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Abstract

We study online conformal prediction for non-stationary data streams subject to unknown distribution
drift. While most prior work studied this problem under adversarial settings and/or assessed performance
in terms of gaps of time-averaged marginal coverage, we instead evaluate performance through training-
conditional cumulative regret. We specifically focus on independently generated data with two types of
distribution shift: abrupt change points and smooth drift.

When non-conformity score functions are pretrained on an independent dataset, we propose a split-
conformal–style algorithm that leverages drift detection to adaptively update calibration sets, which
provably achieves minimax-optimal regret. When non-conformity scores are instead trained online, we
develop a full-conformal–style algorithm that again incorporates drift detection to handle non-stationarity;
this approach relies on stability—rather than permutation symmetry—of the model-fitting algorithm,
which is often better suited to online learning under evolving environments. We establish non-asymptotic
regret guarantees for our online full conformal algorithm, which match the minimax lower bound under
appropriate restrictions on the prediction sets. Numerical experiments corroborate our theoretical findings.
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1 Introduction
Conformal prediction, also known as conformal inference, has emerged as a versatile, distribution-free
framework for quantifying uncertainty in modern data science (Vovk et al., 1999; Papadopoulos et al., 2002;
Vovk et al., 2005; Angelopoulos et al., 2023, 2024b). What sets it apart is its ability to offer rigorous, finite-
sample coverage guarantees under minimal distribution assumptions, allowing practitioners to treat complex
machine learning models as black boxes while still producing reliable measures of uncertainty. In its classical
formulation, we observe n training data taking the form of n feature-response pairs {(Xi, Yi)}1≤i≤n ⊂ X ×R,
and are given a test point Xn+1 ∈ X for which the corresponding response Yn+1 is unknown. The aim is to
construct a prediction set Ĉ(Xn+1) that is likely to cover Yn+1. Conformal prediction achieves this objective
in a distribution-free fashion, provided the data {(Xi, Yi)}1≤i≤n+1 are exchangeable (Angelopoulos et al.,
2023, 2024b).

While the ability to accommodate exchangeable data applies to wide-ranging practical scenarios, there is
no shortage of scenarios that naturally violate exchangeability. One notable example arises when the data
distributions drift over time, as is often the case with sequential or online data (Zhou et al., 2025; Fannjiang
et al., 2022). This motivates a flurry of recent studies exploring online conformal prediction, with the objective
to extend the conformal prediction framework to accommodate sequentially arriving data streams (e.g., Vovk
et al. (2009); Weinstein and Ramdas (2020); Gibbs and Candes (2021); Bastani et al. (2022); Zaffran et al.
(2022); Bhatnagar et al. (2023); Lin et al. (2022); Feldman et al. (2022); Auer et al. (2023); Sun and Yu
(2023); Xu and Xie (2023b,a); Xu et al. (2024); Gibbs and Candès (2024); Han et al. (2024a); Angelopoulos
et al. (2023, 2024a, 2025); Bao et al. (2024); Lee and Matni (2024); Yang et al. (2024); Podkopaev et al.
(2024); Su et al. (2024); Zhang et al. (2024b); Ramalingam et al. (2025); Sale and Ramdas (2025); Humbert
et al. (2025)).
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1.1 Online conformal prediction
Setting the stage, consider a sequential data stream {(Xt, Yt)}1≤t≤T generated by a dynamic process, where
Xt ∈ X denotes the feature (or covariate) at time t and Yt ∈ R the corresponding response. The data-
generating distribution is allowed to drift over time; namely, the distribution of (Xt, Yt), denoted by Dt, may
vary with t. At each time t, the task is to use the previously observed data {(Xs, Ys)}s<t, together with the
newly observed feature Xt, to construct a prediction set Ct(Xt) that is likely to contain the as-yet-unobserved
response Yt. More precisely, for a prescribed miscoverage level α ∈ (0, 1), a desirable prediction set Ct(Xt)
would satisfy

P
{
Yt ∈ Ct

(
Xt

) ∣∣ {(Xs, Ys)}s<t

}
≥ 1− α. (1)

Central to conformal prediction is the non-conformity score function st(·, ·), which is computed at time
t and may sometimes depend on past observations {(Xτ , Yτ )}τ :τ<t. For the most part, the score st(x, y)
measures the extent to which a data point (x, y) ∈ X × R deviates from the prediction of a fitted model.
A canonical example is the absolute residual score st(x, y) = |y − µ̂t(x)|, where µ̂t(·) denotes a predictive
model trained by an arbitrary machine learning algorithm (for instance, a neural network, or a nonparametric
estimator). A widely studied class of prediction intervals takes the form

Ct(x) := {y : st(x, y) ≤ qt} (2)

for some adaptively chosen threshold qt, in which case prediction interval construction amounts to dynamically
adjusting {qt} given the non-conformity scores.

The online nature of the above problem has motivated a recent line of work to reframe (1) as an online
decision-making task and leverage techniques from online learning to address it. A prominent example is
Adaptive Conformal Inference (ACI), proposed by Gibbs and Candes (2021). In a nutshell, the ACI algorithm
sequentially calibrates the quantile estimates via the iterative update rule:

qt+1 = qt + ηt
(
1{st(Xt, Yt) > qt} − α

)
, (3)

which can be interpreted as an instance of the online subgradient method applied to optimize the quantile
loss (or pinball loss).

1.2 Prior coverage guarantees and their inadequacy
To establish theoretical validity, a substantial body of prior work developed coverage guarantees for online
conformal prediction methods. For instance, Gibbs and Candes (2021) demonstrated that the ACI algorithm
achieves some sort of time-averaged coverage without imposing any assumption on the data-generating
mechanism; more formally, they proved that, with a suitable constant learning rate schedule, ACI satisfies

1

T

T∑
t=1

1
(
Yt ∈ Ct(Xt)

)
︸ ︷︷ ︸

empirical long-term coverage frequency

→ 1− α (4)

as T grows, which holds even when the data stream is generated adversarially. Building on this result,
subsequent work has extended time-averaged coverage results to a broader family of algorithms (e.g., Zaffran
et al. (2022); Angelopoulos et al. (2024a); Bhatnagar et al. (2023); Zhang et al. (2024a)).

Note, however, that controlling the empirical long-term coverage frequency in (4) does not, by itself,
preclude vacuous solutions. As noted in prior studies (e.g., Bastani et al. (2022); Bhatnagar et al. (2023)) and
further elaborated in Section 2.3, one can easily construct prediction sets that fulfill property (4) while failing
to incorporate any information of the underlying data distributions. In other words, achieving convergence of
empirical long-term coverage frequency does not ensure reliable coverage at any individual time, nor does it
guarantee that the prediction sets are informative and efficient.

To remedy the above issue, a line of subsequent work (e.g., Bhatnagar et al. (2023); Gibbs and Candès
(2024); Hajihashemi and Shen (2024); Ramalingam et al. (2025); Zhang et al. (2024a,b)) shifted focus
towards regret-based analysis, drawing heavily from the online learning literature (Shalev-Shwartz, 2012;
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Hazan et al., 2016). While multiple notions of regret have been explored in this strand of work, they are
primarily formulated for adversarial online settings, where the underlying data-generating distributions are left
completely unspecified. Consequently, these regret metrics often lack a direct correspondence with standard
conformal validity targets, such as training-conditional coverage. Furthermore, several prior works (e.g.,
Bhatnagar et al. (2023); Hajihashemi and Shen (2024); Ramalingam et al. (2025)) evaluated the cumulative
performance gap relative to global quantile optimized in hindsight (i.e., the quantile computed based on all
data), which is, however, not well-suited to non-stationary environments with drifting data distributions.

It is important to emphasize again that the adoption of empirical long-term coverage frequency and
adversarial regret largely stems from the objective to dispense with distributional assumptions, thereby
maximizing the “distribution-free” nature of online predictive inference. However, if one is willing to impose
more structure on the data-generating mechanism, it may become possible to derive coverage guarantees that
align more closely with classical validity notions. While several prior work (Gibbs and Candes, 2021; Han
et al., 2024a; Zaffran et al., 2022; Xu and Xie, 2023a; Angelopoulos et al., 2024a; Humbert et al., 2025) had
investigated more specialized settings—such as independent data with drifting distributions, hidden Markov
models—the optimality of the resulting theoretical guarantees remain largely unexplored.

1.3 This paper
In this work, we make progress by focusing on the following non-adversarial scenario:

• A non-adversarial setting with independent data: The data {(Xt, Yt)}1≤t≤T are independently generated
but otherwise distribution-free. The distribution of (Xt, Yt), denoted by Dt, is allowed to drift over
time, but the predictive inference algorithm has no prior knowledge of the distributional drift.

The independence assumption enables us to move beyond performance metrics like time-averaged marginal
coverage and adversarial regret, and instead adopt a regret metric that aligns more closely with classical
statistical validity. Informally, we focus on the following training-conditional cumulative regret metric

regretT :=

T∑
t=1

E
[∣∣P (Yt ∈ Ct(Xt)

∣∣ past data
)
− (1− α)

∣∣ ] , (5)

whose precise definition is given in Section 2.2. This metric measures, at each time t, the deviation of
the coverage probability conditional on past observations from the target level, and then aggregates these
deviations over time. The emphasis on training-conditional (sample-conditional) validity is standard in
conformal prediction (e.g., Vovk, 2012; Bian and Barber, 2023; Amann et al., 2023; Liang and Barber, 2025).

Within this framework, we pay particular attention to two forms of distribution drift: (i) the change-point
setting, where the data distribution is piecewise stationary with several abrupt change points; (ii) the smooth
drift setting, where the distributions evolve continuously and smoothly over time, subject to an upper bound
on its aggregate variation. Note that the predictive inference algorithm operates without prior knowledge of
the drift structure. Our main contributions are summarized as follows.

Online conformal prediction with pretrained scores. Consider first the scenario in which the non-
conformity score functions are pretrained on a separate, independent dataset—a common setting in online
conformal prediction where split-conformal-style methods are naturally applicable. We propose an online
conformal prediction algorithm, dubbed DriftOCP (see Algorithm 2), which leverages drift detection
subroutines to adaptively update calibration sets—the set of data used for calibrating qt—over time. Our
algorithm is computationally lightweight, horizon-independent, and adapts efficiently to the distribution drift.
We provide non-asymptotic theoretical guarantees by establishing regret upper bounds for DriftOCP that
match the minimax lower bounds (up to a logarithmic factor) in both the change-point and smooth drift
settings. Numerical experiments across a range of distribution-shift scenarios further demonstrate the efficacy
of DriftOCP, showing that it adapts effectively to diverse data-generating mechanisms.

Online conformal prediction with adaptively trained scores. Next, consider a more challenging
scenario in which both the predictive models and the non-conformity score functions are trained online,
potentially depending on past observations. To enhance data efficiency without data splitting, we adopt the full
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conformal paradigm, and put forward an online full conformal prediction algorithm called DriftOCP-full
(see Algorithm 4), which integrates drift detection subroutines to tackle non-stationarity. Rather than assuming
permutation symmetry of the model fitting algorithm—which is often violated in online learning—we focus
instead on stable learning algorithms, and establish non-asymptotic upper bounds on the training-conditional
cumulative regret of DriftOCP-full. We further demonstrate the optimality of our approach by deriving
matching minimax lower bounds (up to a log factor) under appropriate restrictions on the prediction sets.
Notably, our training-conditional lower bound applies universally to all prediction methods regardless of
their specific construction—a result that was previously out of reach. Empirically, we benchmark several
conformal prediction methods and validate the plausibility of constructing prediction sets using sequentially
fitted models.

1.4 Notation
We now gather a set of notations used throughout the paper. For any a, b ∈ R, denote a ∨ b = max{a, b},
a ∧ b = min{a, b}, (a)+ = a ∨ 0, and (a)− = a ∧ 0. For any integer n, let [n] := {1, . . . , n}. For x ∈ R, we use
⌈x⌉ to denote the smallest integer greater than or equal to x, and ⌊x⌋ the largest integer less than or equal to
x. For two nonnegative functions f and g, we write f ≲ g (equivalently, f = O(g) and g = Ω(f)) if there
exists a universal constant C > 0 such that f ≤ Cg. We write f ≳ g if g ≲ f , and f ≍ g if both f ≲ g and
g ≲ f hold. The notation f = Õ(g) and g = Ω̃(f) is defined analogously, up to additional logarithmic factors.
For the set R of real numbers, we denote by B(R) the Borel sets on it. We denote by ∥v∥2 the Euclidean
norm of a vector v ∈ Rd. For a matrix A ∈ Rm×d, we use ∥A∥ := sup∥x∥2=1 ∥Ax∥2 for its spectral norm. For
two probability distributions P and Q defined on a measurable space (Ξ,F), we denote by TV(P,Q) their
total-variation (TV) distance, i.e.,

TV(P,Q) := sup
A∈F

{
|P (A)−Q(A)|

}
.

Suppose P and Q admit probability density functions p and q on Ξ, respectively. We define the Kullback–
Leibler (KL) divergence from Q to P by

KL(P ∥Q) :=

∫
Ξ

p(x) log
p(x)

q(x)
dx,

whenever the integral is well-defined. Furthermore, if P and Q are two probability distributions defined on(
R,B(R)

)
, we denote by KS(P,Q) their Kolmogorov–Smirnov (KS) distance, i.e.,

KS(P,Q) := sup
x∈R

{ ∣∣P ((−∞, x]
)
−Q

(
(−∞, x]

)∣∣ }. (6)

For random objects Z ∼ P and Z̃ ∼ Q, we overload the notation by letting TV(Z, Z̃), KL(Z ∥ Z̃) and KS(Z, Z̃)
denote TV(P,Q), KL(P ∥Q) and KS(P,Q), respectively. Also, for any sequence of objects {Zi}i≥1, we adopt
the notation Zk:m = {Zk, . . . , Zm} for any m ≥ k ≥ 1.

2 Problem formulation and key metrics

2.1 Settings
Consider a sequence of T independent data points arriving sequentially, denoted by Zt = (Xt, Yt) ∈ X × R,
t = 1, . . . , T , where the set X represents the feature domain. At each time t, the feature Xt is revealed first,
and the response Yt becomes available after a prediction set has been formed. Throughout this paper, we use
Z1:t = {(Xs, Ys)}s≤t to denote the set of all data up to time t.

Procedure. An online conformal prediction procedure operates as follows. Given the data {(Xs, Ys)}s<t

observed prior to time t and the newly arrived feature Xt, an online conformal prediction algorithm—denoted
by π—seeks to construct a prediction set

Ct = Cπt (Xt; {(Xs, Ys)}s<t) ⊆ R,
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designed to contain Yt with probability exceeding—and ideally close to—the target level 1−α. Here, we often
write Ct for brevity if it is clear from the context. The set Ct is typically built with the aid of a non-conformity
score function st(·, ·) along with a fitted predictive model µ̂t(·). In this paper, we consider two practically
important scenarios, distinguished by how the predictive models and non-conformity scores are trained.

• Online conformal prediction with pretrained scores. In this scenario, both the score functions and the
predicted models are pretrained on a separate, independent dataset or data stream. As a result, the
st(·, ·)’s are independent of the online data stream on which the prediction sets are constructed, while
still being allowed to evolve over time.

• Online conformal prediction with adaptively trained scores. In this scenario, we allow both the score
functions and the predictive models to be trained online, possibly depending on the past observations
of the data stream. Therefore, the st(·, ·)’s may be statistically dependent on {(Xs, Ys)}s<t.

For both scenarios, an ideal online conformal prediction algorithm would adapt efficiently to the dynamic
environment while allowing for tractable computation.

Distribution shift over time. Denote by Dt (resp. D1:t) the distribution of Zt = (Xt, Yt) (resp. Z1:t).
We allow Dt to vary over time, which generally violates the exchangeability assumption. In this work, we pay
particular attention to the following two distribution drift scenarios.

(i) The change-point setting. This concerns the scenario where the data stream is, in some sense, piecewise
stationary. Formally, assume the existence of N cp (a priori unknown) change points, denote by

1 = τ0 < τ1 < · · · < τN cp < τN cp+1 = T + 1, (7)

such that for each k = 0, . . . , N cp,{
st(Xt, Yt) ∼ Dscore

k,seg, τk ≤ t < τk+1, when scores are pretrained,
(Xt, Yt) ∼ Dk,seg, τk ≤ t < τk+1, when scores are trained online,

(8)

where Dscore
k,seg (resp. Dk,seg) represents the score (resp. data) distribution over the k-th time segment [τk, τk+1).

In words, the distribution of interest remains fixed within each time segment, but may change abruptly at
the change points τ1, . . . , τN cp . It is assumed that the number and locations of the change points, as well as
the associated data distributions, are arbitrary and unknown to the online conformal prediction algorithm.

(ii) The smooth drift setting. In contrast to the above change-point setting that is well suited to modeling
infrequent but potentially abrupt distributional jumps, the second setting targets the scenario in which Dt

evolves continuously and smoothly over time. To quantify the overall extent of such distributional variation,
we rely on the following two metrics.

• Cumulative data variation: this metric measures the aggregate total-variation distance between consec-
utive data distributions:

TVT :=

T−1∑
t=1

TV(Dt, Dt+1). (9)

• Cumulative score variation: in contrast to TVT , which is defined based on data distributions, this
metric is score-based and tracks the cumulative Kolmogorov-Smirnov distance of consecutive score
distributions:

KST :=

T−1∑
t=1

KS
(
Dscore

t ,Dscore
t+1

)
, (10)

where Dscore
t denotes the distribution of st(Xt, Yt) under data distribution (Xt, Yt) ∼ Dt.

Notably, the score-based metric KST can be viewed as a particular instance of the more general cumulative
data variation TVT . In fact, similar quantities have been adopted in prior studies on online learning under
data distribution shift (Besbes et al., 2014, 2019; Cheung et al., 2019; Zhao et al., 2020). In this smooth drift
setting, our aim is to design online conformal prediction algorithms whose performance can adapt gracefully
to such cumulative variations.
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2.2 Key metrics: training-conditional coverage and cumulative regret
To assess the performance of an online conformal prediction procedure π, a natural metric is the training-
conditional coverage rate, defined as

cvgt = cvgπt (Z1:t−1) := P
(
Yt ∈ Cπt (Xt;Z1:t−1)

∣∣Z1:t−1

)
, (11)

where we often write cvgt for brevity. This metric quantifies the probability of successful coverage conditional
on all past data (note that the prediction set Ct is often constructed based on past observations). Compared
with marginal coverage, training-conditional coverage is a stronger notion that ensures most of the test points
are covered given the constructed prediction set Ct.

Ideally, one would anticipate cvgt to match the target level 1− α. The deviation between the nominal
and actual coverage at time t—which may be interpreted as the “regret” incurred at time t—is quantified by
the training-conditional coverage gap metric defined as

cvg-gapt = cvg-gapπt (Z1:t−1) :=
∣∣cvgπt (Z1:t−1)− (1− α)

∣∣. (12)

The training-conditional cumulative regret—hereafter often abbreviated as cumulative regret, or simply
regret—of algorithm π is then defined as

regretT = regretπ (D1:T , T ) :=

T∑
t=1

E
Z1:t−1∼D1:t−1

[
cvg-gapπt (Z1:t−1)

]
, (13)

which aggregates the training-conditional coverage gaps over time and captures the deviation from the target
coverage rate. Here and throughout, we often suppress the explicit dependence on past data and distributions
and write cvg-gapt and regretT when it is clear from the context. Importantly, this cumulative regret notion
bridges predictive inference (through coverage guarantees) and online learning (through regret analysis).

Another metric is the long-term coverage rate defined as

lt-cvgT = lt-cvgπ
(
D1:T , T

)
:=

1

T

T∑
t=1

P
(
Yt ∈ Cπt (Xt;Z1:t−1)

)
, (14)

which is often abbreviated by lt-cvgT and can be viewed as an expected version of the empirical long-term
coverage frequency in (4). This metric reflects the time-averaged coverage probability of a procedure over a
horizon T . A large body of prior work (e.g., Gibbs and Candes (2021); Bastani et al. (2022); Angelopoulos
et al. (2024a)) studied how far the long-term coverage of a procedure deviates from the target level by looking
at the quantity lt-cvgT − (1−α). Note, however, that this quantity captures only the gap between the average
coverage probability and the nominal level, rather than the average of the coverage gaps over time (i.e., gap
of average versus average of gaps); as a result, it does not necessarily reflect variations across individual times.

2.3 Why training-conditional cumulative regret?
The training-conditional cumulative regret defined above offers a meaningful criterion for evaluating online
conformal prediction algorithms. Unlike long-term coverage metrics like (14), cumulative regret remains
informative under distributional drift by aggregating coverage gaps over the entire horizon. The fact below
summarizes some basic connections between long-term coverage and regret; the proof can be found in
Section A.

Fact 2.1. The following connections between long-term coverage rate and cumulative regret hold.

(i) The long-term coverage rate of any online conformal prediction algorithm satisfies∣∣lt-cvgT − (1− α)
∣∣ ≤ regretT

T
.

(ii) Consider any 0 < α ≤ 1/2. There exists an online conformal prediction algorithm such that:

7



– For every t = 1, . . . , T , its prediction set Ct is either ∅ or R, and satisfies lt-cvgT = 1− α;

– The regret is lower bounded by regretT ≥ αT.

On the one hand, Fact 2.1 asserts that sublinear regret (i.e., regretT = o(T )) guarantees faithful calibration
of the long-term coverage rate. On the other hand, Fact 2.1 indicates that the converse fails to hold—as
already observed previously (e.g., Bastani et al. (2022); Bhatnagar et al. (2023); Gibbs and Candès (2024))—an
algorithm can achieve perfectly calibrated long-term coverage while still incurring training-conditional regret
that grows linearly with T . More specifically, long-term coverage does not distinguish an algorithm that
consistently achieves coverage close to 1− α from one whose average coverage only coincidentally approaches
1 − α. For this reason, regretT serves as a more informative performance measure for online conformal
prediction.

3 Online conformal prediction with pretrained scores
In this section, we study online conformal prediction with pretrained score functions, and put forward an
algorithm that achieves minimax-optimal regret (up to logarithmic factors) for both the change-point and
the smooth drift settings. To be precise, we impose the following assumption throughout this section.

Assumption 3.1 (Pretrained scores). Suppose the non-conformity score functions {st(·, ·)}Tt=1 are trained
on a separate dataset. Conditional on {st(·, ·)}Tt=1, the samples {(Xt, Yt)}Tt=1 are independently generated.

In words, the data used to pretrain the scores—such as an offline dataset or a different data stream—are
separate from, and independently generated of, the data stream for which we construct conformal prediction
sets. Consequently, the procedures studied in this section have the flavor of split conformal methods (Vovk
et al., 2005). It is also noteworthy that the score functions are allowed to be time-varying.

3.1 Algorithm
Let us motivate our algorithmic ideas and describe the proposed procedure for handling distribution shifts
over time. Intuitively, when the data distributions drift significantly while the online conformal prediction
algorithm continues to rely on stale quantile estimates, miscoverage can occur frequently, resulting in loss of
regret optimality. To remedy this issue, a natural strategy is to continuously monitor the empirical coverage
and promptly reset the quantile estimates once they become statistically unreliable. This idea underlies our
algorithm design.

3.1.1 Motivating examples

To formalize the above intuition, we begin by examining two simplified cases. A metric that we shall pay
particular attention to is the following block coverage error over the time interval [s, t]:

cvg-err⋆q(s, t) :=
t∑

l=s

(
P
(
sl(Xl, Yl) ≤ q

)
− (1− α)

)
(15)

with q a given threshold; we elucidate how this metric allows us to detect distribution shift below.

A simple case with 1 change point. Before time t, there is a unique change point t0 < t:

• for every 1 ≤ l ≤ t0, the score sl(Xl, Yl) is independently drawn from the distribution Pseg
1 ;

• for every t0 < l ≤ t, the score sl(Xl, Yl) is independently drawn from the distribution Pseg
2 .

The threshold q is taken to be the (1− α)-quantile of Pseg
1 . Below, we write sl = sl(Xl, Yl) for brevity.

Figure 1 provides a schematic illustration of this simple scenario. The left panel plots P(st ≤ q)− (1− α)
as t varies. By construction, P(st ≤ q) − (1 − α) = 0 before the change point t0. At time t0, the score
distribution shifts from Pseg

1 to Pseg
2 , causing P(st ≤ q) − (1 − α) to jump to a nonzero value. This jump

reflects the miscalibration induced by applying the pre-change cutoff q to the post-change distribution. The
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t

P(st ≤ q)

1− α

t0 t1 t

cvg-err⋆q(1, t)

σ

0

t0 t1

Figure 1: The case with a single change point at t0. (Left) pointwise coverage P(st ≤ q) vs. t; (right) block
coverage error cvg-err⋆q(1, t) vs. t along with a detection threshold σ.

t

P(st ≤ q)

1− α

t0 t1 t2 t

cvg-err⋆q(t0, t)

0

t0 t1 t2

cvg-err⋆q(t1, t2)

Figure 2: Schematic illustration of a case with smooth, oscillating distribution shifts. (Left) pointwise coverage
P(st ≤ q) vs. t; (right) block coverage error cvg-err⋆q(1, t) vs. t.

right panel plots cvg-err⋆q(1, t) versus t, illustrating the cumulative effect of these pointwise deviations. We
have cvg-err⋆q(1, t) = 0 prior to t0, after which the bias accumulates over time and cvg-err⋆q(1, t) grows linearly.
If we fix a threshold σ > 0 and declare a distributional change once cvg-err⋆q(1, t) > σ, then for σ sufficiently
small the detection time t1 will occur shortly after t0. This illustrates how a simple block-coverage statistic
can enable timely detection of distributional drift.

A case with smooth and oscillating distribution shifts. Consider another simple example, where the
score distributions evolve smoothly over time and the instantaneous deviations P(st ≤ q)− (1−α) oscillate in
sign. The variation of P(st ≤ q) vs. t is displayed in Figure 2(left), where P(st ≤ q) crosses the reference level
1− α multiple times, with the signed deviation being positive on some sub-intervals and negative on others.

Such oscillations cause a cancellation effect. As illustrated in Figure 2(right), the block coverage error
cvg-err⋆q(t0, t) may initially increase but subsequently return to 0 as positive and negative contributions offset
one another. Consequently, monitoring deviations from a single starting point t0 can fail to detect distribution
drift. Motivated by this, our proposed solution is to scan over different starting times within a time window
and track the maximum deviation. As shown in Figure 2(right), the block [t0, t2] exhibits a large deviation
cvg-err⋆q(t1, t2), even though deviations measured from t0 cancel out. This maximum-deviation statistic is
therefore capable of detecting smooth and oscillating distribution shifts.

3.1.2 The proposed procedure: DriftOCP

We are now positioned to present the proposed online conformal prediction procedure in the presence of
pretrained scores, beginning with a distribution drift detection subroutine.

Subroutine: detection of distribution drift (DriftDetect). Thus far, we have illustrated the
potential utility of cvg-err⋆q(s, t) in the face of distribution shift. Given that this quantity is not accessible in
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Algorithm 1: DriftDetect(q; t0, t1;σ)
input: quantile q; time window [t0, t1] ⊆ [T ]; detection threshold σ.
for j = t0, · · · , t1 do // scan the entire time window.

compute Zj,t1 ←
∣∣cvg-errq(j, t1)∣∣√

t1 − j + 1
(cf. (16)). // construct detection statistics.

if Zj,t1 > σ then
return true. // declare detection of drift once this statistic exceeds the threshold.

return false // no distribution drift has been detected.

practice, we propose to approximate it via the following empirical block coverage error:

cvg-errq(s, t) :=
t∑

l=s

(
1{sl(Xl, Yl) ≤ q} − (1− α)

)
. (16)

Assuming statistical independence, the central limit theorem implies that cvg-errq(s, t) fluctuates around
cvg-err⋆q(s, t) with uncertainty on the order of (t − s + 1)1/2. Moreover, under stationarity of the scores
within [s, t], one has cvg-err⋆q(s, t) = 0. Consequently, testing whether the normalized empirical fluctuation∣∣cvg-errq(s, t)∣∣/√t− s+ 1 exceeds a suitably chosen threshold σ provides a natural criterion for detecting
distribution shifts within the time interval [s, t]. The intuition is formalized in the subroutine described
in Algorithm 1, denoted by DriftDetect(q; t0, t1;σ), which scans the window [t0, t1] for statistically
significant departure from stationarity. The subroutine plays a pivotal role in our main procedure.

Full procedure. We now describe several key components of our main procedure. The complete procedure,
called DriftOCP (short for online conformal prediction with drift detection), is summarized in Algorithm 2.

• Stage-wise decomposition. The entire time horizon is divided into a sequence of stages in a data-
driven manner, where we use n to index stages. A new stage is initiated whenever the subroutine
DriftDetect signals a substantial distribution drift. Within each stage, the score distributions are
treated as approximately stationary.

• Decomposition into rounds within each stage. Provided no distribution drift is detected, each stage is
further partitioned into a sequence of rounds. Following the standard doubling trick (e.g., Cesa-Bianchi
and Lugosi (2006, Chapter 2.3), Lattimore and Szepesvári (2020, Chapter 6)), we let the round lengths
grow geometrically, which eliminates the need for prior knowledge of the horizon length. We use r to
index rounds. For round r of stage n, all data from the preceding round are used to update the quantile
estimate qn,r, which in turn determines the prediction set at any time τ within the current round:

Cτ = {y : sτ (Xτ , y) ≤ qn,r}.

• Drift detection within each round. Let τn,r represent the time at which round r of stage n begins. During
this round, incoming samples are monitored via DriftDetect

(
qn,r; τn,r, τn,r + t; σn,r

)
, so that each

call to the subroutine DriftDetect operates on a block beginning at the onset of the current round.

We would also like to highlight several appealing features of Algorithm 2. First, it is horizon-free, meaning
that the procedure does not require any prior knowledge of the horizon length T ; as we shall see later, our
algorithm achieves the desirable anytime regret—a terminology commonly adopted in the online learning
literature (Lattimore and Szepesvári, 2020) to emphasize its horizon-free nature. Second, it is computationally
lightweight. Each new observation triggers at most one drift detection subroutine over the current window and
each round only updates the quantile estimate once. In particular, the computational cost at each time t scales
linearly with the length of the current scanning window, instead of recalibrating over many candidate lookback
windows as in some prior work (see Section 3.4). Moreover, the drift detection subroutine is inexpensive in
practice, since the underlying detection statistics can be maintained incrementally. Finally, we emphasize
that Algorithm 2 operates without any prior knowledge of the underlying distributional drift—such as the
number and locations of change points, or the degree of cumulative variation—highlighting its adaptation to
unknown and evolving data-generating mechanisms.
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Algorithm 2: Online Conformal Prediction with Drift Detection (DriftOCP)
input: target coverage level 1− α; detection thresholds {σn,r}∞n,r=1.
initialize: n← 1, r ← 1, τ ← 0, τ1,1 ← 1, q1,1 ← 0.
while true do

for t = 1, · · · , Tr (:= 3r) do // round r contains at most Tr = 3r time points.
τ ← τ + 1. // update global time index.
observe feature Xτ and score function sτ (·, ·); set Xn,r,t ← Xτ , sn,r,t(·, ·)← sτ (·, ·).
construct prediction set Cτ ← {y : sτ (Xτ , y) ≤ qτ} with qτ = qn,r.
observe Yτ ; set Yn,r,t ← Yτ . // response is observed after the prediction set is formed.
drift← DriftDetect(qn,r; τn,r, τn,r + t− 1; σn,r). // call Algorithm 1.
if drift is true then

q̃ ← qn,r, n← n+ 1, r ← 1. // update stage index and round index.
qn,1 ← q̃, τn,1 ← τ + 1. // initialization for new stage.
break. // enter next stage.

if drift is false then
qn,r+1 ← argminq

∣∣∣∑Tr

j=1

(
1{sn,r,j(Xn,r,j , Yn,r,j) > q} − α

)∣∣∣. // update quantile estimate.

r ← r + 1, τn,r ← τ + 1. // start time of next round.

3.2 Theoretical guarantees
Next, we establish non-asymptotic upper bounds on the training-conditional regret for the proposed Algo-
rithm 2, encompassing both the change-point and smooth drift settings introduced in Section 2.1.

Theorem 3.1. Suppose that Assumption 3.1 holds. If we set the detection thresholds as σn,r := 24
√
log(4τn,r)

for every stage-round index pair (n, r), then Algorithm 2 achieves

regretT ≤

{
Õ(
√
(N cp + 1)T ) for the change-point setting;

Õ
(√

T + (KST )
1
3T

2
3

)
for the smooth drift setting.

(17)

The proof of this theorem is provided in Section B.1. For the change-point setting, Theorem 3.1 reveals
that the regret scales proportionally to the square root of the number of change points N cp, in addition to the√
T dependence on the time horizon—a scaling in T that arises commonly in online learning (Shalev-Shwartz,

2012; Lattimore and Szepesvári, 2020). In contrast, for the smooth drift setting, our regret bound contains a
term (KST )

1/3T 2/3, whose dependence on T is worse than the
√
T scaling. This suggests that the dominant

source of regret may stem from the temporal evolution of the underlying score distribution, underscoring the
important role of real-time adaptation. We also emphasize that the coverage gap depends on the KS distance
between the score distributions rather than those of the raw data. As discussed in Barber et al. (2023), this
distinction can lead to much tighter guarantees, since the scores may be far closer in distribution than the
underlying data. Encouragingly, these regret bounds match the minimax lower bound (up to logarithmic
factors), as we shall demonstrate next.

3.3 Minimax lower bound
To examine the optimality of Algorithm 2, this subsection develops minimax lower bounds on the cumulative
regret, tailored to the class of online algorithms with pretrained scores. We begin by specifying the admissible
algorithms and distribution classes of interest, which are necessary for the lower-bound analysis.

• Admissible algorithms. For any online conformal prediction algorithm π with pretrained scores, let
πt denote its rule for selecting the quantile threshold qt (cf. (2)) at time t. Let U ∼ Unif(0, 1) be an
auxiliary random seed, independent of the data stream. We consider a family Q of non-anticipating
algorithms π = {πt}t≥1, where π1 : [0, 1] → R and πt : Rt−1 × [0, 1] → R (t ≥ 2) are measurable

11



mappings. For each t, π specifies the quantile threshold

qt =

{
π1(U), if t = 1,

πt(st−1, . . . , s1, U), if t ≥ 2,

where we remind the reader that st = st(Xt, Yt). Each πt depends only on the past scores and the
random seed U , hence algorithms in Q are score-based, non-anticipatory, and possibly randomized.

• Distribution classes. We introduce two score-based distribution classes, corresponding to the two settings
in Section 2.1: for given budgets N cp ∈ Z+ and KST > 0, define

L1(N
cp) :=

{
(D1, . . . ,DT ) : (Dscore

1 , . . . ,Dscore
T ) change at most N cp times.

}
; (18a)

L2(KST ) :=
{
(D1, . . . ,DT ) :

T−1∑
t=1

KS(Dscore
t ,Dscore

t+1 ) ≤ KST
}
. (18b)

For a distribution class L, the worst-case regret of algorithm π ∈ Q is defined as

regretπ(L, T ) := sup
(D1,...,DT )∈L

regretπ(D1:T , T ). (19)

Armed with these definitions and notation, we are ready to present our minimax lower bounds.

Theorem 3.2. Consider any fixed α ∈ (0, 1). Suppose that Assumption 3.1 holds. For any admissible
algorithm π ∈ Q, its worst-case regret (cf. (19)) satisfies

regretπ
(
L1(N

cp), T
)
= Ω

(√
(N cp + 1)T

)
;

regretπ
(
L2(KST ), T

)
= Ω

(√
T + (KST )

1/3T 2/3
)
.

Evidently, the minimax regret lower bounds in Theorem 3.2 match the achievable regret of Algorithm 2
in Theorem 3.1 (modulo some logarithmic factors), thereby confirming the regret optimality of our proposed
procedure in a minimax sense. The proof is postponed to Section B.2.

3.4 Comparisons with prior art
Gibbs and Candes (2021) introduced ACI with a time-invariant stepsize schedule, and established guarantees in
terms of the time-averaged long-run coverage frequency (cf. (4)), which hold irrespective of the data generating
mechanism but do not imply valid coverage at individual time points. Stronger (asymptotic) guarantees were
also established under stationary hidden Markov models. Building on this work, Angelopoulos et al. (2024a)
studied ACI with decaying stepsizes and proved asymptotically exact (pointwise) coverage under i.i.d. data;
these results, however, are asymptotic in nature and do not readily extend to settings with distribution
drift. The analysis for the empirical long-term coverage frequency has further motivated the studies of a new
perspective in online learning called “gradient equilibrium,” which yields a useful framework for several other
statistical applications (Angelopoulos et al., 2025). Relatedly, Bastani et al. (2022) generalized the notion of
long-term coverage frequency by proposing an approach that achieves multi-valid coverage guarantees even in
adversarial settings. Their guarantees, however, are stated in terms of empirical frequencies along the realized
sequence and do not yield training-(and-calibration)-conditional coverage guarantees.

Several recent works Pournaderi and Xiang (2024); Humbert et al. (2025) began to investigate training-
conditional guarantees for online conformal prediction. Nevertheless, these results either do not account for
distribution shift or rely on fairly strong assumptions (e.g., a uniform upper bound on the pre-/post-drift
density ratio). Assuming independently trained scores (as in Assumption 3.1), Han et al. (2024a) derived
training-conditional guarantees for online conformal prediction under distribution drift via adaptive lookback-
window selection for quantile calibration. Their results focus on last-step (terminal-time) validity, whereas we
study training-conditional cumulative regret. Our method is also computationally more efficient: at time t,
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their procedure requires t quantile estimates and t2 empirical CDF evaluations, while Algorithm 2 needs at
most one quantile estimate and t empirical coverage computations. The same authors also studied model
assessment and selection under distribution drift (Han et al., 2024b).

When it comes to lower bound analysis, Areces et al. (2024); Duchi (2025) discussed minimax lower
bounds for the training-conditional coverage error in the presence of independently trained score functions.
Compared to their results, Theorem 3.2 moves beyond coverage guarantees under worst-case covariate shift
and explicitly accounts for the effect of distribution drift over time.

4 Online conformal prediction with adaptively trained scores
We now turn our attention to the scenario in which the non-conformity scores and the predictive models are
allowed to be trained online based on past observations. More precisely, we make the following assumptions
throughout this section.

Assumption 4.1 (Online-trained scores). Suppose that the non-conformity scores are constructed online. At
each time t, the score functions may depend on the past data {(Xt, Yt)}s<t, but not on any data observed at
or after time t. The data {(Xt, Yt)}Tt=1 are independently generated.

Given the flexibility to adaptively update the score functions, we adopt the full conformal paradigm (Vovk
et al., 2005), which leverages all available data for both score construction and quantile estimation, without
resorting to data splitting. While this full conformal approach enables more efficient use of the data, it also
introduces intricate statistical dependence across time, making it challenging to detect distributional drift
and to establish training-conditional coverage. We develop several technical innovations to address these
challenges.

4.1 Algorithm
We first review the standard full conformal prediction method, and then describe how it can be adapted to
streaming data with distribution drift.

Review: (batch) full conformal prediction. Imagine we are given two datasets,

Ztrain :=
{
(Xtrain

i , Y train
i )

}n
i=1

and Zcal :=
{
(Xcal

i , Y cal
i )
}m
i=1

,

which may overlap. While it is common to take Ztrain = Zcal to maximize data efficiency, we allow Ztrain and
Zcal to differ, a flexibility that will be useful for subsequent algorithmic development. The test point contains
the feature Xtest.

The training dataset Ztrain is used to train predictive models via a learning algorithm A, yielding

µ̂(Xtest,y)(·) := A
(
Ztrain; (Xtest, y)

)
(20)

for every candidate response y ∈ R, whereas the calibration dataset Zcal is used to construct the prediction
set with the aid of the fitted models µ̂. Importantly, the fitted model µ̂(Xtest,y) depends on the hypothesized
response y (cf. (20)), and may need to be refitted for each y under consideration. For each (Xtest, y), we
define a set of non-conformity scores (or residual scores) as:

s
(Xtest,y)
i :=

∣∣Y cal
i − µ̂(Xtest,y)(Xcal

i )
∣∣, i = 1, . . . ,m, (21a)

s
(Xtest,y)
test :=

∣∣y − µ̂(Xtest,y)(Xtest)
∣∣. (21b)

The full conformal prediction set is then taken to be:

C
(
Xtest

)
:=

{
y : s

(Xtest,y)
test ≤ Quantile1−α

(
1

m+ 1

[
δ
(
s
(Xtest,y)
test

)
+

m∑
i=1

δ
(
s
(Xtest,y)
i

)])}
, (22)

13



where δ(a) denotes a point mass (i.e., the Dirac measure) at a, and Quantile1−α(P ) denotes the (1−α)-quantile
of distribution P . In words, this prediction set contains all candidate values whose residual scores do not
exceed the (1 − α)-quantile of the empirical distribution formed by the m calibration residuals together
with the candidate’s own residual. When Ztrain = Zcal, under exchangeability of the data and permutation
symmetry of the model fitting algorithm A, classical results (e.g., Vovk et al. (2005); Lei et al. (2018); Barber
et al. (2023); Liang and Barber (2025)) guarantee finite-sample validity of this full conformal procedure.

Our algorithm: online full conformal prediction with drift detection (DriftOCP-full). When
distributional drift occurs over time, the assumption of exchangeability breaks down, invalidating the coverage
guarantees of the full conformal algorithm described above. Building on the key algorithmic ideas introduced
in Section 3.1, we extend full conformal methods to online settings with temporal distribution drift.

We refer to the proposed algorithm as DriftOCP-full (short for online full conformal prediction with
drift detection), and present the full procedure in Algorithm 4. We first isolate several key features of
DriftOCP-full that parallel those of DriftOCP.

• Drift detection subroutine DriftDetect+. We continue to employ a drift detection subroutine to
identify the occurrence of a distribution drift. We introduce a slightly extended version of Algorithm 1,
formalized in Algorithm 3 and referred to as DriftDetect+. In essence, DriftDetect+ differs
from DriftDetect only in that it replaces cvg-errq(s, t)—defined in (16) based on quantiles of the
non-conformity score—with the more general definition of empirical block coverage error

cvg-errC(s, t) :=
∣∣∣∣ t∑
l=s

(
1
{
Yl ∈ C(Xl)

}
− (1− α)

)∣∣∣∣. (23)

• Decomposition into stages and rounds. Akin to Algorithm 2, we partition the entire time horizon into
stages—with the aid of the subroutine DriftDetect+ in Algorithm 3 in a data-driven manner—and
further decompose each stage into rounds. Within each stage, the data distributions are treated as
approximately stationary. As before, we use n and r to index stages and rounds, respectively. We will
repeatedly use the following notation:

– Tr = 3r: the number of time points in round r of each stage, chosen to grow geometrically in r so
as to avoid requiring prior knowledge of the horizon length T .

– rn: the last round of stage n. We adopt the convention that (n, 0) = (n− 1, rn−1).

– τn,r: the time index—measured in the original horizon {1, . . . , T}—corresponding to the first time
point of round r in stage n. We adopt the convention that τn,rn+1 := τn+1,1 and τn,0 := τn−1,rn−1

.

– Xn,r,t and Yn,r,t: the feature and the response arriving at the t-th time point of round r in stage n.

Next, we highlight several full conformal components of DriftOCP-full that extend batch full conformal
methods to online settings.

• Training and calibration sets for round r of stage n. When constructing the prediction set at any time
within round r of stage n, we choose the training and calibration sets as

Ztrain
n,r :=

{
(Xi, Yi)

}τn,r−1

i=1︸ ︷︷ ︸
all data before current round

and Zcal
n,r :=

{
(Xi, Yi)

}τn,r−1

i=τn,r−1︸ ︷︷ ︸
all data in preceding round

. (24)

In words, the training set Ztrain
n,r comprises all samples observed prior to the current round, while the

calibration set Zcal
n,r consists of all samples collected during the immediately preceding round (i.e., round

r − 1 of stage n). Intuitively, the data in preceding round are treated as stationary in distribution and
are therefore well suited for calibration, whereas all earlier data—regardless of whether distribution
shifts have occurred—can be leveraged for model training.

• Fitted models, scores, and prediction sets. The construction of the prediction set follows the standard
full conformal method described in (20)-(22). Consider any time point within round r of stage n. For a
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Algorithm 3: DriftDetect+
(
C; t0, t1;σ

)
input: set-valued function C(·); time window [t0, t1] ⊆ [T ]; detection threshold σ.
for j = t0, · · · , t1 do // scan the entire time window.

compute Zj,t1 ←
∣∣cvg-errC(j, t1)∣∣√

t1 − j + 1
(cf. (23)). // construct detection statistics.

if Zj,t1 > σ then
return true. // declare detection of drift once this statistic exceeds the threshold.

return false // no distribution drift has been detected.

Algorithm 4: Online Full Conformal Prediction with Drift Detection
(DriftOCP-full)

input: target coverage level 1− α; detection thresholds {σn,r}∞n,r=1.
initialize: n← 1, r ← 1, τ ← 0, τ1,1 ← 1, C1,1(x)← R; ∀x ∈ X .
while true do

construct set-valued function Cn,r(·) by (27). // prediction-set forming strategy for this round.
for t = 1, · · · , Tr (:= 3r) do // round r contains at most Tr = 3r time points.

τ ← τ + 1. // update global time index.
observe feature Xτ ; set Xn,r,t ← Xτ .
construct prediction set Cτ ← Cn,r(Xτ ); take Cn,r,t ← Cτ . // form prediction set
observe Yτ ; set Yn,r,t ← Yτ . // response is observed after the prediction set is formed.
drift ← DriftDetect+(Cn,r; τn,r, τn,r + t− 1;σn,r). // call Algorithm 3.
if drift is true then

n← n+ 1, r ← 1. // update stage index and round index.
break. // enter next stage.

if drift is false then
r ← r + 1, τn,r ← τ + 1. // start time of next round.

feature X observed in this round and an imputed response y, we invoke a learning algorithm A to fit a
predictive model

µ̂(X,y)(·) := A
(
Ztrain

n,r ; (X, y)
)
. (25)

The non-conformity (or residual) scores are then computed for all Tr−1 points observed in the immediately
preceding round (i.e., Zcal

n,r) as well as the hypothesized test point (X, y), yielding

s
(X,y)
i :=

∣∣Y cal
n,r−1,i − µ̂(X,y)(Xcal

n,r−1,i)
∣∣, i = 1, . . . , Tr−1, (26a)

s
(X,y)
test :=

∣∣y − µ̂(X,y)(X)
∣∣. (26b)

Given these scores, we form the prediction set based on feature X as

Cn,r(X) :=

{
y : s

(X,y)
test ≤ Quantile1−α

(
1

Tr−1 + 1

[
δ
(
s
(X,y)
test

)
+

Tr−1∑
i=1

δ
(
s
(X,y)
i

)])}
, (27)

which collects all candidate responses y for which the test residual s(X,y)
test does not exceed the target

quantile of the combined calibration and test scores, in direct analogy to the standard full conformal
framework. The prediction-set construction strategy Cn,r(·) remains fixed throughout the current round,
since the same training and calibration sets are used for all time points within this round.
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4.2 Theoretical guarantees under stability assumptions
We now turn to the regret performance of the proposed Algorithm 4. A dominant fraction of prior full
conformal theory relies on a permutation symmetry assumption of the model fitting algorithm, namely, that
the fitted predictor µ̂ remains invariant under arbitrary reordering of the training samples. However, many
online learning algorithms, such as online gradient descent with time-varying learning rates, do not produce
predictors that are exactly permutation invariant. Enforcing permutation symmetry in these cases would
oftentimes require, at each time step, retraining the model from scratch on all previously observed data,
thereby incurring a substantial computational burden. To better accommodate online model fitting algorithms,
we instead rely on two different assumptions—one concerning the Lipschitz continuity of the conditional
response distribution, and the other pertaining to the stability of the learning algorithm—replacing the
permutation symmetry requirement.

Assumption 4.2 (Lipschitz continuity of conditional response distribution). There exists a quantity L1 > 0
such that, for every time t ≥ 1 and every xt ∈ X , the function gxt

(z) := P(Yt ≤ z | Xt = xt) is L1-Lipschitz
continuous w.r.t. z.

Assumption 4.3 (Stability of learning algorithm). Let Z = {z1, · · · , zm} be a training set of size m,
and let µ̂(· | Z) represent the predictive model returned by algorithm A when trained on Z. We assume
that µ̂(· | ·) is a measurable function. For any i ∈ [m] and any replacement sample w, define Zi,w =
{z1, · · · , zi−1, w, zi+1, · · · , zm}, which differs from Z only in its i-th element. We assume that there exists a
constant L2 > 0 such that, for an arbitrary m, one has∣∣µ̂(x | Z)− µ̂

(
x | Zi,w

)∣∣ ≤ L2

m
for all x,w,Z, and i ∈ [m]. (28)

Assumptions 4.2 and 4.3 are commonly used in full conformal prediction literature (e.g., Barber et al.
(2021); Ndiaye (2022); Steinberger and Leeb (2023); Liang and Barber (2025); Lee and Zhang (2025)). In
fact, Assumption 4.2 is fairly standard in statistical modeling; a common example concerns the setting
Yt = mt(Xt) + εt, where εt is generated independently of Xt and admits a density uniformly bounded above
by L1. In addition, Assumption 4.3 formalizes a sort of stability requirement of µ̂: perturbing a single training
example alters the predictive output by at most O(1/m) (assuming a constant L2). To help illustrate the
practical relevance of Assumption 4.3, we single out a few canonical parametric examples that can be readily
analyzed within our framework:

• constrained M-estimation: see Section D.1;

• linear stochastic approximation: see Section D.2;

• stochastic strongly convex optimization: see Section D.3.

The interested reader is referred to Section D for detailed verification of Assumption 4.3 in these examples.
Armed with the above assumptions, we establish regret upper bounds for the proposed online full conformal

algorithm.

Theorem 4.1. Suppose that Assumption 4.1 holds, and that Assumptions 4.2 and 4.3 hold with quantities
L1 and L2, respectively. Let L = L1L2. If we set the drift detection thresholds as σn,r := 10 log3(40τn,r) for
every stage-round index pair (n, r), then Algorithm 4 achieves

regretT ≤

{
Õ
(√

(N cp + L+ 1)T
)

for the change-point setting;
Õ
(√

(L+ 1)T + (TVT )
1
3T

2
3

)
for the smooth drift setting.

(29)

Despite the adaptive, online training of the non-conformity score functions, the training-conditional
regret attained by our online full conformal prediction algorithm takes a form similar to that achieved with
pretrained scores, provided that L = O(1). A main difference is that the score-based Kolmogorov–Smirnov
distance appearing in the pretrained-score scenario (see Theorem 3.1) is replaced here by the total-variation
distance w.r.t. data distributions, since the scores are now trained based on the observed data. Our result is
fully non-asymptotic, which stands in stark contrast to several prior works (e.g., Angelopoulos et al. (2024a))
that focused on asymptotic coverage guarantees (i.e., T →∞ with other parameters held fixed).
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Byproduct: training-conditional coverage for batch full conformal methods. En route to es-
tablishing the regret upper bound of DriftOCP-full, we need to address the challenge of achieving
training-conditional coverage when scores are trained in-sample using a possibly non-symmetric learning
algorithm. Our analysis leads to new training-conditional coverage results for batch full conformal methods,
which is stated below and may be of independent interest. The proof is deferred to Section C.1.

Proposition 4.1. Consider any integers n ≥ m. Let Zcal
1:m be a calibration dataset and Ztrain

1:n a dataset used
for model fitting. We assume that the calibration dataset is a subset of the training dataset, and in particular,
Zcal
1:m = Ztrain

1:m . The samples in {Zcal
1:m} ∪ {Ztrain

m+1 :n} are independently generated. Construct the full conformal
prediction set C(·) = C( · | Zcal

1:m;Ztrain
1:n ) as in Eqn. (22). Consider a target pair Z = (X,Y ) ∼ D. Suppose the

distribution D and the fitted model satisfy Assumptions 4.2 and 4.3 with coefficients L1 and L2, respectively,
and denote L1L2 as L. Then for any δ ∈ (0, 1), conditional on any realization Ztrain

m+1:n = ztrainm+1:n, we have

∣∣PD
(
Y ∈ C

(
X
) ∣∣Zcal

1:m

)
− (1− α)

∣∣ ≤ 52L
√

m log(45n/δ)

n
+ 25

√
log(40/δ)

m
+

2

m

m∑
l=1

TV(Z,Zcal
l ) (30)

with probability exceeding 1− δ (with respect to the randomness only in Zcal
1:m).

Remark 4.1. In particular, in the most common case where the training and calibration sets coincide (so
that m = n and Zcal

1:n = Ztrain
1:n ), this result asserts that the standard full conformal method (cf. (22)) achieves

∣∣PD
(
Y ∈ C

(
X
) ∣∣Ztrain

1:n

)
− (1− α)

∣∣ ≲ max{L, 1}
√

log(n/δ)

n
+

1

n

n∑
l=1

TV(Z,Zcal
l ) (31)

with probability greater than 1− δ.

Proposition 4.1 establishes a training–conditional concentration bound for full conformal residuals that
holds for a fixed batch of data and a stable learner (no online structure is used). This result captures
the effect of using a data-dependent predictor inside the full conformal construction, and will play a
crucial role in establishing our training-conditional regret bound (when combined with the stage/round
decomposition and drift–detection analysis). In addition, Proposition 4.1 generalizes existing results on
training-conditional coverage for full-conformal-type approach; more detailed comparisons with prior results
are provided in Section 4.4.

4.3 Minimax lower bound
We now complement Theorem 4.1 with a lower bound, which serves to better evaluate the optimality of our
proposed procedure. Before proceeding, it is important to note that, while Theorem 3.2 already establishes
a regret lower bound, that result hinges upon a specific way of constructing the prediction set—namely,
one based on quantile estimation of pretrained non-conformity scores. In practice, however, a broader class
of methods is available, including the online full conformal approach, which can induce substantially more
complex and structurally different prediction sets. As a result, Theorem 3.2 does not provide an appropriate
lower bound for the settings considered in this section. We develop a new lower bound for this broader class
of algorithms below.

Lower bound. We start by specifying the scope of the problem.

• Admissible algorithms. Since the prediction-set construction considered in this section no longer relies on
a given set of non-conformity score functions, the first step is to redefine the class of admissible algorithms
accordingly. Denote by Map(X ,B(R)) the set of mappings from X to B(R) (i.e., this forms the set of
prediction-set construction functions). Let U ∼ Unif(0, 1) be a random variable independent of the
data stream. Let π1 : [0, 1]→ Map(X ,B(R)) and, for t ≥ 2, let πt : (X ,R)t−1 × [0, 1]→ Map(X ,B(R)).
Given a sequence of data {Zi}t−1

i=1 = {(Xi, Yi)}t−1
i=1 prior to time t, we define Ct ∈ Map(X ,B(R)) to be

the set-valued mapping induced by algorithm πt at time t, namely,

Ct(·) =

{
π1(U), if t = 1,

πt(Zt−1, . . . , Z1, U) , if t ≥ 2.
(32)
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The collection of mappings π = {πt}t≥1 that generate such set-valued functions {Ct(·) : t = 1, 2, · · · }
constitutes a class of algorithms denoted by P . Moreover, we restrict attention to a structured subclass
of P in which each prediction set is expressible as a finite union of intervals.

Definition 4.1 (K-interval procedure). For every integer K ≥ 1, define the K-interval algorithm class
PK ⊆ P as

PK :=
{
π ∈ P

∣∣ for all t ∈ [T ] and x ∈ X : Ct(x) is the union of at most K intervals.
}

(33)

We shall discuss the practical relevance of this algorithm subclass momentarily.

• Distribution class. Analogous to the score-based distribution class L1(N
cp) (see (18a)) that pertains to

the change-point setting, we introduce a closely related distribution class—defined directly in terms of
the data distributions—that permits at most N cp change points:

L3(N
cp) :=

{
(D1, . . . ,DT ) : (D1, . . . ,DT ) change at most N cp times.

}
; (34a)

Additionally, we define another TV-based distribution class concerning the smooth drift setting: for a
given budget TVT > 0, define

L4(TVT ) :=

{
(D1, . . . ,DT ) :

T−1∑
t=1

TV(Dt,Dt+1) ≤ TVT

}
. (34b)

Moreover, for a distribution class L, the worst-case regret of algorithm π ∈ PK is defined as

regretπ(L, T,K) := sup
(D1,...,DT )∈L

regretπ(D1:T , T ), (35)

where we make explicit the dependency on K. We can now present our minimax lower bound that accommo-
dates online conformal prediction with adaptive training.

Theorem 4.2. Consider any fixed constant α ∈ (0, 1/2]. Suppose that Assumption 4.1 holds. For any
admissible algorithm π ∈ PK , the worst-case regret under π has the following lower bound:

regretπ
(
L3(N

cp), T,K
)
= Ω̃

(
min

{√
(N cp + 1)T ,

T√
K

})
;

regretπ
(
L4(TVT ), T,K

)
= Ω̃

(
min

{√
T + (TVT )

1
3T

2
3K− 1

6 ,
T√
K

})
.

The proof of Theorem 4.2 is deferred to Section C.4. Clearly, when K is a finite constant, the regret
bound in (29) matches this minimax lower bound up to a logarithmic factor, provided L = O(1) (meaning
that the learning algorithm is stable and the conditional response distribution is smooth).

Why restricted to PK? We now elucidate the rationale for restricting attention to the algorithm subclass
PK . In brief, imposing structural constraints on the algorithm class is necessary to formulate a meaningful
minimax problem. Without such restrictions, one can design “irregular” procedures that achieve asymptotically
perfect marginal coverage while using essentially no information about the data-generating process. To
illustrate this point, suppose Y ∈ [0, 1]. For each n ≥ 1, define

Cn :=

n−1⋃
i=0

[
i

n
,
i+ (1− α)

n

]
, (36)

obtained by partitioning [0, 1] into n equal subintervals and retaining the same (1 − α)-fraction of each
subinterval. For sufficiently regular distributions, Cn captures roughly a (1 − α)-fraction of the total
probability mass, largely independent of the actual shape of the density. The following proposition formalizes
this observation.
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Proposition 4.2. Let {Cn}n≥1 be defined by Eqn. (36). If the distribution D of Y on [0, 1] admits a
Riemann-integrable density, then

lim
n→∞

∣∣∣P(Y ∈ Cn)− (1− α)
∣∣∣ = 0.

This example shows that, in the absence of geometric constraints, marginal coverage alone does not
preclude vacuous procedures. Restricting attention to PK , where each prediction interview is a union of at
most K intervals, excludes such uninformative construction and yields a more meaningful lower bound.

Implications beyond the online setting. Although Theorem 4.2 is stated for the online setting, its
proof proceeds by first establishing a lower bound on the per-round contribution to the cumulative regret,
and then constructing a distribution sequence that allocates the available distribution drift budget in a way
that realizes these per-round bottlenecks. As a byproduct, our arguments readily yield an offline lower
bound for training-conditional coverage error over the algorithm class PK (see Definition 4.1). We record this
consequence below, which may be of independent interest.

Proposition 4.3. Fix any α ∈ (0, 1/2]. Let S be the collection of distributions on X × R that admit a
density. Let {(Xi, Yi)}ni=1 be i.i.d. draws from some D ∈ S, and let U ∼ Unif(0, 1) be independent of the data.
Consider any algorithm π that maps {(Xi, Yi)}ni=1 and U to a set-valued function Ĉ(·) : X → B(R) such that,
for each x ∈ X , the set Ĉ(x) is a union of at most K intervals. Then we have

sup
D∈S

E
[∣∣∣∣ P

(X,Y )∼D

(
Y ∈ Ĉ(X)

∣∣∣ {(Xi, Yi)}ni=1;U
)
− (1− α)

∣∣∣∣] = Ω̃

(
min

{
1√
K

,
1√
n

})
,

where the outer expectation is taken over the training sample {(Xi, Yi)}ni=1 and the internal randomization U .

Proposition 4.3—which is a direct consequence of Lemma C.6 given in Section C.4—is independent of the
online setting and provides a lower bound for training-conditioned validity of full conformal prediction in
the offline regime. The result places no parametric restriction on the prediction set Ĉ(·), and is therefore
fundamentally different from those information-theoretic lower bounds in classical parametric estimation
problems. The bound in Proposition 4.3 holds for a fixed algorithm and considers the worst case over a class
of distributions, complementing the result of Bian and Barber (2023), which instead fixes the distribution
and takes the worst case over a class of algorithms. Moreover, relative to prior work, our bound explicitly
characterizes the learning limit in terms of the structural complexity K of the prediction sets (i.e., the
number of intervals). Determining the optimal K-dependence in training-conditional lower bounds remains
an interesting open direction, which we leave for future work. We view this lower bound as a baseline that
may be useful more broadly in the study of conformal inference beyond the online setting.

4.4 Comparisons with prior art
Existing training-conditional guarantees. Prior literature has established training-conditional coverage
guarantees for split conformal methods (Vovk, 2012). More recently, Bian and Barber (2023) showed that
such guarantees can be achieved in a distribution-free manner by K-fold CV+ when the sample size is
sufficiently large relative to the number of folds, but not achievable by full conformal methods or jackknife+.
Training-conditional coverage guarantees for full conformal methods and jackknife+ have instead largely
been obtained under stability-type assumptions; see, e.g., Liang and Barber (2025); Amann et al. (2023) and
Pournaderi and Xiang (2024). Proposition 4.1 strengthens these results in three complementary ways.

First, Liang and Barber (2025) expressed their bounds through an m-stability quantity βout
m,n−1 (see

Definition 3.1 therein), yielding a coverage error of order O
(√

log(1/δ)
min{m,n} +

(
βout
m,n−1

) 1
3

)
(see their Theorems 3.2

and 4.1). To obtain op(1) error, one needs both m → ∞ and βout
m,n−1 → 0, effectively requiring the fitted

predictor µ̂(·) to stabilize as more data arrive. As noted by Amann et al. (2023, Lemma B.7), such stabilization
can fail under distribution shift, where µ̂ typically adapts to the evolving data distribution. In contrast,
Proposition 4.1 avoids an explicit m-stability requirement and remains applicable in drifting scenarios.

Second, Amann et al. (2023, Proposition A.2) established a training-conditional under -coverage bound
that inflates the prediction set by an additional slack ∆ > 0, leading to conservativeness and potentially
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wide prediction sets. Their confidence dependence scales as δ−1/2, whereas Proposition 4.1 attains a sharper
logarithmic log(1/δ) dependence without requiring an explicit inflation parameter.

Third, Pournaderi and Xiang (2024, Theorem 6) provided a training-conditional coverage guarantee
for full conformal prediction under covariate shift. Their result, however, does not address shifts in the
conditional distribution Y | X. Moreover, relative to Proposition 4.1, their analysis relies on additional
structural assumptions, including a uniform upper bound on the train–test density ratio and a parametric
model for the fitted predictor with a bi-Lipschitz dependence on its parameters, which could narrow the
range of settings in which the bound can be verified.

Verification of stability conditions. Stability analyses for both empirical loss minimizers and stochastic
optimization methods have been developed in, e.g., Barber et al. (2021), Ndiaye (2022) and Lee and Zhang
(2025). Compared to our work (mainly our results in Section D), these prior results typically differ in several
important respects. First, they did not accommodate constrained optimization problems. Second, they often
assume that, for every data realization z, the loss ℓ(·, z) is uniformly strongly convex, which most naturally
holds for explicitly regularized ERM objectives; in contrast, our verification only requires strong convexity of
the population risk L on C. Third, while Lee and Zhang (2025) (see their Example 2) examined stochastic
optimization methods, their analysis is essentially offline—the algorithm is rerun multiple times on a fixed
dataset under different permutations—and is derived for fixed stepsizes, which does not yield a stability
coefficient that vanishes with the sample size. Such vanishing stability is crucial in our online full conformal
analysis in order to obtain training-conditional coverage guarantees.

5 Numerical experiments

5.1 Experiments: online conformal prediction with pretrained scores
In this subsection, we evaluate the performance of the proposed DriftOCP algorithm against the ACI
method under various distribution shift scenarios, assuming the presence of pretrained score functions. The
experimental setup is described below.

Data generation. Consider a regression setting with a data stream {(Xt, Yt)}t≥1. The feature vector Xt

is in Rd with d = 5, and each component is generated by Xt,j
i.i.d.∼ N (0, 1). The response variable satisfies

Yt = 2Xt,1 +Xt,2 + µt + σt · εt, εt
i.i.d.∼ N (0, 1),

where µt and σt are varying parameters. We examine four distribution shift cases as follows.

• Setting 1 (piecewise variance shift): µt = 0 and

σt =


0.5, if t < 4000,

2.0, if 4000 ≤ t < 7000,

3.5, if t ≥ 7000.

This setting simulates abrupt changes in noise level, representing sudden regime shifts.

• Setting 2 (linear bias drift): σt = 0.5 and µt = κ · t with κ = 0.002, so that µT = 20 at T = 10000.
This represents smooth temporal drift in the conditional mean.

• Setting 3 (smooth variance growth): µt = 0 and σt =
√
1 + 0.008t. This model continuously

increases variability over time.

• Setting 4 (no distribution drift): µt = 0 and σt = 0.5 for all t. This serves as a baseline where no
distribution shift occurs.
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Experimental protocol. For each setting, we use a training set of size n = 500 drawn from the initial
distribution (t = 0) to fit a random forest regressor (Breiman, 2001) with 100 trees, implemented in scikit-learn
(Pedregosa et al., 2011), as the pre-trained prediction model. The pretrained predictive model µ̂ remains
fixed throughout the online prediction phase and is not updated.

The non-conformity score at each time step t is taken to be the absolute residual between the observed and
predictive responses, namely, st := |Yt − µ̂(Xt)|. The initial quantile q̂0 is set to be the (1− α)-th empirical
quantile of the training residuals {|Yi − µ̂(Xi)|}ni=1.

The test horizon is T = 10,000 time steps. We set the target miscoverage level to be α = 0.1. All
experiments are repeated 40 times with different random seeds, and we report the mean and standard
deviation of cumulative regret.

Numerical evaluation of cumulative regret. We measure performance using the cumulative regret
defined in Eqn. (13). However, since the true miscoverage probability P(st > qt | qt) is intractable, we
estimate it via Monte Carlo simulation. Specifically, for each time step t, we pre-generate a fixed evaluation
set of M = 500 independent samples {(X(m)

t , Y
(m)
t )}Mm=1 from the true distribution Dt at that time step.

The instantaneous coverage rate (defined in Eqn. (11)) is then estimated as

ĉvgt =
1

M

M∑
m=1

1

{
|Y (m)

t − µ̂(X
(m)
t )| ≤ qt

}
.

The cumulative regret up to time T is then calculated as

R̂egretT =

T∑
t=1

∣∣ĉvgt − (1− α)
∣∣.

Methods for comparison. We compare the following algorithms numerically.

• DriftOCP (Algorithm 2): We use a drift detection threshold in Algorithm 2 of σn,r = 4. To avoid
false positives from high-variance estimates, we require a minimum window size of t ≥ 10 before any
drift detection can be declared.

• ACI with decaying stepsizes (Angelopoulos et al., 2024a): ηt = (t+ 1)−γ for γ ∈ {0.5, 0.6}.

• ACI with fixed stepsizes (Gibbs and Candes, 2021): ηt ≡ η ∈ {0.01, 0.1, 0.5}.

Results. Figure 3 summarizes both the regret and calibration dynamics across the four data-generating
settings. The top row plots the cumulative regret over time, while the bottom row tracks the corresponding
evolution of the calibration quantiles; the black dashed curve in the bottom row is an approximation of the
ground-truth quantile, obtained via repeated simulations at each time point. Taken together, the two rows
highlight the tuning trade-off of ACI: a large constant stepsize reacts quickly to distributional changes, but
yields highly variable quantile trajectories even under stationarity, leading to substantial cumulative regret;
conversely, smaller or decaying stepsizes stabilize the quantile updates in stationary periods, yet may adapt
too slowly after distribution shifts and consequently lag behind the moving target (most notably in Setting 1).
As a result, the optimal stepsize for ACI differs across various settings, making it difficult to select a priori
in practice. In contrast, DriftOCP adapts to different regimes in a data-driven manner, achieving stable
tracking during stationary segments and rapid re-alignment following change points. This behavior leads to
uniformly controlled regret across regimes, comparable to that attained by hindsight-optimal tuning of ACI.

5.2 Experiments: online conformal prediction with adaptively trained scores
This section examines how our methods interact with different ways of generating non-conformity scores
in the presence of distribution drift. In particular, we pair our drift-aware recalibration mechanism with
(i) a covariate-agnostic score, (ii) a fixed pretrained model, and (iii) an adaptively updated fitted model.
The numerical comparisons illustrate tangible gains from adaptively updated models in terms of predictive
efficiency and validity.
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Figure 3: Cumulative regret and calibration quantiles under four data-generating settings. Top
row: cumulative regret trajectories. Bottom row: calibration-quantile evolution; the black dashed curve
indicates an approximation to the ground-truth quantile obtained via repeated simulations at each time point.
Across settings, ACI exhibits a clear stepsize trade-off: ACI with large constant stepsizes adapts quickly but
produces volatile quantile updates and suboptimal performance under stationarity, whereas ACI with smaller
or decaying stepsizes yields more stable updates at the cost of slower adaptation to distributional changes. In
comparison, DriftOCP is stable within stationary time segments and adapts rapidly to distribution shifts,
yielding consistently controlled regret. Curves are averaged over 20 runs; shaded bands indicate ±1 standard
deviation.

Data generation. We consider an online regression stream {(Xt, Yt)}t≥1 with feature dimension d = 10.
Throughout these experiments, we construct prediction sets using a linear predictor, and the non-conformity
score function is computed from linear regression residuals. We then consider two data-generating models for
(Xt, Yt) to distinguish well-specified learning from misspecification:

• Well-specified case: Yt = X⊤
t β∗ + εt, with εt ∼ N (0, 1), so the linear predictor can be correctly

specified;

• Misspecified case: Yt = X⊤
t β∗ + 1

100∥Xt∥22 + εt, with εt ∼ N (0, 1), where the additional quadratic
term introduces a mild deviation from linearity.

In both cases, the true coefficient β∗ ∈ Rd is sampled from N (0, Id) and is subsequently held fixed across
simulation repetitions. For each model specification, we introduce piecewise-stationary covariate shifts with
change points at t ∈ {3333, 6667}. Specifically, we consider:

• Mean shifts: Xt ∼ N (µt1d, Id), where

µt =


0, if t ≤ 3333;

3, if 3333 < t ≤ 6667;

−2, if t > 6667;

• Variance shifts: Xt ∼ N (0, σ2
t Id), where

σt =


1, if t ≤ 3333;

5, if 3333 < t ≤ 6667;

10, if t > 6667.

In each run of the experiments, we first draw npretrain = 100 independent observations to fit an initial ridge
regression model, and then draw an additional ntrain = 500 observations to initialize the calibration quantile
for the non-conformity scores. We subsequently generate an online data stream of length T = 10,000.
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Score construction strategies. We compare three score construction strategies that are paired with
drift-aware recalibration. The first uses our full-conformal variant tailored to online optimization, while the
latter two use DriftOCP with pretrained score functions:

• DriftOCP-full + online SGD: the score is formed using a sequentially updated fitted model,
st = |Yt −X⊤

t β̂t|, where β̂t is updated by online SGD with stepsize ηt = 0.01/
√
t;

• DriftOCP + pretrained ridge: the score uses a fixed ridge-regression predictor (Hoerl and
Kennard, 1970) with regularization parameter λ = 1.0, implemented in scikit-learn (Pedregosa et al.,
2011), as the pretrained model;

• DriftOCP + absolute response: a covariate-agnostic baseline st = |Yt|.

All methods employ the same drift-detection threshold σ = 4 and the same doubling-round structure. The
target miscoverage level is α = 0.1 for all settings.

Results. We report the prediction interval width and the local coverage rate computed over a sliding
window of 100 time steps. As shown in Figure 4, the results are averaged over 20 independent runs, with
shaded regions indicating ±1 standard deviation. The top row plots the prediction interval width over time,
while the bottom row shows the local coverage rate computed using a rolling window of 100 steps. The
horizontal dashed line marks the target level 1 − α = 0.9 and the vertical dashed lines correspond to the
change points.

Across all four settings—well-specified or misspecified models, and under either mean or variance drift—the
adaptive-score method with online SGD consistently achieves the most favorable tradeoff, producing the
narrowest intervals while maintaining stable coverage around the target level. In contrast, the pretrained-score
baseline tends to be sensitive to mismatches between the pretraining and test covariate distributions, resulting
in wider intervals and a higher degree of coverage fluctuations after the change points. The model-free baseline
(st = |Yt|) is in general conservative and produces substantially wider intervals than the other two methods
throughout. It is also sensitive to distribution shift, exhibiting undercoverage at change points.

We also observe a transient effect at the beginning of the data stream: the adaptive method exhibits
slightly biased local coverage and inflated widths early on, which is as expected since the fitted model is still
in its initialization phase and the online updates are relatively volatile. As more data arrive, the adaptively
fitted model stabilizes, and the resulting score becomes better calibrated, after which the method tracks the
target coverage tightly even after distributional shifts.

Finally, note that the adaptive method relies on an online SGD-trained predictor, whose trajectory depends
on the data order and thus does not satisfy permutation symmetry. The strong empirical performance of this
non-symmetric learning pipeline provides additional evidence supporting our training-conditional guarantees,
which do not require symmetry of the underlying fitted model.

6 Additional related work
In this section, we briefly discuss a small sample of other related papers. To start with, a substantial body of
work has established theoretical coverage guarantees for conformal prediction (Angelopoulos and Bates, 2021;
Angelopoulos et al., 2024b). The majority of these results, however, rely on the assumption that the data are
exchangeable (most notably, i.i.d. observations) (e.g., Vovk et al. (2005); Vovk (2015); Lei et al. (2018); Barber
et al. (2021)). A growing literature has investigated how conformal prediction procedures can be modified to
retain validity when exchangeability is violated, aiming to preserve meaningful coverage guarantees under
various forms of distributional shift. For instance, Tibshirani et al. (2019); Barber et al. (2023) developed
weighted split conformal methods that restore marginal validity under a weighted-exchangeability condition.
Their methods rely on importance weights tied to the data distribution; in a distribution-free setting, one
must either use a non-data-dependent weight (as in Barber et al. (2023)) or impose stronger structural
assumptions (e.g., invariance of Y | X as in (Tibshirani et al., 2019)). In parallel, Podkopaev and Ramdas
(2021); Si et al. (2024) developed split conformal methods under label shift, when the marginal distribution
of Y differs across environments while the conditional distribution P (X | Y ) remains invariant. In another
line of work (Chernozhukov et al., 2018; Cauchois et al., 2024; Ai and Ren, 2024; Gui et al., 2024; Aolaritei
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Figure 4: Online conformal prediction with different score constructions. Top row: prediction-
interval width over time. Bottom row: local coverage rate computed with a rolling window of 100 steps; the
horizontal line marks the target level 1−α = 0.9. Vertical dashed lines indicate change points at t = 3333 and
t = 6667. Columns correspond to the four settings (well-specified vs. misspecified model, each under mean vs.
variance drift). The adaptive-score method (online SGD) yields noticeably shorter intervals and more stable
coverage under variance drift, whereas the pretrained-score method is sensitive to a mismatch between the
pretraining and test covariate distributions. The model-free baseline (st = |Yt|) is in general conservative
and produces wide prediction intervals; it is also sensitive to distribution shift, exhibiting undercoverage at
change points. Curves are averaged over 20 runs, with shaded bands indicating ±1 standard deviation.

et al., 2025), distribution shifts between training and test environments are tackled from a distributionally
robust optimization perspective. Meanwhile, a growing literature developed conformal prediction methods for
time-series data (Zaffran et al., 2022; Xu and Xie, 2021, 2023b,a; Xu et al., 2024; Chen et al., 2024; Cleaveland
et al., 2024; Stocker et al., 2025).

For temporally dependent, non-exchangeable sequences, Oliveira et al. (2024) showed that split conformal
retains approximate marginal validity up to an explicit penalty term controlled by decoupling/mixing
conditions (including β-mixing), with sharper results subsequently obtained in Barber and Pananjady (2025).
These results, however, do not yield sharp training-(and-calibration)-conditional concentration bounds and
typically require stationarity-type dependence assumptions. In contrast, training-(and-calibration)-conditional
coverage guarantees beyond exchangeability are comparatively rarer.

In addition, a line of work connected ACI-style calibration with ideas from online learning and studied
regret bounds under various performance criteria (Bhatnagar et al., 2023; Gibbs and Candès, 2024; Zhang et al.,
2024a; Ramalingam et al., 2025; Liu et al., 2026), which, however, fell short of ensuring training-conditional
coverage. Moreover, the idea of ACI has been extended for broader settings, such as risk control (Feldman
et al., 2022; Farinhas et al., 2024), stochastic control for time series (Yang et al., 2024), and parametric
quantile calibration (Areces et al., 2025), among other things.

7 Discussion
In this work, we have developed two online conformal prediction methods that adapt efficiently to temporal
distribution drift, producing prediction sets that are both valid and informative. For scenarios involving
pretrained score functions, our DriftOCP algorithm leverages an efficient drift detection subroutine to update
the calibration set sequentially, achieving regret bounds that are minimax optimal (up to logarithmic factors)
across both change-point and smooth drift regimes. For scenarios where the predictive models (and hence the
score functions) are trained adaptively from prior observations, we propose DriftOCP-full, a full-conformal-
style online algorithm that enjoys strong regret guarantees under stability assumptions; for this setting, we
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further establish matching minimax lower bounds under suitable restrictions on the prediction sets. Unlike
much of the prior work that focused on metrics like empirical long-term coverage frequency or adversarial
regret, our analysis exploits additional independence assumption across data while remaining otherwise
distribution-free, which has enabled training-conditional regret guarantees. The proposed algorithms are
horizon-free, computationally efficient, and supported by fully non-asymptotic, minimax-optimal theoretical
guarantees.

Our results naturally suggest several directions for future investigation. To begin with, while our current
theoretical development hinges upon independence across data samples, many online predictive inference
problems involve temporally dependent observations, as commonly encountered in, say, time-series settings
(Xu and Xie, 2021; Zaffran et al., 2022; Oliveira et al., 2024). A natural and challenging direction is
therefore to extend our online conformal methods to tackle temporally dependent, non-stationary Markovian
environments, while still delivering rigorous training-conditional coverage guarantees. On another front, the
training-conditional guarantees in Section 4 rely on stability assumptions for the underlying model-fitting
algorithms. When the desirable stability conditions fail to hold or are difficult to verify—e.g., in certain
nonparametric, or deep learning models (Gibbs and Candès, 2025; Lei et al., 2011; Romano et al., 2019)—it
is fundamentally important to develop new online full conformal methods that ensure both validity and
efficiency without stability. Finally, our algorithmic and analysis frameworks might shed light on other online
statistical problems, such as online multicalibration (Collina et al., 2026).

Acknowledgments
Y. Chen is supported in part by the Alfred P. Sloan Research Fellowship, the ONR grant N00014-25-1-2344,
the NSF grants 2221009 and 2218773, the Wharton AI & Analytics Initiative’s AI Research Fund, and the
Amazon Research Award. Z. Ren is supported by the NSF grant DMS-2413135 and Wharton Analytics.
Y. Chen would like to thank Jiahao Ai for extensive discussion about adaptive conformal inference.

A Proof of Fact 2.1
Proof of (i). By the triangle inequality, we obtain∣∣∣∣∣ 1T

T∑
t=1

P(Yt ∈ Ct)− (1− α)

∣∣∣∣∣ ≤ 1

T

T∑
t=1

∣∣P(Yt ∈ Ct)− (1− α)
∣∣

≤ 1

T

T∑
t=1

ECt

[∣∣P(Yt ∈ Ct | Ct
)
− (1− α)

∣∣] ≤ regretT
T

.

Proof of (ii). For any time point t, let us construct Ct as follows:

Ct :=

{
∅, with probability α,

R, with probability 1− α.

On the one hand, it can be easily derived that, for any 1 ≤ t ≤ T ,

P(Yt ∈ Ct) = α1{Yt ∈ ∅}+ (1− α)1{Yt ∈ R} = 1− α,

thus implying that

lt-cvgT =
1

T

T∑
t=1

P(Yt ∈ Ct) = 1− α.

On the other hand, it is seen that

|P(Yt ∈ ∅)− (1− α)| = 1− α;

|P(Yt ∈ R)− (1− α)| = |1− (1− α)| = α.
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Therefore, the following holds naturally

|P(Yt ∈ Ct | Ct)− (1− α)| ≥ min{1− α, α} = α.

Summing over all t = 1, . . . , T and recalling the definition of regretT , we complete the proof.

B Detailed proofs in Section 3
Before proceeding, let us introduce some convenient notation.

B.1 Proof of Theorem 3.1
We now turn to the proof of Theorem 3.1. At a high level, we shall first establish a per-round regret bound,
then aggregate these bounds within each stage, and finally sum over all stages to obtain regret bounds over
the entire time horizon [T ].

B.1.1 Additional notation

To facilitate presentation for the analysis of Algorithm 2, we introduce some additional notation. First, write

sn,r,l = sn,r,l(Xn,r,l, Yn,r,l) and st = st(Xt, Yt)

as long as it is clear from the context. In addition, for any 1 ≤ i < j ≤ T , we define the “typical” event:

A(i, j) :=

{
sup
x∈R

{∣∣∣∣∣
j∑

t=i

(
1{st ≤ x} − P(st ≤ x)

)∣∣∣∣∣
}
≤ 6
√

(j − i+ 1) log j

}
. (37a)

To see that this is a high-probability event, invoking Lemma E.4 with δ = j−6 and using the fact

4√
j − i+ 1

+

√
6 log j

2(j − i+ 1)
≤ 4

√
log j

j − i+ 1
+

√
3 log j

j − i+ 1
< 6

√
log j

j − i+ 1
,

we can establish that
P
(
A(i, j)c

)
≤ j−6. (37b)

Moreover, for any stage-round pair (n, r), we define

An,r :=

τn,r+1−1⋂
i=τn,r

τn,r+1−1⋂
j=i+1

A(i, j), (37c)

where we recall that τn,r indicates the time at which round r of stage n begins and τn,rn+1 = τn+1,1. For
convenience, we also write

τn := τn,1. (38)

Moreover, we introduce several notations for the change-point setting. Recall that under the change-point
model, the entire horizon [T ] is partitioned into N cp + 1 time segments, within each of which the score
distributions remain fixed.

Definition B.1. We define the following notation:

• I1, · · · , IN cp+1: the N cp + 1 time segments over the entire horizon;

• Kn,r: the total number of time segments in round r of stage n;

• Sn,r and tn: the total number of iterations in round r of stage n;
in particular, let tn = Sn,rn , i.e., the number of iterations in the last round of this stage;
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• In,r,k (k = 1, · · · ,Kn,r): the k-th time segment in round r of stage n;

• Sn: the total number of iterations in stage n;

• Jn: the total number of time segments in stage n;

• In,j (j = 1, · · · , Jn): the j-th time segment in stage n.

Also, for any time segment I, we let |I| represent the length of this time segment. In addition, while the
last round rn of stage n contains tn ≤ Trn iterations, we generate—for convenience of presentation—a set of
random variables {sn,r,l} for l > tn in a way that obeys

P(sn,rn,l > qn,rn | qn,rn) = α for all l > tn. (39)

Moreover, for round r in stage n, we define the cumulative KS distance within this round as

KSroundn,r :=

Sn,r−1∑
l=1

KS(sn,r,l, sn,r,l+1). (40a)

We also define the cumulative KS distance within stage n (which contains rn rounds) as

KSstagen :=

rn∑
r=1

KSroundn,r . (40b)

B.1.2 Decomposing and bounding the cumulative regret

In order to bound the cumulative regret, we first decompose it based on stages and rounds of DriftOCP as
well as the typical events {An,r} introduced in Section B.1.1:

T∑
t=1

∣∣P(st > qt | qt)− α
∣∣ = N∑

n=1

rn∑
r=1

Tr∑
l=1

∣∣P(sn,r,l > qn,r | qn,r)− α
∣∣1{An,r}

+

N∑
n=1

rn∑
r=1

Tr∑
l=1

∣∣P(sn,r,l > qn,r | qn,r)− α
∣∣1{Ac

n,r}.

(41)

As it turns out, the first term on the right-hand side of (41) serves as the dominant term, as argued below.
Consider any time point t belonging to round r of stage n. According to the procedure of DriftOCP—

particularly the fact that the rounds length grow geometrically with Tr = 3r—it follows that neither t/4 nor
4t lies within the same round (n, r), and as a result,

Et :=
4t⋂

j=t/4

j⋂
i=1

A(i, j) ⊆ An,r.

It can thus be seen from (37b) that

P(Ect ) ≤
4t∑

j=t/4

j∑
i=1

P
(
A(i, j)c

)
≤

4t∑
j=t/4

j∑
i=1

1

j4
≤

4t∑
j=t/4

1

j3
≤ 32

t2
,

which helps us control the second term on the right-hand side of (41) as

E

[
N∑

n=1

rn∑
r=1

Tr∑
l=1

∣∣P(sn,r,l > qn,r | qn,r)− α
∣∣1{Ac

n,r}

]
≤ E

[
T∑

t=1

∣∣P(st > qt | qt)− α
∣∣1{Ect }

]

≤
T∑

t=1

P
(
Ect
)
≤

T∑
t=1

32

t2
= O(1).

(42)
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As a consequence, the remainder of this proof is devoted primarily to bounding the first term of (41).
Towards this end, we begin by looking at the cumulative coverage gaps in round r of stage n. Informally,
in the change-point setting, the cumulative coverage gap over this round on the typical events defined in
Section B.1.1 is upper bounded by a sum of square-root terms in the lengths of the time segments. In contrast,
under smooth drift, the bound contains a term that scales with a suitable KS distance raised to the 1/3
power, in a manner that resembles the final regret bound in Theorem 3.1. This is stated in the following
lemma, with the proof deferred to Section B.3.1.

Lemma B.1. Consider any stage-round pair (n, r) in Algorithm 2. If no distribution shift has been detected
by the subroutine DriftDetect by the end of this round, then it holds that

( Tr∑
l=1

∣∣∣P(sn,r,l > qn,r | qn,r)− α
∣∣∣)1{An,r} =

Õ

(
Kn,r∑
k=1

√
|In,r,k|

)
, for the change-point setting;

Õ
(√

Tr + (KSroundn,r )
1
3T

2
3
r

)
, for the smooth drift setting.

Owing to the doubling trick employed in DriftOCP (i.e., the round lengths grow geometrically), we
can lift the per-round cumulative gap bound in Lemma B.1 to a per-stage cumulative gap bound, again on
the typical events defined in Section B.1.1. This result is formalized in the following lemma, whose proof is
postponed to Section B.3.2.

Lemma B.2. Consider any stage n in Algorithm 2, which comprises rn rounds. Then we have

rn∑
r=1

( Tr∑
l=1

∣∣∣P(sn,r,l > qn,r | qn,r)−α
∣∣∣)1{An,r} =


Õ

(
Jn∑
j=1

√
|In,j |

)
, for the change-point setting;

Õ
(√

Sn + (KSstagen )
1
3S

2
3
n

)
, for the smooth drift setting.

It remains to see how the per-stage cumulative regret bounds derived above can be leveraged to establish
Theorem 3.1. To this end, we cope with the change-point and smooth drift settings separately in what follows.

B.1.3 Controlling the dominant term in the change-point setting

Recall the definition of {Ik}N
cp+1

k=1 and {In,j}Jn
j=1 in Section B.1.1, and denote

Bn = An,rn−1 ∩ An,rn . (43)

Suppose that DriftOCP contains N stages. Applying Lemma B.2 tells us that

N∑
n=1

rn∑
r=1

Tr∑
l=1

∣∣P(sn,r,l > qn,r | qn,r)− α
∣∣1{An,r} ≤ Õ

(
N∑

n=1

( Jn∑
j=1

√
|In,j |

))

≤ Õ

(
N∑

n=1

( Jn∑
j=1

√
|In,j |

)
1{Bn}+

N∑
n=1

(τn+1 − τn)1{Bcn}

)
, (44)

where the second relation follows since, for any n ∈ [N ],

Jn∑
j=1

√
|In,j | ≤

√√√√Jn

( Jn∑
j=1

|In,j |
)

=
√

Jn(τn+1 − τn) ≤ τn+1 − τn.

In the sequel, we bound the two terms on the right-hand side of (44) separately.

• To bound the first term on the right-hand side of (44), we first show that on the typical events, the
final two rounds of any stage do not share exactly the same score distributions. This is formally stated
in the lemma below, whose proof is provided in Section B.3.3.

Lemma B.3. Consider any stage n in the change-point setting. On the event An,rn−1 ∩ An,rn , the
rounds rn − 1 and rn cannot both be entirely contained within the same time segment from {Ik}N

cp+1
k=1 .
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In view of Lemma B.3, each time segment Ik cannot overlap with more than two consecutive stages; in
other words, each Ik can contain at most two time segments from {In,j : n ∈ [N ], j ∈ [Jn]}. As a
consequence,

N∑
n=1

( Jn∑
j=1

√
|In,j |

)
1{Bn} ≤ 2

N cp+1∑
k=1

√
|Ik| ≤ 2

√
(N cp + 1)T ,

where the last step follows from Cauchy-Schwarz as well as the fact that
∑N cp+1

k=1 |Ik| = T .

• Turning to the second term on the right-hand side of (44), we make note of the decomposition:

E

[
N∑

n=1

(τn+1 − τn)1 {Bcn}

]
≤

∞∑
n=1

E [(τn+1 − τn)1 {Bcn}]

≤
∞∑

n=1

∑
i<j

(j − i)P (τn = i, τn+1 = j,Bcn)

≤
∞∑

n=1

∑
i<j

(j − i)P(τn = i)P

 j⋃
k=i∨ j

16

k−1⋃
l=i∨ j

16

A(l, k)c, τn+1 = j
∣∣∣ τn = i

 ,

(45)

where the last inequality uses a simple property of DriftOCP, namely, 16τn,rn−1 ≥ τn+1 due to the
exponential growth of round lengths. Additionally, observe that under the independent data assumption,
for any l, k ∈ [i, j] the event A(l, k)c is independent of what has happened prior to time i, which taken
together with (37b) and the union bound gives

P

(
j⋃

k=i∨ j
16

k−1⋃
l=i∨ j

16

A(l, k)c, τn+1 = j
∣∣∣ τn = i

)
≤

j∑
k=i∨ j

16

k−1∑
l=i∨ j

16

P
(
A(l, k)c | τn = i

)

=

j∑
k=i∨ j

16

k−1∑
l=i∨ j

16

P
(
A(l, k)c

)
≤

j∑
k=i∨ j

16

k−1∑
l=i∨ j

16

1

k6

≤
j∑

k=i∨ j
16

1

k5
<

1

4
(
i ∨ j

16

)4 .
Substituting this bound into (45) results in

E

[
N∑

n=1

(τn+1 − τn)1 {Bcn}

]
≤

∞∑
n=1

∑
i<j

(j − i)P(τn = i)
1

4
(
i ∨ j

16

)4
≲

∞∑
n=1

∞∑
i=1

P(τn = i)


16i∑

j=i+1

j − i

i4
+

∞∑
j=16i+1

j − i

j4


≲

∞∑
n=1

∞∑
i=1

P(τn = i)
1

i2

(a)

≤
∞∑

n=1

∞∑
i=1

P(τn = i)
1

n2

=

∞∑
n=1

1

n2
= O(1),

where (a) relies on the elementary bound τn ≥ n.

Putting the preceding bounds together, we arrive at

E

[
N∑

n=1

rn∑
r=1

Tr∑
l=1

∣∣P(sn,r,l > qn,r | qn,r)− α
∣∣1{An,r}

]
≤ 2
√
(N cp + 1)T +O(1).

The advertised bound in the change-point setting then follows by combining this with (42).

29



B.1.4 Controlling the dominant term in the smooth drift setting

From Lemma B.2, we have established how to bound the cumulative regret within a single stage. As before,
suppose there are N stages in total. Summing over the stage index n then yields the following bound:

N∑
n=1

rn∑
r=1

Tr∑
l=1

∣∣P(sn,r,l > qn,r | qn,r)− α
∣∣1{An,r} ≤

N∑
n=1

Õ
(√

Sn +
(
KSstage

n

) 1
3S

2
3
n

)
(a)

≤ Õ

(
N−1∑
n=1

√
Sn +

√
T +

N∑
n=1

(
KSstage

n

) 1
3S

2
3
n

)
(b)

≤ Õ

(
N−1∑
n=1

√
Sn +

√
T +

( N∑
n=1

KSstage
n

) 1
3
( N∑

n=1

Sn

) 2
3

)

= Õ

(
N−1∑
n=1

√
Sn +

√
T + (KST )

1
3T

2
3

)
. (46)

Here, (a) holds since
√
SN ≤

√
T , whereas (b) results from Hölder’s inequality.

With the above inequality in mind, a crucial task is to bound
∑N−1

n=1

√
Sn, which can be decomposed into

N−1∑
n=1

√
Sn =

N−1∑
n=1

√
Sn1{Bn}+

N−1∑
n=1

√
Sn1{Bcn} (47)

with Bn denoting the event Bn = An,rn−1
∩ An,rn (see (43)). By applying an argument analogous to the one

used to control the second term in (44), we can readily obtain

E

[
N−1∑
n=1

√
Sn1{Bcn}

]
= O(1), (48)

where we omit the details for brevity. Therefore, everything comes down to controlling
∑N−1

n=1

√
Sn1{Bn},

which forms the main content of the remainder of this subsection.
For n ∈ [N − 1], note that the last round rn of each of these stages ends with a restart; that is, a drift

detection is declared in round rn. Following the proof of Lemma B.2, let tn denote the number of iterations
in round rn, then according to the drift detection subroutine, there exists some jn ∈ [tn] such that∣∣∣∣ tn∑

l=jn

(1{sn,rn,l > qn,rn} − α)

∣∣∣∣ > 24
√
(tn − jn + 1) log(4τn,rn). (49)

On the event Bn, it is observed that∣∣∣∣ tn∑
l=jn

(P(sn,rn,l > qn,rn | qn,rn)− α)

∣∣∣∣
≥
∣∣∣∣ tn∑
l=jn

(
1{sn,rn,l > qn,rn} − α

)∣∣∣∣− ∣∣∣∣ tn∑
l=jn

(
1{sn,rn,l > qn,rn} − P(sn,rn,l > qn,rn | qn,rn)

)∣∣∣∣
> 24

√
(tn − jn + 1) log(4τn,rn)− 6

√
(tn − jn + 1) log τn+1 > 18

√
(tn − jn + 1) log τn+1,

(50)

where the last line arises from (49) and the definition of An,rn . Further, let us introduce

Bn :=
1

tn − jn + 1

tn∑
l=jn

(
P(sn,rn,l > qn,rn | qn,rn)− α

)
,
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which, according to Eqn. (50), satisfies
√
tn − jn + 1

18
√
log τn+1

|Bn|1{Bn} ≥ 1{Bn}. (51)

With this inequality in place, we can readily obtain

N−1∑
n=1

√
Sn1{Bn}

(51)
≤

N−1∑
n=1

√
Sn

(√
tn − jn + 1

18
√
log τn+1

|Bn|

) 1
3

1{Bn}

≤
N−1∑
n=1

S
2
3
n |Bn|

1
3 1{Bn} ≤

(N−1∑
n=1

Sn

) 2
3
(N−1∑

n=1

|Bn|1{Bn}
) 1

3

≤ T
2
3

(N−1∑
n=1

|Bn|1{Bn}
) 1

3

, (52)

where the last line follows from Hölder’s inequality and Jensen’s inequality. Thus, it amounts to bounding∑N−1
n=1 |Bn|1{Bn}, which we accomplish next.
For every Bn, it follows from the triangle inequality that

|Bn| =
∣∣∣∣ 1

tn − jn + 1

tn∑
l=jn

(
P(sn,rn,l > qn,rn | qn,rn)− α

)∣∣∣∣
≤
∣∣∣∣ 1

tn − jn + 1

tn∑
l=jn

(
P(sn,rn,l > qn,rn | qn,rn)−

1

Trn−1

Trn−1∑
i=1

P(s′n,rn−1,i > qn,rn | qn,rn)
)∣∣∣∣︸ ︷︷ ︸

=:Tn,1

+

∣∣∣∣ 1

Trn−1

Trn−1∑
l=1

(
P(s′n,rn−1,l > qn,rn | qn,rn)− 1{sn,rn−1,l > qn,rn}

)∣∣∣∣︸ ︷︷ ︸
=:Tn,2

+

∣∣∣∣ 1

Trn−1

Trn−1∑
l=1

(
1{sn,rn−1,l > qn,rn} − α

)∣∣∣∣︸ ︷︷ ︸
=:Tn,3

,

where, for each i = 1, . . . , Trn−1, s′n,rn−1,i is an independent copy of sn,rn−1,i. The above inequality reduces
the problem to controlling three terms.

• Regarding Tn,1, one can insert P(sn,rn,1 > qn,rn | qn,rn) into each summand to derive

Tn,1 ≤
∣∣∣∣ 1

tn − jn + 1

tn∑
l=jn

(
P(sn,rn,l > qn,rn | qn,rn)− P(sn,rn,1 > qn,rn | qn,rn)

)∣∣∣∣
+

∣∣∣∣ 1

Trn−1

Trn−1∑
l=1

(
P(sn,rn,1 > qn,rn | qn,rn)− P(s′n,rn−1,l > qn,rn | qn,rn)

)∣∣∣∣.
(53)

For any l ∈ [jn, tn], we can apply the telescoping technique and the triangle inequality to obtain∣∣P(sn,rn,l > qn,rn | qn,rn)− P(sn,rn,1 >qn,rn | qn,rn)
∣∣ ≤ sup

q∈R

{∣∣P(sn,rn,l > q)− P(sn,rn,1 > q)
∣∣}

≤
l−1∑
j=1

sup
q∈R

{∣∣∣P(sn,rn,j+1 > q)− P(sn,rn,j > q)
∣∣∣}

≤
l−1∑
j=1

KS(sn,rn,j , sn,rn,j+1) ≤
tn−1∑
j=1

KS(sn,rn,j , sn,rn,j+1);
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Repeating the same arguments and adopting the notation sn,rn−1,Trn−1+1 := sn,rn,1 also give

P(sn,rn,1 > qn,rn | qn,rn)− P(s′n,rn−1,l > qn,rn | qn,rn) ≤
Trn−1∑
j=1

KS(sn,rn−1,j , sn,rn−1,j+1).

Substituting these two results into Eqn. (53) yields

Tn,1 ≤
1

tn − jn + 1

tn∑
l=jn

tn−1∑
j=1

KS(sn,rn,j , sn,rn,j+1) +
1

Trn−1

Trn−1∑
l=1

Trn−1∑
j=1

KS(sn,rn−1,j , sn,rn−1,j+1)

=

Trn−1∑
j=1

KS(sn,rn−1,j , sn,rn−1,j+1) +

tn−1∑
j=1

KS(sn,rn,j , sn,rn,j+1),

where we let rn − 1 represent round rn−1 of stage n− 1 if rn = 1. Therefore, when summing over n,
each KS distance term is counted at most twice, and as a result,

N−1∑
n=1

Tn,1 ≤ 2

T−1∑
t=1

KS(st, st+1) = 2KST .

• With regards to Tn,2, on the event Bn (cf. (43)), we can from the definition of An,rn−1 (cf. (37)) that

Tn,2 =

∣∣∣∣ 1

Trn−1

Trn−1∑
l=1

(
P(s′n,rn−1,l > qn,rn | qn,rn)− 1{sn,rn−1,l > qn,rn}

)∣∣∣∣ ≤ 6

√
log τn+1

Trn−1
,

which in turn implies that

N−1∑
n=1

Tn,21{Bn} ≤
N−1∑
n=1

6

√
log τn+1

Trn−1
1{Bn}

(51)
≤

N−1∑
n=1

6

√
log τn+1

Trn−1

( √
tn

18
√
log τn+1

|Bn|1{Bn}

)
≤

N−1∑
n=1

2

3
|Bn|1{Bn}.

Here, the last inequality follows from the fact that tn ≤ Trn ≤ 4Trn−1 for rn > 1 and tn ≤ Trn = 1 ≤
Trn−1 for rn = 1.

• When it comes to Tn,3, it is seen from the definition of qn,r—which is chosen to be the α-empirical-quantile
of {sn,rn−1,l}

Trn−1

l=1 —that

Tn,31{Bn} =
∣∣∣∣ 1

Trn−1

Trn−1∑
l=1

(
1{sn,rn−1,l > qn,rn} − α

)∣∣∣∣1{Bn}
≤ 1

Trn−1
1{Bn} ≤

3
√
log τn+1

2
√
tn − jn + 1

1{Bn}
(51)
≤ 1

12
|Bn|1{Bn}.

Taking together the preceding bounds on Tn,1, Tn,2 and Tn,3 results in

N−1∑
n=1

|Bn|1{Bn} ≤
N−1∑
n=1

(Tn,1 + Tn,2 + Tn,3)1{Bn}

≤ 2KST +
2

3

N−1∑
n=1

|Bn|1{Bn}+
1

12

N−1∑
n=1

|Bn|1{Bn} = 2KST +
3

4

N−1∑
n=1

|Bn|1{Bn},
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from which it follows that
N−1∑
n=1
|Bn|1{Bn} ≤ 8KST . Combine this bound with (52) to arrive at

N−1∑
n=1

√
Sn1{Bn} ≤ 2(KST )

1
3T

2
3 . (54)

To finish up, taking (46), (48) and (54) collectively yields

E
[ N∑
n=1

rn∑
r=1

Tr∑
l=1

∣∣P(sn,r,l > qn,r | qn,r)− α
∣∣1{An,r}

]
≤ Õ

(
E
[N−1∑

n=1

√
Sn

]
+
√
T + KS

1
3

TT
2
3

)

≤ Õ

(
E
[N−1∑

n=1

√
Sn1{Bn}

]
+ E

[N−1∑
n=1

√
Sn1{Bcn}

]
+
√
T + (KST )

1
3T

2
3

)
(54)
≤ Õ

(√
T + (KST )

1
3T

2
3

)
.

We can immediately finish the proof for the smooth drift setting by combining the above result with (42).

B.2 Proof of Theorem 3.2
Consider a given T , along with a change-point budget N cp in the change-point setting and a cumulative
variation budget KST in the smooth drift setting. In what follows, we intend to construct a subclass of
distributions L′ and use it to establish the claimed minimax lower bound.

Step 1: construction of a distribution subclass L′. Partition the horizon [T ] := {1, . . . , T} into m
consecutive time segments I1, . . . , Im of (nearly) equal size, where

Ij :=
{
(j − 1)⌈T/m⌉+ 1, . . . , min{j⌈T/m⌉, T}

}
, j ∈ [m].

Define L′ as the collection of distribution sequences whose corresponding score distributions {Dscore
t }Tt=1 obey

1. for each t ∈ [T ], Dscore
t ∈ {Exp(1),Exp(1 + ε)}, where Exp(β) denotes the exponential distribution with

the rate parameter β, and the parameter ε ∈ (0, 1] will be specified momentarily;

2. Dscore
t is blockwise constant, namely, for each j ∈ [m], one has Dscore

t = Dscore
t′ for all t, t′ ∈ Ij .

Clearly, if m = N cp+1, then L′ ⊆ L1(N
cp). We also verify that in the smooth drift setting, L′ ⊆ L2(KST )

for sufficiently small ε. To see this, we make the observation that

KS
(
Exp(1),Exp(1 + ε)

)
= sup

x≥0

{∣∣e−x − e−(1+ε)x
∣∣} = sup

x≥0

{
e−x

(
1− e−εx

)}
≤ sup

x≥0

{
εxe−x

}
≤ 2ε,

where we have used the elementary inequalities 1 − e−u ≤ u for u ≥ 0 and xe−x ≤ x
1+x ≤ 1 for x ≥ 0.

Consequently, for any {Dscore
t }Tt=1 ∈ L′, it is easily seen that

T−1∑
t=1

KS(Dscore
t ,Dscore

t+1 ) ≤
m−1∑
j=1

KS
(
Exp(1),Exp(1 + ε)

)
≤ 2εm.

Choosing ε ≤ KST /(2m) ensures that
∑T−1

t=1 KS(Dscore
t ,Dscore

t+1 ) ≤ KST , and as a result, L′ ⊆ L2(KST ).
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Step 2: lower bound for a single time segment. Consider a fixed time segment and suppress the
segment index here for notational simplicity. Within this time segment, the score random variables {st} are
i.i.d. drawn from either Exp(1) or Exp(1 + ε). Denote s1:t = {s1, . . . , st}, let qt = q(s1:t) be an arbitrary
estimator based on the past observations, and set q⋆0 := log(1/α) and q⋆1 := 1

1+ε log(1/α).

Denote by D0,score
1:t and D1,score

1:t the joint distributions of (s1, . . . , st) when si ∼ Exp(1) and si ∼ Exp(1+ε),
respectively. Let the Bernoulli random variable H ∼ Ber(0.5) indicate which distribution generates the
sequence {st}. Then, letting s be a random variable—independent of s1:t conditioned on H—such that
s | H = 0 ∼ Exp(1) and s | H = 1 ∼ Exp(1 + ε), and denoting by P0 (resp. P1) the distribution when H = 0
(resp. H = 1), we can derive

EH,s1:t∼DH,score
1:t

[|PH(s > qt | qt)− α|] = 1

2
E[|P0(s > qt | qt)− α|] + 1

2
Es1:t [|P1(s > qt | qt)− α|]

=
1

2
E
[(∣∣e−qt − α

∣∣+ ∣∣e−(1+ε)qt − α
∣∣)]

≥ 1

2
E
[(∣∣e−qt − α

∣∣+ ∣∣e−(1+ε)qt − α
∣∣)1 {qt ∈ K}]+ α

4
P (qt /∈ K)

= EH,s1:t∼DH,score
1:t

[|PH(s > qt | qt)− α|1{qt ∈ K}] +
α

4
P(qt /∈ K),

(55)

where we take K :=
[ log(2/3α)

1+ε , log 2
α

]
. Here, the inequality above holds due to the elementary fact∣∣e−q − α

∣∣+ ∣∣e−(1+ε)q − α
∣∣ ≥ α

2

as long as q > log 2
α or q < log(2/3α)

1+ε .
Furthermore, for any λ ∈ {1, 1 + ε}, the mean value theorem tells us the existence of some ξ between qt

and q⋆λ obeying

|PH(s > qt | qt)− α| = |PH(s > qt | qt)− PH(s > q⋆H)| = λe−λξ |qt − q⋆H |.

Note that when ε ≤ 1/2, 1 ≤ λ ≤ 1 + ε and ξ ≤ log(2/α), we have λe−λξ ≥ e−λ log 2
α ≥ e−(1+ε) log 2

α =
(α/2)1+ε ≥ α1+ε/3, and as a consequence,

|PH(s > qt | qt)− α|1{qt ∈ K} ≥
α1+ε

3
|qt − q⋆H |1{qt ∈ K}. (56)

Substituting (56) into (55) leads to

EH,s1:t∼DH,score
1:t

[|PH(s > qt | qt)− α|] ≥ α

4
P(qt /∈ K) + EH,s1:t∼DH,score

1:t
[|PH(s > qt | qt)− α|1{qt ∈ K}]

≥ α1+ε

3
E [|qt − q⋆H |1{qt ∈ K}] +

α

4
P(qt /∈ K).

(57)

To further bound the second term on the right-hand side of (57), let us look at the following test:

Ĥ = 0 if qt ≥
q⋆0 + q⋆1

2
; Ĥ = 1 otherwise.

Then given that H ∈ {0, 1}, it can be derived that

1{Ĥ ̸= H} ≤ 1
{
|qt − q⋆H | > (q⋆0 − q⋆1)/2

}
,

and hence
E
[
|qt − q⋆H |1{qt ∈ K}

]
≥ q⋆0 − q⋆1

2
P
(
|qt − q⋆H | >

q⋆0 − q⋆1
2

; qt ∈ K
)

≥ q⋆0 − q⋆1
2

P(Ĥ ̸= H; qt ∈ K).
(58)

34



In addition, if q⋆0 − q⋆1 = log 1
α −

log(1/α)
1+α = ε log(1/α)

1+ε < 3
4 , then we have

α

4
P(qt /∈ K) ≥ α1+ε

4
P(qt /∈ K; Ĥ ̸= H) ≥ α1+ε

3
(q⋆0 − q⋆1)P(qt /∈ K; Ĥ ̸= H). (59)

Substituting (58) and (59) into (57) yields

EH,s1:t∼DH,score
1:t

[|PH(s > qt | qt)− α|] ≥ α1+ε

6
(q⋆0 − q⋆1)

(
P(qt ∈ K; Ĥ ̸= H) + P(qt /∈ K; Ĥ ̸= H)

)
=

α1+εε log(1/α)

6(1 + ε)
P(Ĥ ̸= H).

(60)

It remains to lower bound the probability P(Ĥ ≠ H). Le Cam’s two-point method (Tsybakov, 2009,
Theorem 2.2) and Pinsker’s inequality (Tsybakov, 2009, Lemma 2.5) imply that:

P(Ĥ ̸= H) =
1

2
P0(Ĥ ̸= 0) +

1

2
P1(Ĥ ̸= 1)

≥ 1

2

(
1− TV

(
D0,score

1:t ,D1,score
1:t

))
≥ 1

2

(
1−

√
1
2 KL

(
D0,score

1:t ∥D1,score
1:t

))
.

Since the observations are i.i.d. within this time segment, one has

KL
(
D0,score

1:t ∥D1,score
1:t

)
= t · KL(Exp(1) ∥Exp(1 + ε)).

Moreover, the KL divergence admits the following closed-form expression:

KL(Exp(1) ∥Exp(1 + ε)) = log
1

1 + ε
+ (1 + ε)− 1 = ε− log(1 + ε),

and for ε ∈ (0, 1] we have ε− log(1 + ε) ≤ ε2/2 since log(1 + x) ≥ x− x2/2 for x ∈ [0, 1]. Therefore,

KL
(
D0,score

1:t ∥D1,score
1:t

)
≤ t ε2/2.

Choosing t ≤ 1/(4ε2) yields KL(D0,score
1:t ∥D1,score

1:t ) ≤ 1/8, hence TV(D0,score
1:t ,D1,score

1:t ) ≤ 1/4. Consequently,

P(Ĥ ̸= H) =
1

2
P0(Ĥ ̸= 0) +

1

2
P1(Ĥ ̸= 1) ≥ 3

8
. (61)

Substituting (61) into (60) then yields, for all ε ≤ 1/(2
√
t),

E
H∼Ber(0.5), s1:t∼DH,score

1:t

[∣∣PH(s > qt | qt)− α
∣∣] ≥ α1+εε log(1/α)

6
· 3
8
=

α1+εε log(1/α)

16
. (62)

Step 3: extension from one time segment to entire horizon. We now demonstrate how the single-
segment lower bound in Step 2 can be adapted to establish a lower bound for the entire horizon [T ]. Recall
that, at Step 1, [T ] is partitioned into m consecutive time segments I1, . . . , Im obeying |Ij | ≍ T/m. Let
H1, . . . ,Hm be i.i.d. Bernoulli random variables, and construct a random distribution sequence {Dscore

t }Tt=1

by setting, for each time segment j and each t ∈ Ij ,

Dscore
t =

{
Exp(1), Hj = 0,

Exp(1 + ε), Hj = 1.

Consider any online procedure producing qt = q(s1:t). Condition on the history up to the end of time
segment j − 1. Since Hj is independent of the past, the conditional prior on Hj remains uniform over {0, 1},
and the observations within time segment j are i.i.d. from Exp(1) or Exp(1 + ε) accordingly. Therefore, the
single-segment lower bound (62) applies for all times within time segment Ij , with the proviso that 4tε2 ≤ 1.
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To ensure that (62) holds throughout the entire time segment Ij , we impose the condition 4ε2 |Ij | ≤ 1.
Let Fj−1 denote the σ-field generated by the samples st observed prior to time segment j. We can then take
the sum of (62) over t ∈ Ij to reach, for each Ij ,

E
[∑
t∈Ij

∣∣P(st > qt | qt)− α
∣∣ ∣∣∣∣ Fj−1

]
≥ |Ij | ·

εα1+ε

16
· log 1

α
,

and hence, summing over j = 1, . . . ,m and taking expectation over {Hj}mj=1 gives

sup
{Dscore

k }m
k=1

E

[
T∑

t=1

∣∣P(st > qt | qt)− α
∣∣] ≥ E

H1:m,s1:T

[
T∑

t=1

∣∣∣P(st > qt | qt)− α
∣∣∣]

=

m∑
k=1

∑
i∈Ik

E
Hk,sIk

[∣∣∣P(si > qi | qi)− α
∣∣∣]

≥
(
α1+εε

16
log

1

α

) m∑
k=1

|Ik| ≥
Tεα1+ε

16
log

1

α
,

(63)

provided that ε ≤
√
m

2
√
T

. To connect this inequality to the advertised minimax lower bounds, we look at the
two distribution-shift settings separately.

• Change-point setting. In this case, taking m = N cp + 1 and ε =
√
(N cp + 1)/(4T ) in (63) yields

sup
{Dscore

k }m
k=1

E

[
T∑

t=1

∣∣P(st > qt | qt)− α
∣∣] = Ω

(
Tεα1+ε log

1

α

)
= Ω

(
α2 log(1/α)

√
(N cp + 1)T

)
.

• Smooth drift setting. In order for (63) to be applicable in this setting, it suffices to choose ε such that

ε ≤ min
{KST

2m
,

√
m

4T

}
.

Now, if KST
√
T ≥ 1, then we can choose

m = KS
2/3
T T 1/3 (≥ 1), ε =

KS
1/3
T

2T 1/3
,

which satisfies the above requirement. Plugging this choice into (63) gives

sup
{Dscore

k }m
k=1

E

[
T∑

t=1

∣∣P(st > qt | qt)− α
∣∣] = Ω

(
Tεα1+ε log

1

α

)
= Ω

(
α2 log(1/α)KS

1/3
T T 2/3

)
.

On the other hand, if KST
√
T < 1, then one can apply (62) to the entire horizon [T ] to arrive at

EH∼Ber(0.5), s1:T∼DH,score
1:T

[ T∑
t=1

∣∣PH(s > qt | qt)− α
∣∣]

= EH∼Ber(0.5)

[
T∑

t=1

Es1:t∼DH,score
1:t

[∣∣P(s > qt | qt)− α
∣∣] ∣∣∣∣ H

]

≥ α1+εTε log(1/α)

6
· 3
8
=

α1+εTε log(1/α)

16
,

for all ε ≤ 1
2
√
T

. Thus, taking ε = 1
2
√
T

leads to

sup
{Dscore

k }m
k=1

E

[
T∑

t=1

∣∣P(st > qt | qt)− α
∣∣] = Ω

(
α2
√
T log(1/α)

)
.

These two cases taken collectively conclude the proof for the smooth drift setting.
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B.3 Proof of auxiliary lemmas
B.3.1 Proof of Lemma B.1

Since round r has not been terminated due to the detection of distribution shift, it follows that∣∣∣∣∣
j∑

l=i

(
1{sn,r,l > qn,r} − α

)∣∣∣∣∣ ≤ σn,r

√
j − i+ 1 ≤ 24

√
(j − i+ 1) log(4τn,r) (64)

for every 1 ≤ i, j ≤ Tr. On the event An,r, combine the definition (37) of An,r and Eqn. (64) to reach∣∣∣∣∣
j∑

l=i

(
P(sn,r,l > qn,r | qn,r)− α

)∣∣∣∣∣ ≤ 30
√
(j − i+ 1) log(4τn,r), for all 1 ≤ i < j ≤ Tr. (65)

Below, we look at the two drift settings separately.

Change-point setting. In this setting, the score distribution remains fixed within each time segment In,r,k.
Consequently, for every l ∈ In,r,k, the conditional exceedance probability P(sn,r,l > qn,r | qn,r) is identical
(i.e., does not depend on l), which in turn implies that∑

l∈In,r,k

∣∣P(sn,r,l > qn,r | qn,r)− α
∣∣ = ∣∣∣∣ ∑

l∈In,r,k

(
P(sn,r,l > qn,r | qn,r)− α

)∣∣∣∣.
Combining this with Eqn. (65) yields( ∑

l∈In,r,k

∣∣P(sn,r,l > qn,r | qn,r)− α
∣∣)1{An,r} ≤ 30

√
|In,r,k| log(4τn,r).

Summing this inequality over k = 1, . . . ,Kn,r (i.e., summing over all segments in this round) yields the
advertised bound for the change-point setting.

Smooth drift setting. Consider a given qn,r. Partition the time indices 1, 2, . . . , Tr into K consecutive
time segments Ik := {ik−1 + 1, . . . , ik}, k = 1, . . . ,K, with i0 = 0 and iK = Tr. This partition is chosen
so that, for l ∈ I1, I3, . . . , I2[K−1

2 ]+1, the quantity P(sn,r,l > qn,r) − α has the same sign; without loss of
generality, assume that the signs are positive. Then for any l ∈ I2∪· · ·∪I2[K2 ], we have P(sn,r,l > qn,r)−α < 0.
Consequently, the cumulative regret within this round can be expressed by grouping terms with positive and
negative signs as follows:

Tr∑
l=1

∣∣P(sn,r,l > qn,r | qn,r)− α
∣∣

=
∑

k:k is odd

∑
l∈Ik

(
P(sn,r,l > qn,r | qn,r)− α

)
+

∑
k:k is even

∑
l∈Ik

(
α− P(sn,r,l > qn,r | qn,r)

)
=

K∑
k=1

∑
l∈Ik

(
P(sn,r,l > qn,r | qn,r)− α

)
+ 2

∑
k:k is even

∑
l∈Ik

(
α− P(sn,r,l > qn,r | qn,r)

)
. (66)

The first term on the right-hand side of (66) can be readily controlled on the event An,r; more specifically,
it is seen from (65) that, on the event An,r,

K∑
k=1

∑
l∈Ik

(
P(sn,r,l > qn,r | qn,r)− α

)
=

Tr∑
l=1

(
P(sn,r,l > qn,r | qn,r)− α

)
≤ 30

√
Tr log(4τn,r). (67)
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We then turn to the second term on the right-hand side of (66). For every k ∈ [K], set

Ak :=
1

|Ik|
∑
l∈Ik

(
α− P(sn,r,l > qn,r | qn,r)

)
.

On the event An,r, it agains follows from (65) that√
|Ik|

30
√
log(4τn,r)

Ak =

√
|Ik|

30
√
log(4τn,r)

(
1

|Ik|
∑
l∈Ik

(
α− P(sn,r,l > qn,r) | qn,r

))
≤ 1. (68)

This allows one to deduce that, on the event An,r,∑
k:k is even

∑
l∈Ik

(
α− P(sn,r,l > qn,r | qn,r)

)
=

∑
k:k is even

|Ik| ·Ak =
∑

k:k is even

|Ik|
2
3

(
|Ik|

1
2 Ak

) 2
3

A
1
3

k

(68)
≤

∑
k:k is even

30 |Ik|
2
3 A

1
3

k

√
log T ≤ 30

√
log T

( ∑
k:k is even

|Ik|
) 2

3
( ∑

k:k is even

Ak

) 1
3

, (69)

where the last inequality follows from Hölder’s inequality. This leaves us with two sums to control.

• Regarding the summation of |Ik|, it is easily seen that

∑
k:k is even

|Ik| ≤
K∑

k=1

|Ik| = Tr. (70)

• Let us now turn to the summation of Ak. Given the way we partition the sets Ik, we see that for any
even number k (≥ 2), P

(
sn,r,ik−1

> qn,r
)
> α. Consequently, for any even k, one can bound Ak as

Ak =
1

|Ik|
∑
l∈Ik

(
α− P(sn,r,l > qn,r | qn,r)

)
≤ 1

|Ik|
∑
l∈Ik

(
P
(
sn,r,ik−1

> qn,r | qn,r
)
− P(sn,r,l > qn,r | qn,r)

)
=

1

|Ik|
∑
l∈Ik

l−1∑
i=ik−1

∆n,r,i,

(71)

where we define
∆n,r,i := P

(
sn,r,i > qn,r | qn,r

)
− P

(
sn,r,i+1 > qn,r | qn,r

)
.

The definition (6) of the KS distance tells us that

∆n,r,i ≤ KS
(
sn,r,i, sn,r,i+1

)
for all i ∈ [Tr],

which combined with Eqn. (71) leads to

Ak ≤
1

|Ik|
∑
l∈Ik

l−1∑
i=ik−1

KS
(
sn,r,i, sn,r,i+1

)
≤ 1

|Ik|
∑
l∈Ik

ik−1∑
i=ik−1

KS
(
sn,r,i, sn,r,i+1

)
=

ik−1∑
i=ik−1

KS
(
sn,r,i, sn,r,i+1

)
. (72)

Let sn,r,0 = sn,r,1. Summing over all even k yields

∑
k:k is even

Ak ≤
K∑

k=1

ik−1∑
i=ik−1

KS
(
sn,r,i, sn,r,i+1

)
=

Tr∑
i=0

KS
(
sn,r,i, sn,r,i+1

)
. (73)
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Putting Eqns. (70) and (73) together yields( ∑
k:k is even

|Ik|

) 2
3
( ∑

k:k is even

Ak

) 1
3

≤ T
2
3
r

(
Tr∑
i=1

KS
(
sn,r,i, sn,r,i+1

)) 1
3

=
(
KSroundn,r

) 1
3T

2
3
r ,

which taken together with Eqns. (66), (67) and (69) establishes that

Tr∑
l=1

∣∣∣P(sn,r,l > qn,r | qn,r)− α
∣∣∣ · 1{An,r} ≤ 30

√
log T

(√
Tr +

(
KSroundn,r

) 1
3T

2
3
r

)
= Õ

(√
Tr +

(
KSroundn,r

) 1
3T

2
3
r

)
.

B.3.2 Proof of Lemma B.2

Consider stage n, and denote by tn the number of iterations in the rn-th round (recall that rn denotes the
index of the last round of stage n). Observe that for any r ∈ [rn − 1] (resp. for r = rn), no initiation of a new
stage—i.e., no detection of distribution drift—is triggered within iterations {1, . . . , Tr} (resp. {1, . . . , tn − 1}).
In what follows, we look at the two drift settings separately.

Change-point setting. Note that the collection of time segments {In,r,k} described in Section B.1.1 can
be viewed as a refinement of {In,j}Jn

j=1; for instance, a given In,j might appear in more than one round,
possibly due to imperfect drift detection. For each j ∈ [Jn], denote by r(j) the index of the first round that
overlaps with the segment In,j ; it is straightforward to see that the last round that overlaps with In,j cannot
exceed r(j+1) (here, if this is already the last time segment in stage n, we can simply let r(j+1) be the last
round of this stage). Note that In,j may share its first and/or last round with In,j−1 or In,j+1. Therefore,
we have

In,j ⊆

{
r(j+1)−1⋃
r=r(j)+1

Kn,r⋃
k=1

In,r,k

}
∪
{
In,r(j),K

n,r(j)

}
∪
{
In,r(j+1),1

}
, (74)

which in turn gives

rn∑
r=1

Kn,r∑
k=1

√
|In,r,k| ≤

Jn∑
j=1


r(j+1)−1∑
r=r(j)+1

Kn,r∑
k=1

√
|In,r,k|+

√∣∣In,r(j),K
n,r(j)

∣∣+√∣∣In,r(j+1),1

∣∣ . (75)

Recognizing that each of the intermediate rounds r(j) + 1, . . . , r(j+1) − 1 is fully contained within In,j ,
we see that, by construction, each of these rounds also contains a single time segment from the collection
{In,r,k}. This means that for each r ∈ {r(j) + 1, . . . , r(j+1) − 1}, we have

Kn,r∑
k=1

√
|In,r,k| =

√
|In,r,1| ≤

√
Tr.

Consequently, for each j ∈ [Jn], we can bound

r(j+1)−1∑
r=r(j)+1

Kn,r∑
k=1

√
|In,r,k|+

√∣∣In,r(j),K
n,r(j)

∣∣+√∣∣In,r(j+1),1

∣∣≤ r(j+1)−1∑
r=r(j)+1

√
Tr + 2

√
|In,j |, (76)

where the last inequality holds since In,r(j),K
n,r(j)

∪ In,r(j+1),1 ⊆ In,j .
Next, we bound the summation of

√
Tr on the right-hand side of (76). If r(j) + 1 > r(j+1) − 1, then this

summation term is equal to 0; otherwise, it can be seen that (by construction)

Tr(j+1)−1 =
∣∣In,r(j+1)−1,1

∣∣ ≤ |In,j | ,
39



which implies that

r(j+1)−1∑
r=r(j)+1

√
Tr ≤

r(j+1)−1∑
r=1

√
Tr

(a)
=

r(j+1)−1∑
r=1

3
r
2 ≤ 3 · 3

r(j+1)−1
2

(b)
= 3

√
Tr(j+1)−1 ≤ 3

√
|In,j |. (77)

Here, (a) and (b) are valid due to our choice Tr = 3r and the fact that, except for the last round of this stage,
the r-th round has time length exactly equal to Tr.

Invoking Lemma B.1 as well as (39), we can demonstrate that

rn∑
r=1

{ Tr∑
l=1

∣∣P(sn,r,l > qn,r | qn,r)− α
∣∣}1{An,r}

≤
rn−1∑
r=1

{ Tr∑
l=1

∣∣P(sn,r,l > qn,r | qn,r)− α
∣∣}1{An,r}+

{ tn−1∑
l=1

∣∣P(sn,rn,l > qn,rn | qn,rn)− α
∣∣}1{An,rn}+ 1

≤ Õ

( rn∑
r=1

Kn,r∑
k=1

√
|In,r,k|

)
+ 1 ≤ Õ

( Jn∑
j=1

√
|In,j |

)
,

where the last line follows from Lemma B.1 and the fact that no distribution shift has been detected before
the last iteration of stage n. This taken collectively with (75)-(77) then yields

rn∑
r=1

{ Tr∑
l=1

∣∣P(sn,r,l > qn,r | qn,r)− α
∣∣}1{An,r} ≤ Õ

( rn∑
r=1

Kn,r∑
k=1

√
|In,r,k|

)
≤ Õ

( Jn∑
j=1

√
|In,j |

)
as claimed.

Smooth drift setting. To begin with, Lemma B.1 tells us that{ Tr∑
l=1

∣∣P(sn,r,l > qn,r | qn,r)− α
∣∣1}{An,r} = Õ

(√
Tr +

(
KSroundn,r

) 1
3T

2
3
r

)
, r = 1, 2, . . . , rn − 1 (78a)

and

tn∑
l=1

∣∣P(sn,rn,l > qn,rn | qn,rn)− α
∣∣1{An,rn} ≤

tn−1∑
l=1

∣∣P(sn,rn,l > qn,rn | qn,rn)− α
∣∣1{An,rn}+ 1

= Õ
(√

tn +
(
KSroundn,rn

) 1
3 t

2
3
n

)
. (78b)

Sum Eqn. (78) over all rounds in this stage to arrive at:

rn−1∑
r=1

Tr∑
l=1

∣∣P(sn,r,l > qn,r | qn,r)− α
∣∣1{An,r}+

tn∑
l=1

∣∣P(sn,rn,l > qn,rn | qn,rn)− α
∣∣1{An,rn}

=

rn−1∑
r=1

Õ
(√

Tr +
(
KSroundn,r

) 1
3T

2
3
r

)
+ Õ

(√
tn +

(
KSroundn,rn

) 1
3 t

2
3
n

)
(a)

≤ Õ

(
rn∑
r=1

3
r
2 +

rn−1∑
r=1

(
KSroundn,r

) 1
3T

2
3
r +

(
KSroundn,rn

) 1
3 t

2
3
n

)
(b)

≤ Õ

(
3

rn
2 +

( rn∑
r=1

(
KSroundn,r

)) 1
3

S
2
3
n

)
(c)

≤ Õ
(√

Sn + KS
1
3

n,Sn
S

2
3
n

)
.
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Here, (a) holds since Tr = 3r and tn ≤ 3rn , (b) follows from Hölder’s inequality, and (c) holds since the total
number Sn of time points within stage n satisfies

√
Sn ≥

( rn−1∑
r=1

3r
)1/2

≍ 3
rn
2 .

This taken together with (39) concludes the proof.

B.3.3 Proof of Lemma B.3

We establish this lemma by contradiction. Suppose that round rn − 1 and round rn are completely contained
within the same time segment from the collection {Ik}N

cp+1
k=1 . According to the procedure of DriftOCP, on

the event An,rn−1 ∩ An,rn there exists an index jn such that

1

Trn−1

∣∣∣∣∣
Trn−1∑
l=1

(
1{sn,rn−1,l > qn,rn} − α

)∣∣∣∣∣ ≤ 1

Trn−1
, (79a)

1

tn − jn + 1

∣∣∣∣∣
tn∑

l=jn

(
1{sn,rn,l > qn,rn} − α

)∣∣∣∣∣ > 24
√
log(4τn,rn)√

tn − jn + 1
, (79b)

where (79a) is valid since qn,rn is taken to be the α-empirical-quantile of the set {sn,rn−1,l}
Trn−1

l=1 , and in
(79b) we use the detection threshold σn,r = 24

√
log(4τn,r).

Since the two rounds lie within the same time segment from the collection {Ik}N
cp+1

k=1 , the scores in these
two rounds are identically distributed. Let s denote an independent copy of the score from this segment.
Then, on An,rn−1 ∩ An,rn (cf. (37)), we can invoke (79a) and the triangle inequality to obtain

∣∣∣P(s > qn,rn | qn,rn)− α
∣∣∣ = 1

Trn−1

∣∣∣∣∣
Trn−1∑
l=1

(
P(sn,rn−1,l > qn,rn | qn,rn)− α

)∣∣∣∣∣
≤ 1

Trn−1

∣∣∣∣∣
Trn−1∑
l=1

(
1{s > qn,rn} − α

)∣∣∣∣∣+ 1

Trn−1

∣∣∣∣∣
Trn−1∑
l=1

(
1{sn,rn−1,l > qn,rn} − P(s > qn,rn | qn,rn)

)∣∣∣∣∣
≤ 1

Trn−1
+

6
√
log τn+1√
Trn−1

≤
7
√
log τn+1√
Trn−1

≤
14
√
log τn+1√
Trn

. (80)

In the meantime, applying (79b) again on the same event and invoking the triangle inequality gives

∣∣∣P(s > qn,rn | qn,rn)− α
∣∣∣ = 1

tn − jn + 1

∣∣∣∣∣∣
tn∑

l=jn

(
P(sn,rn,l > qn,rn | qn,rn)− α

)∣∣∣∣∣∣
≥ 1

tn − jn + 1

∣∣∣∣∣
tn∑

l=jn

(
1{sn,rn,l > qn,rn} − α

)∣∣∣∣∣
− 1

tn − jn + 1

∣∣∣∣∣
tn∑

l=jn

(
1{sn,rn,l > qn,rn} − P(sn,rn,l > qn,rn | qn,rn)

)∣∣∣∣∣
(a)

≥
24
√

log(4τn,rn)√
tn − jn + 1

−
6
√
log τn+1√

tn − jn + 1
≥

18
√

log τn+1√
Trn

, (81)

where (a) follows by combining (79b) with the event An,rn . However, (81) contradicts (80), which in turn
completes the proof.
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C Detailed proofs in Section 4
This section is devoted to establishing the main results in Section 4. Throughout this section, we define, for
any cumulative distribution function (CDF) F , the quantile function

Q1−α(F ) := inf{x ∈ R : F (x) ≥ 1− α}. (82)

Also, we denote by C(· | Scal,Strain) the prediction-set mapping constructed via (22), where Strain is used to
fit the model and Scal is used to form the quantile.

C.1 Proof of Proposition 4.1
We first present the proof of Proposition 4.1, which concerns the training-conditional coverage guarantees
for standard full conformal methods. Before embarking on the proof, we introduce the following convenient
notation (when there is no ambiguity), which shall be used repeatedly throughout Section C.1.

Definition C.1 (Basic notation). We introduce the following notation, all conditioned on the realization
Ztrain
m+1:n = ztrainm+1:n (i.e., the portion of the training set that is disjoint from the calibration set).

• For any dataset S ⊆ X ×R, let µ̂S(·) := A
(
S ∪ ztrainm+1:n

)
be the fitted model trained obtained by algorithm

A on S ∪ ztrainm+1:n.

• For any dataset S ⊆ X × R and any Z = (X,Y ), let µ̂Z
S (·) := µ̂S∪{Z}(·) be the fitted model trained

obtained by algorithm A on S ∪ {(X,Y )} ∪ ztrainm+1:n.

• For any dataset S ⊆ X × R and any Z = (X,Y ), Z ′ = (X ′, Y ′), define the scores

sS(Z
′) :=

∣∣Y ′ − µ̂S(X
′)
∣∣ and sZS (Z

′) :=
∣∣Y ′ − µ̂Z

S (X
′)
∣∣. (83)

Remark C.1. Note that we introduce µ̂Z
S (·) in addition to µ̂S(·). This is because, in the full conformal

algorithm, the target sample Z is used for both model fitting and construction of the calibration quantile. To
emphasize this role and distinguish it from the pretrained-score setting, we adopt a separate notation.

C.1.1 Key lemmas

We first single out two key lemmas that play a pivotal role in the proof of Proposition 4.1. Here and
throughout, we take L = L1L2.

The first lemma characterizes the discrepancy between the tail distribution of the scores conditional on a
random calibration set and the corresponding tail distribution obtained after averaging over the randomness
of the calibration set, provided that a stable learning algorithm is used for model fitting. The proof is deferred
to Section C.3.1.

Lemma C.1. Consider the same setting as in Proposition 4.1. Let µ̂(X,Y )(·) denote a fitted model trained on
the data Ztrain

1:n together with the target sample Z = (X,Y ), and assume that µ̂(X,Y )(·) satisfies Assumption 4.3
with coefficient L2. Further, suppose that for each i ∈ [m], Zcal

i = (Xcal
i , Y cal

i ) is independently drawn from
Di, and let the target pair Z = (X,Y ) ∼ D. Then, for any δ ∈ (0, 1) and conditional on any given realization
Ztrain
m+1:n = ztrainm+1:n, we have

sup
x∈R

{∣∣∣∣PD

(∣∣Y − µ̂(X,Y )(X)
∣∣ > x

∣∣∣Zcal
1:m, Ztrain

m+1:n = ztrainm+1:n

)
− PD1:m×D

(∣∣Y − µ̂(X,Y )(X)
∣∣ > x

) ∣∣∣∣}
≤ 16L

n

√
m log

1

δ
(84)

with probability at least 1− δ. Here, we adopt the notation

PD1:m×D

(∣∣Y − µ̂(X,Y )(X)
∣∣ > x

)
:= EZcal

1:m

[
PD

(∣∣Y − µ̂(X,Y )(X)
∣∣ > x

∣∣∣Zcal
1:m, Ztrain

m+1:n = ztrainm+1:n

)]
.
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Another key lemma establishes a high-probability upper bound on the deviation of the average empirical
scores from their mean over a given time window. In contrast to the pretrained-score setting, full conformal
methods induce complicated statistical dependency among the scores {si}, leading to additional technical
difficulties. The proof of this lemma is provided in Section C.3.2.

Lemma C.2. Consider the same setting as in Proposition 4.1. Let µ̂(·) represent a fitted model trained on
Ztrain
1:n satisfying Assumption 4.3 with coefficient L2. Further, suppose that for each i ∈ [m], Zcal

i = (Xcal
i , Y cal

i )
is independently drawn from Di. For every i = 1, . . . ,m, we let

si :=
∣∣Y cal

i − µ̂(Xcal
i )
∣∣, i = 1, . . . ,m.

Then, for any δ ∈ (0, 1) and conditional on any realization Ztrain
m+1:n = ztrainm+1:n, the following event

sup
x∈R

{
1

m

∣∣∣∣ m∑
i=1

(
1 {si ≤ x} − PD1:m

(
si ≤ x

)) ∣∣∣∣
}
≤ 24

√
log(10/δ)

m
+

24L

n

√
m log

(
10m

δ
+ n

)
happens with probability at least 1− δ.

C.1.2 Proof of Proposition 4.1

For notational convenience, we write Z1:m in place of Zcal
1:m throughout this proof when it is clear from the

context. Fix an auxiliary sample z0 = (x0, y0), which shall be treated as deterministic in the following. We
introduce several addition notation:

• si := sZ1:m∪{z0}(Zi) =
∣∣Yi − µ̂Z1:m∪{z0}(Xi)

∣∣ for i = 1, . . . ,m, and stest :=
∣∣Y − µ̂Z1:m∪{z0}(X)

∣∣, where
(X,Y ) is not used for model fitting;

• s
(X,Y )
i := sZZ1:m

(Zi) =
∣∣Yi− µ̂

(X,Y )
Z1:m

(Xi)
∣∣ for i = 1, . . . ,m, and s

(X,Y )
test :=

∣∣Y − µ̂
(X,Y )
Z1:m

(X)
∣∣, where (X,Y )

is used for for model fitting;

• Q̂1−α := Q1−α

(
1

m+1

{
δ{s(X,Y )

test }+
m∑
i=1

δ{s(X,Y )
i }

})
, which indicates the quantile when (X,Y ) is also

used for model fitting;

• Q̃1−α := Q1−α

(
1

m+1

{
δ{s(X,Y )

test }+
m∑
i=1

δ{si}
})

; note that except for s(X,Y )
test , the remaining scores {si}mi=1

are computed when (X,Y ) is not used for training;

• Ftest(u; z1:m) := P(X,Y )∼D

(∣∣Y − µ̂
(X,Y )
z1:m (X)

∣∣ ≤ u
)
, Ftest(u) := EZ1:m∼D1:m

[Ftest(u;Z1:m)];

• Fi(u) := PD×D1:m

(
s
(X,Y )
i ≤ u

)
and F 0

i (u) := PD1:m

(
si ≤ u

)
for i = 1, . . . ,m.

Step 1: eliminating the dependence of the fitted model on (X,Y ). The first step of the proof is to
examine the effect of removing the dependence of the fitted model µ̂(X,Y )(·) on the target sample (X,Y ). To
be precise, consider the discrepancy between

PD(Y ∈ C(X) | Z1:m) = PD(s
(X,Y )
test ≤ Q̂1−α | Z1:m) and PD(s

(X,Y )
test ≤ Q̃1−α).

For the two score sets {s(X,Y )
test } ∪ {s(X,Y )

i }mi=1 and {s(X,Y )
test } ∪ {si}mi=1, Assumption 4.3 tells us that

max
i∈[m]

{∣∣ s(X,Y )
i − si

∣∣} ≤ max
i∈[m]

{∣∣ µ̂(X,Y )
Z1:m

(Xi)− µ̂Z1:m
(Xi)

∣∣} ≤ L2

n
.

Then by virtue of Han et al. (2024a, Lemma B.1), we obtain∣∣ Q̂1−α − Q̃1−α

∣∣ ≤ L2

n
(85)
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for any (X,Y ) and Z1:m. Combining this with Assumption 4.2 yields∣∣∣PD(Y ∈ C(X) | Z1:m)− PD
(
s
(X,Y )
test ≤ Q̃1−α | Z1:m

) ∣∣∣
=
∣∣∣PD

(
s
(X,Y )
test ≤ Q̂1−α | Z1:m

)
− PD

(
s
(X,Y )
test ≤ Q̃1−α | Z1:m

) ∣∣∣
≤ PD

(
s
(X,Y )
test ∈

[
Q̃1−α −

∣∣ Q̂1−α − Q̃1−α

∣∣, Q̃1−α +
∣∣ Q̂1−α − Q̃1−α

∣∣] | Z1:m

)
≤ PD

(
s
(X,Y )
test ∈

[
Q̃1−α −

L2

n
, Q̃1−α +

L2

n

] ∣∣∣Z1:m

)
≤ 4L1L2

n
=

4L

n
,

(86)

where the penultimate line results from (85), and the last line is due to Assumption 4.2. This inequality
allows us to switch attention to PD(s

(X,Y )
test ≤ Q̃1−α | Z1:m).

Step 2: replacing Q̃1−α with an adjusted quantile independent of (X,Y ). Note that by definition,
Q̃1−α still depends on the test score s

(X,Y )
test , which motivates us to consider replacing Q̃1−α with an alternative

quantile independent of s(X,Y )
test . More precisely, define the following adjusted quantile

Q̌1−α := inf
{
x ∈ R :

m∑
n=1

1{si ≤ x} ≥ ⌈(1− α)m− α⌉
}
., (87)

which satisfies the following property.

Claim C.1. The adjusted quantile defined in (87) satisfies{
s
(x,y)
test ≤ Q̃1−α

}
⇐⇒

{
s
(x,y)
test ≤ Q̌1−α

}
.

It then follows immediately from Claim C.1 that

PD
(
s
(X,Y )
test ≤ Q̃1−α | Z1:m

)
= PD

(
s
(X,Y )
test ≤ Q̌1−α | Z1:m

)
= Ftest(Q̌1−α;Z1:m), (88)

where Ftest(·; ·) is defined at the beginning of this subsection. It then boils down to controlling Ftest(Q̌1−α;Z1:m).

Proof of Claim C.1. From the definition of the quantile functional, one has

{
s
(x,y)
test ≤ Q̃1−α

}
⇐⇒ s

(x,y)
test ≤ inf

{
q ∈ R :

1

m+ 1
1{s(x,y)test ≤ q}+ 1

m+ 1

m∑
i=1

1{si ≤ q} ≥ 1− α
}

⇐⇒ 1{s(x,y)test ≤ s
(x,y)
test }+

m∑
i=1

1{si ≤ s
(x,y)
test } ≤ ⌈(1− α)(m+ 1)⌉.

Given the trivial fact 1{s(x,y)test ≤ s
(x,y)
test } = 1, the last display is equivalent to

m∑
i=1

1{si ≤ s
(x,y)
test } ≤ ⌈(1− α)(m+ 1)− 1⌉ = ⌈(1− α)m− α⌉.

By the definition (87) of Q̌1−α, this inequality holds if and only if s(x,y)test ≤ Q̌1−α. This proves the claim.

Step 3: controlling Ftest(Q̌1−α;Z1:m). In order to control Ftest(Q̌1−α;Z1:m), we begin with the following
decomposition:∣∣∣Ftest(Q̌1−α;Z1:m)−(1− α)

∣∣∣ ≤ ∣∣Ftest(Q̌1−α;Z1:m)− Ftest(Q̌1−α)
∣∣︸ ︷︷ ︸

=:T1

+

∣∣∣∣ 1m
m∑
i=1

[
F 0
i (Q̌1−α)− 1

{
si ≤ Q̌1−α

}] ∣∣∣∣︸ ︷︷ ︸
=:T2
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+

∣∣∣∣Ftest(Q̌1−α)−
1

m

m∑
i=1

F 0
i (Q̌1−α)

∣∣∣∣︸ ︷︷ ︸
=:T3

+

∣∣∣∣ 1m
m∑
i=1

1
{
si ≤ Q̌1−α

}
− (1− α)

∣∣∣∣︸ ︷︷ ︸
=:T4

, (89)

where both Ftest(·) and F 0
i (·) are defined at the beginning of this subsection. This decomposition leaves us

with four terms to cope with.

• Bounding T1 and T2. Define the typical events E1 and E2 as:

E1 :=

{
sup
u∈R

{∣∣∣Ftest(u;Z1:m)− Ftest(u)
∣∣∣} ≤ 16L

n

√
m log

2

δ

}
;

E2 :=

{
sup
u∈R

{∣∣∣ 1
m

m∑
i=1

(
1 {si ≤ u} − F 0

i (u)
)∣∣∣} ≤ 24

√
log(40/δ)

m
+

24L

n

√
m log

(
40m

δ
+ n

)}
.

Lemmas C.1 and C.2 imply that, with probability at least 1− δ, these two events occur simultaneously.
On the event E1 ∩ E2, the terms T1 and T2 satisfy

T1 =
∣∣Ftest(Q̌1−α;Z1:m)− Ftest(Q̌1−α)

∣∣ ≤ sup
u∈R

∣∣∣Ftest(u;Z1:m)− Ftest(u)
∣∣∣ ≤ 16L

√
m log(2/δ)

n
; (90)

T2 =

∣∣∣∣ 1m
m∑
i=1

[
F 0
i (Q̌1−α)− 1

{
si ≤ Q̌1−α

}] ∣∣∣∣ ≤ sup
u∈R

∣∣∣∣ 1m
m∑
i=1

[
F 0
i (u)− 1 {si ≤ u}

] ∣∣∣∣
≤ 24

√
log(40/δ)

m
+

24L

n

√
m log

(
40m

δ
+ n

)
. (91)

• Bounding T3. Regarding T3, it follows from the triangle inequality and the definition of the total-variation
distance that

T3 =

∣∣∣∣Ftest(Q̌1−α)−
1

m

m∑
i=1

F 0
i (Q̌1−α)

∣∣∣∣ ≤ 1

m

m∑
i=1

∣∣Ftest(Q̌1−α)− F 0
i (Q̌1−α)

∣∣
≤ 1

m

m∑
i=1

(
sup
u∈R

{
|Ftest(u)− Fi(u)|

}
+ sup

u∈R

{ ∣∣F 0
i (u)− Fi(u)

∣∣ })
(a)

≤ 1

m

m∑
i=1

(
KS
(
s
(X,Y )
test , s

(X,Y )
i

)
+

4L

n

) (b)

≤ 2

m

m∑
i=0

TV(Z,Zi) +
8L

n
, (92)

where Fi(·) is defined at the beginning of this subsection. Inequalities (a) and (b) are justified below.

– To validate inequality (a) in (92), observe that

F 0
i (u)− Fi(u) = P

(
s
(X,Y )
i ≤ u

)
− P(si ≤ u)

(i)

≤ P
(
u−

∣∣ µ̂(X,Y )
Z1:m

(Xi)− µ̂Z1:m∪{z0}(Xi)
∣∣ < si ≤ u+

∣∣ µ̂(X,Y )
Z1:m

(Xi)− µ̂Z1:m∪{z0}(Xi)
∣∣)

(ii)

≤ P
(
u− L2

n
< si ≤ u+

L2

n

)
≤ P

((
µ̂Z1:m∪{z0}(Xi)− u

)
− L2

n
< Yi ≤

(
µ̂Z1:m∪{z0}(Xi)− u

)
+

L2

n

)
+ P

((
µ̂Z1:m∪{z0}(Xi) + u

)
− L2

n
< Yi ≤

(
µ̂Z1:m∪{z0}(Xi) + u

)
+

L2

n

)
(iii)

≤ 4L1L2

n
=

4L

n
,

where (ii) arises from Assumption 4.3, (iii) follows from Assumption 4.2, respectively, and (i) is a
direct consequence of the definition of s(X,Y )

i and si (see the beginning of the subsection) and the
following elementary fact.
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Fact C.1.
∣∣P(|a| > u)− P(|a+ δ| > u)

∣∣ ≤ P(u− |δ| ≤ |a| ≤ u+ |δ|).

Proof of Fact C.1. We observe that∣∣P(|a| > u)− P(|a+ δ| > u)
∣∣ = max

{
P(|a| > u)− P(|a+ δ| > u), P(|a+ δ| > u)− P(|a| > u)

}
≤ P(|a|+ |δ| > u)− P(|a| − |δ| > u) ≤ P(u− |δ| ≤ |a| ≤ u+ |δ|)

as claimed.

– We now justify inequality (b) in (92). Consider any index i, and define Zi
1:m as the dataset obtained

from Z1:m by replacing the i-th sample Zi with the target sample Z. Based on Zi
1:m, introduce

the auxiliary score
s′i :=

∣∣Yi − µ̂
(Xi,Yi)

Zi
1:m

(Xi)
∣∣.

In view of Assumption 4.3, s′i differs from s
(X,Y )
i by at most 2L2/n. Combining this with

Assumption 4.2 immediately yields

KS
(
s′i, s

(X,Y )
i

)
≤ 4L1L2

n
=

4L

n
.

As a consequence, for each i = 1, . . . ,m we have

KS
(
s
(X,Y )
test , s

(X,Y )
i

)
≤ KS

(
s
(X,Y )
test , s′i

)
+ KS

(
s′i, s

(X,Y )
i

)
(iv)

≤ TV
((

Z1:m, Z
)
,
(
Zi
1:m, Zi

))
+

4L

n
(v)

≤ 2TV(Z,Zi) +
4L

n
.

Here, (iv) is valid since s
(X,Y )
test and s′i are outputs of the same measurable mapping, evaluated at

(Z1:m, Z) and (Zi
1:m, Zi), respectively, whereas (v) invokes Barber et al. (2023, Lemma 1).

• Bounding T4. According to the definition of Q̌1−α, the term T4 can be bounded by

T4 =

∣∣∣∣ 1m
m∑
i=1

1
{
si ≤ Q̌1−α

}
− (1− α)

∣∣∣∣ = ∣∣∣∣⌈(1− α)m− α⌉
m

− (1− α)

∣∣∣∣ < 1

m
, (93)

where the last inequality follows since

−1 < (1− α)m− α− (1− α)m ≤ ⌈(1− α)m− α⌉ − (1− α)m

≤ (1− α)m− α+ 1− (1− α)m < 1.

Substituting the preceding bounds on T1, . . . , T4 into (89), we arrive at

∣∣∣Ftest(Q̌1−α;Z1:m)−(1− α)
∣∣∣ ≤ 16L

√
m log(2/δ)

n
+ 24

√
log(40/δ)

m
+

24L

n

√
m log

(
40m

δ
+ n

)
+

2

m

m∑
i=0

TV(Z,Zi) +
8L

n
+

1

m

≤
40L

√
m log(45n/δ)

n
+ 24

√
log(40/δ)

m
+

2

m

m∑
i=0

TV(Z,Zi) +
8L

n
+

1

m

≤
48L

√
m log(45n/δ)

n
+ 25

√
log(40/δ)

m
+

2

m

m∑
i=0

TV(Z,Zi). (94)
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Step 4: putting all this together. Finally, taking the above results (86), (88) and (94) collectively, we
can readily finish the proof of Proposition 4.1.

C.2 Proof of Theorem 4.1
This section is dedicated to establishing Theorem 4.1.

Notation. For ease of presentation, we adopt the notation introduced in Definition B.1 as well as in
Section 4.1. In addition, we shall adopt the following notation:

• For any k ≤ m < t ∈ [T ], let

Qk,m,t
1−α := Q1−α

(
1

m− k + 2

(
δ{sZt

Z1:m
(Zt)}+

m∑
l=k

δ{sZt

Z1:m
(Zl)}

))
, (95)

representing the quantile when (i) the data Z1:m∪{Zt} are used for training; and (ii) the data Zk:m∪{Zt}
are used for calibration.

• For any k ≤ m < i ≤ j, define the event

A(k,m; i, j) :=

{∣∣∣∣ j∑
t=i

(
1
{
sZt

Z1:m
(Zt) ≤ Qk,m,t

1−α

}
− PDt

(
sZt

Z1:m
(Zt) ≤ Qk,m,t

1−α | Z1:m

))∣∣∣∣
≤ 2
√
(j − i+ 1) log(2j)

}
, (96a)

which is concerned with the deviation of the empirical coverage from the training-conditional mean
coverage over the time window [i, j]. As we shall see momentarily, this is a high-probability event.

• For any stage-round pair (n, r), take

An,r :=

τn,r+1−1⋂
i=τn,r

τn,r+1−1⋂
j=i+1

A(τn,r−1, τn,r − 1; i, j). (96b)

Step 1: regret decomposition. Following the proof structure of Theorem 3.1, we decompose the
cumulative regret of interest as

T∑
t=1

∣∣P(Yt ∈ Ct(Xt) | Ct)− (1− α)
∣∣ = N∑

n=1

rn∑
r=1

Tr∑
l=1

∣∣∣P(Yn,r,l ∈ Cn,r(Xn,r,l) | Cn,r)− (1− α)
∣∣∣1{An,r}

+

N∑
n=1

rn∑
r=1

Tr∑
l=1

∣∣∣P(Yn,r,l ∈ Cn,r(Xn,r,l) | Cn,r)− (1− α)
∣∣∣1{Ac

n,r}.

(97)

Here we write P( · | Cn,r) (or P( · | Ct)) for the conditional probability given the set-valued mapping Cn,r(·)
(or Ct(·)). Further, similar to (39), we augment the data to simplify notation: although the last round of
stage n contains only tn ≤ Tr time instances, we still generate Zn,r,l = (Xn,r,l, Yn,r,l) for every l > tn in an
i.i.d. manner obeying

P(Yn,r,l ∈ Cn,r(Xn,r,l) | Cn,r) = 1− α for all l > tn. (98)

Step 2: bounding the second term on the right-hand side of (97). Akin to the pretrained-score
setting, the first term on the right-hand side of (97) is the dominant term in the above regret decomposition.
To justify this, let us look at the second term on the right-hand side of (97). Fix a realization Z1:m = z1:m.
Then for each t ∈ [i, j] with m < i, the indicator 1

{
sZt
z1:m(Zt) ≤ Qk,m,t

1−α

}
is a function of Zt only, and hence
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this collection of indicator variables over the time window [i, j] are statistically independent. Moreover, the
conditional mean of this indicator variable at time t is PDt

(
sZt
z1:m(Zt) ≤ Qk,m,t

1−α | Z1:m = z1:m
)
. Therefore,

Hoeffding’s inequality readily yields

P
(
A(k,m; i, j)c | Z1:m = z1:m

)
≤ j−8 for all z1:m (99a)

=⇒ P
(
A(k,m; i, j)c

)
≤ EZ1:m

[
P
(
A(k,m; i, j)c | Z1:m

)]
≤ j−8. (99b)

Now consider any time point t ≥ 4 that resides within round r of stage n. By the construction of
DriftOCP-full, we have

t

16
≤ τn,r

4
≤ τn,r−1 < τn,r ≤ t ≤ τn,r+1 ≤ 4t.

Consequently, defining

Et :=
t⋂

m= t
4

m⋂
k= t

16

4t⋂
j= t

4

t⋂
i= t

4

A(k,m; i, j)

in which the index pair (k,m) ranges over all values that (τn,r−1, τn,r) may take, we have

Et ⊆ An,r.

Regarding this event Et, it follows from (99) that

P(Ect ) ≤
t∑

m= t
4

m∑
k= t

16

4t∑
j= t

4

j∑
i= t

4

P
(
A(k,m; i, j)c

)
≤ t2

4t∑
j= t

4

jP
(
A(k,m; i, j)c

)
≤ t2

4t∑
j= t

4

1

j7
= O

(
t−4
)
.

Therefore, the second term on the right-hand side of (97) can be bounded above by

E
[ N∑
n=1

rn∑
r=1

Tr∑
l=1

∣∣∣P(Yn,r,l ∈ Cn,r(Xn,r,l) | Cn,r)− (1− α)
∣∣∣1{Ac

n,r}
]

≤ E

[
T∑

t=1

∣∣P(Yt ∈ Ct(Xt) | Cn,r)− α
∣∣1{Ect }

]
≤

T∑
t=1

P
(
Ect
)
= O

(
T∑

t=1

1

t4

)
= O(1).

(100)

Step 3: bounding the first term on the right-hand side of (97). It remains to bound the first term
on the right-hand side of (97). The overall proof follows a similar strategy to that used in the pretrained-score
setting. To avoid unnecessary repetition, we shall focus primarily on the steps that differ nontrivially from
the pretrained-score case.

To begin with, by adapting the arguments in the proof of Lemma B.2, we obtain the following result,
whose proof of Lemma C.3 is deferred to Section C.3.3.

Lemma C.3. Consider any stage n in Algorithm 4, which comprises rn rounds and Sn time points. Reusing
the notation introduced in Definition B.1, we have

rn∑
r=1

( Tr∑
l=1

∣∣∣P(Yn,r,l ∈ Cn,r | Cn,r)− (1− α)
∣∣∣)1{An,r}

≤


Õ

(
Jn∑
j=1

√
|In,j |

)
, for the change-point setting,

Õ
(√

Sn + (TVstage
n )

1
3S

2
3
n

)
, for the smooth drift setting,

(101)

where we set

TVstage
n :=

rn∑
r=1

Sn,r−1∑
l=1

TV(Zn,r,l, Zn,r,l+1). (102)
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Given that Lemma C.3 controls the cumulative regret within a single stage, it remains to extend this
bound to the entire time horizon, which we handle separately for the two drift settings in Steps 4 and 5.

Before proceeding, let us introduce a collection of typical events that will be used in both settings. For
any two time points 1 ≤ k < m ≤ T , define the event

G(k,m) :=

{∣∣∣P(Ym /∈ C(Xm | Zk:m−1, Z1:m−1) | Z1:m−1

)
− α

∣∣∣ ≤ 26
√

log(40m)

m− k

+
27L

√
(m− k) log(40m)

m
+

1

m− k

m−1∑
l=k

TV
(
Zm, Zl

)}
, (103)

as motivated by Proposition 4.1. Here the notation C(· | ·, ·) is defined at the beginning of Section C. For any
stage n, define the typical event Bn as follows

Bn := An,rn ∩ G(τn,rn−1, τn,rn). (104)

In addition, the following two lemmas will be used in the analysis for both drift settings, and we therefore state
them here for subsequent use. The first lemma shows that Bn is an event with sufficiently high probability
(even when suitably weighted by τn+1); the proof can be found in Section C.3.4.

Lemma C.4. For any n ≥ 1, recall that τn denotes the starting time of stage n. Then we have

E
[
τn+11{Bcn}

]
≤ O

(
n−2

)
.

Another useful lemma shows that the aggregate total variation over the last two rounds of each stage is
sufficiently large (at least on some high-probability event). The proof can be found in Section C.3.5.

Lemma C.5. For any stage n ≤ N − 1, define

TVtail
n :=

Trn−1∑
j=1

TV(Zn,rn,j , Zn,rn,j+1) +

Trn−1∑
i=1

TV(Zn,rn−1,i, Zn,rn−1,i+1), (105)

and introduce the event
Hn :=

{
Trn−1

√
log(40τn,rn) ≤

τn,rn
256

}
. (106)

Recalling that tn ≤ Trn is the number of iterations in round rn of stage n, one has
√
tn TV

tail
n 1

{
Bn ∩Hn

}
≥ 3 · 1

{
Bn ∩Hn

}
.

Step 4: analysis for the change-point setting. In this setting, Lemma C.3 allows one to decompose

N∑
n=1

rn∑
r=1

Tr∑
l=1

∣∣P(Yn,r,l /∈ Cn,r(Xn,r,l) | Cn,r)− α
∣∣1{An,r} ≤ Õ

(
N∑

n=1

( Jn∑
j=1

√
|In,j |

))

≤ Õ

(
N∑

n=1

( Jn∑
j=1

√
|In,j |

)
1{Bn}+

N∑
n=1

(τn+1 − τn)1{Bcn}

)
, (107)

where the last line follows since, by Cauchy-Schwarz,

Jn∑
j=1

√∣∣ In,j ∣∣ ≤
√√√√Jn

Jn∑
j=1

∣∣ In,j ∣∣ =√Jn(τn+1 − τn) ≤ τn+1 − τn.

• We start with the last term on the right-hand side of (107), for which Lemma C.4 indicates that

E
[ N∑
n=1

(τn+1 − τn)1{Bcn}
]
≤

∞∑
n=1

E
[
τn+11{Bcn}

]
≤ O

( ∞∑
n=1

1

n2

)
= O(1). (108)

49



• When it comes to the first term on the right-hand side of (107), we first divide it into

N∑
n=1

( Jn∑
j=1

√
|In,j |

)
1{Bn} ≤

N∑
n=1

( Jn−1∑
j=1

√
|In,j |

)

+

N∑
n=1

√
|In,Jn

|1{Bn ∩Hn}+
N∑

n=1

√
|In,Jn

|1{Hc
n},

(109)

where Hn is defined in (106). We shall bound the three terms on the right-hand side of (109) separately.

– As for the first term on the right-hand side of (109), we first make the observation that: the time
segments In,j (n = 1, . . . , N and j = 1, . . . , Jn − 1) belong to distinct time segments in {Ik}N

cp+1
k=1 .

As a result, we can derive

N∑
n=1

Jn−1∑
j=1

√
|In,j | ≤

N cp+1∑
k=1

√
|Ik| ≤

√
(N cp + 1)T , (110)

where the last relation arises from the Cauchy-Schwarz inequality.
– With regards to the second term on the right-hand side of (109), by the construction of In,j we

know that, for each terminal interval In,Jn
, there exists a unique time segment Ikn

defined in
Definition B.1 such that In,Jn

⊆ Ikn
. Moreover, the indices are nondecreasing, namely kn ≤ kn+1

for n = 1, . . . , N − 1. In particular, when Jn ≥ 2, stage n must contain a distribution change,
which implies kn > kn−1. Using these properties, we can obtain

N∑
n=1

√
|In,Jn

|1{Bn ∩Hn}
(a)

≤
N∑

n=1

√
|In,Jn

|1{Jn ≥ 2}

≤
N∑

n=1

√∣∣ Ikn

∣∣1{kn > kn−1} ≤
N cp+1∑
k=1

√
|Ik| ≤

√
(N cp + 1)T .

(111)

Here, (a) follows since, on the event Bn∩Hn, we have
√
tnTV

tail
n ≥ 3 > 0 (according to Lemma C.5),

which implies that stage n must contain a distribution shift and hence necessarily requires Jn ≥ 2.
– It remains to bound the third term on the right-hand side of (109). To this end, we make note of

the following relations between the two sequences {τn,r}n,r and {Tr}r:

τn−1,rn−1 ≤ τn,rn−1; τn,rn − τn,rn−1 = Trn−1.

In particular, the intervals {[τn,rn−1 + 1, τn,rn ]}Nn=1 are pairwise disjoint, and as a result,

N∑
n=1

1{Hc
n} =

N∑
n=1

1

{
Trn−1

√
log(40τn,rn) >

τn,rn
256L

}
≤

N∑
n=1

256L
√
log(40T )(τn,rn − τn,rn−1)

τn,rn

≤ 256L
√
log(40T )

N∑
n=1

τn,rn∑
i=τn,rn−1+1

1

τn,rn
≤ 256L

√
log(40T )

N∑
n=1

τn,rn∑
i=τn,rn−1+1

1

i

≤ 256L
√
log(40T )

T∑
i=1

1

i
≤ 256L

(
log(40T )

) 3
2 . (112)

Consequently, taking this together with the Cauchy-Schwarz inequality yields

N∑
n=1

√
|In,Jn

|1{Hc
n} ≤

N∑
n=1

√
Sn1 {Hc

n}≤

√√√√( N∑
n=1

Sn

)(
N∑

n=1

1{Hc
n}

)

≤

√√√√T

(
N∑

n=1

1{Hc
n}

)
(112)
≤ Õ

(√
LT
)
.

(113)
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Combining (107)–(111) and (113) reveals that

E

[
N∑

n=1

rn∑
r=1

Tr∑
l=1

∣∣P(Yn,r,l /∈ Cn,r(Xn,r,l) | Cn,r)− α
∣∣1{An,r}

]
≤ Õ(

√
(N cp + L+ 1)T ), (114)

which together with (97) and (100) establishes the advertised regret bound for the change-point setting.

Step 5: analysis for the smooth drift setting. With Lemma C.3 in mind, we first analyze
∑N

n=1

√
Sn.

Recalling the definition of TVtail
n in (105), we make the observation that

N∑
n=1

√
Sn1 {Bn} ≤

√
SN +

N−1∑
n=1

√
Sn1 {Hn}1 {Bn}+

N∑
n=1

√
Sn1 {Hc

n}1 {Bn}

≤
√
T +

N−1∑
n=1

√
Sn

(√
tnTV

tail
n

) 1
3

+

√√√√( N∑
n=1

Sn

)(
N∑

n=1

1{Hc
n}

)

≤
√
T +

N−1∑
n=1

S
2
3
n

(
TVtail

n

) 1
3 +

√√√√T

(
N∑

n=1

1{Hc
n}

)

≤
√
T +

(
N−1∑
n=1

Sn

) 2
3
(

N−1∑
n=1

TVtail
n

) 1
3

+

√√√√T

(
N∑

n=1

1{Hc
n}

)

≤
√
T + 2T

2
3TV

1
3

T +

√√√√T

(
N∑

n=1

1{Hc
n}

)
(112)
= Õ

(
T

2
3TV

1
3

T +
√
(L+ 1)T

)
,

(115)

where the second line arises from Lemma C.5 and the Cauchy-Schwarz inequality, the penultimate line results
from Hölder’s inequality, and the last inequality holds because for any n, TVtail

n is counted at most twice in
the summation from 1 to N . Taking this collectively with Lemma C.4, we can demonstrate that

E

[
N∑

n=1

√
Sn

]
≤ E

[
N∑

n=1

√
Sn1{Bn}

]
+ E

[
N∑

n=1

√
Sn1{Bcn}

]

≤ Õ
(√

(L+ 1)T + T
3
2TV

1
3

T

)
+ E

[
N∑

n=1

τn+11{Bcn}

]

≤ Õ
(√

(L+ 1)T + T
3
2TV

1
3

T

)
+

∞∑
n=1

E
[
τn+11{Bcn}

]
= Õ

(√
(L+ 1)T + T

3
2TV

1
3

T +

∞∑
n=1

1

n2

)
= Õ

(√
(L+ 1)T + TV

1
3

TT
2
3

)
.

Armed with the above bound, we can readily invoke Lemma C.3 and apply Hölder’s inequality to yield

E

[
N∑

n=1

rn∑
r=1

Tr∑
l=1

∣∣∣P(Yn,r,l ∈Cn,r(Xn,r,l) | Cn,r)− (1− α)
∣∣∣1{An,r}

]
= Õ

(
E
[ N∑
n=1

√
Sn

]
+

N∑
n=1

(
TVstage

n

) 1
3S

2
3
n

)

≤ Õ

(√
(L+ 1)T + TV

1
3

TT
2
3 +

( N∑
n=1

TVstage
n

) 1
3
( N∑

n=1

Sn

) 2
3

)
≤ Õ

(√
(L+ 1)T + TV

1
3

TT
2
3

)
.

Taking this together with (97) and (100) establishes the claimed regret bound for the smooth drift setting.
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C.3 Proof of auxiliary lemmas
C.3.1 Proof of Lemma C.1

For notational convenience, we write Z1:m here in place of Zcal
1:m as long as it is clear from the context.

To apply McDiarmid’s inequality, consider two given calibration datasets, z1:m and z′1:m, which differ in
exactly one sample. For any given point (x, y) ∈ Z, define the corresponding scores as

s(X,Y )
z1:m (x, y) :=

∣∣y − µ̂(X,Y )
z1:m (x)

∣∣, s
(X,Y )
z′
1:m

(x, y) :=
∣∣y − µ̂

(X,Y )
z′
1:m

(x)
∣∣.

Note that both µ̂
(X,Y )
z1:m (·) and µ̂

(X,Y )
z′
1:m

(·) are trained on n+ 1 data points. Then, by Assumption 4.3, for any
x ∈ X we have ∣∣∣µ̂(X,Y )

z1:m (x)− µ̂
(X,Y )
z′
1:m

(x)
∣∣∣ ≤ L2

n
.

Combining this with Assumption 4.2, which assumes the Lipschitz continuity of the distribution function, we
see that: for (X,Y ) ∼ D,∣∣∣PD

(
s(X,Y )
z1:m (X,Y ) > u

)
− PD

(
s
(X,Y )
z′
1:m

(X,Y ) > u
)∣∣∣ (a)≤ PD

(
u−∆ ≤ s(X,Y )

z1:m (X,Y ) ≤ u+∆
)

(b)

≤ 4L1 sup
X,Y

{∣∣∣µ̂(X,Y )
z1:m (X)− µ̂

(X,Y )
z′
1:m

(X)
∣∣∣}

≤ 4L1L2

n
=

4L

n
, (116)

where ∆ :=
∣∣µ̂(X,Y )

z1:m (X)− µ̂
(X,Y )
z′
1:m

(X)
∣∣. Here, (a) is a result of Fact C.1 whereas (b) follows since

PD

(
u−∆ ≤ s(X,Y )

z1:m (X,Y ) ≤ u+∆
)
≤ PD

(
−u−∆ ≤ Y − µ̂(X,Y )

z1:m ≤ −u+∆
)

+ PD

(
u−∆ ≤ Y − µ̂(X,Y )

z1:m ≤ u+∆
)

≤ sup
µ∈R

PD

(
(µ− u)−∆′ ≤ Y ≤ ∆′ + (µ− u)

)
+ sup

µ∈R
PD

(
(µ+ u)−∆′ ≤ Y ≤ ∆′ + (µ+ u)

)
≤ 4L1∆

′ (117)

with ∆′ := sup
X,Y

{∣∣µ̂(X,Y )
z1:m (X)− µ̂

(X,Y )
z′
1:m

(X)
∣∣}.

From (116), we observe that PD
(
s
(X,Y )
z1:m (X,Y ) > u

)
—when viewed as a function of z1:m—satisfies the

bounded difference property with coefficient 4L/n. Now, we make the following definition:

Q(z1:m, u) :=
∣∣∣PD

(
s(X,Y )
z1:m (X,Y ) > u

)
− PD1:m×D

(
s
(X,Y )
Z1:m

(X,Y ) > u
)∣∣∣ ,

Q(z1:m) := sup
u∈R

{
Q(z1:m, u)

}
,

where
PD1:m×D

(
s
(X,Y )
Z1:m

(X,Y ) > u
)
:= EZ1:m∼D1:m

[
P(X,Y )∼D

(
s
(X,Y )
Z1:m

(X,Y ) > u
∣∣∣Z1:m

)]
. (118)

Then, basic calculation yields

Q(z1:m)−Q(z′1:m) = sup
u∈R

{
Q(z1:m, u)

}
− sup

u∈R

{
Q(z′1:m, u)

}
≤ sup

u∈R

{
Q(z1:m, u)−Q(z′1:m, u)

}
≤ 4L

n
.
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Hence, by applying McDiarmid’s inequality (Lemma E.1), we can demonstrate that

sup
u∈R

{∣∣∣PD

(
s
(X,Y )
Z1:m

(X,Y ) > u
∣∣∣ Z1:m

)
− PD1:m×D

(
s
(X,Y )
Z1:m

(X,Y ) > u
)∣∣∣} = Q(Z1:m)

≤ EZ1:m
[Q(Z1:m)] + 4L

√
m log 1

δ

n

(119)

holds with probability exceeding 1− δ.
Now consider any given z0 = (x0, y0), and denote µ̂0

z1:m(·) := µ̂
(x0,y0)
z1:m (·) and s0z1:m(x, y) =

∣∣y − µ̂0
z1:m(x)

∣∣.
Let Z∗

1:m be an independent copy of Z1:m. Then one can show that

EZ1:m
[Q(Z1:m)] = EZ1:m

[
sup
u∈R

∣∣∣PD
(
s
(X,Y )
Z1:m

(X,Y ) > u | Z1:m

)
− PD1:m×D

(
s
(X,Y )
Z1:m

(X,Y ) > u
)∣∣∣]

≤ E
Z1:m,Z∗

1:m

[
sup
u∈R

∣∣∣PD
(
s
(X,Y )
Z1:m

(X,Y ) > u | Z1:m

)
− PD

(
s
(X,Y )
Z∗

1:m
(X,Y ) > u | Z∗

1:m

)∣∣∣]
≤ 4L1 E

Z1:m,Z∗
1:m

[
sup
u∈R

{
EX

[∣∣∣µ̂0
Z1:m

(X)− µ̂0
Z∗

1:m
(X)

∣∣∣+ L2

n

]}]
= 4L1 E

Z1:m,Z∗
1:m,X

[∣∣∣µ̂0
Z1:m

(X)− µ̂0
Z∗

1:m
(X)

∣∣∣]+ 8L

n
.

(120)

Here, the second line follows from Jensen’s inequality; the penultimate line follows since, for any given two
arrays z1:m and z∗1:m, one has∣∣∣∣PD

(
s(X,Y )
z1:m (X,Y ) > u

)
− PD

(
s
(X,Y )
z∗
1:m

(X,Y ) > u
) ∣∣∣∣

≤
∣∣∣∣PD

(
s(X,Y )
z1:m (X,Y ) > u

)
− PD

(
s0z1:m(X,Y ) > u

) ∣∣∣∣+∣∣∣∣PD

(
s
(X,Y )
z∗
1:m

(X,Y ) > u
)
− PD

(
s0z∗

1:m
(X,Y ) > u

) ∣∣∣∣
+

∣∣∣∣PD

(
s0z1:m(X,Y ) > u

)
− PD

(
s0z∗

1:m
(X,Y ) > u

) ∣∣∣∣
(c)

≤ 8L

n
+

∣∣∣∣PD

(
s0z1:m(X,Y ) > u

)
− PD

(
s0z∗

1:m
(X,Y ) > u

) ∣∣∣∣
Fact C.1
≤ 8L

n
+ EX

[
P
(
u−

∣∣µ̂0
z1:m(X)− µ̂0

z1:m∗(X)
∣∣ ≤ s0z1:m(X,Y ) ≤ u+

∣∣µ̂0
z1:m(X)− µ̂0

z1:m∗(X)
∣∣ ∣∣∣X)]

(d)

≤ 8L

n
+ 4L1EX

[∣∣∣µ̂0
z1:m(X)− µ̂0

z∗
1:m

(X)
∣∣∣] ,

where (c) holds by Fact C.1, Assumptions 4.2 and 4.3 (similar to the arguments for (116)), and (d) makes
use of Assumptions 4.2 (similar to the arguments for (117)).

To control the first term on the right-hand side of (120), we introduce the quantity below for any given X:

νi(X) := E
[
µ̂0
Z1:m

(X)
∣∣Z1:i+1

]
− E

[
µ̂0
Z1:m

(X)
∣∣Z1:i

]
, i = 0, . . . ,m− 1.

It is readily seen that {νi(X)}m−1
i=0 forms a martingale difference sequence. Moreover, Assumption 4.2 tells us

that, for any i = 0, . . . ,m− 1 and X ∈ X ,

|νi(X)| ≤ sup
z1:i+1

EZi+2:m

[∣∣∣µ̂0
z1:i∪zi+1∪Zi+2:m

(X)− EZi+1

[
µ̂0
z1:i∪Zi+1∪Zi+2:m

(X)
]∣∣∣] ≤ L2

n
.
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Therefore, it holds that

E
Z1:m,Z∗

1:m,X

[∣∣∣µ̂0
Z1:m

(X)− µ̂0
Z∗

1:m
(X)

∣∣∣] ≤ 2ED1:m

[∣∣∣µ̂0
Z1:m

(X)− EZ̃1:m∼D1:m

[
µ̂0
Z̃1:m

(X)
]∣∣∣]

≤ 2ED1:m

[∣∣∣∣∣
m−1∑
i=0

νi(X)

∣∣∣∣∣
]
≤ 2

ED1:m

(m−1∑
i=0

νi(X)

)2
 1

2

= 2

(
m−1∑
i=0

ED1:m

[
νi(X)2

]) 1
2

≤ 2L2
√
m

n
,

(121)

where the last equality holds since {νi(X)} is a martingale difference sequence. Taking (119), (120) and (121)
together yields that, with probability at least 1− δ,

sup
u∈R

{∣∣∣PD

(
s
(X,Y )
Z1:m

(X,Y ) > u
∣∣∣ Z1:m

)
− PD1:m×D

(
s
(X,Y )
Z1:m

(X,Y ) > u
)∣∣∣}

≤ 4L

√
m log(1/δ)

n
+

8L

n
+ 8L

√
m log(1/δ)

n
≤ 16L

√
m log(1/δ)

n
,

thereby concluding the proof of Lemma C.1.

C.3.2 Proof of Lemma C.2

Before proceeding, we introduce several additional convenient notations below.

• Z1:m: we often use it in place of Zcal
1:m when there is no ambiguity.

• µ̂Z1:m
(·): we remind the reader that this indicates the fitted model trained on Z1:m ∪ ztrainm+1:n (see

Definition C.1).

• Zx
1:m: this refers to {(xi, Yi)}mi=1, where the features are frozen to be {x1, . . . , xm}; with this notation

one clearly has ZX
1:m = Z1:m.

• µ̂Zx
1:m

(·): the fitted model trained on {(xi, Yi)}mi=1, with fixed features {xi}mi=1 and random responses
{Yi}mi=1.

• µ̃x1:m
(xi): the expected prediction of µ̂Zx

1:m
(·) w.r.t. xi, with the expectation taken over the randomness

of Y1:m, i.e.,

µ̃x1:m
(xi) := EY1:m|X1:m

[
µ̂Zx

1:m
(xi) | X1:m = x1:m

]
, i = 1, . . . ,m, (122)

The proof of this lemma is organized into several steps below.

Step 1: proximity of µ̂Zx
1:m

and its conditional expectation. Equipped with the above set of notation,
we immediately note that:

• µ̂Z1:m
(·) is a function jointly dependent on the random objects X1:m and Y1:m;

• For any fixed realization x1:m, the collection {µ̂Zx
1:m

(xi)}mi=1 can be viewed as a family of functions
dependent on the random variables Y1:m;

• Conditional on X1:m = x1:m, the random variables Y1, . . . , Ym are mutually independent.

We now make note of the following basic fact.

Claim C.2. Recall the definition of µ̂Zx
1:m

(xi) and µ̃x1:m(xi) defined at the beginning of this subsection. Then
for any fixed x1:m and any 0 < δ < 1, the event

E1(x1:m) :=

{
sup

i∈{1,...,m}

{∣∣µ̂Zx
1:m

(xi)− µ̃x1:m
(xi)

∣∣} ≤ L2

n

√
m log

10m

δ

}
(123)

occurs with probability at least 1− δ/5.
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Proof. This claim follows directly by invoking McDiarmid’s inequality (Lemma E.1) along with Assumption 4.3
and a union bound over i ∈ {1, . . . ,m}. We omit the details for brevity.

Step 2: a surrogate empirical distribution. With Claim C.2 in place, our next step is to approximate
the target empirical distribution

F̂Z1:m(u) :=
1

m

m∑
i=1

1 {si ≤ u} (124)

using a surrogate empirical distribution

F̃Z1:m(u) :=
1

m

m∑
i=1

1 {s̃i ≤ u} , where s̃i :=
∣∣Yi − µ̃X1:m(Xi)

∣∣, i = 1, . . . ,m. (125)

In words, the fitted outcome µ̂Z1:m
(Xi) is now replaced with µ̃X1:m

(Xi), the latter of which averages out
the randomness over Y1:m (cf. (122)). On the event E1(X1:m) defined in (123), we can bound the difference
between these two quantities as follows∣∣∣F̃Z1:m(u)− F̂Z1:m(u)

∣∣∣ ≤ 1

m

m∑
i=1

∣∣1{si > u} − 1{s̃i > u}
∣∣

(a)

≤ 1

m

m∑
i=1

1
{
u− |si − s̃i| < s̃i ≤ u+ |si − s̃i|

}
≤ 1

m

m∑
i=1

1
{
u− |µ̂Z1:m

(Xi)−µ̃X1:m
(Xi)| < s̃i ≤ u+ |µ̂Z1:m

(Xi)−µ̃X1:m
(Xi)|

}
(b)

≤ 1

m

m∑
i=1

1

{
u− L2

n

√
m log

10m

δ
< s̃i ≤ u+

L2

n

√
m log

10m

δ

}
,

(126)

where (a) holds because of Fact C.1 and (b) arises from the definition of the event E1(X1:m).
For simplicity of notation, denote

∆n,m :=
L2

n

√
m log

10m

δ
and B(u, ε) := (u− ε, u+ ε], (127)

and consider the event

E2(x1:m) :=

{
sup
u∈R

{
1

m

∣∣∣∣∣
m∑
i=1

(
1{s̃i ∈ B(u,∆n,m)}−P

(
s̃i ∈ B(u,∆n,m) |X1:m = x1:m

))∣∣∣∣∣
}
≤ 10

√
log(10/δ)

m

}
.

We would like to prove that this event occurs with high probability conditional on X1:m = x1:m. Towards
this end, we first observe that, for any i = 1, . . . ,m and any x ∈ R,

1 {s̃i ∈ B(u,∆n,m)} − P
(
s̃i ∈ B(u,∆n,m) |X1:m = x1:m

)
=
(
1{s̃i ≤ u+∆n,m} − P

(
s̃i ≤ u+∆n,m |X1:m = x1:m

))
−
(
1{s̃i ≤ u−∆n,m} − P

(
s̃i ≤ u−∆n,m |X1:m = x1:m

))
,

which in turn implies that

1

m

∣∣∣∣ m∑
i=1

(
1{s̃i ∈ B(u,∆n,m)} − P

(
s̃i ∈ B(u,∆n,m) |X1:m = x1:m

))∣∣∣∣
≤ 1

m

∣∣∣∣ m∑
i=1

(
1{s̃i ≤ u+∆n,m)} − P

(
s̃i ≤ u+∆n,m |X1:m = x1:m

))∣∣∣∣
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+
1

m

∣∣∣∣ m∑
i=1

(
1{s̃i ≤ u−∆n,m)} − P

(
s̃i ≤ u−∆n,m |X1:m = x1:m

))∣∣∣∣. (128)

In addition, it is straightforward to verify that: conditional on X1:m = x1:m, the quantity s̃i (see (125) and
(122)) is independent of Y1:m \{Yi}, so that the collection {s̃i}mi=1 forms a set of mutually independent random
variables. Hence, Lemma E.4 readily tells us that, conditional on X1:m = x1:m,

sup
u∈R

{
1

m

∣∣∣∣∣
m∑
i=1

(
1{s̃i ≤ u+∆m,n} − P

(
s̃i ≤ u+∆n,m |X1:m = x1:m

))∣∣∣∣∣
}
≤ 5

√
log(10/δ)

m

sup
u∈R

{
1

m

∣∣∣∣∣
m∑
i=1

(
1{s̃i ≤ u−∆m,n} − P

(
s̃i ≤ u−∆n,m |X1:m = x1:m

))∣∣∣∣∣
}
≤ 5

√
log(10/δ)

m

hold with probability exceeding 1− δ/5, which taken together with (128) shows that for any realization x1:m,

P (E2(x1:m) | X1:m = x1:m) ≥ 1− δ

5
. (129)

Continuing from the derivation in Eqn. (126), we can now see that: on the event E1(x1:m) ∩ E2(x1:m), for
any u ∈ R we have∣∣∣F̃Z1:m

(u)− F̂Z1:m
(u)
∣∣∣ ≤ 1

m

m∑
i=1

1 {s̃i ∈ B(u,∆n,m)}

≤ 1

m

m∑
i=1

P
(
s̃i ∈ B(u,∆n,m) |X1:m = x1:m

)
+ 10

√
log(10/δ)

m

≤ 1

m

m∑
i=1

2L1∆n,m + 10

√
log(10/δ)

m

=
2L

n

√
m log

10m

δ
+ 10

√
log(10/δ)

m
,

(130)

where the second line is valid on E2(x1:m), and the third line makes use of the assumption stated in
Assumption 4.2, along with the fact that the interval B(u, ε) has length 2ε. As a remark, in view of Claim C.2
and (129), we know that (130) holds with high probability when conditioned on X1:m = x1:m.

Step 3: the surrogate empirical distribution vs. the marginal coverage rate. Next, we would like
to bound the discrepancy between the surrogate empirical distribution F̃Z1:m

(u) (cf. (125)) and the marginal
coverage rate

Fm(u) :=
1

m

m∑
i=1

PD1:m

(
s̃i ≤ u

)
. (131)

Towards this end, we find it convenient to introduce two auxiliary coverage rates conditional on X1:m as
intermediary quantities, namely,

F̃X1:m
(u) :=

1

m

m∑
i=1

PYi|Xi

(
s̃i ≤ u

∣∣ X1:m

)
, FX1:m

(u) :=
1

m

m∑
i=1

PYi|Xi
(s̃i ≤ u | Xi), (132)

where for any i = 1, . . . ,m, we define

PYi|Xi
(s̃i ≤ u | Xi) := EX1:m\{Xi}

[
P(s̃i ≤ u | X1:m)

]
. (133)
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It then follows from the triangle inequality that∣∣∣F̃Z1:m
(u)− Fm(u)

∣∣∣ ≤ ∣∣∣F̃Z1:m
(u)− F̃X1:m

(u)
∣∣∣+ ∣∣∣F̃X1:m

(u)− FX1:m
(u)
∣∣∣+ ∣∣FX1:m

(u)− Fm(u)
∣∣

=
1

m

∣∣∣∣ m∑
i=1

(
1
{
s̃i ≤ u

}
− PYi|X1:m

(
s̃i ≤ u

∣∣ X1:m

)) ∣∣∣∣︸ ︷︷ ︸
=:T1(u,Z1:m)

+
1

m

∣∣∣∣ m∑
i=1

(
PYi|X1:m

(
s̃i ≤ u

∣∣X1:m

)
− PYi|Xi

(s̃i ≤ u | Xi)
) ∣∣∣∣︸ ︷︷ ︸

=:T2(u,X1:m)

+
1

m

∣∣∣∣ m∑
i=1

(
PYi|Xi

(
s̃i ≤ u

∣∣Xi

)
− PD1:m

(s̃i ≤ u)
) ∣∣∣∣︸ ︷︷ ︸

=:T3(u,X1:m)

,

(134)

thus leaving us with three terms to cope with.

Step 4: a bound on the first term in (134). Regarding the first term T1(u, Z1:m) on the right-hand
side of (134), consider the following event w.r.t. a given realization x1:m:

E3(x1:m) :=

{
sup
u∈R
T1(u, Z1:m) ≤ 5

√
log(5/δ)

m

}
. (135)

As mentioned earlier, when conditioned on X1:m = x1:m, the random variables {s̃i}mi=1 are mutually indepen-
dent, allowing us to invoke the generalized DKW inequality (Lemma E.4) to show that

P (E3(x1:m) | X1:m = x1:m) ≥ 1− δ/5. (136)

Step 5: a bound on the second term in (134). Regarding the second term T2(u,X1:m) on the right-hand
side of (134), we first single out a few properties about FX1:m

(u) (cf. (132)). Without loss of generality,
consider two realizations x1:m and x′

1:m that differ only in the first sample (i.e., x1 ̸= x′
1). We would like to

show that, for any i ≥ 1, the function PYi|x1:m

(
s̃i ≤ u | X1:m = x1:m

)
, viewed as a function of x1:m, satisfies

the bounded difference property. In fact, in view of the definition of µ̃x1:m
(xi) (cf. (122)), we have∣∣µ̃x1:m

(xi)− µ̃x′
1:m

(xi)
∣∣ = ∣∣∣EY1:m|x1:m

[
µ̂Zx

1:m
(xi)

]
− EY ′

1:m|x′
1:m

[
µ̂Zx′

1,m
(xi)

]∣∣∣
(a)

≤
∣∣∣EY2:m|x2:m

[
EY1|x1

[µ̂Zx
1:m

(xi) | Y2:m]− EY ′
1 |x′

1
[µ̂Zx′

1:m
(xi) | Y2:m]

]∣∣∣
≤ EY2:m|x2:m

[
EY1×Y ′

1 |(x1,x′
1)

[∣∣∣µ̂Zx
1 ∪Zx

2:m
(xi)− µ̂Zx′

1 ∪Zx
2:m

(xi)
∣∣∣ ∣∣ Y2:m

] ]
(b)

≤ EY2:m|x2:m

[
EY1×Y ′

1 |(x1,x′
1)

[
L2

n

∣∣∣ Y2:m

]]
=

L2

n
, (137)

where we denote Zx′

1:m := {(x′
i, Y

′
i )}mi=1, Zx

1 := (x1, Y1), and Zx′

1 := (x′
1, Y

′
1). Here, (b) results from Assump-

tion 4.3. Regarding (a), it follows from the fact that x2:m = x′
2:m; in particular, Y2:m and Y ′

2:m have the same
joint distribution, and are both independent of (Y1, Y

′
1), which allow us to couple Y1:m and Y ′

1:m, so that the
two samples differ only at the first data point, i.e., (x1, Y1) ̸= (x′

1, Y
′
1). Consequently, combining (137) with

Assumption 4.2 reveals that, for any i = 2, . . . ,m,∣∣∣ PYi|xi
(|Yi − µ̃x1:m

(xi)| > u)− PYi|xi

(∣∣Yi − µ̃x′
1:m

(xi)
∣∣ > u

) ∣∣∣
≤ P

(
u−

∣∣µ̃x1:m
(xi)− µ̃x′

1:m
(xi)

∣∣ ≤ |Yi − µ̃x1:m
(xi)| ≤ u+

∣∣µ̃x1:m
(xi)− µ̃x′

1:m
(xi)

∣∣ )
≤ 2L1

∣∣µ̃x1:m
(xi)− µ̃x′

1:m
(xi)

∣∣ ≤ 2L1L2

n
=

2L

n
. (138)
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Now, let us return to F x1:m(u). Applying the above bound (138) along with straightforward calculations
reveals that, for any x,∣∣∣F̃x1:m(u)− F̃x′

1:m
(u)
∣∣∣ ≤ 1

m

∣∣PY1|x1

(
s̃1 ≤ u | x1:m

)
− PY ′

1 |x′
1

(
s̃′1 ≤ u | x′

1:m

)∣∣
+

1

m

∣∣∣∣∣
m∑
i=2

(
PYi|xi

(
s̃i ≤ u | x′

1:m

)
− PYi|xi

(
s̃′i ≤ u | x′

1:m

))∣∣∣∣∣ ≤ 1

m
+

2L

n
,

where s̃′i :=
∣∣Y ′

i − µ̃x′
1:m

(x′
i)
∣∣. Also, note that PYi|xi

(s̃i ≤ u | xi) is a function of xi only, and hence

∣∣F x1:m
(u)− F x′

1:m
(u)
∣∣ = 1

m

∣∣PY1|x1
(s̃1 ≤ u | x1)− PY1|x′

1
(s̃′1 ≤ u | x′

1)
∣∣ ≤ 1

m
.

As a consequence, for any x, the function
∣∣ F̃x1:m(u)− F x1:m(u)

∣∣ satisfies the bounded difference property
with coefficient 2

m + 2L
n . If we define

T2(x1:m) := sup
u∈R
{T2(u, x1:m)} ,

then simple computation yields

T2(x1:m)− T2(x′
1:m) = sup

u∈R
{T2(u, x1:m)} − sup

u′∈R
{T2(u′, x′

1:m)}

≤ sup
u∈R
{T2(u, x1:m)− T2(u, x′

1:m)} ≤ 2

m
+

2L

n
.

Thus, we can apply McDiarmid’s inequality (Lemma E.1) to derive

sup
u∈R

{∣∣∣F̃X1:m
(u)− FX1:m

(u)
∣∣∣} = T2(X1:m)

≤ EX1:m [T2(X1:m)] +

(
2

m
+

2L

n

)√
m log

5

δ

(139)

holds with probability at least 1− δ/5.
It then comes down to bounding E[T2(X1:m)]. From the definition of T2(X1:m), we have

E[T2(X1:m)] = EX1:m

[
sup
u∈R

∣∣∣∣∣ 1m
m∑
i=1

(
PYi|Xi

(s̃i ≤ u | X1:m)− PYi|Xi
(s̃i ≤ u | Xi)

)∣∣∣∣∣
]

≤ EX1:m

[
sup
u∈R

1

m

m∑
i=1

∣∣∣PYi|Xi
(s̃i ≤ u | X1:m)− PYi|Xi

(s̃i ≤ u | Xi)
∣∣∣]

≤ 1

m

m∑
i=1

EX1:m

[
sup
u∈R

∣∣∣PYi|Xi
(s̃i ≤ u | X1:m)− PYi|Xi

(s̃i ≤ u | Xi)
∣∣∣]

≤ 1

m

m∑
i=1

EXi

[
E

X1:m\{Xi}

[
sup
u∈R

∣∣∣∣PYi|Xi
(s̃i ≤ u | X1:m)− PYi|Xi

(s̃i ≤ u | Xi)
∣∣∣︸ ︷︷ ︸

=:Ki(X1:m)

∣∣Xi

] ]
, (140)

which motivates us to control Ki(X1:m), i = 1, . . . ,m. Without loss of generality, it suffices to analyze
K1(X1:m), since the same argument applies to the remaining i. Fix X1 = x1, it is seen that µ̃X1:m

(·) satisfies
Assumption 4.3 with parameter L2/n with respect to the remaining samples X2:m. Applying Lemma C.1
reveals that, for any x1 (it can be regarded as the target sample is (X1, Y1) and X1 ∼ δ{x1} at this time),

K1({x1} ∪X2:m) ≤ 16L

n

√
m logn
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holds with probability at least 1− 1/n, which combined with (140) gives

E[T2(X1:m)] ≤ 1

m

m∑
i=1

EXi

[
E

X1:m\{Xi}
[Ki(X1:m) | Xi]

]
≤ 16L

n

√
m logn+

1

n
.

Plugging this into (139) yields that the following event

E4 :=

{
sup
u∈R
{T2(u,X1:m)} ≤ 3

√
log(5/δ)

m
+

18L

n

√
m log

(
5

δ
+ n

)}
(141)

happens with probability at least 1− δ/5.

Step 6: a bound on the last term in (134). We now turn attention to the last term T3(u,X1:m) on the
right-hand side of (134). Define

H(u,Xi) := PYi|Xi
(s̃i ≤ u | Xi), i = 1, . . . ,m.

It is easily seen that the random variables {H(u,Xi)}1≤i≤m are mutually independent. Moreover, for any i
and any fixed Xi, H(u,Xi) is a non-decreasing function in u. Applying Lemma E.4 reveals that the event

E5 :=

{
sup
u∈R

{∣∣FX1:m
(u)− Fm(u)

∣∣} ≤ 5

√
log(5/δ)

m

}
(142)

happens with probability at least 1− δ/5, where we remind the reader of the definitions of FX1:m
and Fm in

(132) and (131), respectively.

Step 7: putting all pieces together. To finish up, let us put together the preceding results. First, define

Fm(u) :=
1

m

m∑
i=1

PD1:m

(
si ≤ u

)
. (143)

On the event
(⋂3

i=1 Ei(x1:m)
)
∩ E4 ∩ E5, we see that for any x ∈ R, it always holds that

sup
u∈R

∣∣∣F̂Z1:m
(u)− Fm(u)

∣∣∣ ≤ ∣∣∣F̂Z1:m
(u)− F̃Z1:m

(u)
∣∣∣+ ∣∣∣F̃Z1:m

(u)− Fm(u)
∣∣∣

(134)
≤ sup

u∈R

{∣∣∣F̂Z1:m
(u)− F̃Z1:m

(u)
∣∣∣}+ sup

u∈R
{T1(u, Z1:m)}

+ sup
u∈R
{T2(u, Z1:m)}+ sup

u∈R
{T3(u, Z1:m)}+ sup

u∈R

{∣∣Fm(u)− Fm(u)
∣∣}

≤ 2L

n

√
m log

10m

δ
+ 10

√
log(10/δ)

m
+ 5

√
log(5/δ)

m

+ 3

√
log(5/δ)

m
+

18L

n

√
m log

(
5

δ
+ n

)
+ 5

√
log(5/δ)

m
+ sup

u∈R

{∣∣Fm(u)− Fm(u)
∣∣}

≤ 24

√
log(10/δ)

m
+

24L

n

√
m log

(
10m

δ
+ n

)
.

To justify the last inequality, we observe that, for any u,

∣∣Fm(u)− Fm(u)
∣∣ ≤ 1

m

m∑
i=1

|P(s̃i ≤ u)− P(si ≤ u)|
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≤ 1

m

m∑
i=1

{
P
(
s̃i − |µ̃X1:m(Xi)− µ̂Z1:m(Xi)| ≤ u

)
− P

(
s̃i + |µ̃X1:m(Xi)− µ̂Z1:m(Xi)| ≤ u

)}
(a)

≤ 1

m

m∑
i=1

P (s̃i ∈ B (u,∆)) +
1

m

m∑
i=1

P
(
|µ̃X1:m

(Xi)− µ̂Z1:m
(Xi)| > ∆

)
≤ 4L

n

√
m logn+

1

n
,

where ∆ := 2L2

n

√
m logn, and (a) follows by invoking the same argument as in the analysis of E1(X1:m).

By combining our uniform high-probability bounds on Ei(x1:m) for i = 1, 2, 3 given any X1:m = x1:m, and
applying the high-probability bound of E4 and E5 as well as the union bound, we arrive at

PD1:m

({(
3⋂

i=1

Ei(X1:m)

)
∩ E4 ∩ E5

}c)
= PD1:m

((⋃
Ei(X1:m)c

)
∪ Ec4 ∪ Ec5

)
≤

3∑
i=1

PD1:m

(
Ei(X1:m)c

)
+

δ

5
+

δ

5
=

3∑
i=1

EX1:m

[
PY1:m|X1:m

(Ei(X1:m)c | X1:m)
]
+

2δ

5

≤ 3δ

5
+

2δ

5
= δ.

This completes the proof of Lemma C.2.

C.3.3 Proof of Lemma C.3

The proof closely follows the arguments in the proof of Lemmas B.1 and B.2. The only difference lies in that,
for the smooth drift setting, inequality (71) in the pretrained-score setting needs to be modified as follows:

Ak =
1

|Ik|
∑
l∈Ik

(
α− P(Yn,r,l /∈ Cn,r(Xn,r,l) | Cn,r)

)
≤ 1

|Ik|
∑
l∈Ik

(
P
(
Yn,r,ik−1

/∈ Cn,r(Xn,r,ik−1
) | Cn,r

)
− P(Yn,r,l /∈ Cn,r(Xn,r,l | Cn,r))

)
=

1

|Ik|
∑
l∈Ik

l−1∑
i=ik−1

{
P
(
Yn,r,i /∈ Cn,r(Xn,r,i) | Cn,r

)
− P

(
Yn,r,i+1 /∈ Cn,r(Xn,r,i+1) | Cn,r

)}
(144)

for any even k, where we invoke the same arguments as in (71), albeit with notation adjusted to the full
conformal setting. We observe that, for any i ∈ ik−1, . . . , l − 1,

P
(
Yn,r,i /∈ Cn,r(Xn,r,i) | Cn,r

)
− P

(
Yn,r,i+1 /∈ Cn,r(Xn,r,i+1) | Cn,r

)
= E

[
1{Yn,r,i /∈ Cn,r(Xn,r,i)} | Cn,r

]
− E

[
1{Yn,r,i+1 /∈ Cn,r(Xn,r,i+1)} | Cn,r

]
≤ sup

h∈M([0,1])

{
E
[
h(Zn,r,i)

]
− E

[
h(Zn,r,i+1)

]}
= TV

(
Zn,r,i, Zn,r,i+1

)
,

whereM([0, 1]) denotes all measurable functions of Z ∈ X × R that are bounded in [0, 1]. Accordingly, the
bound (72) on Ak in the pretrained-score case can now be replaced by

Ak ≤
1

|Ik|
∑
l∈Ik

l−1∑
i=ik−1

TV(Zn,r,i, Zn,r,i+1) ≤
ik−1∑

i=ik−1

TV(Zn,r,i, Zn,r,i+1)

for each even k. As a result, under smooth drift, the complexity measure used to control the cumulative
regret in stage n should now be TVstage

n (cf. (102)) rather than KSstagen (cf. (40)).
The remaining arguments are the same as for Lemmas B.1 and B.2, and are hence omitted for brevity.
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C.3.4 Proof of Lemma C.4

For any n, given that Bn = An,rn ∩ G(τn,rn−1, τn,rn), one has

E
[
τn+11{Bcn}

]
≤ E

[
τn+11{Ac

n,rn}
]
+ E

[
τn+11{G(τn,rn−1, τn,rn)

c}
]
, (145)

leaving us with two terms to control.
We first bound E

[
τn+11{Ac

n,rn}
]
. Recognizing that n ≤ τn,rn−1 < τn,rn and τn+1 ≤ 4τn,rn (since the

round lengths grow geometrically), we can deduce that

E
[
τn+11{Ac

n,rn}
]
≤

∑
1≤k<m≤T

E
[
4m1

{
Ac

n,rn

}
1{τn,rn−1 = k; τn,rn = m}

]
=

∑
1≤k<m≤T

4mE
[
1{τn,rn−1 = k; τn,rn = m}E

[
1
{
Ac

n,rn

}
| Z1:m−1

]]
≤

∑
1≤k<m≤T

4mE
[
1{τn,rn−1 = k; τn,rn = m}

( ∑
m≤i<j<∞

P
(
A(k,m; i, j)c |Z1:m−1

))]
(99)
≤

∑
1≤k<m≤T

4mE
[
1{τn,rn−1 = k; τn,rn = m}

( ∑
m≤i<j<∞

j−8
)]

≤
∑

1≤k<m≤T

4mE
[
1{τn,rn−1 = k; τn,rn = m}

(
m−6/42

)]
=

2

21
E
[
τ−5
n,rn

]
≤ 2

21n5
.

(146)

Next, we turn attention to the term E
[
τn+11{G(τn,rn−1, τn,rn)

c}
]
. Using τn+1 ≤ 16τn,rn−1 (which is

again due to the geometric growth of the round lengths), we obtain

E
[
τn+11{G(τn,rn−1, τn,rn)

c}
]
≤

T∑
k=1

E
[
16k 1{τn,rn−1 = k}1

{
G(k, τn,rn)c

}]
≤

T∑
k=1

E
[
16k 1{τn,rn−1 = k}

( ∞∑
m=k+1

P
(
G(k,m)c |Z1:k−1

))]
(a)

≤
T∑

k=1

E
[
16k 1{τn,rn−1 = k}

( ∞∑
m=k+1

m−4
)]

≤
T∑

k=1

6E
[
k−2

1{τn,rn−1 = k}
]
≤ 6E[τ−2

n,rn−1] ≤
6

n2
,

(147)

where (a) follows from Proposition 4.1 with δ = m−4.
Taking together (145)–(147) thus completes the proof.

C.3.5 Proof of Lemma C.5

Recall the algorithm procedure of DriftOCP-full: in stage n (≤ N − 1), the distribution shift is detected
in round rn, and this round contains tn iterations. Then in light of our drift detection subroutine (see
Algorithm 3), there exists some jn ∈ [tn] such that:∣∣∣∣∣

tn∑
l=jn

(
1{Yn,rn,l /∈ Cn,rn(Xn,rn,l)} − α

)∣∣∣∣∣ > 10
√
tn − jn + 1 log3(40τn,rn).

Then on the event An,rn (cf. (96)), it holds that∣∣∣∣ tn∑
l=jn

(
P(Yn,rn,l /∈ Cn,rn(Xn,rn,l) | Cn,rn)− α

) ∣∣∣∣ ≥
∣∣∣∣∣

tn∑
l=jn

(
1{Yn,rn,l /∈ Cn,rn(Xn,rn,l)} − α

)∣∣∣∣∣
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−

∣∣∣∣∣
tn∑

l=jn

(
1
{
Yn,rn,l /∈ Cn,rn(Xn,rn,l)

}
− P

(
Yn,rn,l /∈ Cn,rn(Xn,rn,l) | Cn,rn

))∣∣∣∣∣
> 10

√
tn − jn + 1 log3(40τn,rn)− 2

√
(tn − jn + 1) log(2τn+1,1)

≥ 8
√
tn − jn + 1 log3(40τn,rn). (148)

As a consequence, if we define

Bn :=
1

tn − jn + 1

tn∑
l=jn

(
P
(
Yn,rn,l /∈ Cn,rn(Xn,rn,l) | Cn,rn

)
− α

)
, (149)

then (148) implies that √
tn − jn + 1

8 log3(40τn,rn)
|Bn| ≥ 1. (150)

The next step is to analyze the quantity Bn defined in (149). Note that τn,rn − τn,rn−1 = Trn−1. Then
on the event Bn defined in (104)—more precisely, on the event G(τn,rn−1, τn,rn) defined in (103)—we have

|Bn| ≤
∣∣∣P(Yn,rn,1 /∈ Cn,rn(Xn,rn,1) | Cn,rn

)
− α

∣∣∣
+

1

tn − jn + 1

tn∑
l=jn

∣∣∣P(Yn,rn,l /∈ Cn,rn(Xn,rn,l) | Cn,rn
)
− P

(
Yn,rn,1 /∈ Cn,rn(Xn,rn,1) | Cn,rn

) ∣∣∣
(a)

≤
∣∣∣P(Yn,rn,1 /∈ Cn,rn(Xn,rn,1) | Cn,rn

)
− α

∣∣∣+ 1

tn − jn + 1

tn∑
l=jn

TV(Zn,rn,l, Zn,rn,1)

(b)

≤ 1

tn − jn + 1

tn∑
l=jn

(
26

√
log(40τn,rn)

Trn−1
+

27L

τn,rn

√
Trn−1 log(40τn,rn)

)

+
1

tn − jn + 1

tn∑
l=jn

l−1∑
j=1

TV
(
Zn,rn,j , Zn,rn,j+1

)
+

1

Trn−1

Trn−1∑
l=1

Trn−1∑
i=l

TV
(
Zn,rn−1,i, Zn,rn−1,i+1

)
≤ 26

√
log(40τn,rn)

Trn−1
+

27L

τn,rn

√
Trn−1 log(40τn,rn) + TVtail

n , (151)

where (b) is valid on Bn, and (a) results from the fact that, for any l = jn, . . . , tn,∣∣∣P(Yn,r,l /∈ Cn,r(Xn,r,l) | Cn,r
)
− P

(
Yn,r,1 /∈ Cn,r(Xn,r,1) | Cn,r

) ∣∣∣
=
∣∣∣E[1{Yn,r,l /∈ Cn,r(Xn,r,l)} | Cn,r

]
− E

[
1{Yn,r,1 /∈ Cn,r(Xn,r,1)} | Cn,r

] ∣∣∣
≤ sup

h∈M([0,1])

{
E
[
h(Zn,r,l)

]
− E

[
h(Zn,r,1)

]}
= TV

(
Zn,r,l, Zn,r,1

)
,

whereM([0, 1]) denotes the set of all measurable functions h : X × R→ [0, 1].
Regarding the first term on the right-hand side of (151), one can apply (150) together with a little algebra

to show that: when τn,rn−1 ≥ 2:

26

√
log(40τn,rn)

Trn−1

(150)
≤ 26

8 log5/2(40τn,rn)

√
tn − jn + 1

Trn−1
|Bn| ≤

1

2
|Bn| . (152)

Combine this with (151) and rearrange terms to reach

|Bn| ≤
28L

τn,rn

√
Trn−1 log(40τn,rn) + 2TVtail

n .
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To finish up, recall that Hn :=
{
Trn−1

√
log(40τn,rn) ≤

τn,rn

256L

}
. On the event Bn ∩ Hn, combining the

above expression with (150) allows us to establish the following inequality:

2 + 2
√

tn − jn + 1TVtail
n

Hn

≥
√

tn − jn + 1

(
28L

τn,rn

√
Trn−1 log(40τn,rn) + 2TVtail

n

)
≥
√
tn − jn + 1 |Bn|

(150)
≥ 8,

which in turn implies that √
tn − jn + 1TVtail

n 1{Bn ∩Hn} ≥ 3 · 1{Bn ∩Hn}. (153)

This immediately concludes the proof of this lemma.

C.4 Proof of Theorem 4.2
Throughout this subsection, we consider the case where no features {Xt}Tt=1 are observed; instead, only the
response Yt is available at time t. Under this simplification, the set-valued functions {Ct(·)}t≥1 induced by
algorithm π = {πt}t≥1 in (32) admit the simpler representation

Ct =

{
π1(U), if t = 1,

πt(Yt−1, . . . , Y1, U), if t ≥ 2,
(154)

where πt : Rt−1 × [0, 1] → B(R) for t ≥ 2. In this setting, Ct is uniquely determined by Y1:t−1 and U ;
accordingly, we often write it as C(Y1:t−1, U) as long as it is clear from the context.

Our proof of Theorem 4.2 is organized into several steps, presented below.

Step 1: constructing a class of distributions with piecewise flat density. We begin by introducing
the distribution class I, constructed as follows.

• First, divide the interval [0, 1] into k subintervals:

Ij :=

[
j − 1

k
,
j

k

)
, j = 1, . . . , k − 1; Ik :=

[
k − 1

k
, 1

]
. (155)

• For any given sequence V1, . . . , Vk ∈ {−1, 1}, generate a distribution with probability density function

f(y | V1:k) :=

k∑
j=1

fj(y), (156a)

where fj(·) is nonzero only within the subinterval Ij as follows:

fj(y) ∝ (1 + ϵVj)1Ij (y),

with ϵ a small positive constant to be specified shortly, and 1Ij (y) := 1{y ∈ Ij} the indicator function
of Ij . The normalization constant can then be computed as

k∑
j=1

∫
Ij

(1 + ϵVj) dy =

k∑
j=1

1 + ϵVj

k
=: 1 + ϵV ,

thereby allowing us to express

fj(y) =
(1 + ϵVj)1Ij (y)

1 + ϵV
, j = 1, 2, . . . , k. (156b)

• Accordingly, we construct a distribution class as follows

I :=
{
f(y | V1:k)

∣∣V1:k ∈ {−1, 1}k
}
. (157)
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Step 2: constructing a family of distribution sequences contained in L3(N
cp) and L4(TVT ). With

I in place, we would like to construct a family L′ of distribution sequences such that it is composed of all
{Dt}Tt=1 satisfying the following two conditions:

1. Dt ∈ I for every t = 1, . . . , T ;

2. For every l = 1, . . . ,m + 1, it holds that Dt = Dt+1 for any t obeying (l − 1)⌊T/m⌋ + 1 ≤ t <
min {l⌊T/m⌋, T}. In other words, the distributions are identical within each segment

Tl :=
[
(l − 1)⌊T/m⌋+ 1,min {l⌊T/m⌋, T}

]
, (158)

where each batch Tl (except for the (m+ 1)-th batch) contains ⌊T/m⌋ time instances.

We now verify that L′ belongs to both L3(N
cp) and L4(TVT ) under an appropriate choice of parameters.

• Regarding the change-point setting, it is clearly seen that L′ ⊂ L3(N
cp) when m = N cp.

• Turning to the smooth drift setting, we claim that L′ ⊂ L4(TVT ) for sufficiently small ϵ. To justify
this, consider any two distributions D1,D2 ∈ I, and suppose that their densities can be written as
pDi(y) = f(y | V (i)

1:k ) for i = 1, 2. Assuming that ϵ ≤ 1/2, we can calculate

TV(D1,D2) =
1

2

∫ 1

0

∣∣∣f1(y | V (1)
1:k )− f1(y | V (2)

1:k )
∣∣∣ dy =

1

2

k∑
j=1

∫
Ij

∣∣∣∣∣1 + ϵV
(1)
j

1 + ϵV
(1)
−

1 + ϵV
(2)
j

1 + ϵV
(2)

∣∣∣∣∣ dy
≤

k∑
j=1

2

k

∣∣∣ϵ(V (1)
j + V

(2) − V
(2)
j − V

(1))
+ ϵ2

(
V

(1)
j V

(2) − V
(2)
j V

(1))∣∣∣ ≤ k∑
j=1

2

k
(4ϵ+ 2ϵ2) ≤ 10ϵ,

(159)

where the inequalities in the last line result from ϵ ≤ 1/2 and max
j∈[k],i=1,2

{|V (i)
j |, |V

(i)|} ≤ 1. As a result,

if we take ϵ ≤ min{TVT /(20m), 1/2}, then for any {Dt}Tt=1 we have

T−1∑
t=1

TV(Dt,Dt+1) =

m∑
j=1

TV
(
D(j−1)⌊ T

m ⌋+1,Dj⌊ T
m ⌋+1

)
≤ m sup

D1,D2∈I
TV(D1,D2)

(159)
≤ 20mϵ ≤ TVT ,

thus ensuring that L′ ⊂ L4(TVT ).

Step 3: establishing a general regret lower bound. We now look at the cumulative regret within
each batch Ti (i = 1, . . . ,m+ 1) defined in (158). To this end, we first establish the following lower bound on
the coverage gap for a single time point; the proof is deferred to Section C.4.1.

Lemma C.6. Suppose that 0 < α ≤ 1/2, k ≥ 256K
α and ϵ ≤ min

{
α5/2

200 , 1
64

√
αk

n log(2nk/α2)

}
. Consider any

n ≥ 1. Then, for any admissible algorithm π ∈ PK (cf. (33)), the set-value mapping C induced by π satisfies

1

|I|
∑
D∈I

{
E

Y1:n∼Dn, U∼pU

[∣∣P(Yn+1 ∈ C(Y1:n, U) |Y1:n, U
)
− (1− α)

∣∣]} ≥ α
5
2 ϵ

144
√
k
− α6

4n3k3
, (160)

where U is independently drawn from an arbitrary continuous distribution with density function pU (·), and I
is defined in Step 1 (with the parameter ϵ).

With this intermediate result in hand, we can now analyze the cumulative coverage gap within each batch
Ti (cf. (158)). In fact, letting τi := (i− 1) ⌊T/m⌋+ 1, one can write∑

t∈Ti

E
[∣∣P(Yt ∈ C(Y1:t−1, U) |Y1:t−1, U

)
− (1− α)

∣∣]
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=
∑
t∈Ti

E
[∣∣∣P(Yt ∈ C(Y1:τi−1, Yτi:t−1, U)

∣∣Y1:t−1, U
)
− (1− α)

∣∣∣].
Note that by construction, the distribution selected for each batch is independent of the distributions assigned
to all preceding batches. Therefore, we can view (Y1:τi−1, U) jointly as a new random variable Ũ ∼ Pũ for
some distribution Pũ, which is independent of all randomness within Ti. Consequently, we shall write the
prediction set C(Y1:τi−1, Yτi:t−1, U) as C(Yτi:t−1, Ũ) in the sequel (as long as it is clear from the context),
in order to underscore the role of Yτi:t−1. Armed with this simplified notation, we define, for any given
distribution D and any index i ∈ [m+ 1], the cumulative regret over batch Ti as

regretπ(D, Ti) :=
∑
t∈Ti

E
[∣∣∣P(Yt ∈ C(Y1:τi−1, Yτi:t−1, U)

∣∣Y1:t−1, U
)
− (1− α)

∣∣∣]
=
∑
t∈Ti

E
[∣∣∣P(Yt ∈ C(Yτi:t−1, Ũ)

∣∣Yτi:t−1, Ũ
)
− (1− α)

∣∣∣] .
Applying Lemma C.6 for each time t, we reach

1

|I|
∑
D∈I

regretπ(D, Ti) =
1

|I|
∑
D∈I

∑
t∈Ti

E
[ ∣∣∣P(Yt ∈ C(Yτi:t−1, Ũ)

∣∣Yτi:t−1, Ũ
)
− (1− α)

∣∣∣ ]
=
∑
t∈Ti

{
1

|I|
∑
D∈I

E
[ ∣∣∣P(Yt ∈ C(Yτi:t−1, Ũ)

∣∣Yτi,t−1, Ũ
)
− (1− α)

∣∣∣ ]}

≥
∑
t∈Ti

(
α

5
2 ϵ

144
√
k
− α6

4(T/m)3k3

)
=

(
α

5
2 ϵ

144
√
k
− α6

4(T/m)3k3

)
|Ti|,

(161)

provided that

ϵ ≤ min

{
α

5
2

200
,
1

64

√
αmk

T log(Tk/αm)

}
. (162)

Now, putting all batches together yields the following regret lower bound: for any algorithm π ∈ PK ,

regretπ(L′, T,K) = sup
{Dt}T

t=1∈L′
regretπ

(
D1:T , T

)
=

m+1∑
i=1

sup
D∈I

regretπ(D, Ti)

≥
m+1∑
i=1

1

|I|
∑
D∈I

regretπ(D, Ti)
(161)
≥

(
α

5
2 ϵ

144
√
k
− α6

4n3k3

)
T.

(163)

Step 4: instantiating the general lower bound to two drift settings. It remains to connect the
above lower bound to the two distribution-drift settings, which we discuss separately below.

• The change-point setting. In this drift scenario, setting m = N cp ensures that L′ ⊂ L3(N
cp) (as discussed

in Step 2). Then, taking k = 256K
α and ϵ = min

{
α5/2

200 , 1
64

√
αk(N cp+1)
T log(Tk/α)

}
in (163) yields

regretπ
(
L3(N

cp), T,K
)
≥ regretπ

(
L′, T,K

)
≥ 1

300
min

{
α5T

200
√
k
,
α3

16

√
(N cp + 1)T

log(Tk/α)

}

= Ω̃

(
min

{
T√
K

,
√
(N cp + 1)T

})
.

• The smooth drift setting. In order to simultaneously satisfy (162) and L′ ⊂ L4(TVT ) (which needs
ϵ ≤ min{TVT /(20m), 1/2} as discussed in Step 2), we take ϵ to be

ϵ = min

{
α

5
2

200
,
TVT

20m
,
1

64

√
αmk

T log(Tk/αm)

}
.
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Substitution into inequality (163) leads to

regretπ
(
L4(TVT ), T,K

)
≥ regretπ(L′, T,K) ≥ α

5
2T

300
√
k
min

{
α

5
2

200
,
TVT

20m
,
1

64

√
αmk

T log(Tk/αm)

}
. (164)

We now divide into two cases.

– If TVT

√
αT
12K ≥ 1, then let us take m =

TV
2
3
T T

1
3 log

2
3 (Tk/α)

(αk)
1
3

and k = 256K
α , giving rise to

α
5
2T

300
√
k
min

{
α

5
2

200
,
TVT

20m
,

√
αmk

28T log(Tk/αm)

}
= Ω̃

(
T√
k
min

{
1,
(
kT−1TVT

) 1
3

})

= Ω̃

(
min

{
T√
K

,
TV

1
3

TT
2
3

K
1
6

})
.

Plugging this into (164) yields

regretπ
(
L4(TVT ), T,K

)
≥ Ω̃

(
min

{
T√
K

,
TV

1
3

TT
2
3

K
1
6

})
(165)

– Next, consider the case with TVT

√
αT
12K < 1. Note that for any D ∈ I, the constant distribution

sequence D1:T with D1 = · · · = DT = D belongs to L4(TVT ), since its cumulative variation equals
0. Then one can apply Lemma C.6 with ϵ = min

{
α5/2

200 ,
√

αK
28T log(TK/α)

}
and k = 256

α K to the
entire horizon [T ] to arrive at

regretπ
(
L4(TVT ), T,K

)
≥ sup

D∈I
regretπ(DT , T,K) ≥ E

D∈I

[ T∑
t=1

∣∣∣P(Yt ∈ C(Y1:t−1)
)
− (1− α)

∣∣∣]
= Ω̃

(
min

{
T√
K

,
√
T

})
. (166)

Combining the bounds (165) and (166) establishes the desired lower bound for the smooth drift setting.

The proof of Theorem 4.2 is thus complete.

C.4.1 Proof of Lemma C.6

Throughout this proof, we shall often write C(Y1:n, U) simply as C, as long as it is clear from the context. For
each j = 1, . . . , k, we define

aj = aj(Y1:n, U) := µ(C ∩ Ij), (167a)

where we often abbreviate aj(Y1:n, U) as aj . Here, Ij is given in (155) and µ(·) denotes the Lebesgue measure
on the interval [0, 1]. Further, let

a :=
1

k

k∑
j=1

aj and ãj := aj − a (j = 1, . . . , k). (167b)

The following lemma characterizes the range of
∑k

j=1 ã
2
j , which will be used repeatedly in our analysis. Its

proof is deferred to Section C.4.2.

Lemma C.7. For any given realization of Y1:n, U , it always holds that

1

k

(
µ(C)

(
1− µ(C)

)
− 2K

k

)
+

≤
k∑

j=1

ã2j ≤
µ(C)

(
1− µ(C)

)
k

≤ 1

4k
.

We now embark on the proof, which contains a few steps below.
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Step 1: an expression for the training-conditional coverage gap. Under the distribution D with
parameters V1:k (see (156)), we can derive

P
(
Yn+1 ∈ C |Y1:n, U

)
=

k∑
j=1

∫
1 + ϵVj

1 + ϵV
1{y ∈ C ∩ Ij}dy

=

k∑
j=1

1 + ϵVj

1 + ϵV
aj =

k∑
j=1

aj +
ϵ

1 + ϵV

k∑
j=1

(Vj − V )aj

(a)
= µ(C) + ϵ

1 + ϵV

k∑
j=1

(Vj − V )aj = µ(C) + ϵ

1 + ϵV

k∑
j=1

Vj ãj ,

where (a) follows since the sets {C ∩ Ij}kj=1 are mutually disjoint and the last equality results from

k∑
j=1

V aj = kV
1

k

k∑
j=1

aj =

k∑
j=1

Vja.

Note that each distribution D in I (cf. (157)) is uniquely determined by the sequence V1:k ∈ {±1}k. To make
the subsequent analysis clearer and more concise, we define

l(V1:k, C) :=
∣∣P(Yn+1 ∈ C |Y1:n, U)− (1− α)

∣∣ ,
which, according to the above calculation, can be written as

l(V1:k, C) =
∣∣∣∣µ(C)− (1− α) +

ϵ

1 + ϵV

k∑
j=1

Vj ãj

∣∣∣∣. (168)

As can be easily seen, averaging over D ∈ I on the left-hand side of (160) is equivalent to taking
expectation with respect to V1:k drawn from the uniform distribution Dk

V := Unif
(
{±1}k

)
, namely,

1

|I|
∑
D∈I

E
Y1:n∼Dn, U∼pU

[∣∣P(Yn+1 ∈ C(Y1:n, U) |Y1:n, U
)
− (1− α)

∣∣]
= E

V1:k∼Dk
V

[
E

Dn×pU

[ ∣∣P(Yn+1 ∈ C |Y1:n, U
)
− (1− α)

∣∣ ]]. (169)

By fully expanding the right-hand side of (169) w.r.t. the generative process of U, V1:k and Y1:n, we obtain

E
V1:k∼Dk

V

[
E

Dn×pU

[∣∣P(Yn+1 ∈ C |Y1:n, U
)
− (1− α)

∣∣]]
=

1

2k

∑
V1:k

{∫
[0,1]n×U

l(V1:k, C)
( n∏

i=1

f(yi | V1:k)

)
pU (u)dy1:ndu

}
, (170)

where U is the support of U , and the summation ranges over all 2k choices of V1:k in {±1}k. Denote by

Nj(y1:n) = |{i | i ∈ [n], yi ∈ Ij}| (171)

the number of responses that fall in the interval Ij ; when there is no ambiguity, we abbreviate Nj(y1:n) as
Nj . This allows us to express the joint density as

n∏
i=1

f(yi | V1:k) =

k∏
j=1

(
1 + ϵVj

1 + ϵV

)Nj

=

∏k
j=1(1 + ϵVj)

Nj(
1 + ϵV

)n ,
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which combined with (170) yields an expression for the expected training-conditional coverage gap:

E
V1:k∼Dk

V

[
E

Dn×pU

[∣∣P(Yn+1 ∈ C | Y1:n, U)− (1− α)
∣∣]]

=
∑
V1:k

{ ∫
[0,1]n×U

pU (u)
∏k

j=1(1 + ϵVj)
Nj(y1:n)

2k(1 + ϵV )n︸ ︷︷ ︸
=: p(V1:k,y1:n,u)

l(V1:k, C)dy1:ndu

}
. (172)

Here, the term p(V1:k, y1:n, u) represents the joint density of the random tuple (V1:k, Y1:n, U).

Step 2: a lower bound on the coverage gap using auxiliary conditional distributions. Now,
consider the conditional distribution of V1:k given y1:n and u, denoted by p(V1:k | y1:n, u). As it turns out, one
can construct a set of auxiliary conditional densities qj(· | y1:n, u) for j = 1, . . . , k, whose product provides a
good approximation to p(V1:k | y1:n, u). This is formalized in the following lemma, whose proof is given in
Section C.4.3.

Lemma C.8. For any y1:n and u, let p(y1:n, u) :=
∑

v1:k
p(v1:k, y1:n, u). There exists a collection of conditional

distributions {qj(Vj | y1:n, u)}kj=1 such that

E
V1:k∼Dk

V

[
E

Dn×pU

[∣∣P(Yn+1 ∈ C |Y1:n, U
)
− (1− α)

∣∣]]
≥ 1

3

∫
[0,1]n×U

LQ(y1:n, u)p(y1:n, u)dy1:ndu− α6

4n3k3

(173)

as long as ϵ ≤
√

k
12n log(2nk/α2) , where

LQ(y1:n, u) :=
∑
V1:k

( k∏
j=1

qj(Vj | y1:n, u)
)
l(V1:k, C). (174)

As can be seen, each summand in LQ(y1:n, u) (cf. (174)) involves the product distribution based on
{qj(· | y1:n, u)}.

Step 3: a decomposition of LQ(y1:n, u). With Lemma C.8, we now turn to the analysis of the quantity
LQ(y1:n, u) (cf. (174)). Given (y1:n, u), define DQ as the product distribution

DQ(V1:k) :=

k∏
j=1

qj(Vj | y1:n, u), (175)

and draw an independent copy V ′
1:k of V1:k from the same distribution DQ. Then, invoking (168) and the

triangle inequality, we can derive

LQ(y1:n, u) =
∑
V1:k

( k∏
j=1

qj(Vj | y1:n, u)
)
l(V1:k, C) = EDQ

[
l(V1:k, C)

]
=

1

2
EDQ

[
l(V1:k, C)

]
+

1

2
EDQ

[
l(V ′

1:k, C)
]

(168)
=

1

2
ED2

Q

[∣∣∣∣(µ(C)− (1− α)
)
+

ϵ

1 + ϵV
⟨V1:k, ã1:k⟩

∣∣∣∣+ ∣∣∣∣(µ(C)− (1− α)
)
+

ϵ

1 + ϵV
′ ⟨V

′
1:k, ã1:k⟩

∣∣∣∣]
≥ 1

2
ED2

Q

[∣∣∣∣( ϵ

1 + ϵV
⟨V1:k, ã1:k⟩ −

ϵ

1 + ϵV
⟨V ′

1:k, ã1:k⟩
)
+

(
ϵ

1 + ϵV
− ϵ

1 + ϵV
′

)
⟨V ′

1:k, ã1:k⟩
∣∣∣∣]

≥ 1

2
ED2

Q

[
ϵ

1 + ϵV
|⟨V1:k − V ′

1:k, ã1:k⟩|
]
− 1

2
ED2

Q

[∣∣∣∣( ϵ

1 + ϵV
− ϵ

1 + ϵV
′

)
⟨V ′

1:k, ã1:k⟩
∣∣∣∣] ,
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from which it follows that

EY1:n,U

[
LQ(Y1:n, U)

]
≥ 1

2
EY1:n,U

[
ED2

Q

[
ϵ

1 + ϵV
|⟨V1:k − V ′

1:k, ã1:k⟩|
]]

︸ ︷︷ ︸
=:L1

− 1

2
EY1:n,U

[
ED2

Q

[∣∣∣∣( ϵ

1 + ϵV
− ϵ

1 + ϵV
′

)
⟨V ′

1:k, ã1:k⟩
∣∣∣∣]]︸ ︷︷ ︸

=:L2

. (176)

This leaves us two terms to control.

Step 4: lower bounds on L1 and L2. Next, we would like to control the two terms on the right-hand side
of (176) separately. Before continuing, we introduce some additional notation: for any j = 1, 2, . . . , k, define

Ṽj :=
1

2
(Vj − V ′

j ), V̌ :=
1

2
(V − V

′
), Ṽ1:k :=

1

2
(V1:k − V ′

1:k). (177)

It is straightforward to see that since Vj , V
′
j ∈ {±1}, we have Ṽj ∈ {−1, 0, 1} for all j = 1, 2, . . . , k.

• With regards to L1, recognizing that
∣∣ϵV ∣∣ ≤ |ϵ| ≤ 1/4, one has

L1 ≥
4ϵ

3
EY1:n,U

[
ED2

Q

[∣∣〈Ṽ1:k, ã1:k
〉∣∣]] , (178)

the right-hand side of which is further controlled by the following lemma. The proof can be found in
Section C.4.4.

Lemma C.9. Let k ≥ 64/α and ϵ ≤ min
{

α5/2

200 , 1
64

√
αk

n log(2nk/α2)

}
. For any admissible algorithm

whose resulting prediction set C is the union of at most k intervals, we have

EY1:n,U

[
ED2

Q

[∣∣〈Ṽ1:k, ã1:k
〉∣∣]] ≥ (σ2

π

2
− α

16

) 5
2 2√

k
,

where we define

σ2
π := EY1:n,U

[(
µ(C)

(
1− µ(C)

)
− 2K

k

)
+

]
. (179)

Consequently, taking (178) and Lemma C.9 collectively reveals that

L1 ≥
8ϵ

3
√
k

(
σ2
π

2
− α

16

) 5
2

. (180)

• When it comes to L2, we make the following observation:

L2 = EY1:n,U

[
ED2

Q

[∣∣∣∣( ϵ

1 + ϵV
− ϵ

1 + ϵV
′

)
⟨V ′

1:k, ã1:k⟩
∣∣∣∣]]

(a)

≤ EY1:n,U

[
ED2

Q

[∣∣∣∣ ϵ

1 + ϵV
− ϵ

1 + ϵV
′

∣∣∣∣]] (b)

≤ 4ϵ2EY1:n,U

[
ED2

Q

[∣∣V ′ − V
∣∣]]

= 8ϵ2EY1:n,U

[
ED2

Q

[∣∣V̌ ∣∣]] (c)

≤ 8ϵ2EY1:n,U

[(
ED2

Q

[
1

k2

k∑
j=1

Ṽ 2
j

])1/2
]

(d)

≤ 8ϵ2√
k
.

(181)

Here, (a) is valid since |⟨V ′
1:k, ã1:k⟩| ≤

∑k
j=1 |ãj | ≤ µ([0, 1]) = 1 (see (167)); (b) follows from the fact

that min{1 + ϵV , 1 + ϵV
′} ≥ 1− ϵ ≥ 1/2; (c) applies Jensen’s inequality and uses the properties that

{Ṽj} are independent zero-mean random variables; and (d) arises from the inequality Ṽ 2
j ≤ 1.
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Combine Eqns. (180) and (181) with (176) to yield

EY1:n,U [LQ(Y1:n, U)] ≥ 1

2
L1 −

1

2
L2

≥ 4ϵ

3
√
k

(
σ2
π

2
− α

16

) 5
2

− 4ϵ2√
k
=

4ϵ

3
√
k

((
σ2
π

2
− α

16

) 5
2

− 3ϵ

)
.

(182)

Step 5: putting all pieces together. To finish up, we divide into two cases and analyze them separately.

• If P (|µ(C)− (1− α)| > α/8) ≥ 1/4, then one has

EV1:n

[
E

Dn×pU

[∣∣P(Yn+1 ∈ C | Y1:n, U
)
− (1− α)

∣∣] ] ≥ E
[∣∣µ(C)− (1− α)

∣∣− ∣∣∣∣ ϵ

1 + ϵV
⟨V1:k, ã1:k⟩

∣∣∣∣]

≥ α

32
− 2ϵE

[∣∣∣∣ k∑
j=1

Vj ãj

∣∣∣∣] ≥ α

32
− 2ϵE

[√√√√( k∑
j=1

V 2
j

)( k∑
j=1

ã2j

)]
(e)

≥ α

32
− ϵ

(f)

≥ α

32
− α

64
=

α

64
,

where (e) invokes Lemma C.7, and (f) is due to our choice of ϵ.

• If instead P (|µ(C)− (1− α)| > α/8) < 1/4, then it holds that

P
(
1− 9α

8
≤ µ(C) ≤ 1− 7α

8

)
≥ 3

4
. (183)

We can then lower bound σ2
π (cf. (179)) by

σ2
π = E

[(
µ(C)

(
1− µ(C)

)
− 2K

k

)
+

]

≥ E

[(
µ(C)

(
1− µ(C)

)
− 2K

k

)
+

1

{
1− 9α

8
≤ µ(C) ≤ 1− 7α

8

}]

≥ E
[((

1− 9α

8

)7α
8
− 2K

k

)
+

1

{
1− 9α

8
≤ µ(C) ≤ 1− 7α

8

}]
(g)

≥
(49α
128
− 2K

k

)
+
P
(
1− 9α

8
≤ µ(C) ≤ 1− 7α

8

)
≥ 3α

8
× 3

4
≥ 9α

32
.

Here, (g) holds when α ≤ 1/2, and the last inequality follows by combining k ≥ 256K
α and (183). Taking

this together with (182) and ϵ ≤ α5/2

200 , we arrive at

EY1:n,U [LQ(Y1:n, U)] ≥ 4ϵ

3
√
k

((
9α

32
− α

32

) 5
2

− α
5
2

64

)
≥ α

5
2 ϵ

48
√
k
. (184)

Substituting Eqn. (184) into (173), we obtain

E
V1:n

[
E

Dn×pU

[∣∣P(Yn+1 ∈ C | Y1:n, U)− (1− α)
∣∣] ] ≥ 1

3
E

Y1:n,U
[LQ(Y1:n, U)]− α6

4n3k3
≥ α

5
2 ϵ

144
√
k
− α6

4n3k3
.

The above two cases taken collectively conclude the proof of Lemma C.6.
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C.4.2 Proof of Lemma C.7

Upper bound. According to the definition of aj and a (see (167)), it is readily seen that
k∑

j=1

ã2j =

k∑
j=1

(
aj − a

)2
=

k∑
j=1

a2j − ka2 ≤ 1

k

k∑
j=1

aj −
µ(C)2

k
=

µ(C)
(
1− µ(C)

)
k

≤ 1

4k
,

where the first inequality follows since aj ≤ µ(Ij) = 1/k and a = µ(C)/k, and the last inequality comes from
the AM-GM inequality.

Lower bound. To establish the lower bound, we exploit the structural property of the prediction set C
(i.e., C is the union of at most K intervals). Consider the following conditions:

• suppose l intervals from {Ij}kj=1 (without loss of generality, {Ij}lj=1) are completely contained in C;

• at most 2K of the {Ij}kj=1 (without loss of generality, {Iji}2Ki=1) are only partially covered by C, which
always holds due to the structural property of C.

Since the intervals {Ij}kj=1 are mutually disjoint, the total Lebesgue measure of these at most l+2K intervals
must be at least µ(C). This leads to

l + 2K

k
=

l∑
j=1

∣∣ Ij ∣∣+ 2K∑
i=1

∣∣ Iji ∣∣ ≥ µ(C),

thus indicating that
l ≥

(
µ(C)k − 2K

)
+
. (185)

Now, let us look at {ãj}kj=1. For each 1 ≤ j ≤ l, we have aj = µ(C ∩ Ij) = 1/k and ka =
∑k

j=1 aj = µ(C),
allowing one to derive

k∑
j=1

ã2j =

k∑
j=1

(
aj − a

)2
=

k∑
j=1

a2j − ka2 =

k∑
j=1

a2j −
µ(C)2

k

≥
l∑

j=1

a2j −
µ(C)2

k
=

l

k2
− µ(C)2

k

(185)
≥ 1

k

{(
µ(C)− 2K

k

)
+
− µ(C)2

}
≥ 1

k

{
µ(C)

(
1− µ(C)

)
− 2K

k

}
.

This combined with the trivial fact
∑k

j=1 ã
2
j ≥ 0 establishes the advertised lower bound on

∑k
j=1 ã

2
j .

C.4.3 Proof of Lemma C.8

By virtue of Bayes’s rule, the conditional density p(V1:k | y1:n, u) admits the following expression:

p(V1:k | y1:n, u) =
p(V1:k, y1:n, u)∑
v1:k

p(v1:k, y1:n, u)
=

(
pU (u)

∏k
j=1(1 + ϵVj)

Nj

)/
2k(1 + ϵV )n∑

v1:k

(
pU (u)

∏k
j=1(1 + ϵvj)Nj

)/
2k(1 + ϵv)n

=

(∏k
j=1(1 + ϵVj)

Nj

)/
(1 + ϵV )n∑

v1:k

[(∏k
j=1(1 + ϵvj)Nj

)/
(1 + ϵv)n

] .
(186)

For any given V1:k, we observe that( k∏
j=1

(1 + ϵVj)
Nj

)/(
1 + ϵV

)n
=

( k∏
j=1

(1 + ϵVj)
Nj

)
e−ϵV n · eϵV n(

1 + ϵV
)n

≥
k∏

j=1

(1 + ϵVj)
Nje−ϵVj

n
k =:

k∏
j=1

qj(Vj , y1:n),

(187)
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where the last line follows from the elementary inequality (ex)n ≥ (1 + x)n for all x ∈ [−1, 1], and we define

qj(Vj , y1:n) := (1 + ϵVj)
Nje−ϵVj

n
k .

Further, define

qj(y1:n) :=
∑
Vj

(1 + ϵVj)
Nje−ϵVj

n
k , j = 1, . . . , k; (188a)

q(y1:n) :=
∑
V1:k

k∏
j=1

[
(1 + ϵVj)

Nje−ϵVj
n
k

]
=

k∏
j=1

qj(y1:n); (188b)

qj(Vj | y1:n) :=
qj(Vj , y1:n)

qj(y1:n)
, j = 1, . . . , k (188c)

q(V1:k | y1:n) :=
k∏

j=1

qj(Vj | y1:n). (188d)

Combining the above analysis and notation with a little algebra, we reach

EV1:k

[
EDn×pU

[∣∣P(Yn+1 ∈ C |Y1:n, U)− (1− α)
∣∣]]

(172)
=

∫
[0,1]n×U

{∑
V1:k

p(V1:k | y1:n, u)l(V1:k, C)
}
p(y1:n, u)dy1:ndu

(186)
=

∫
[0,1]n×U

{∑
V1:k

(∏k
j=1(1 + ϵVj)

Nj

)(
1 + ϵV

)−n

∑
v1:k

(∏k
j=1(1 + ϵvj)Nj

)
(1 + v)−n

l(V1:k, C)
}
p(y1:n, u)dy1:ndu

(187)
≥

∫
[0,1]n×U

∑
V1:k

∏k
j=1 qj(Vj , y1:n)∑

v1:k

(∏k
j=1(1 + ϵvj)Nj

)
(1 + ϵv)−n

l(V1:k, C)

 p(y1:n, u)dy1:ndu (189)

(188)
=

∫
[0,1]n×U

 q(y1:n)∑
v1:k

(∏k
j=1(1+ϵvj)Nj

)
(1+ϵv)−n


︸ ︷︷ ︸

=:G(y1:n)

∑
V1:k

k∏
j=1

qj(Vj | y1:n)l(V1:k, C)

 p(y1:n, u)dy1:ndu.

The next step is to control G(y1:n). Specifically, by expanding q(y1:n) and applying Eqn. (186), we can
establish the following inequality:

G(y1:n)
(188b)
=

∑
V1:k

(∏k
j=1(1 + ϵVj)

Nj

)(
1 + ϵV

)−n (1+ϵV )n

eϵV n∑
v1:k

(∏k
j=1(1 + ϵvj)Nj

)(
1 + ϵv

)−n

(186)
=
∑
V1:k

p(V1:k | y1:n)
(
1 + ϵV

)n
eϵV n

≥
∑
V1:k

p(V1:k | y1:n)
(
1 + ϵV

)n
eϵV n

1

{∣∣V ∣∣ ≤√6k−1 log(2nk/α2)
}

(a)

≥ 1

3

∑
V1:k

p(V1:k | y1:n)1
{∣∣V ∣∣ ≤√6k−1 log(2nk/α2)

}
=

1

3

(
1− P

(
V >

√
6 log(2nk/α2)

k

∣∣∣∣∣ Y1:n = y1:n

))
.

(190)

To justify why (a) holds, note that

ϵ
∣∣V ∣∣ ≤√ k

12n log(2nk/α2)

√
6 log(2nk/α2)

k
=

√
1

2n
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holds under the condition that
∣∣V ∣∣ ≤√2k−1 log(nk/α), which combined with the elementary fact 1+x+x2 ≥

ex (x ∈ [−1, 1]) gives

eϵV n(
1 + ϵV

)n ≤ (1 + ϵV + (ϵV )2

1 + ϵV

)n

≤
(
1 + 2(ϵV )2

)n ≤ (1 + 1

n

)n

≤ e < 3.

As a consequence, substituting Eqn. (190) into Eqn. (189) yields

EV1:k

[
EDn×pU

[ ∣∣P(Yn+1 ∈ C |Y1:n, U
)
− (1− α)

∣∣ ]]

≥ 1

3

∫
[0,1]n×U

(
1− P

(
V >

√
6 log(2nk/α2)

k

∣∣∣∣∣ y1:n
))∑

V1:k

k∏
j=1

qj(Vj | y1:n)l(V1:k, C)

 p(y1:n, u)dy1:ndu

(b)

≥ 1

3

∫
[0,1]n×U

∑
V1:k

k∏
j=1

qj(Vj | y1:n)l(V1:k, C)

 p(y1:n, u)dy1:ndu

− 1

3

∫
[0,1]n×U

P

(∣∣V ∣∣ >√6 log(2nk/α2)

k

∣∣∣ y1:n) p(y1:n, u)dy1:ndu

=
1

3

∫
[0,1]n×U

LQ(y1:n)p(y1:n, u)dy1:ndu− 1

3
P

(∣∣V ∣∣ >√6 log(2nk/α2)

k

)
, (191)

where (b) relies on the fact that

∑
V1:k

k∏
j=1

qj(Vj | y1:n)l(V1:k, C)
(168)
= E

V1:k∼q(V1:k | y1:n)

[∣∣∣P(Yn+1 ∈ C |Y1:n, U
)
− (1− α)

∣∣∣] ≤ 1.

Finally, recalling that V1:k are k independent Rademacher random variables, we can apply Hoeffding’s
inequality to yield

P

(∣∣V ∣∣ >√6 log(2nk/α2)

k

)
≤ 2 exp

{
−
6k log 2nk

α2

2k

}
≤ α6

4n3k3
.

Substitution into the above bound (191) concludes the proof of Lemma C.8.

C.4.4 Proof of Lemma C.9

As discussed earlier, we have Ṽj ∈ {−1, 0, 1} (see (177)). Further, define

δj := 1{Ṽj ̸= 0}, and ξj :=

{
sgn
(
Ṽj

)
, if δj = 1,

ζj , if δj = 0,

where {ζj}kj=1 are k independent Rademacher random variables, generated independent of (δj)kj=1, Y1:n and
U . It is then straightforward to verify that Ṽj = ξjδj . Additionally, it is easy to see that for any given y1:n
and u, one has

P(ξj = 1, δj = 1 | y1:n, u) = P(Vj > V ′
j | y1:n, u) = P(Vj < V ′

j | y1:n, u) = P(ξj = −1, δj = 1 | y1:n, u),

where the second identity follows from the fact that Vj and V ′
j are independently and identically distributed.

This implies that, conditional on δj = 1 and (y1:n, u), the variable ξj is a Rademacher random variable.
Similarly, when δj = 0 and when (y1:n, u) are given, we have ξj = ζj , which is also Rademacher.
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Moreover, since {Vj}kj=1 and {V ′
j }kj=1 are independent within each sequence (with V1:k ∼

∏k
j=1 qj(Vj |

y1:n, u)), it follows that {ξj}kj=1 are independent Rademacher random variables, which are also independent
of
(
{δj}kj=1, Y1:n, U

)
. Therefore, for any fixed

(
{δj}kj=1, y1:n, u

)
, applying Lemma E.2 to {ξj}kj=1 yields

E
[∣∣〈Ṽ1:k, ã1:k

〉∣∣] = E

[∣∣∣∣ k∑
j=1

ξjδj ãj

∣∣∣∣
]
= E

[
E

[∣∣∣∣ k∑
j=1

ξjδj ãj

∣∣∣∣ ∣∣∣ {δj}kj=1, {ãj}kj=1

]]

≥ 1√
2
E

[( k∑
j=1

ã2jδ
2
j

) 1
2

]
=

1√
2
E

[( k∑
j=1

ã2jδj

) 1
2

]
,

(192)

where the last equality holds since δ2j = δj .

To continue, let us first examine E
[∑k

j=1 ã
2
jδj

]
. Note that, given (y1:n, u), under the distribution∏k

j=1 qj(Vj | y1:n, u) one has

E[δj | y1:n, u] = P(Vj ̸= V ′
j | y1:n, u) = 2qj(1 | y1:n, u)qj(0 | y1:n, u)

=
1

2

(
1− (2qj(1 | y1:n, u)− 1)2

)
=:

(
1− (2qj − 1)2

)
2

,

where we define

qj := qj(1 | y1:n, u) =
(1 + ϵ)Nje−ϵn

k∑
V=±1(1 + ϵV )Nje−ϵn

k V
. (193)

From this, we can derive that

E

[
k∑

j=1

ã2jδj

]
=

1

2
E

[
k∑

j=1

ã2j

]
− 1

2
E

[
k∑

j=1

ã2j (2qj − 1)2

]
. (194)

As for the first term on the right-hand side of (194), applying Lemma C.7 and then taking expectation over
Y1:n and U yield

1

2
E
[ k∑

j=1

ã2j

]
≥ 1

2k
E
[(

µ(C)
(
1− µ(C)

)
− 2K

k

)
+

]
(195)

Also, the second term on the right-hand side of (194) satisfies

1

2
E

[
k∑

j=1

ã2j (2qj − 1)2

]
≤ 1

2k2
E

 k∑
j=1

(2qj − 1)2

 . (196)

To control E
[∑k

j=1(2qj − 1)2
]
, we resort to the following lemma, with the proof given in Section C.4.5.

Lemma C.10. Recall that qj is defined in (193). For any admissible algorithm whose resulting prediction
set C is the union of at most k intervals, we have

E

[
k∑

j=1

(2qj − 1)2

]
≤ 321nϵ2 log

(2nk
α2

)
+

α6

32n3k3
.

Taking Eqns. (194), (195), (196) and Lemma C.10 together yields

E

[
k∑

j=1

ã2jδj

]
≥ 1

2k
E
[(

µ(C)
(
1− µ(C)

)
− 2K

k

)
+

]
− 1

k2

(
161nϵ2 log

(2nk
α2

)
+

α6

64n3k3

)

≥ σ2
π

2k
− α

16k
, (197)
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where the last line holds as long as k ≥ 256K
α and ϵ ≤ min

{
α5/2

200 , 1
64

√
αk

n log(2nk/α2)

}
.

To finish up, denoting E
[∑k

j=1 ã
2
jδj

]
as λ, and applying Lemma E.3 with θ = 1/2, we arrive at

E

√√√√ k∑
j=1

ã2jδj

 ≥ 1√
2

√
λP

(
k∑

j=1

ã2jδ ≥
λ

2

)
≥ 1

4
√
2

√
λ

λ2

E
[(∑k

j=1 ã
2
jδj
)2]

≥ 1

4
√
2

λ5/2

E
[(∑k

j=1 ã
2
j

)2] Lemma C.7
≥ k2

4
√
2

λ5/2

E
[
µ(C)2

(
1− µ(C)

)2]
≥ 2
√
2k2λ5/2

(197)
≥ 2

√
2√
k

(
σ2
π

2
− α

16

) 5
2

.

Combining this with Eqn. (192) establishes the advertised result of the lemma.

C.4.5 Proof of Lemma C.10

To begin with, the TV distance between two Bernoulli distributions Ber(qj) and Ber(1/2) obeys

TV
(
Ber(qj), Ber(1/2)

)
=

∣∣∣∣qj − 1

2

∣∣∣∣+ ∣∣∣∣(1− qj)−
1

2

∣∣∣∣ = |2qj − 1| ,

which combined with Pinsker’s inequality (Tsybakov, 2009, Lemm 2.5) yields

(2qj − 1)2 =
(
TV
(
Ber(qj), Ber(1/2)

))2 ≤ 1

2
KL
(
Ber(qj)

∥∥Ber(0.5)) . (198)

Note that the distribution q(V1:k | y1:n) =
∏k

j=1 qj(Vj | y1:n) factorizes. Therefore, recalling the definition of
qj in (193), one can apply the chain rule of the KL divergence to derive

2E

[
k∑

j=1

(2qj − 1)2

]
≤ EY1:n

[
k∑

j=1

KL
(
Ber(qj)

∥∥Ber(0.5)) ]

= EY1:n

[
k∑

j=1

(
E

Vj∼qj(·|Y1:n)

[
log
(
2qj(Vj |Y1:n)

)])]

= EY1:n

[
E

V1:k∼q(·|Y1:n)

[
log

(
2k

k∏
j=1

qj(Vj |Y1:n)

)]]

= EY1:n

[∑
V1:k

q(V1:k |Y1:n) log
(
2kq(V1:k |Y1:n)

)]
.

Recognizing that q(V1:k |Y1:n) is an approximation of p(V1:k |Y1:n, U) (recall the arguments in (186)-(188)),
we consider the following decomposition by incorporating the term p(V1:k |Y1:n, U) into the preceding identity:

2E

[
k∑

j=1

(2qj − 1)2

]
= EY1:n,U

[∑
V1:k

p(V1:k | Y1:n, U)
q(V1:k |Y1:n)

p(V1:k | Y1:n, U)
log

(
2kq(V1:k |Y1:n)

)]

= EY1:n,U

[∑
V1:k

q(V1:k | Y1:n)

p(V1:k | Y1:n, U)
log
(
2kp(V1:k | Y1:n, U)

)
p(V1:k | Y1:n, U)

]

+ EY1:n,U

[∑
V1:k

q(V1:k | Y1:n)

p(V1:k | Y1:n, U)
log

(
q(V1:k | Y1:n)

p(V1:k | Y1:n, U)

)
p(V1:k | Y1:n, U)

]
. (199)
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Next, we examine the ratio term q(V1:k|Y1:n)
p(V1:k|Y1:n,U) , which appears multiple times in (199). From the elementary

fact 1 + x ≤ ex as well as the definitions (186) and (188), we can demonstrate that

q(V1:k | y1:n)
p(V1:k | y1:n, u)

=

∏k
j=1

(
(1 + ϵVj)

Nje−ϵVj
n
k

)
∑

v1:k

∏k
j=1

(
(1 + ϵvj)Nje−ϵvj

n
k

) · ∑v1:k

(∏k
j=1(1 + ϵvj)

Nj

)
(1 + ϵv)−n(∏k

j=1(1 + ϵVj)Nj

)
(1 + ϵV )−n

=
(1 + ϵV )n

eϵV n
·

∑
v1:k

(∏k
j=1(1 + ϵvj)

Nj

)
(1 + ϵv)−n∑

v1:k

∏k
j=1

(
(1 + ϵvj)Nje−ϵvj

n
k

) =
(1 + ϵV )n

eϵV n

/(∑
v1:k

p(v1:k | y1:n, u)
(1 + ϵv)n

eϵvn

)

=
Fn(ϵV )

EV1:k∼p(·|y1:n,u)

[
Fn(ϵV )

] = Fn(ϵV )

F (y1:n, u)
≤ 1

F (y1:n, u)
, (200)

where we define

Fn(ϵV ) :=
(1 + ϵV )n

eϵV n
and F (y1:n, u) := EV1:k∼p(·|y1:n,u)

[
Fn(ϵV )

]
. (201)

Further, given that the choice of ϵ guarantees that
∣∣ϵV ∣∣ < 1/2, we can invoke the elementary inequality

1 + x ≤ ex ≤ 1 + x+ x2 (|x| < 1/2) to derive

1 ≤ 1

Fn(ϵV )
=

eϵV n(
1 + ϵV

)n ≤
(
1 + ϵV + ϵ2V

2

1 + ϵV

)n

≤
(
1 + 2ϵ2V

2
)n
≤ exp

{
2
(
ϵV
)2
n
}
. (202)

Substituting (200) and (202) into (199) leads to

2E

[
k∑

j=1

(2qj − 1)2

]
= EY1:n,U

[∑
V1:k

Fn(ϵV )

F (Y1:n, U)
log
(
2kp(V1:k | Y1:n, U)

)
p(V1:k | Y1:n, U)

]

+ EY1:n,U

[∑
V1:k

Fn(ϵV )

F (Y1:n, U)
log

(
Fn(ϵV )

F (Y1:n, U)

)
p(V1:k | Y1:n, U)

]

= EY1:n,U

[
E

V1:k∼p(·|Y1:n,U)

[
log
(
2kp(V1:k |Y1:n, U)

)]]
︸ ︷︷ ︸

=:S0

+ EY1:n,U

[
E

V1:k∼p(·|Y1:n,U)

[(
Fn(ϵV )

F (Y1:n, U)
− 1

)
log
(
2kp(V1:k | Y1:n, U)

)]]
︸ ︷︷ ︸

=:S1

+ EY1:n,U

[
E

V1:k∼p(·|Y1:n,U)

[
Fn(ϵV )

F (Y1:n, U)
log

(
Fn(ϵV )

F (Y1:n, U)

)]]
︸ ︷︷ ︸

=:S2

, (203)

leaving us with three terms to cope with.

Bounding the term S0. Towards this end, we first define I(V1:k;Y1:n) to be the mutual information
between V1:k and Y1:n, namely,

I(V1:k;Y1:n) :=
∑
V1:k

∫
[0,1]n

log

(
p(V1:k, y1:n)

2−kp(y1:n)

)
p(V1:k, y1:n) dy1:n, (204)

where
p(V1:k, y1:n) :=

∫
U
p(V1:k, y1:n, u)du and p(y1:n) :=

∑
V1:k

p(V1:k, y1:n). (205)
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As it turns out, the term S0 (cf. (203)) is equivalent to this mutual information quantity since

S0 = EY1:n,U

[
E

V1:k∼p(·|Y1:n,U)

[
log
(
2kp(V1:k |Y1:n, U)

)]]
=
∑
V1:k

∫
[0,1]n×U

p(V1:k, y1:n)pU (u) log
(p(V1:k, y1:n)pU (u)

2−kp(y1:n)pU (u)

)
dy1:ndu

=
∑
V1:k

∫
[0,1]n

p(V1:k, y1:n) log
(p(V1:k, y1:n)

2−kp(y1:n)

)
dy1:n = I(V1:k;Y1:n),

where the second line holds since U is independent of (V1:k, Y1:n) (as it only affects the construction of the
prediction set C).

According to the data-generating mechanism and the chain rule of the KL divergence, one has

I(V1:k, Y1:n) =
∑
V1:k

∫
[0,1]n

p(V1:k)p(y1:n | V1:k) log
p(V1:k)p(y1:n | V1:k)

p(V1:k)p(y1:n)
dy1:n

=
n∑

i=1

∑
V1:k

∫
[0,1]

p(yi | V1:k)

2k
log

p(yi | V1:k)

p(yi)
dyi

(a)

≤
n∑

i=1

∑
V1:k

1

2k

∫
[0,1]

(
p(yi | V1:k)− p(yi) + p(yi | V1:k)

(
p(yi)

p(yi | V1:k)
− 1

)2
)

dyi

(b)
=

n∑
i=1

∑
V1:k

∫
[0,1]

p(yi | V1:k)

2k

(
p(yi)

p(yi | V1:k)
− 1

)2

dyi
(c)

≤ 36nϵ2, (206)

where (b) follows because both p(yi) and p(yi | V1:k) are density functions; (a) and (c) are proven below.

• To justify (c), suppose that yi ∈ Ij (defined in (155)). Denoting by V ′
1:k an independent copy of V1:k,

one can derive(
p(yi)

p(yi | V1:k)
− 1

)2

=

(EV ′
1:k

[p(yi | V ′
1:k)]

p(yi | V1:k)
− 1

)2

≤ EV ′
1:k

[(
p(yi | V ′

1:k)

p(yi | V1:k)
− 1

)2
]
= EV ′

1:k

( (1 + ϵV ′
j )(1 + ϵV )

(1 + ϵVj)(1 + ϵV
′
)
− 1

)2


= EV ′
1:k

(ϵ(V ′
j + V − Vj − V

′
) + ϵ2(V ′

jV − VjV
′
)

(1 + ϵVj)(1 + ϵV
′
)

)2
 ≤ 36ϵ2,

with the proviso that ϵ ≤ 1/6. This also implies that∣∣∣∣ p(yi)

p(yi |V1:k)
− 1

∣∣∣∣ ≤ 1 as long as ϵ ≤ 1

6
. (207)

• Regarding inequality (a), we invoke the elementary fact log(1 + x) ≥ x− x2 for x ∈ [−1, 1] along with
(207) to reach

p(yi | V1:k) log
p(yi | V1:k)

p(yi)
= −p(yi | V1:k) log

p(yi)

p(yi | V1:k)

≤ −p(yi | V1:k)

(
p(yi)

p(yi | V1:k)
− 1−

(
p(yi)

p(yi | V1:k)
− 1

)2
)

= p(yi | V1:k)− p(yi) + p(yi | V1:k)

(
p(yi)

p(yi | V1:k)
− 1

)2

.
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Bounding the term S1. Based on the definition (cf. (203)), we can write

S1 = EY1:n,U

[
E

V1:k∼p(·|Y1:n,U)

[(
Fn(ϵV )− F (Y1:n, U)

)
log
(
2kp(V1:k |Y1:n, U)

)]
︸ ︷︷ ︸

=:Snum
1 (Y1:n,U)

/
F (Y1:n, U)

]
. (208)

We begin by examining Snum1 (Y1:n, U). For notational simplicity, set

σ :=
√

16k−1 log(2nk/α2). (209)

Consider any given y1:n, u, and any two realizations v1:k, v′1:k. If |v| ∨ |v′| ≤ σ, then by the mean value
theorem, there exists a real number ζ between ϵv and ϵv′ (which means |ζ| ≤ ϵ

(
|v| ∨ |v′|

)
≤ ϵσ) satisfying∣∣∣Fn(ϵv)− Fn(ϵv

′)
∣∣∣ ≤ ∣∣F ′

n(ζ)
∣∣ · ∣∣ ϵv − ϵv′

∣∣ ≤ 2ϵnσ|ζ|e−ζ
(1 + ζ

eζ

)n−1

≤ 6ϵ2σ2n, (210)

where the choice of ϵ ensures ϵσ < 1 and we have used the definition (201) of Fn(·). Splitting the expectation
in the definition of Snum1 (Y1:n, U) into two parts based on whether or not |V | ∨ |V ′| ≤ σ, we can derive

Snum1 (Y1:n, U) = E
V1:k∼p(·|Y1:n,U)

[(
Fn(ϵV )− E

V ′
1:k∼p(·|Y1:n,U)

[
Fn

(
ϵV

′)])
log
(
2kp(V1:k | Y1:n, U)

)]
≤ E

V1:k,V ′
1:k∼p(·|Y1:n,U)

[∣∣∣Fn(ϵV )− Fn

(
ϵV

′)∣∣∣ log ( 1

p(V1:k | Y1:n, U)

)]
(210)
≤ 6ϵ2σ2n E

V1:k∼p(·|Y1:n,U)

[
log

1

p(V1:k | Y1:n, U)

]
+ E

V1:k,V ′
1:k∼p(·|Y1:n,U)

[∣∣∣Fn(ϵV )− Fn

(
ϵV

′)∣∣∣1{|V | ∨ |V ′| > σ} log
( 1

p(V1:k | Y1:n, U)

)]
, (211)

where the second line follows from Jensen’s inequality and the following:

E
V1:k,V ′

1:k∼p(·|Y1:n,U)

[(
Fn(ϵV )− Fn

(
ϵV

′))
log
(
2k
)]

= 0.

• Regarding the first term on the right-hand side of (211), it is observed that for any given y1:n and u,

E
V1:k∼p(·|y1:n,u)

[
log

1

p(V1:k | y1:n, u)

]
= log 2k − E

V1:k∼p(·|y1:n,u)

[
log
(
2kp(V1:k | y1:n, u)

)]
= k log 2− KL

(
p(V1:k | y1:n, u) ∥ p(V1:k)

)
≤ k log 2.

Plug this into the first term on the right-hand side of (211) and use (209) to yield

6ϵ2σ2n E
V1:k∼p(·|Y1:n,U)

[
log

1

p(V1:k | Y1:n, U)

]
≤ 96ϵ2n log

2nk

α2
. (212)

• As for the second term on the right-hand side of (211), it can be derived that

E
V1:k,V ′

1:k∼p(·|Y1:n,U)

[∣∣∣Fn(ϵV )− Fn

(
ϵV

′)∣∣∣1{|V | ∨ |V ′| > σ} log
( 1

p(V1:k | Y1:n, U)

)]
(202)
≤ E

V1:k,V ′
1:k∼p(·|Y1:n,U)

[
1

{∣∣V ∣∣ ∨ ∣∣V ′∣∣ > σ
}
log
( 1

p(V1:k | Y1:n, U)

)]
(a)

≤ 4ϵnP
(∣∣V ∣∣ ∨ ∣∣V ′∣∣ > σ

∣∣∣Y1:n, U

)
. (213)

78



To justify step (a) of (213), consider any two different realization v1:k and v′1:k, which obey

p(v′1:k | y1:n, u)
p(v1:k | y1:n, u)

=
p(v′1:k)p(y1:n | v′1:k)pU (u)
p(v1:k)p(y1:n | v1:k)pU (u)

=

∏k
j=1(1 + ϵv′j)

Nj∏k
j=1(1 + ϵvj)Nj

≤ e4ϵn,

=⇒ log
( 1

p(V1:k | y1:n, u)

)
= log

(
E

V ′
1:k|y1:n,u

[p(V ′
1:k | y1:n, u)

p(V1:k | y1:n, u)

])
≤ 4ϵn.

Consequently, by substituting (213) and (212) into (211), we arrive at

Snum1 (Y1:n, U) ≤ 96ϵ2n log
2nk

α2
+ 8ϵnP

(
|V | > σ

∣∣∣Y1:n, U
)
. (214)

Now, we switch attention to the term 1
F (Y1:n,U) . Applying Jensen’s inequality yields

1

EV1:k∼p(·|Y1:n,U)

[
Fn(ϵV )

] ≤ E
V1:k∼p(·|Y1:n,U)

[
eϵV n(

1 + ϵV
)n
]

= E
V1:k∼p(·|Y1:n,U)

[
eϵV n(

1 + ϵV
)n1{∣∣V ∣∣ ≤ σ

}]
+ E

V1:k∼p(·|Y1:n,U)

[
eϵV n(

1 + ϵV
)n1{∣∣V ∣∣ > σ

}]
(202)
≤ E

V1:k∼p(·|Y1:n,U)

[
e2
(
ϵV
)2

n
1
{∣∣V ∣∣ ≤ σ

}]
+ E

V1:k∼p(·|Y1:n,U)

[
e2
(
ϵV
)2

n
1
{∣∣V ∣∣ > σ

}]
≤ 3 + E

V1:k∼p(·|Y1:n,U)

[
exp

{
2
(
ϵV
)2
n
}
1
{∣∣V ∣∣ > σ

}]
, (215)

where the last line follows since 2
(
ϵV
)2
n ≤ 2k

32n ·
16n
k = 1 provided that ϵ ≤ min

{
α5/2

128 , 1
64

√
αk

n log(2nk/α2)

}
.

We are now ready to bound S1. It is readily seen from (208) that

S1 ≤ EY1:n,U

[
Snum1 (Y1:n, U)

F (Y1:n, U)

]
(214)
≤ EY1:n,U

[96ϵ2n log
(

2nk
α2

)
+ 8ϵnP

(
|V | > σ | Y1:n, U

)
F (Y1:n, U)

]
(215)
≤ E

Y1:n,U

[(
96ϵ2n log

(2nk
α2

)
+ 8ϵnP

(
|V | > σ | Y1:n, U

))(
3 + E

V1:k∼p(·|Y1:n,U)

[
e2(ϵV )2n

1{|V | > σ}
])]

≤ 100ϵ2n log
(2nk
α2

)(
3 + EV1:k

[
e2(ϵV )2n

1{|V | > σ}
])

+ 24ϵnP
(
|V | > σ

)
+ 8ϵn E

Y1:n,U

[
P
(
|V | > σ | Y1:n, U

)
E

V1:k∼p(·|Y1:n,U)

[
e2(ϵV )2n

1{|V | > σ}
]]

. (216)

Note that Hoeffding’s inequality tells us that

PV1:k

(
|V | > σ

)
= PV1:k

(
|V | >

√
16 log(2nk/α2)

k

)
≤ α16

128n8k8
, (217)

we also have for any ∆ ≥ 0 that

EV1:k

[
e

k
4 V

2

1

{
e

k
4 V

2

> e
k
4∆

2
}]

(a)
= e

k
4∆

2

PV1:k

(
e

k
4 V

2

> e
k
4∆

2
)
+

∫ ∞

e
k
4
∆2

PV1:k

(
e

k
4 V

2

> y
)

dy

= e
k∆2

4 PV1:k

(
|V | > ∆

)
+

∫ ∞

e
k∆2
4

P
(
|V | >

√
4 log y

k

)
dy

≤ e−
k∆2

4 +

∫ ∞

e
k∆2
4

2e−2 log ydy ≤ e−
k∆2

4 − 2y−1
∣∣∣∞
e
k∆2
4

= 3e−
k∆2

4 , (218)
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where (a) follows from Fubini’s formula, namely, for any non-negative random variable X with CDF FX and
any x ≥ 0,

E[X1{X > x0}] =
∫ ∞

x0

xFX(dx) =
∫ ∞

x0

(∫ x

0

dt
)
FX(dx) =

∫ ∞

0

(∫ ∞

x0∨t

FX(dx)
)

dt

=

∫ x0

0

P(X > x0)dt+
∫ ∞

x0

P(X > t)dt = x0P(X > x0) +

∫ ∞

x0

P(X > t)dt.

Further, when ϵ ≤ 1
64

√
αk

n log(2nk/α2) , one has

2ϵ2V
2
n ≤ k

128n
V

2
n ≤ k

4
V

2
.

Combining this with (217) and (218) (with ∆ set to σ), and substituting the resulting bounds into (216),
yields

S1 ≤ 100ϵ2n log
(2nk
α2

)(
3 + 3e−

kσ2

4

)
+

α16

4n7k8
+ 8ϵnEV1:k

[
e

k
4 V

2

1{|V | > σ}
]

(218)
≤ 600ϵ2n log

(2nk
α2

)
+

α16

4n7k8
+ 24ϵne−

kσ2

4

(209)
≤ 600ϵ2n log

(2nk
α2

)
+

α16

4n7k8
+

α8

4n3k4
.

(219)

Bounding the term S2. We first rewrite S2 (cf. (203)) slightly by using (202) as follows:

S2 = EY1:n,U

[
E

V1:k∼p(·|Y1:n,U)

[
Fn(ϵV )

F (Y1:n, U)
log

(
Fn(ϵV )

F (Y1:n, U)

)]]
(202)
≤ EY1:n,U

[
E

V1:k∼p(·|Y1:n,U)

[
Fn(ϵV )

F (Y1:n, U)
log

(
1

F (Y1:n, U)

)]]

≤ EY1:n,U

[
E

V1:k∼p(·|Y1:n,U)

[
1

F (Y1:n, U)
log

(
1

F (Y1:n, U)

)]]
,

where the last line holds since log
(

1
F (Y1:n,U)

)
≥ 0. It can be easily verified that the function 1

x log 1
x is convex

when 0 < x ≤ 1. Further, since Fn(ϵv) =
(1+ϵv)n

eϵvn ≤ 1, one can invoke Jensen’s inequality to obtain

S2 ≤ EY1:n,U

[
E

V1:k∼p(·|Y1:n,U)

[
1

F (Y1:n, U)
log

(
1

F (Y1:n, U)

)]]
= EY1:n,U

[
1

F (Y1:n, U)
log

(
1

F (Y1:n, U)

)]
≤ EY1:n,U

[
E

V1:k∼p(·|Y1:n,U)

[
1

Fn(ϵV )
log

1

Fn(ϵV )

]]
≤ EV1:k

[(
2
(
ϵV
)2
n
)
exp

{
2
(
ϵV
)2
n
}]

,

where the last inequality follows from (202), together with the fact that the function x 7→ x log x is
monotonically increasing on [1,∞). By letting ∆ in (218) be 0, we arrive at

S2 ≤ 2ϵ2nEV1:k

[
e

k
4 V

2
]
≤ 6ϵ2n. (220)

Putting all this together. Finally, combining (206), (219) and (220) with (203) yields

2E
[ k∑

j=1

(2qj − 1)2
]
≤ S0 + S1 + S2 ≤ 642nϵ2 log

(2nk
α2

)
+

α6

16n3k3
,

thereby concluding the proof of Lemma C.10.
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C.5 Proof of Proposition 4.2 and Proposition 4.3
C.5.1 Proof of Proposition 4.2

Denote pD(·) as the density function of the distribution D. According to the definition of Riemann-integrability,
for every ε > 0, the following holds for large enough n:∣∣∣∣P(Y ∈ Cn)− (1− α)

∣∣∣∣ ≤ ∣∣∣∣P(Y ∈ Cn)− (1− α)

n−1∑
i=0

pD(i/n)

∣∣∣∣+ (1− α)

∣∣∣∣ n−1∑
i=0

∫ (i+1)/n

i/n

(
pD(i/n)− pD(y)

)
dy
∣∣∣∣

≤
∣∣∣∣ n−1∑

i=0

P
(
Y ∈

[
i/n,

(
i+ (1− α)

)/
n]
)
− (1− α)

n−1∑
i=0

pD(i/n)

∣∣∣∣+ ε

=

∣∣∣∣ n−1∑
i=0

∫ (i+(1−α))/n

i/n

(
pD(y)− pD(i/n)

)
dy
∣∣∣∣+ ε ≤ (2− α)ε.

This immediately establishes the result of Proposition 4.2.

C.5.2 Proof of Proposition 4.3

The claim follows immediately by invoking Lemma C.6 with

k :=
256K

α
and ϵ := min

{
α5/2

200
,

1

64

√
αk

n log
(
2nk/α2

)}.
D Examples of stable learning algorithms
To illustrate the applicability of Assumption 4.3, this section verifies it for several learning algorithms
commonly used in statistical applications. In particular, Section D.3 describes how to incorporate stochastic
optimization methods into our online conformal framework: the fitted model can be updated incrementally
using the newly arrived data at each time step, without retraining from scratch.

D.1 Constrained M-estimation
We begin with the classical constrained M-estimator (Van der Vaart, 2000) that minimizes the empirical loss:

ϑ̂n = argmin
ϑ∈C

L̂n(ϑ) := argmin
ϑ∈C

1

n

n∑
i=1

ℓ(ϑ;Zi),

where {Zi} ⊂ RdZ denote n independent data samples with Zi drawn from the distribution Di, C ⊂ Rd

represents a closed convex constraint set, and ℓ(·; z) is a loss metric assumed to be differentiable in ϑ for
every z. We also introduce the population risk

L(ϑ) :=
1

n

n∑
i=1

E
Zi∼Di

[
ℓ(ϑ;Zi)

]
.

Note that we allow for a non-identically distributed sequence {Zi}ni=1, which is compatible with the drifting
environments considered in the present paper.

We impose the following standard assumptions ensuring well-posedness and curvature of the loss functions.

Assumption D.1. Suppose that the loss functions satisfy the following properties:

1. L is µ-strongly convex on C for some µ > 0, in the sense that

∇2L(ϑ) ⪰ µId for all ϑ ∈ C.
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2. For any ϑ ∈ C, ∥ϑ∥2 ≤ DC.

3. For any ϑ, ϑ′ ∈ C and Z, ∥∇ϑℓ(ϑ;Z)∥ ≤ βL and
∥∥∇2

ϑℓ(ϑ;Z)−∇2
ϑℓ(ϑ

′;Z)
∥∥
∞,∞ ≤ βs ∥ϑ− ϑ′∥2. Here

∥A∥∞,∞ := max
i,j∈[d]

|Aij |.

With Assumption D.1 in place, we obtain the following stability guarantees for the constrained M-estimator.

Proposition D.1. Suppose that Assumption D.1 holds. For any n ≥ 32dβ2
sD

2
C

µ2 log
(
12βsDC

µ

)
, We can find a

typical set E in the n-sample space RdZ×n obeying P(Ec) ≤ d2 exp
{
− µ2n

32β2
sD

2
C

}
such that the following holds:

consider two adjacent datasets in E, {Zi}ni=1 and {Z ′
i}ni=1, that differ only in the last coordinate, i.e., Z ′

i = Zi

for i = 1, . . . , n− 1 and Z ′
n ̸= Zn, and denote by ϑ̂n and ϑ̂′

n the corresponding constrained M-estimates

ϑ̂n := argmin
ϑ∈C

{
n∑

i=1

ℓ(ϑ;Zi)

}
, ϑ̂′

n = argmin
ϑ∈C

{
n−1∑
i=1

ℓ(ϑ;Zi) + ℓ(ϑ;Z ′
n)

}
,

then one has ∥∥ϑ̂n − ϑ̂′
n

∥∥
2
≤ 4βL

µn
.

The proof of Proposition D.1 is deferred to Section D.4.1. With the above proposition in hand, consider a
prediction model µ(· | ϑ). Assume that, for every input x, the mapping ϑ→ µ(x | ϑ) is L0-Lipschitz. Then,
by Proposition D.1, for any two neighboring data sequences {Zn} and {Z ′

n} that both lie in E (which happens
with high probability), the corresponding fitted models µ(· | ϑ̂) and µ(· | ϑ̂′) satisfy:∣∣µ(x | ϑ̂)− µ(x | ϑ̂′)

∣∣ ≤ L0

∥∥ϑ̂− ϑ̂′∥∥
2
≤ 4βLL0

µn
, ∀x ∈ X ,

thereby validating Assumption 4.3 for this setting with L2 = 4βLL0

µ .

D.2 Linear stochastic approximation
Next, we verify stability for an important class of online learning methods based on stochastic approximation.
Unlike the previous example in Section D.1, where the estimator is obtained via empirical risk minimization,
stochastic approximation updates the parameter incrementally as new data arrive (Bottou et al., 2018). This
makes it particularly well-suited to our online conformal framework, as it avoids retraining from scratch while
still enabling control over the sensitivity of the fitted model to individual observations.

To be concrete, consider a linear prediction model

µ̂(x | Z1:n) = x⊤ϑn,

where the parameter ϑn ∈ Rd is updated online using the data Z1:n = {(Xi, Yi)}ni=1. At iteration n, the
squared loss function is defined as

ℓn(ϑ) = (Yn −X⊤
n ϑ)2 = ϑ⊤XnX

⊤
n ϑ− 2YnX

⊤
n ϑ+ Y 2

n .

Its gradient at ϑn is given by

∇ℓn(ϑn) = 2XnX
⊤
n︸ ︷︷ ︸

=: Ân

ϑn − 2YnXn︸ ︷︷ ︸
=: b̂n

= Ânϑn − b̂n.

The linear stochastic approximation (LSA) recursion with a decaying stepsize ηn for iteration n is

ϑn+1 = ϑn − ηn
(
Ânϑn − b̂n

)
=
(
I − ηnÂn

)
ϑn + ηnb̂n =

(
I − ηnAn − ηnÃn

)
ϑn + ηnb̂n, (221)

where we denote An := E[Ân] and Ãn := Ân −An.
To validate stability, we compare the LSA iterates generated from two adjacent data streams. Consider

two sequences {(Âi, b̂i)}ni=1 and {(Â′
i, b̂

′
i)}ni=1 that differ in exactly one index l, i.e., (Âi, b̂i) = (Â′

i, b̂
′
i) for all

i ̸= l, but (Âl, b̂l) ̸= (Â′
l, b̂

′
l). We impose the following assumptions.
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Assumption D.2. Suppose that there exist constants L, µ > 0 and σ̂, σ ≥ 1 satisfying the following properties:

1. Ai ⪰ µI for all i ≥ 1;

2. ∥Âi∥ ≤ σ̂, ∥Ãi∥ ≤ σ, ∥b̂i∥2 ≤ L for all i ≥ 1.

With Assumption D.2 in place, we establish stability of the terminal LSA iterate. In particular, changing
a single observation in the data stream alters ϑn+1 by at most O((log3 n)/n) with high probability.

Proposition D.2 (Bounded differences for LSA). Consider any fixed ζ ≥ 1, and suppose that Assumption D.2
holds. Assume that the LSA recursion (221) adopts the stepsize ηn = min{1/σ̂, γn/n} at iteration n, where
γn = C log n for some constant C ≥ 2(ζ+1)

µ > 0. Then there exists a constant K > 0 (independent of n) such

that, for any n ≥ d
1
ζ and any two adjacent datasets differing in a single time index l, the corresponding LSA

iterates {ϑn}∞n=1 and {ϑ′
n}∞n=1 satisfy

∥∥ϑn+1 − ϑ′
n+1

∥∥
2
≤ K

log3 n

n

with probability at least 1− n−ζ .

The proof of Proposition D.2 is postponed to Section D.4.2. We now return to verify Assumption 4.3.
In this example, our prediction model takes the form µ̂(x | Z1:n) = x⊤ϑn. Assume that the covariate X is
essentially bounded, i.e., ∥X∥ ≤ Bx almost surely. Then, for any two neighboring samples Z1:n and Z ′

1:n

in a typical set E with P(E) ≥ 1 − n−ζ , the corresponding parameter estimates—denoted by ϑn and ϑ′
n,

respectively—obtained by LSA satisfy

∣∣ x⊤ϑn − x⊤ϑ′
n

∣∣ ≤ ∥x∥2 ∥ϑn − ϑ′
n∥2 ≤ BxK

log3 n

n
.

Hence, this justifies Assumption 4.3 with L2 = BxK log3(m+ 1) (with m the size of the training set used in
this assumption).

D.3 Stochastic strongly convex optimization
We now turn to another case where the predictive model µ̂(· | {Zi}ni=1) is trained in an adaptive manner.
For parametric statistical models, a natural approach is to maintain a parameter vector and update it using
an incremental optimization rule. Suppose that the model used at iteration τ is µ̂τ (·) = µ̂(· | ϑτ ), where ϑτ

is learned from the data {(Xi, Yi)}τ−1
i=1 via stochastic optimization (or, more generally, an iterative online

training procedure). Starting from ϑτ−1, after observing the new data point (Xτ−1, Yτ−1) we update

ϑτ = ϑτ−1 − ητ−1f
(
ϑτ−1; (Xτ−1, Yτ−1)

)
, (222)

where f(ϑ; (X,Y )) denotes the update direction and ητ−1 the stepsize. Let Θ denote the parameter domain
and Z the domain of data points.

To study stability for such adaptive methods, we impose several standard conditions on the update map f .

Assumption D.3. There exist constants 0 < µ ≤ L and B > 0 such that, for any ϑ, ϑ′ ∈ Θ and (x, y) ∈ Z,

• Strong convexity: ⟨f(ϑ; (x, y))− f(ϑ′; (x, y)), ϑ− ϑ′⟩ ≥ µ∥ϑ− ϑ′∥22;

• Smoothness: ∥f(ϑ; (x, y))− f(ϑ′; (x, y))∥2 ≤ L∥ϑ− ϑ′∥2;

• Boundedness: ∥f(ϑ; (x, y))∥2 ≤ B.

With Assumption D.3 in place and suitably decaying stepsizes, a single-sample perturbation has an O(1/n)
effect on the parameter iterate, as asserted in the following lemma. The proof is provided in Section D.4.3.
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Proposition D.3. Suppose that Assumption D.3 holds. Consider the parameter sequence {ϑn}∞n=1 updated
according to (222) with stepsize ηn = min{γ/n, 1/L}, where γ > 3/µ. Then there exists a constant K > 0
(independent of n) such that, for any two adjacent datasets differing in a single time index l, the corresponding
iterates {ϑn}∞n=1 and {ϑ′

n}∞n=1 satisfy ∥∥ϑn − ϑ′
n

∥∥
2
≤ K

n
.

We now discuss how to incorporate the above adaptive updates into the online full conformal construction.
In particular, when forming the augmented dataset (Xn,r,l, y) in the proposed full conformal procedure, we
update the model parameter using the same one-step rule. For any pair (x, y) ∈ X × R, define

ϑ(x,y)
τ := ϑτ−1 − ητ−1f

(
ϑτ−1; (x, y)

)
.

Accordingly, in round r of stage n, we redefine the residual score si(Xn,r,l, y) from Eqn. (26) as follows:

s
(X,y)
i :=

∣∣∣Yn,r−1,i − µ̂
(
Xcal

n,r−1,i |ϑ(X,y)
τn,r

)∣∣∣, i = 1, . . . , Tr−1, (223a)

s
(X,y)
test :=

∣∣∣y − µ̂
(
X |ϑ(X,y)

τn,r

)∣∣∣. (223b)

Equipped with (223), we can then construct the prediction set according to (27). This leads to a modification
of Algorithm 4 that incorporates adaptive updates of the fitted model.

D.4 Detailed proofs
D.4.1 Proof of Propostion D.1

Since C is convex and ℓ(·; z) is differentiable in the first argument, the standard optimality condition (Boyd
and Vandenberghe, 2004) yields 〈

∇L̂n(ϑ̂n), ϑ− ϑ̂n

〉
≥ 0 for all ϑ ∈ C, (224)〈

∇L̂′
n(ϑ̂

′
n), ϑ− ϑ̂′

n

〉
≥ 0 for all ϑ ∈ C. (225)

In particular, taking ϑ = ϑ̂′
n in (224) and ϑ = ϑ̂n in (225), adding these two inequalities, and setting

∆n := ϑ̂′
n − ϑ̂n, we obtain 〈

∇L̂n(ϑ̂n)−∇L̂′
n(ϑ̂

′
n),∆n

〉
≥ 0. (226)

By construction, the gradients of the two empirical loss functions satisfy

∇L̂′
n(ϑ) = ∇L̂n(ϑ) +

1

n

(
∇ℓ(ϑ;Z ′

n)−∇ℓ(ϑ;Zn)
)
,

which, when evaluated at ϑ = ϑ̂′
n, yields

∇L̂′
n(ϑ̂

′
n) = ∇L̂n(ϑ̂

′
n) +

1

n

(
∇ℓ(ϑ̂′

n, Z
′
n)−∇ℓ(ϑ̂′

n, Zn)
)
.

Substituting this identity into (226) yields〈
∇L̂n(ϑ̂n)−∇L̂n(ϑ̂

′
n),∆n

〉
− 1

n

〈
∇ℓ(ϑ̂′

n;Z
′
n)−∇ℓ(ϑ̂′

n;Zn),∆n

〉
≥ 0.

Rearranging terms, we are left with〈
∇L̂n(ϑ̂

′
n)−∇L̂n(ϑ̂n),∆n

〉
≤ 1

n

〈
∇ℓ(ϑ̂′

n;Zn)−∇ℓ(ϑ̂′
n;Z

′
n),∆n

〉
. (227)

According to Assumption D.1 there exists a quantity βL > 0 such that∥∥∇ℓ(ϑ; z)−∇ℓ(ϑ; z′)∥∥
2
≤ 2βL for all ϑ ∈ C, z, z′. (228)
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With (228) in mind, we can bound the right-hand side of (227) using the Cauchy–Schwarz inequality:

1

n

∣∣〈∇ℓ(ϑ̂′
n;Z

′
n)−∇ℓ(ϑ̂′

n;Zn),∆n

〉∣∣ ≤ 1

n

∥∥∇ℓ(ϑ̂′
n;Z

′
n)−∇ℓ(ϑ̂′

n;Zn)
∥∥
2
∥∆n∥2

≤ 2βL

n
∥∆n∥2.

Combine this with (227) to arrive at the upper bound

〈
∇L̂n(ϑ̂

′
n)−∇L̂n(ϑ̂n),∆n

〉
≤ 2βL

n
∥∆n∥2. (229)

On the other hand, the left-hand side of (229) can be expressed in terms of the empirical Hessian.
Specifically, by the fundamental theorem of calculus for vector-valued functions,

∇L̂n(ϑ̂
′
n)−∇L̂n(ϑ̂n) =

∫ 1

0

∇2L̂n

(
ϑ̂n + t∆n

)
∆n dt,

and as a consequence,

〈
∇L̂n(ϑ̂

′
n)−∇L̂n(ϑ̂n),∆n

〉
=

∫ 1

0

∆⊤
n∇2L̂n

(
ϑ̂n + t∆n

)
∆n dt.

In particular, there exists some ϑ̃ lying within the line segment between ϑ̂n and ϑ̂′
n such that〈

∇L̂n(ϑ̂
′
n)−∇L̂n(ϑ̂n),∆n

〉
= ∆⊤

n∇2L̂n(ϑ̃)∆n.

We now control the empirical Hessian ∇2L̂n(ϑ) uniformly over all ϑ ∈ C. Denote N
(

µ
4βs

, C
)

as the µ
4 -cover

of C. Then we have |N
(

µ
4βs

, C
)
| ≤

(
12βsDC

µ

)d
. According to Bernstein’s inequality, we have

sup
ϑ∈N

(
µ

4βs
,C
){∥∥∇2L̂n(ϑ)−∇2L(ϑ)

∥∥
∞,∞

}
≤ µ

4
(230)

with probability at least 1 − d2 exp
{
− µ2n

32β2
sD

2
C

}
, provided that n ≥ 32dβ2

sD
2
C

µ2 log
(
12βsDC

µ

)
. Combining this

with Assumption D.1 leads to

sup
ϑ∈C

{∥∥∇2L̂n(ϑ)−∇2L(ϑ)
∥∥
∞,∞

}
≤ βs sup

ϑ∈C
inf

ϑ∗∈N
(

µ
4βs

,C
){∥ϑ− ϑ∗ ∥2

}
+ sup

ϑ∗∈N
(

µ
4βs

,C
){∥∥∇2L̂n(ϑ)−∇2L(ϑ)

∥∥
∞,∞

} (230)
≤ βs

µ

4βs
+

µ

4
≤ µ

2
.

This combined with the strong convexity assumption and (230) tells us that: for all ϑ ∈ C and every unit
vector u ∈ Rd,

u⊤∇2L̂n(ϑ)u ≥ u⊤∇2L(ϑ)u−
∥∥∇2L̂n(ϑ)−∇2L(ϑ)

∥∥ ≥ µ− µ

2
=

µ

2
.

Putting all these pieces together, we arrive at

µ

2
∥∆n∥22 ≤ ∆⊤

n∇2L̂n(ϑ̃)∆n =
〈
∇L̂n(ϑ̂

′
n)−∇L̂n(ϑ̂n),∆n

〉
≤ 2βL

n
∥∆n∥2.

If ∆n = 0, the bound is trivial. Otherwise, cancelling ∥∆n∥2 from both sides yields ∥∆n∥ ≤ 4βL

µn .
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D.4.2 Proof of Proposition D.2

Without loss of generality, we assume that ϑ1 = 0. Note that under the stepsize choice ηn = min{1/σ̂, γn/n},
it can be easily seen that: for any unit vector u,

1 = ∥u∥22 ≥ u⊤(I − ηnÂn)u ≥ ∥u∥22 − ηnσ̂ = 1− ηnσ̂ ≥ 0.

This implies that for any n, ∥I − ηnÂn∥ ≤ 1. According to the LSA update rule (221), we have

∥ϑn∥2 ≤
∥∥(I − ηn−1Ân−1

)
ϑn−1

∥∥
2
+ ηn−1

∥∥b̂n∥∥2
(a)

≤ ∥ϑn−1∥2 +
CL log(n− 1)

n− 1
≤ . . . ≤

n∑
i=1

CL log i

i
≤ CL log2 n,

(231)

where we have made use of Assumption D.2 and the choice that ηn ≤ γn/n.

Stability at iteration l. By construction, ϑi = ϑ′
i holds for all i = 1, . . . , l. At the perturbed iteration

l + 1, it holds that

ϑl+1 − ϑ′
l+1 =

[
ϑl − ηl

(
Âlϑl − b̂l

)]
−
[
ϑ′
l − ηl

(
Â′

lϑ
′
l − b̂′l

)]
= −ηl

[
(Âl − Â′

l)ϑl − (̂bl − b̂′l)
]
.

Taking this together with ηl ≤ γl/l, σ ≥ 1, and Assumption D.2 leads to∥∥ϑl+1 − ϑ′
l+1

∥∥
2
≤ γl

l

(∥∥Ãl

∥∥+ ∥∥Ã′
l

∥∥) ∥ϑl∥2 +
2γlL

l
(231)
≤ 2γl

l

(
σCL log2 l + L

)
≤ 4CσL log3 l

l
.

(232)

Error propagation after iteration l. Let us define, for all i ≥ 1, ∆i := ϑi − ϑ′
i. For every i > l, the two

recursions share the same (Âi, b̂i), so subtracting their updates yields

∆i+1 =
(
I − ηiÂi

)
∆i.

Iterating over i = l, . . . , n gives

∆n+1 = Γγ
l,n∆l+1, Γγ

l,n :=

n∏
i=l+1

(
I − ηiÂi

)
, (233)

where the matrix product is ordered from i = l + 1 (the rightmost) up to n (the leftmost). Combining (232)
and (233) yields

∥∆n+1∥2 = ∥Γγ
l,n∆l+1∥2 ≤ ∥Γγ

l,n∥ ∥∆l+1∥2 ≤
4CσL log3 l

l
∥Γγ

l,n∥. (234)

Hence, it boils down to controlling the operator norm of the random matrix product Γγ
l,n.

Tools for analyzing products of random matrices. To bound ∥Γγ
l,n∥, we follow the framework of

Durmus et al. (2021); Huang et al. (2022). For any matrix B ∈ Rd×d, let (σℓ(B))dℓ=1 denote its singular values,
and for p ≥ 1 define the Schatten p-norm ∥B∥p :=

(∑d
ℓ=1 σ

p
ℓ (B)

)1/p
. For p, q ≥ 1 and a random matrix X,

define ∥X∥p,q :=
(
E[∥X∥qp]

)1/q
. We record the following two useful lemmas from Durmus et al. (2021).

Lemma D.1 (Proposition 2 in Durmus et al. (2021)). Let {Yℓ : ℓ ∈ N} be an independent sequence. Assume
that for each ℓ ∈ N, there exist mℓ ∈ (0, 1) and σℓ > 0 such that

∥E[Yℓ]∥2 ≤ 1−mℓ and ∥Yℓ − E[Yℓ]∥ ≤ σℓ almost surely.

Define Zn =
∏n

ℓ=0 Yℓ = YnZn−1 for n ≥ 1, with an arbitrary starting point Z0. Then, for any 2 ≤ q ≤ p and
n ≥ 1, one has

∥Zn∥2p,q ≤
n∏

ℓ=1

(
1−mℓ + (p− 1)σ2

ℓ

)∥∥Z0

∥∥2
p,q

.
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Lemma D.2 (Lemma 1 in Durmus et al. (2021)). Let A ∈ R, B > 0, C ≥ 1, and p0, p1 ∈ R with
1 ≤ p0 ≤ p1 <∞. Let X be a real random variable satisfying, for any p ∈ [p0, p1],

E[|X|p] ≤ C exp(−Ap+Bp2). (235)

Then, for all δ ∈ (0, 1], with probability at least 1− δ one has

|X| ≤ exp
(
−A+Bp0 + 2

√
B log(C/δ) +

log(C/δ)

p1

)
.

High-probability bound on ∥Γγ
l,n∥. We intend to apply Lemma D.1 to analyze the matrix product

Γγ
j,n :=

n∏
i=j

(
I − ηiAi + ηiÃi

)
, j ≤ n.

Take Yi = I − ηiAi + ηiÃi, and Z0 = Id. Then E[Yi] = I − ηiAi and Yi−E[Yi] = ηiÃi. With Assumption D.2
in place, by setting

mi = µηi, σi = σηi,

we see that ∥E[Yi]∥2 ≤ 1−mi and ∥Yi − E[Yi]∥ ≤ σi. Lemma D.1 then tells us that, for any 2 ≤ q ≤ p,

E
[
∥Γγ

j,n∥
q
p

]1/q
= ∥Γγ

j,n∥p,q ≤
n∏

i=j

(
1− µηi + (p− 1)σ2η2i

)
∥Id∥p

≤ d1/p exp

−µ
n∑

i=j

ηi + (p− 1)σ2
n∑

i=j

η2i

 , (236)

where the last step makes use of the elementary inequality log(1 + x) ≤ x.
Since ∥I − ηiÂi∥ ≤ 1 for each i, we have ∥Γγ

l,n∥ ≤ 1 for all l ≤ n. By introducing an index

j := max
{
l,
⌈
12Cσ2/µ

⌉
,
⌈
2Cσ̂ log(Cσ̂)

⌉}
,

we can easily check that ηi = γi/i for every i ≥ j. Further, we can derive the following inequality:

σ2
n∑

i=j

γ2
i

i2
≤ C2σ2 log2 n

(
1

j − 1
− 1

n

)
≤ Cµ

12
log2 n

(a)

≤ µ

6

∫ n

j

C log x

x
dx ≤ µ

6

n∑
i=j

C log i

i
=

µ

6

n∑
i=j

γi
i
.

(237)

Here, (a) holds whenever n ≥ 3j. In the regime n ≤ j, the desired claim follows directly by combining (234)
with the bound

∥∥∥Γγ
l,n

∥∥∥ ≤ 1. Taking p = q in (236), we obtain

E
[
∥Γγ

j,n∥
p
p

]
≤ d exp

−pµ
n∑

i=j

γi
i
+ p2σ2

n∑
i=j

γ2
i

i2

 . (238)

Applying Lemma D.2 with p0 = 2, p1 = ∞, C = d, A = µ
∑n

i=j
γi

i , B = σ2
∑n

i=j
γ2
i

i2 , and using the fact
that (238) implies (235) for all p ≥ 2, we can deduce that, with probability at least 1− δ/n,

∥Γγ
j,n∥ ≤ exp

−µ
n∑

i=j

γi
i
+ 3σ2

n∑
i=j

γ2
i

i2
+ log

dn

δ

 (237)
≤ exp

−µ

2

n∑
i=j

γi
i
+ log

dn

δ

 .
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Using the elementary fact
∑n

i=j
log i
i ≥ log2 n− log2 j = log(n/j) log(nj) ≥ log(n/j) logn, we further obtain

∥Γγ
j,n∥ ≤

dn

δ

( j
n

)Cµ log n
2

. (239)

Since ∥Γγ
l,n∥ ≤ ∥Γ

γ
j,n∥ holds by construction and ∥Γγ

l,n∥ ≤ 1, combining (239) with the trivial upper bound 1
yields, for all l ≤ n and with probability at least 1− δ,

∥Γγ
l,n∥ ≤ min

1,
dn

δ

(
max{l, ⌈12Cσ2/µ⌉,

⌈
2Cσ̂ log(Cσ̂)

⌉
}

n

)Cµ log n
2

 , l = 1, . . . , n. (240)

Bounded-difference property of ϑn+1. For ease of exposition, we introduce the following notation:

C0 := max
{
⌈12Cσ2/µ⌉,

⌈
2Cσ̂ log(Cσ̂)

⌉}
.

Substituting (240) into (234), we arrive at

∥∆n+1∥2 ≤
4CσL log3 l

l
min

{
1,

dn

δ

(max{l, C0}
n

)Cµ log n
2

}
(241)

holds for any l = 1, . . . , n. Let κ := σ/µ and choose δ = n−ζ , C = 2(ζ+1)
µ . For l ≤ C0, use (241) to obtain

∥∆n+1∥2 ≤ 4CσL log3 C0 min

{
1, dnζ+1

(
C0

n

)(ζ+1) logn
}

(a)

≤ 4CσL log3 C0

(
dC

(ζ+1) logn
0

n(ζ+1)(logn−1)

) 1
(ζ+1)(log n−1) (b)

≤ 4CσL log3 C0
eC2

0

n
.

Here, (a) results from the fact that a ≤ aλ for any a, λ ∈ [0, 1], and (b) holds since d
1

(ζ+1)(log n−1) ≤ e provided
that nζ ≥ d. Thus, in this setting, Proposition D.2 holds by taking K = 8e(ζ + 1)κLC2

0 log
3 C0.

For l > C0, similarly we can derive

∥∆n+1∥2 ≤
4CσL log3 n

l
min

{
1, dnζ+1

(
l

n

)(ζ+1) logn
}

≤ 4CσL log3 n

l

(
dl(ζ+1) logn

n(ζ+1)(logn−1)

) 1
(ζ+1)(log n−1)

≤ 4eCσL log3 n

n
· l

(ζ+1) log n
(ζ+1)(log n−1)

−1 ≤ 4eCσL log3 n

n
· n

1
log n−1 ≤ 16eCσL log3 n

n
.

In this setting, Proposition D.2 follows by taking K = 16eCσL.

D.4.3 Proof of Proposition D.3

We let K := 2BLγ
µ and prove this result by induction. Fix two adjacent data streams, and let {ϑk}k≥1 and

{ϑ′
k}k≥1 denote the iterates generated by (222) from the same initialization. Assume for the moment that

∥ϑn − ϑ′
n∥2 ≤ min

{
K

n
,
2B

L

}
(242)

holds for some n ≥ 1, and we would like to bound ∥ϑn+1 − ϑ′
n+1∥2.

We divide into several cases according to the index at which the two data streams differ. First, consider
the case where the two streams differ at the most recent observation, i.e., (Xn, Yn) ̸= (X ′

n, Y
′
n) while

88



(Xi, Yi) = (X ′
i, Y

′
i ) for all i ≤ n− 1. In this case, the iterates coincide up to time n, hence ϑn = ϑ′

n. In view
of the update rule (222),

∥ϑn+1 − ϑ′
n+1∥2 = ηn

∥∥∥f(ϑn; (Xn, Yn)
)
− f

(
ϑn; (X

′
n, Y

′
n)
)∥∥∥

2

≤min

{
2γB

n
,
2B

L

}
≤ min

{
K

n+ 1
,
2B

L

}
,

where penultimate inequality arises from Assumption D.3 and our stepsize choice, and the last inequality
holds since

2γB

n
≤ 4γB

n+ 1
≤ 2BLγ

µ(n+ 1)
=

K

n+ 1
.

Next, consider the case where the two data streams differ at some index l ≤ n − 1. Then the current
update at time n is computed from the same observation Zn = (Xn, Yn) in both streams. Since ηn ≤ 1/L,
Lee and Zhang (2025, Lemma 2) implies that the update map is nonexpansive, which, taken together with
the induction hypothesis (242), yields

∥ϑn+1 − ϑ′
n+1∥2 ≤ ∥ϑn − ϑ′

n∥2 ≤ min
{K
n
,
2B

L

}
.

In addition, a direct expansion of the recursion yields

∥ϑn+1 − ϑ′
n+1∥22 =

∥∥ϑn − ϑ′
n − ηn

(
f(ϑn;Zn)− f(ϑ′

n;Zn)
)∥∥2

2

≤ ∥ϑn − ϑ′
n∥22 − 2ηn ⟨f(ϑn;Zn)− f(ϑ′

n;Zn), ϑn − ϑ′
n⟩+ L2η2n∥ϑn − ϑ′

n∥22

≤
(
1− µηn + L2η2n

)
∥ϑn − ϑ′

n∥22 ≤
K2
(
1− 2µηn + L2η2n

)
n2

,

(243)

which follows from Assumption D.3. Further, it can be derived that(
1− 2µηn + L2η2n

) (n+ 1)2

n2

(a)

≤ (1− µηn)(1 + 3/n)
(b)

≤ 1,

where (a) is valid provided that n+ 1 ≥ L2γ
µ and (b) holds as long as γ ≥ 3/µ. Substitution into (243) yields

∥∥ϑn+1 − ϑ′
n+1

∥∥2
2
≤ K2

(n+ 1)2
.

Moreover, if n+ 1 < L2γ
µ , then it still holds that

∥∥ϑn+1 − ϑ′
n+1

∥∥
2
≤ 2B

L
≤ 2BL2γ

µL(n+ 1)
=

K

n+ 1
.

We have thus concluded the proof of Proposition D.3.

E Auxiliary concentration inequalities
This appendix collects several classical concentration inequalities that will be used repeatedly in our analysis.
Their proofs can be found in, e.g., Boucheron et al. (2013); Vershynin (2018).

Lemma E.1 (McDiarmid inequality). Let X1, . . . , Xn be independent random variables taking values in
measurable spaces X1, . . . ,Xn, and let f : X1 × · · · × Xn → R be a measurable function satisfying the bounded
differences condition: there exist constants c1, . . . , cn ≥ 0 such that for all x1, . . . , xn, x

′
i ∈ Xi,∣∣f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x

′
i, . . . , xn)

∣∣ ≤ ci.

Then, for all t > 0,

P
(∣∣f(X1, . . . , Xn)− E

[
f(X1, . . . , Xn)

]∣∣ ≥ t
)
≤ 2 exp

(
− 2t2∑n

i=1 c
2
i

)
.
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Lemma E.2 (Khintchine inequality for p = 1). Let {εi}ni=1 be independent Rademacher random variables,
that is, P(εi = 1) = P(εi = −1) = 1/2. Then for any real coefficients a1, . . . , an, one has

E
[∣∣∣∣ n∑

i=1

aiεi

∣∣∣∣] ≥ 1√
2

( n∑
i=1

a2i

)1/2
.

Lemma E.3 (Paley–Zygmund inequality). Let Z be a nonnegative random variable with E[Z2] <∞. Then,
for any θ ∈ [0, 1], the following inequality holds:

P
(
Z ≥ θE[Z]

)
≥ (1− θ)2

(E[Z])2

E[Z2]
.

Lemma E.4 (Generalized DKW inequality). Let X1, . . . , Xn be independent random elements taking values
in X . Let F : X × R → [0, 1] satisfy that, for every u ∈ X , the map x 7→ F (u, x) is nondecreasing and
right-continuous. Define

F̂n(x) :=
1

n

n∑
i=1

F (Xi, x), F (x) :=
1

n

n∑
i=1

E
[
F (Xi, x)

]
.

Then for any δ ∈ (0, 1), with probability at least 1− δ,

sup
x∈R

∣∣F̂n(x)− F (x)
∣∣ ≤ 4√

n
+

√
log(1/δ)

2n
.

Specifically, when Xi = R, i = 1, . . . , n and F (Xi, x) = 1{Xi ≤ x} we have:

P

(
sup
x∈R

∣∣∣∣∣ 1n
n∑

i=1

(
1{Xi ≤ x} − P(Xi ≤ x)

)∣∣∣∣∣ ≤ 4√
n
+

√
log(1/δ)

2n

)
≥ 1− δ.

Proof of Lemma E.4. The proof comprises the following steps.

Step 1: applying McDiarmid around the mean. Let

g := sup
x∈R

∣∣F̂n(x)− F (x)
∣∣.

Fix any i ∈ [n]. Replace Xi by an arbitrary X̃i, and define

F̃n(x) :=
1

n

(
F (X̃i, x) +

∑
j ̸=i

F (Xj , x)
)
, g̃ := sup

x∈R

∣∣F̃n(x)− F (x)
∣∣.

Since 0 ≤ F ≤ 1, for every x ∈ R,∣∣F̂n(x)− F̃n(x)
∣∣ = 1

n

∣∣F (Xi, x)− F (X̃i, x)
∣∣ ≤ 1

n
.

Using ||u| − |v|| ≤ |u− v| and |supx a(x)− supx b(x)| ≤ supx |a(x)− b(x)|, we obtain

|g − g̃| ≤ sup
x∈R

∣∣F̂n(x)− F̃n(x)
∣∣ ≤ 1

n
,

so g satisfies bounded differences with constants ci = 1/n. By McDiarmid’s inequality, for any δ ∈ (0, 1),
with probability at least 1− δ,

g ≤ E[g] +
√

log(1/δ)

2n
. (244)
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Step 2: controlling E[g] via symmetrization and a reduction to indicators. Introduce a ghost
sample X ′

1, . . . , X
′
n, independent of (X1, . . . , Xn) satisfying X ′

i
d
= Xi, and let ϵ1, . . . , ϵn be i.i.d. Rademacher

signs, independent of everything else. Recognizing that E[F (Xi, x)] = E[F (X ′
i, x)], we can express

F̂n(x)− F (x) = EX′

[
1

n

n∑
i=1

(
F (Xi, x)− F (X ′

i, x)
) ∣∣∣∣∣X

]
.

By the Jensen inequality and the convexity of sup, we have

E
[
sup
x∈R

∣∣F̂n(x)− F (x)
∣∣] ≤ EX,X′

[
sup
x∈R

∣∣∣∣∣ 1n
n∑

i=1

(
F (Xi, x)− F (X ′

i, x)
)∣∣∣∣∣
]
.

Using exchangeability of (Xi, X
′
i) to insert Rademacher signs and then invoking the triangle inequality gives

EX,X′

[
sup
x

∣∣∣∣∣
n∑

i=1

(
F (Xi, x)− F (X ′

i, x)
)∣∣∣∣∣
]
= EX,X′,ϵ

[
sup
x

∣∣∣∣∣
n∑

i=1

ϵi
(
F (Xi, x)− F (X ′

i, x)
)∣∣∣∣∣
]

≤ EX,X′,ϵ

[
sup
x

∣∣∣∣∣
n∑

i=1

ϵiF (Xi, x)

∣∣∣∣∣
]
+ EX,X′,ϵ

[
sup
x

∣∣∣∣∣
n∑

i=1

ϵiF (X ′
i, x)

∣∣∣∣∣
]
= 2EX,ϵ

[
sup
x

∣∣∣∣∣
n∑

i=1

ϵiF (Xi, x)

∣∣∣∣∣
]
.

Taking the above inequalities together yields

E[g] = E
[
sup
x∈R

∣∣∣F̂n(x)− F (x)
∣∣∣] ≤ 2

n
EX,ϵ

[
sup
x∈R

∣∣∣ n∑
i=1

ϵiF (Xi, x)
∣∣∣]. (245)

We next bound the Rademacher term. Since 0 ≤ F (Xi, x) ≤ 1, for each i and x,

F (Xi, x) =

∫ 1

0

1{F (Xi, x) ≥ t} dt.

Therefore, for any fixed x ∈ R,∣∣∣ n∑
i=1

ϵiF (Xi, x)
∣∣∣ = ∣∣∣ ∫ 1

0

n∑
i=1

ϵi1{F (Xi, x) ≥ t} dt
∣∣∣ ≤ ∫ 1

0

∣∣∣ n∑
i=1

ϵi1{F (Xi, x) ≥ t}
∣∣∣ dt,

and hence

sup
x∈R

∣∣∣ n∑
i=1

ϵiF (Xi, x)
∣∣∣ ≤ ∫ 1

0

sup
x∈R

∣∣∣ n∑
i=1

ϵi1{F (Xi, x) ≥ t}
∣∣∣ dt. (246)

Fix t ∈ [0, 1]. For any u ∈ X , define the threshold

a(u, t) := inf{x ∈ R : F (u, x) ≥ t} ∈ [−∞,+∞].

Since x 7→ F (u, x) is nondecreasing and right-continuous, we have

{x ∈ R : F (u, x) ≥ t} = [a(u, t),∞),

and thus, for every x ∈ R,
1{F (Xi, x) ≥ t} = 1{x ≥ a(Xi, t)}. (247)

Consequently,

sup
x∈R

∣∣∣ n∑
i=1

ϵi1{F (Xi, x) ≥ t}
∣∣∣ = sup

x∈R

∣∣∣ n∑
i=1

ϵi1{x ≥ a(Xi, t)}
∣∣∣.

91



Let a(1)(t) ≤ · · · ≤ a(n)(t) be the order statistics of {a(Xi, t)}ni=1, and let ϵ(1)(t), . . . , ϵ(n)(t) be the corre-
sponding reordered signs. Then the mapping x 7→

∑n
i=1 ϵi1{x ≥ a(Xi, t)} is piecewise constant and, as x

increases, it takes values
∑k

j=1 ϵ(j)(t) for some k ∈ {0, 1, . . . , n}. Hence,

sup
x∈R

∣∣∣ n∑
i=1

ϵi1{x ≥ a(Xi, t)}
∣∣∣ = max

0≤k≤n

∣∣∣ k∑
j=1

ϵ(j)(t)
∣∣∣.

Since (ϵ1, . . . , ϵn) are i.i.d. and independent of the Xi’s, conditionally on X1:n the reordered sequence
(ϵ(1)(t), . . . , ϵ(n)(t)) has the same joint distribution as (ϵ1, . . . , ϵn). Therefore,

Eϵ

[
sup
x∈R

∣∣∣ n∑
i=1

ϵi1{F (Xi, x) ≥ t}
∣∣∣ ∣∣∣ X1:n

]
= Eϵ

[
max

0≤k≤n

∣∣∣ k∑
j=1

ϵj

∣∣∣].
Let Sk :=

∑k
j=1 ϵj , k = 0, 1, . . . , n. Then (Sk)

n
k=0 is a martingale, and Doob’s L2 maximal inequality yields

E
[

max
0≤k≤n

|Sk|2
]
≤ 4E

[
|Sn|2

]
= 4n.

By Cauchy–Schwarz,
E
[

max
0≤k≤n

|Sk|
]
≤ 2
√
n.

Combining this with (246) and applying Tonelli’s theorem gives

EX,ϵ

[
sup
x∈R

∣∣∣ n∑
i=1

ϵiF (Xi, x)
∣∣∣] ≤ ∫ 1

0

2
√
n dt = 2

√
n.

Substituting into (245) yields

E[g] ≤ 2

n
· 2
√
n =

4√
n
. (248)

Step 3: completing the proof. Substituting (248) into (244) completes the proof.
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