in interference-limited networks.

A simple argument can be given as follows. Considering a

typical S −D pair, the outage probability can be bounded as:

1− p
(m)
out = G exp(−λγKdm(ZM )) ≤ G exp

(
−λγKR2

m + 1

)

Equality can only be achieved if the m relays are equally

spaced along the line segment between source and destination,

which is unlikely to occur in a HPPP. Setting λγ(1−ε)/(m+1)
to Cub

m(ε), we can immediately get an upper bound:

Cub
m(ε) =

1− ε

KR2
ln

G

1− ε
, (17)

which is exactly equal to single hop capacity. This suggests

that predetermined routing will not provide further throughput

gain in interference-limited networks compared with single

hop transmission. In fact, multihopping is primarily helpful in

changing a power-limited network to an interference-limited

one, consistent with [5], [11]. The design of transmission

strategies exploiting the diversity gain are left for future work.

We conjecture that hop-by-hop route selection – which is much

more realistic in a distributed network than the complete route

selection assumed here – will achieve a lower? the same?

diversity order (and hence transmission capacity).

APPENDIX

PROOF OF LEMMA 1

It can be noted that the isosurface of dm(Zm) = a has the

following coordinate geometry form:

Xsum + Ysum = a, (18)
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where Xsum = (x1 + R
2 )2 +

∑m−1
i=1 (xi+1−xi)2 +(xm− R

2 )2

and Ysum = y2
1 +

∑m−1
i=1 (yi+1 − yi)2 + y2

m.

If we treat xi, yi (1 ≤ i ≤ m − 1) as mutually orthogonal

coordinates, then (18) forms a quadratic surface in 2m-

dimensional space. From the properties of quadratic forms,

the x part and y part of (18) can be expressed as:{
Xsum = (CX−Rx)TΛx(CX−Rx) + tmR2,

Ysum = (C̃Y)TΛy(C̃Y).
(19)

where C, C̃ are orthogonal matrices, Λx,Λy are diagonal

matrices, Rx has the explicit form of [k1, k2, ..., kn−1]T R,

and tm is a constant that will be determined in the sequel.

Here, the translation of X (Y) by Rx and the orthogonal

transformation by C (C̃) only results in rotation, or translation

of the quadratic surface without changing the shape and size

of it. Since the corresponding quadratic terms of Xsum and

Ysum have equivalent coefficients, we have Λm
Δ= Λx = Λy.

Denote the symmetric quadratic-form matrix with Ysum as Am,

then Am is the following tridiagonal matrix of dimension m:

Am =

⎛
⎜⎜⎜⎜⎜⎝

2 −1 0 . . . 0
−1 2 −1 . . . 0
0 −1 2 . . . 0
...

...
...

...

0 0 0 . . . 2

⎞
⎟⎟⎟⎟⎟⎠ . (20)

In fact, Λm is the canonical form of Am with its eigenvalues

on the main diagonal. Through transformation with C, C̃ and

Rx, Xsum and Ysum can be brought to the explicit form

Xsum =
m∑

i=1

λix̃i
2 + tmR2, (21)

Ysum =
m∑

i=1

λiỹi
2. (22)

where x̃i, ỹi are the new orthogonal coordinates and λi is the

ith eigenvalue of Am. By definition, Xsum is positive definite,

and the following minimum value can be obtained if and

only if m relays are placed equidistant along the line segment

between the source and destination:

Xsum ≥
(∣∣R

2 + x1

∣∣ + · · ·+ ∣∣xm − R
2

∣∣)2

m + 1
≥ R2

m + 1
. (23)

Therefore, tm = 1
m+1 . Now, (18) can be brought to:

m∑
i=1

λix̃i
2 +

m∑
i=1

λiỹi
2 = a− R2

m + 1
. (24)

From the positive definiteness of Am, λi > 0 for all i, i.e.,

(24) forms the surface of a 2m-dimensional ellipsoid. The

Lebesgue measure of the ellipsoid can be written as:

Vm(a) =
πm

(
a− R2

m+1

)m

m!
∏m

i=1 λi
=

πm
(
a− R2

m+1

)m

m! det(Am)
, (25)

where det(Am) can be computed by the Laplace expansion:

det(Am) = 2 det(Am−1)− det(Am−2). (26)

Solving this recursive form with the initial value det(A1) = 2
and det(A2) = 3 yields:

det(Am) = m + 1 ⇒ Vm(a) =
πm(a− R2

m+1 )m

(m + 1)!
.

Define Bλ = λγK and H = π(1−γ)
γK . Integrating along

different isosurface with g(Zm, λγ) = exp(−λγKa) yields

E(Nm)

=
∫ Dm

R2
m+1

λm(1− γ)m dVm(a)
da

Gm+1 exp(−Bλa)da

= Gm+1λm(1− γ)m

∫ Dm

R2
m+1

mπm
(
a− R2

m+1

)m−1

(m + 1)! exp (Bλa)
da

=
mGm+1Hm exp(−BλR2

m+1 )
(m + 1)!

∫ Bλ(Dm− R2
m+1 )

0

xm−1

exp(x)
dx

=
Gm+1Hm

m + 1

{
exp

(
−BλR2

m + 1

)
−

exp(−BλDm)
m−1∑

0

1
i!

(
Bλ(Dm − R2

m + 1
)
)i

}
. (27)
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