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Abstract

This paper investigates how diffusion generative models leverage (unknown) low-dimensional struc-
ture to accelerate sampling. Focusing on two mainstream samplers — the denoising diffusion implicit
model (DDIM) and the denoising diffusion probabilistic model (DDPM) — and assuming accurate score
estimates, we prove that their iteration complexities are no greater than the order of k/ε (up to some
log factor), where ε is the precision in total variation distance and k is some intrinsic dimension of
the target distribution. Our results are applicable to a broad family of target distributions without
requiring smoothness or log-concavity assumptions. Further, we develop a lower bound that suggests
the (near) necessity of the coefficients introduced by Ho et al. (2020) and Song et al. (2020) in facili-
tating low-dimensional adaptation. Our findings provide the first rigorous evidence for the adaptivity of
the DDIM-type samplers to unknown low-dimensional structure, and improve over the state-of-the-art
DDPM theory regarding total variation convergence.
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1 Introduction

As a cornerstone of the rapidly evolving field of generative AI, diffusion generative models have driven
mind-blowing progress across a diverse range of applications, such as image and video generation, medical
image analysis, and time-series forecasting, to name just a few (Ramesh et al., 2022; Croitoru et al., 2023;
Kazerouni et al., 2023; Lin et al., 2024; Yang et al., 2023). The remarkable effectiveness of diffusion models
has inspired a recent wave of activity aimed at developing and strengthening their theoretical underpinnings.

1.1 Score-based generative modeling: DDPM and DDIM

At their core, diffusion models seek to gradually transform pure noise into new samples that emulate a
d-dimensional target distribution pdata, accomplished by learning to reverse a forward stochastic process that
progressively converts data into noise, detailed below.

Forward process. A common choice of the forward process with finite horizon T is given by

X0 ∼ pdata, Xt =
√
αt Xt−1 +

√
1− αt Wt, t = 1, · · · , T, (1)

where {Wt}Tt=1 comprises independent noise vectors obeying Wi
i.i.d.∼ N (0, Id), and the sequence {αt}Tt=1 ⊆

(0, 1) controls the variance of the Gaussian noise injected in each step. Informally, as T grows, the distribution
of Xt typically converges rapidly to the standard Gaussian N (0, Id).
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Reverse process and diffusion-based samplers. As it turns out, the forward Markov process (1) is
reversible in general, a property that follows from classical results in the stochastic differential equation (SDE)
literature (Anderson, 1982; Haussmann and Pardoux, 1986). This intriguing property underpins the data
generation process of diffusion models, which involves constructing a reverse process YT → · · · → Y1 → Y0

that closely mimics the forward process (1) in the sense that Yt
d
≈ Xt for each step t. Crucially, the reversal

of the forward process hinges upon access to the so-called (Stein) score function

s∗t (X) := ∇ log pXt(X) (2)

— hence the term “score-based generative modeling.” To formalize the sampling process, one needs to
specify the initialization and iterative steps of the reverse process. The initialization step is straightforward:
given that XT is approximately Gaussian for large enough T , one generic choice is to draw YT as pure noise
N (0, Id). As such, a key step underlying the design of the sampling process boils down to how to update
Yt at each step while maintaining the desired distributional proximity. In what follows, we single out two
mainstream paradigms, assuming availability of an estimate st of the true score function s∗t at each t:

• Denoising Diffusion Implicit Model (DDIM). The DDIM sampler (or the probability flow ODE sampler)
(Song et al., 2020) adopts a deterministic update rule below:

YT ∼ N (0, Id), Yt−1 =
1

√
αt

(
Yt + ηddimt st(Yt)

)
, t = T, · · · , 1, (3)

where {ηddimt } represents some suitably chosen coefficients. In words, each step (3) computes Yt−1 as
a weighted sum of Yt and its score estimate.

• Denoising Diffusion Probabilistic Model (DDPM). Originally proposed by Ho et al. (2020) as a way to
optimize certain variational lower bounds on the log-likelihood, DDPM employs the following stochastic
iterative updates:

YT ∼ N (0, Id), Yt−1 =
1

√
αt

(
Yt + ηddpmt st(Yt) + σddpm

t Zt

)
, t = T, · · · , 1, (4)

where the Zt’s are independently generated obeying Zt ∼ N (0, Id), and {ηddpmt } and {σddpm
t } are

properly chosen coefficients. A key distinction from DDIM is that the iterative updates (4) inject
additional stochastic noise at each step.

1.2 Harnessing low-dimensional structure?

Motivated by the practical efficacy of diffusion models, the past few years have witnessed a flurry of activity
towards establishing convergence theory for both DDPM and DDIM (Lee et al., 2022; Chen et al., 2022b,
2023a,d, 2024b; Benton et al., 2024, 2023; Li et al., 2024b,c,d; Gao and Zhu, 2024; Huang et al., 2024a; Li and
Yan, 2024b; Tang, 2023; Tang and Zhao, 2024b; Liang et al., 2024; Li and Jiao, 2024). For a fairly general
family of target distributions pdata (without assuming smoothness and log-concavity), the state-of-the-art
theory Li and Yan (2024a); Li et al. (2024c) demonstrated that for both DDPM and DDIM, it takes at most
the order of (modulo some log factor)

d

ε
iterations (5)

to yield a sample whose distribution is ε-close in total variation (TV) distance to the target distribution,
provided that perfect score function estimates are available.

Nevertheless, even linear scaling in the ambient dimension d can still be prohibitively expensive for many
contemporary applications. Take the ImageNet dataset (Deng et al., 2009) for instance: each image might
contain 150,528 pixels, while its intrinsic dimension is estimated to be 43 or less (Pope et al., 2021). As
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a result, applying the state-of-the-art theory (5) could suggest an iteration complexity that exceeds one
million, even though practical implementations of DDIM and DDPM often produce high-quality samples in
just a few hundred (or even a few ten) iterations. The discrepancy between theory and practice suggests
that worst-case bounds, such as (5), may be overly conservative. To reconcile this discrepancy, it is crucial to
bear in mind the intrinsic dimension of the target data distribution and explore whether and how diffusion
models can harness this potentially low-dimensional structure.

The development of diffusion model theory that can effectively account for low dimensionality is, however,
still in its early stages. For example, the ability of DDIM to adapt to low-dimensional structure was previously
out of reach in theory, despite its widespread use. The situation for DDPM is more advanced: a few recent
papers (e.g., Li and Yan (2024a); Azangulov et al. (2024); Potaptchik et al. (2024); Huang et al. (2024b))
explored its low-dimensional adaptation capability, assuming that the target data distribution is supported
on some low-dimensional structure like a manifold. These studies focused primarily on convergence in
Kullback–Leibler (KL) divergence, which, as we shall explain momentarily, is known to yield loose results
when directly translated into convergence guarantees based on other metrics like the TV distance.

1.3 This paper

An overview of our contributions. In this paper, we develop a new suite of total-variation-based
convergence guarantees for the DDIM and DDPM samplers, aimed at uncovering how they leverage low-
dimensional structure to accelerate sampling. More concretely, consider a general definition of intrinsic
dimension for the target distribution pdata, such that the intrinsic dimension is k if the logarithm of the
covering number of the support of pdata is on the order of k (up to some log factor). With this type of
intrinsic dimension in mind, we prove in Theorems 1-3 that both DDPM and DDIM take no more than the
order of

k

ε
iterations (up to log factor) (6)

to generate a sample that is ε-close in TV distance to the target distribution, assuming availability of perfect
score estimates. Note that we do not impose stringent assumptions like smoothness or log-concavity on pdata.
For those applications where k ≪ d — a situation that is prevalent in many modern-day applications — our
theory underscores the striking capability of diffusion models to automatically exploit the favorable intrin-
sic structure of pdata without explicitly modeling the low-dimensional structure or altering the algorithms.
Importantly, these results provide the first theory justifying the low-dimensional adaptation ability of the
DDIM-type samplers, and significantly improve over the state-of-the-art DDPM theory regarding total vari-
ation convergence; see Table 1 and Table 2 for detailed comparisons with prior DDIM and DDPM theory,
respectively.1 These convergence guarantees are also shown to be robust vis-à-vis ℓ2 score estimation errors.
Furthermore, we illuminate the specific coefficient choices of the DDIM/DDPM samplers, by linking them
with reverse-time differential equations with specific discretization to exploit low dimensionality. Finally, we
develop a lower bound for a single step of the discretized reverse process, which unravels the necessity and
optimality of the coefficient designs proposed originally by Ho et al. (2020); Song et al. (2020).

Notation. For any positive integer n, let [n] = {1, . . . , n}. For any two functions f and g, we employ the
notation f = O(g) or f ≲ g to mean that there exists some universal constant C > 0 such that f ≤ Cg. The

notation f = Õ(g) is defined analogously except that the logarithmic dependency is hidden. Additionally,
f ≳ g means g ≲ f , and f ≍ g means f ≲ g and g ≲ f hold at once. For any two distributions p and q, we
denote by TV(p, q) (resp. KL(p ∥ q)) the TV distance between p and q (resp. the KL divergence from q to
p). We denote by pXt

and pYt
the probability density function of Xt and Yt, respectively. For any matrix A,

we denote by ∥A∥ (resp. ∥A∥F) the spectral norm (resp. Frobenius norm) of A, and tr(A) the trace of A.
For any vector-valued function f(x) , we let ∂f

∂x represent the Jacobian matrix of f(x); for any real-valued

1Note that in a large fraction of prior DDPM theory, the bound based on the TV distance is obtained by applying Pinsker’s
inequality (i.e., TV(pX1

, qY1
) ≤

√
2KL(pX1

∥ pY1
)).
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paper
smoothness of

scores
score matching

assumption
convergence rate

(in total variation)
iteration

complexity

adaptation
to low

dimension

Chen et al.
(2023d)

L-Lipschitz st = s∗t poly(Ld)
/√

T poly(Ld)
/
ε2 ✗

Li et al. (2023a) no requirement st ≈ s∗t ,
∂st
∂x ≈ ∂s∗t

∂x d2/T + d6/T 2 d2/ε + d3/
√
ε ✗

Huang et al.
(2024a)

L-Lipschitz st≈s∗t L2d2/T L2d2
/
ε ✗

Li et al. (2024c) no requirement st ≈ s∗t ,
∂st
∂x ≈ ∂s∗t

∂x d/T when T > d2 d/ε + d2 ✗

Li et al. (2024d) L-Lipschitz st ≈ s∗t ,
∂st
∂x ≈ ∂s∗t

∂x Ld(L + d)
/
T Ld(L + d)

/
ε ✗

Our work
(Theorem 1)

no requirement
st ≈ s∗t ,

∂st
∂x ≈ ∂s∗t

∂x ,

∇tr(
∂st
∂x )≈∇tr(

∂s∗t
∂x )

k/T k/ε ✓

Table 1: Comparison with prior DDIM theory. The convergence rates and iteration complexities provided
here assume accurate scores and ignore log factors, where the iteration complexity refers to the number of
iterations needed to yield ε precision in total variation.

function g(x), we let ∇g(x) represent the gradient of g(x). Also, for any random object X, we denote by
supp(X) the support of X.

2 Preliminaries

Before proceeding to our formal theory and analysis, we briefly overview some basics and the operational
mechanism of diffusion models, covering both DDIM and DDPM.

Forward process and noise schedule. As previously described in (1), the forward process progressively
injects Gaussian noise to transform the target distribution pdata into a pure noise distribution that is easy
to sample from. The Gaussian nature of the injected noise allows for a more direct relation between X0 and
Xt as follows:

Xt =
√
αtX0 +

√
1− αt W t with W t ∼ N (0, Id), (7)

where we introduce the following parameters for any 1 ≤ t ≤ T :

αt :=

t∏
i=1

αi. (8)

As it turns out, the choices of the coefficients {αt} play an important role in determining the convergence
properties of diffusion models. Here and throughout, we adopt the choices used in the previous work (Li
et al., 2024c; Li and Yan, 2024a,b):

β1 := 1− α1 =
1

T c0
,

βt+1 := 1− αt+1 =
c1 log T

T
min

{
β1

(
1 +

c1 log T

T

)t

, 1

}
, 1 ≤ t < T, (9)

where c0, c1 > 0 are some large enough numerical constants. In words, this noise variance schedule (as βt

is the variance of the noise injected at step t) contains two phases: it grows exponentially at the beginning,
and then stays flat after reaching the order of log T

T , which is consistent with the state-of-the-art diffusion
model theory (e.g., Benton et al. (2024); Potaptchik et al. (2024); Huang et al. (2024b); Li and Yan (2024b);
Li et al. (2024c)).
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paper
smoothness of

scores
score matching

assumption

convergence
rate (in total
variation)

iteration
complexity

adaptation
to low

dimension

Chen et al.
(2022b)

L-Lipschitz st ≈ s∗t L
√

d/T L2d/ε2 ✗

Lee et al. (2022) no requirement st ≈ s∗t

√
d3

/
T d3

/
ε2 ✗

Chen et al.
(2023a)

no requirement st ≈ s∗t
√

d2/T d2/ε2 ✗

Benton et al.
(2024)

no requirement st ≈ s∗t
√

d/T d/ε2 ✗

Liang et al.
(2024)

no requirement
st ≈ s∗t ,

∇st ≈ ∇s∗t
d3/2

/
T d3/2

/
ε ✗

Li and Yan
(2024a)

no requirement st ≈ s∗t k2/
√
T k4/ε2 ✓

Li and Yan
(2024b)

no requirement st ≈ s∗t d/T d/ε ✗

Azangulov et al.
(2024)

no requirement st ≈ s∗t
√

k3/T k3/ε2 ✓

Potaptchik et al.
(2024)

no requirement st ≈ s∗t k/ε2
√

k/T ✓

Huang et al.
(2024b)

no requirement st ≈ s∗t k/ε2
√

k/T ✓

Our work
(Theorems 2-3)

no requirement st ≈ s∗t k/T k/ε ✓

Table 2: Comparison with prior DDPM theory. The convergence rates and iteration complexities provided
here assume accurate scores and ignore log factors, where the iteration complexity refers to the number of
iterations needed to yield ε accuracy in total-variation distance.

Score-based generative models. Next, we describe the precise update rules for both DDIM-type and
DDPM-type samplers.

• DDIM-type samplers. As mentioned previously, a DDIM-type sampler starts with YT ∼ N (0, Id) and
adopts the following deterministic update rule:

Yt−1 =
1

√
αt

(
Yt + ηddimt st(Yt)

)
, t = T, · · · , 1. (10)

Here, ηddimt is a design parameter that admits multiple alternatives, and we list a couple of choices used
in previous literature:

ηddimt =



1− αt

1 +
√

αt−αt

1−αt

(original DDIM (Song et al., 2020); this work) (11a)

1− αt

2
(Li et al., 2023a, 2024d,c) (11b)

−1 + 4
√
αt − 3αt

2
√
αt

(Song et al., 2021) (11c)

Importantly, all of these parameter choices lead to samplers that are asymptotically consistent —
meaning that the distribution of the sampling output converges to the target data distribution as T
grows — under mild conditions on the target data distribution. In this paper, we concentrate on the
parameter schedule (11a) proposed in the original DDIM paper (Song et al., 2020).

• DDPM-type samplers. A DDPM-type sampler adopts the initialization YT ∼ N (0, Id) and implements
the stochastic update rule:

Yt−1 =
1

√
αt

(
Yt + ηddpmt st(Yt) + σddpm

t Zt

)
, t = T, · · · , 1, (12)
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with independent noise Zt
i.i.d.∼ N (0, Id). Here, ηddpmt and σddpm

t are design parameters, with several
choices listed below:

(ηddpmt , σddpm
t ) =



1− αt,

√
(1− αt)(αt − αt)

1− αt




original DDPM (Ho et al., 2020);
Potaptchik et al. (2024);
Huang et al. (2024b);

a special case of this work

 (13a)

(
2(1−

√
αt),

√
1− αt

)
(Benton et al., 2024; Chen et al., 2023a) (13b)(

1− αt,
√
1− αt

)
(Li et al., 2023a; Li and Yan, 2024b) (13c)

All of the above choices come with convergence theory guaranteeing asymptotic consistency. In this
work, we would like to accommodate a range of parameter schedules that subsumes as a special case
the one (13a) proposed in the original DDPM paper (Ho et al., 2020).

ODE and SDE perspectives. To shed light on the rationale and feasibility of the DDIM-type and
DDPM-type samplers, it is helpful to look at the continuous-time analogs of both forward and backward
processes and resort to the toolbox of ordinary differential equations (ODEs) and stochastic differential
equations (SDEs). We briefly review some basics in the sequel, and will illuminate deeper connections in
Section 3.4.

• Forward SDE. The forward process (7) is intimately connected with the following continuous-time
process with some specific choice of β(t):

dXt = −β(t)Xtdt+
√

2β(t) dBt, (14)

where (Bt) represents a standard Brownian motion in Rd. In fact, standard SDE theory reveals that
SDE (14) admits the following characterization

Xt = exp

(
−
∫ t

0

β(s)ds

)
X0 +

√
1− exp

(
− 2

∫ t

0

β(s)ds

)
W t (15)

for some W t ∼ N (0, Id), whose marginal distribution coincides with that of Eqn. (7) if we set

αt = exp

(
−2

∫ t

t−1

β(s)ds

)
, t = 1, · · · , T. (16)

• Probability flow ODE or diffusion ODE. One way to reverse the forward process is through the so-called
probability flow ODE (Song et al., 2021) (also known as diffusion ODE):

dYt =
(
Yt + s∗T−t(Yt)

)
β(T − t)dt, t ∈ [0, T ], (17)

which enjoys matching marginal distribution YT−t
d
= Xt for all 0 ≤ t ≤ T as long as we generate

Y0 ∼ pXT
. To approximately simulate this reverse ODE in practice and obtain a tractable sampler,

a common strategy is to perform time discretization of ODE (17). Note that different discretization
schemes can result in different design coefficients ηddimt as in the DDIM-type update rule (10).

• Reverse-time SDE. An alternative way to reverse the forward process is via a properly chosen SDE.
In view of the classical results in the SDE literature (Anderson, 1982; Haussmann and Pardoux, 1986),
the following SDE,

dYt =
(
Yt + 2s∗T−t(Yt)

)
β(T − t)dt+

√
2β(T − t) dWt, t ∈ [0, T ] (18)

with (Wt) a standard Brownian motion in Rd, reverses the forward process (14) in the sense that

YT−t
d
= Xt for all 0 ≤ t ≤ T as long as Y0 ∼ pXT

. Akin to the DDIM counterpart, the DDPM-type
samplers can often be viewed as time discretization of SDE (18), and different discretization schemes

correspond to different coefficient choices of (ηddpmt , σddpm
t ) as in (12).
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• Generalized reverse-time ODE/SDE.

dYt =
(
Yt +

(
1 + ξ(T − t)

)
s∗T−t(Yt)

)
β(T − t)dt+

√
2ξ(T − t)β(T − t) dWt, t ∈ [0, T ] (19)

for some general function ξ(t) ≥ 0 for all 0 ≤ t ≤ T , where (Wt) again represents a standard Brownian
motion in Rd. We shall formally demonstrate the desired distributional property of this family of
differential equations in Appendix E.1. When ξ(t) = 0 (resp. ξ(t) = 1) for all t ∈ [0, T ], (19) reduces
to ODE (17) (resp. SDE (18)). For a general ξ(t), suitable time discretizationschemes of (19) can lead
to new samplers other than the original DDIM and DDPM.

3 Main results

In this section, we present our main results and discuss their implications. The key assumptions are intro-
duced in Section 3.1, followed by our convergence theory in Sections 3.2-3.3.

3.1 Key assumptions

To begin with, let us single out two assumptions concerning the target data distribution pdata. We denote
by Xdata ∈ Rd the support of pdata, i.e., the closure of the intersection of all the sets X ′ ∈ Rd such that
PX0∼pdata

(X0 ∈ X ′) = 1. In order to rigorously define the “intrinsic dimension” of pdata, we find it convenient
to introduce the following definition of covering number (Wainwright, 2019, Chapter 5), which provides a
generic way to measure the complexity of a set X .

Definition 1 (Covering number) For any set X ⊆ Rd, the (Euclidean) covering number at scale ϵ0 > 0,
denoted by Nϵ0(X ), is defined as the smallest integer n such that there exist points x1, . . . , xn obeying

Xdata ⊆
n⋃

i=1

B(xi, ϵ0),

where B(xi, ϵ0) := {x ∈ Rd | ∥x− xi∥2 ≤ ϵ0} and ∥ · ∥2 denotes the ℓ2 norm.

The covering number in turn enables a flexible characterization of the complexity of the data distribution.

Assumption 1 (Intrinsic dimension) Consider ϵ0 = T−cϵ0 for some sufficiently large universal constant
cϵ0 > 0. The covering number of the support Xdata of pdata is assumed to satisfy

logNϵ0(Xdata) ≤ Ccoverk log T

for some constant Ccover > 0. Here and throughout, we shall refer to k as the intrinsic dimension of pdata.

The intrinsic dimension defined above is fairly generic, facilitating studies of a number of important low-
dimensional structures. Partial examples that satisfy Assumption 1 include k-dimensional linear subspace in
Rd and k-dimensional non-linear manifolds (provided that Xdata is polynomially bounded as in Assumption 2
below), as well as structures with doubling dimension k (Dasgupta and Freund, 2008). The interested reader
is referred to Huang et al. (2024b, Section 4.1) for a more detailed discussion.

The second assumption we would like to impose on pdata is the boundedness of its support as follows.

Assumption 2 (Bounded support) Suppose that there exists a universal constant cR > 0 such that

sup
x∈Xdata

∥x∥2 ≤ R where R := T cR .

Note that the size of the support Xdata is allowed to scale polynomially (with arbitrarily large degree) in the
number of iterations of the sampler, which accommodates a very wide range of practical applications like
image generation.

Next, we turn to the quality of score estimates and impose the following assumption regarding their
ℓ2 accuracy. It is noteworthy that the score error metric εscore defined below captures the mean squared
estimation error when averaged over all time steps, rather than representing the error for a single time step.
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Assumption 3 (ℓ2 score estimation error) Suppose that the estimated score functions {st(·)}Tt=1 obey

1

T

T∑
t=1

ε2score,t ≤ ε2score with ε2score,t := E
[
∥st(Xt)− s∗t (Xt)∥22

]
. (20)

The ℓ2 score estimation error is commonly assumed in the state-of-the-art results on diffusion models (e.g.,
Chen et al. (2022a); Benton et al. (2024)). Additionally, this form of estimation error also aligns with
practical training procedures such as score matching (e.g., Hyvärinen (2005); Vincent (2011)).

Finally, while our convergence theory for both DDIM and DDPM relies upon Assumptions 1-3, these
assumptions alone are insufficient to guarantee convergence of the DDIM-type samplers; see Li et al. (2024c,
Section 3.2) for a counterexample. Consequently, we introduce below an additional set of assumptions in
order to establish convergence theory for DDIM-type samplers.

Assumption 4 (Additional score estimation assumption for DDIM) Consider the estimated score
functions {st(·)}Tt=1. Assume that st(·) is twice continuously differentiable for each 1 ≤ t ≤ T , and suppose

1

T

T∑
t=1

ε2Jacobi,1,t ≤ ε2Jacobi,1 with ε2Jacobi,1,t := E
[ ∥∥∥∥∂st(Xt)

∂x
− ∂s∗t (Xt)

∂x

∥∥∥∥2
F

]
, (21a)

1

T

T∑
t=1

ε2Jacobi,2,t ≤ ε2Jacobi,2 with ε2Jacobi,2,t := E
[
tr

(
∂st(Xt)

∂x
− ∂s∗t (Xt)

∂x

)2]
, (21b)

1

T

T∑
t=1

ε2Hess,t ≤ ε2Hess with ε2Hess,t := E
[ ∥∥∥∥∇tr

(
∂st(Xt)

∂x
− ∂s∗t (Xt)

∂x

)∥∥∥∥2
2

]
. (21c)

In short, Assumption 4 is concerned with higher-order estimation errors of the score functions under dif-
ferent metrics, namely, the time-averaged errors w.r.t. the associated Jacobian matrix and Hessian tensor.
Intuitively, given that DDIM is deterministic without bringing in random noise to smooth the trajectory,
additional assumptions like higher-order score estimation accuracy are needed in order to mitigate the prop-
agation of estimation errors in each backward step. We shall see how these error metrics influence the final
sampling fidelity in the next subsection.

3.2 Convergence theory for DDIM

We are now positioned to present below our total-variation-based convergence theory for the DDIM sampler
in the presence of low-dimensional structure. The proof of this theorem is postponed to Appendix B.

Theorem 1 Under Assumptions 1-4, the DDIM sampler (3) with the coefficients ηddimt = 1−αt

1+
√

αt−αt
1−αt

yields

TV(pX1
, pY1

) ≲
k log3 T

T
+ (εscore + εJacobi,1 + εJacobi,2 + εHess)

√
log T . (22)

To the best of our knowledge, this provides the first theory that unveils how the DDIM sampler adapts
to unknown low-dimensional structure of pdata; see Table 1 for a summary of prior results. Noteworthily, this
convergence theory accommodates a very broad family of target data distributions pdata, without requiring
stringent assumptions like smoothness or log-concavity. Several remarks are in order.

• Iteration complexity. When accurate scores (i.e., st = s∗t for all t) are available, the number of steps
needed for the DDIM sampler to achieve TV(pX1

, pY1
) ≤ ε scales as

Õ

(
k

ε

)
. (23)

As a consequence, if the intrinsic dimension k ≪ d, then the DDIM sampler automatically accelerates,
without any prior knowledge about the underlying low-dimensional structure.
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• No burn-in cost. We also compare Theorem 1 with the state-of-the-art DDIM theory (Li et al., 2024c)

for the case with k = d and accurate scores. Recall that Li et al. (2024c) established an Õ(d/T )
convergence rate, which is consistent with Theorem 1. Nevertheless, the theory therein requires a
burn-in cost T ≳ d2 log5 T , a condition that contrasts sharply with our theorem as we do not impose
such a burn-in requirement.

• Coefficient choices. Interestingly, the remarkable low-dimensional adaptation capability is achieved
with the coefficient ηddimt = 1−αt

1+
√

αt−αt
1−αt

, which matches exactly the coefficient proposed for the original

DDIM sampler (Song et al., 2020). As we shall elaborate on momentarily, not all the coefficient choices
in (11) are capable of adapting to low-dimensional structure.

• Second-order assumptions on score estimation. Unlike previous convergence analysis for DDIM, Theo-
rem 1 makes an assumption about the second-order approximation of st(·) to s∗t (·), i.e., the additional
error term εHess in Assumption 4. This arises because, in prior studies, the score error terms in the
convergence rate of DDIM were dependent on the ambient dimension d. For instance, in Huang et al.
(2024a); Li et al. (2024c), the estimation error terms in their respective convergence rates are given by

d
3
4L

1
2 εscore and

√
dεscore + dεJacobi. In comparison, in our Theorem 1, the score estimation error term

in the sampling error is nearly dimension-free (except for logarithmic dependency), meaning that this
error does not amplify when the intrinsic and ambient dimensions increase.

3.3 Convergence theory for DDPM

Turning attention to the DDPM-type samplers, we present below our total-variation-based convergence
guarantees for the original DDPM sampler proposed by Ho et al. (2020). The proof can be found in
Appendix C.

Theorem 2 Under Assumptions 1-3, the DDPM sampler (4) with the coefficients ηddpmt = 1 − αt and

σddpm
t =

√
(αt−αt)(1−αt)

1−αt
achieves

TV(pX1
, pY1

) ≲
k log3 T

T
+ εscore

√
log T . (24)

Akin to our DDIM theory, the DDPM sampler — using coefficients proposed in the original DDPM work
Ho et al. (2020) — achieves an iteration complexity no greater than

Õ

(
k

ε

)
(25)

when exact score estimates are available, without requiring any sort of smoothness or log-concavity assump-
tions. Our result improves upon the state-of-the-art general theory for DDPM (i.e., Õ(d/ε) as established
by Li and Yan (2024b)) by a factor of d/k, uncovering a substantial speed-up when k ≪ d. It is worth
noting that low-dimensional adaptation of the DDPM sampler was first rigorized by Li and Yan (2024a),
followed by a couple of recent papers to sharpen the KL-based convergence guarantees (Azangulov et al.,
2024; Potaptchik et al., 2024; Huang et al., 2024b). Nevertheless, directly combining Pinsker’s inequality
with these KL-based bounds falls short of delivering tight TV-based results. See Table 2 for more detailed
comparisons.

Additionally, when score estimation is imperfect, our TV-based convergence guarantees degrade grace-
fully, with the bounds scaling linearly in εscore (a metric that measures the ℓ2 estimation error). In stark
contrast to our DDIM theory in Theorem 1, the convergence of DDPM can be established under fewer
assumptions; for instance, there is no need of imposing assumptions on the Jacobian or Hessian of score esti-
mates as in Assumption 4. This favorable feature of DDPM arises since its stochastic update rule introduces
additional Gaussian noise in each step, which helps smooth the trajectory and eliminates the need to cope
with many boundary cases.

10



As it turns out, the coefficients (13a) are not the only choice of DDPM-type samplers that enable the
desirable adaptation. Our convergence theory can be extended to accommodate a broader set of coefficients,
as summarized in the following theorem. The proof is deferred to Section C.

Theorem 3 Suppose that the coefficients ηddpmt and σddpm
t satisfy

(1− αt)

(
1− ηddpmt

1− αt

)2

= αt − αt −
(
σddpm
t

)2
, t = 1, . . . , T. (26)

Also, assume that there exists some universal constant C1 ≥ 1/2 such that

ηddpmt ≤ min

{
C1(1− αt),

1

2
(1− αt)

}
, t = 1, · · · , T. (27)

• Consider the case with exact score estimation, i.e., st = s∗t for all t = 1, . . . , T . Then under Assump-
tions 1-2, the DDPM sampler (4) yields

TV(pX1
, pY1

) ≲
k log3 T

T
.

• Consider the case with imperfect score estimation. Also, assume that

(ηddpmt )2 ≤ C2(1− αt)(σ
ddpm
t )2, t = 1, · · · , T (28)

for some universal constant C2 > 0. Then under Assumptions 1-3, the DDPM sampler (4) yields

TV(pX1
, pY1

) ≲
k log3 T

T
+ εscore

√
log T .

Let us take a moment to discuss the range of coefficients satisfying relation (26). Interestingly, this

relation between ηddpmt and σddpm
t aligns perfectly with the set of coefficients discussed in Song et al. (2020,

Section 4.1). More specifically, Song et al. (2020, Eq. (12)) singled out the update rule below:

Yt−1 =
1

√
αt

(
Yt −

√
1− αtϵ

noise
t (Yt) +

√
αt − αt − αtς2t ϵ

noise
t (Yt) +

√
αtςtZt

)
(29)

for some coefficient ςt, where ϵnoiset (Yt) = −
√
1− αtst(Yt) serves as an estimate of the noise injected in

the forward process. One can demonstrate its equivalence with (26). The interested reader is referred to
Appendix D for more details.

Additionally, it was conjectured in Li and Yan (2024a) that the coefficients studied therein might not be
the only optimal choice when it comes to total-variation convergence. In light of this, Theorem 3 addresses
this conjecture by showing that the coefficients analyzed therein are a special case of a wider range of feasible
coefficients.

3.4 Interpretation from the lens of differential equations

In order to help elucidate why DDIM and DDPM are adaptive to low dimensionality, we take a moment to
derive their exact correspondence to reversed differential equations. This viewpoint unearths the underlying
forces that steer their trajectories toward the low-dimensional structure of interest, despite the effects of
time discretization. For convenience of presentation, we overload the notation by setting

αt = exp

(
−2

∫ t

0

β(s)ds

)
, for all t ∈ [0, T ], (30)
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where β(t) denotes the coefficient schedule in the forward SDE (14); as alluded to previously, this function αt

coincides with {αt}Tt=1 defined in (8) for the discrete-time process. In addition, we recall from the Tweedie
formula (Efron, 2011) that

µ∗
t (x) := E[X0 | Xt = x] =

1√
αt

(
x+ (1− αt)s

∗
t (x)

)
, (31a)

and also introduce the noisy counterpart:

µt(x) :=
1√
αt

(
x+ (1− αt)st(x)

)
. (31b)

In the sequel, we isolate several discretized differential equations that correpond exactly with the DDIM
and DDPM samplers considered in the present paper.

• DDIM sampler. The probability flow ODE (17) can be reparametrized by µ∗
t as follows using Tweedie’s

formula (31a):

dYt =

(
− αT−t

1− αT−t
Yt +

√
αT−t

1− αT−t
µ∗
T−t(Yt)

)
β(T − t)dt,

where the drift term exhibits a semi-linear structure. To approximately solve this ODE, one can apply
the exponential integrator scheme on the estimated semi-linear structure and select time discretization
points as tn = n for all n = 0, 1, · · · , T , leading to the discretized dynamics below:

dỸt =

(
− αT−t

1− αT−t
Ỹt +

√
αT−t

1− αT−t
µT−tn(Ỹtn)

)
β(T − t)dt, t ∈ [tn, tn+1). (32)

The DDIM sampler is intimately connected with this discretized dynamic, as asserted by the following
proposition, whose proof can be found in Appendix E.3.

Proposition 1 The discretized process (32) is solved exactly by the DDIM update rule (3) with coef-

ficient (11a) in the sense that Ỹn = YT−n for all n = 0, 1, . . . , T , provided that Ỹ0 = YT .

• (Generalized) DDPM sampler. Similarly, the DDPM-type sampler — with the coefficients chosen as
in Theorem 3 — can be exactly mapped to certain discretized differential equations. More precisely,
consider the generalized semi-linear SDE/ODE (19), which can be reparametrized via µ∗

t through
Tweedie’s formula (31a):

dYt =

(
−ξ(T − t) + αT−t

1− αT−t
Yt +

(1 + ξ(T − t))
√
αT−t

1− αT−t
µ∗
T−t(Yt)

)
β(T − t)dt+

√
2ξ(Y − t)β(T − t) dWt.

Adopting similar discretization scheme as in (32), we arrive at the following discretized process:

dỸt =

(
−ξ(T − tn) + αT−t

1− αT−t
Ỹt +

(1 + ξ(T − tn))
√
αT−t

1− αT−t
µT−tn(Ỹtn)

)
β(T − t)dt

+
√
2ξ(T − tn)β(T − t) dWt, t ∈ [tn, tn+1), (33)

where we recall that tn = n. Interestingly, the DDPM-type samplers considered in Theorem 3 corre-
spond exactly to (33) with suitably chosen ξ(t), as stated below. The proof of Proposition 2 can be
found in Appendix E.2.

Proposition 2 The discretized process (33) can be solved exactly by the (generalized) DDPM update

rule (4) — with coefficients satisfying (26) — in the sense that Ỹn = YT−n for all n = 0, 1, . . . , T ,

provided that Ỹ0 = YT and that the standard Gaussian vectors {Zt} are chosen properly based on (Wt).
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Remark 1 In the special case with coefficients (13a), the precise connection between such a discretized
differential equation and the original DDPM sampler (Ho et al., 2020) has been discussed and utilized
in the recent work Azangulov et al. (2024); Potaptchik et al. (2024); Huang et al. (2024b).

With the equivalent description (32) (resp. (33)) of the DDIM (resp. DDPM) sampler, one can already
gain insight into how these samplers adapt to unknown low-dimensional structure. Suppose that we have
access to accurate scores, so that µ∗

t = µt. A closer inspection of (32) and (33) reveals that: the nonlinear
components of the drift terms of both processes are proportional to µ∗

T−tn
, which is defined as the conditional

expectation of X0 (cf. (31a)). In other words, the most critical drift components take the form of conditional
expectation of X0, which inherently capture the low-dimensional structure of pdata and steer the sampling
dynamics towards this inherent structure.

3.5 Other alternatives of coefficient design?

Thus far, our main theorems (i.e., Theorems 1-3) focus attention on specific coefficient choices as in the
original DDIM and DDPM samplers. One might naturally wonder whether other coefficient choices could
also facilitate low-dimensional adaptation capabilities. As it turns out, these particular coefficients — or
those exceedingly close to them — are almost necessary to achieve adaptivity, as explained in this subsection.

For simplicity, consider the case with accurate score estimates (i.e., s∗t = st for all t), and let us look at
the following mapping:

Φ∗
t (x, z) :=

1
√
αt

(
x+ ηts

∗
t (x) + σtz

)
. (34)

Clearly, both the DDIM update rule (10) and DDPM update rule (12) in the t-th iteration can be described
as Yt−1 = Φ∗

t (Yt, Zt) for some choices of ηt and σt (i.e., σt = 0 for DDIM and σt ̸= 0 for DDPM), where Zt is
an independent standard Gaussian vector. To evaluate how well the efficacy of DDIM-type and DDPM-type
samplers, we propose to perform a sort of one-step analysis as follows:

1) Start the sampler from Xt of the forward process (1);

2) Compute one iteration Yt−1 = Φ∗
t (Yt, Zt) with an independent Gaussian vector Zt ∼ N (0, Id);

3) Evaluate the TV distance between Yt and Xt and see whether it is well-controlled.

An ideal sampler that can effectively adapt to unknown low dimensionality would not incur a TV distance
blowing up with the ambient dimension d.

As it turns out, in order for the TV distance between Xt and Yt to be well-controlled, the coefficients
(ηt, σt) must be carefully chosen, as revealed by the following lower bound. The proof of this lower bound is
provided in Appendix F.

Theorem 4 Consider any k ≤ d/2, and take the target distribution pdata to be N
(
0,
[

Ik
0

])
. Then for

arbitrary choices of (ηt, σt), we have

TV
(
Φ∗

t (Xt, Zt), Xt−1

)
≥ 1

100
min

{√
d

2

∣∣∣∣∣ 1− αt

αt − αt

(
1− ηt

1− αt

)2

+
σ2
t

αt − αt
− 1

∣∣∣∣∣ , 1
}
. (35)

In words, Theorem 4 asserts that even when initialized from a point from the true forward process, performing
one iteration of DDIM/DDPM updates might already incur a TV distance that scales polynomially in the
ambient dimension, unless the coefficients are chosen to obey

1− αt

αt − αt

(
1− ηt

1− αt

)2

+
σ2
t

αt − αt
− 1 ≈ 0. (36)
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• Consider the DDIM-type sampler (10), which has σt = 0. The requirement (36) then simplifies to

ηt ≈ 1− αt −
√
(αt − αt)(1− αt) =

1− αt

1 +
√

αt−αt

1−αt

,

the right-hand side of which is precisely the choice (11a) of the original DDIM sampler.

• The DDPM-type sampler (12) then corresponds to the case with σt > 0. Clearly, all coefficient choices
studied in Theorem 3 satisfy this requirement, subsuming the choice (13a) of the original DDPM
sampler as a special case.

Somewhat surprisingly, while the original DDIM and DDPM update rules (Song et al., 2020; Ho et al., 2020)
were derived heuristically (namely, by maximizing some variational lower bounds on the log-likelihoods)
without any explicit consideration of the low-dimensional structure, the coefficients of the resulting algorithms
prove to be nearly essential for adaptation to low dimensionality.

4 Related work

General convergence analysis of diffusion models. A recent strand of work has been devoted to
analyzing the convergence behavior of diffusion models (Chen et al., 2022b; Lee et al., 2022; Liu et al., 2022;
Lee et al., 2023; Chen et al., 2023a; Benton et al., 2024; Chen et al., 2023d; Li et al., 2023a; Pedrotti et al.,
2023; Cheng et al., 2023; Huang et al., 2024a; Liang et al., 2024; Li and Yan, 2024b; Tang and Zhao, 2024a;
Li et al., 2024d; Ren et al., 2024; Gao and Zhu, 2024; Gentiloni-Silveri and Ocello, 2025); see Tang and Zhao
(2024b) for a tutorial. Take the DDPM for instance, the work Chen et al. (2022b) established convergence
analysis (based on Girsanov’s theorem) without assuming log-concavity; the smoothness assumption was
further relaxed by Lee et al. (2023); Chen et al. (2023a). Regarding the use of DDPM for a general class of
non-smooth and non-log-concave distributions, Benton et al. (2024) established the best-known KL-based
convergence guarantees, whereas the state-of-the-art TV-based convergence was derived by Li and Yan
(2024b). Turning attention to the DDIM, Chen et al. (2023d) derived the first polynomial-time analysis,
while Chen et al. (2023c) provided improved analysis for a variation of the probability flow ODE (by adding
an additional stochastic step). Li et al. (2023a) improved the TV-based iteration complexity of the DDIM

to Õ(d2/ε), which was subsequently improved by Li et al. (2024c) to Õ(d/ε+d2). Additionally, higher-order
samplers tailored to solving the reverse-time SDE or probability flow ODE (e.g., Lu et al. (2022a,b)) have
been proven to achieve faster convergence (Li et al., 2024a; Wu et al., 2024b; Li and Cai, 2024; Huang et al.,
2024a). Randomized midpoint methods have also been leveraged to provably speed up convergence (Shen
and Lee, 2019; Gupta et al., 2024; Li and Jiao, 2024). The convergence behavior of conditional diffusion
models (or diffusion guidance) is another important topic that has been studied by several recent work (e.g.,
Wu et al. (2024a); Chidambaram et al. (2024); Chen et al. (2024a); Fu et al. (2024); Tang and Xu (2024)).

Score matching. An important stage of score-based generative modeling is score matching or score learn-
ing (Hyvärinen, 2005, 2007; Vincent, 2011; Song and Ermon, 2019; Ho et al., 2020), which aims to learn the
score functions (typically using deep neural networks or transformers). From the statistical perspectives,
Koehler et al. (2023) characterized the asymptotic statistical efficiency of score matching, while Oko et al.
(2023); Wibisono et al. (2024); Zhang et al. (2024); Han et al. (2024); Dou et al. (2024) derived the statistical
error rates and sample complexity for score matching. Another recent work Feng et al. (2024) leveraged some
idea from score matching to tackle convex M-estimation. As the score matching phase is not the primary
focus of our work, we do not delve into further details here.

Diffusion models in the presence of low-dimensional structure. Given the ubiquity of low-dimensional
structure in practice (Pope et al., 2021), a recent line of research sought to unveil the role of low dimen-
sionality in enabling more efficient data generation (Li and Yan, 2024a; Azangulov et al., 2024; Potaptchik
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et al., 2024; Huang et al., 2024b). More concretely, Li and Yan (2024a) established the first iteration com-
plexity upper bound for the DDPM that is adaptive to unknown low-dimensional structures, without the
need of modifying the algorithm; the iteration complexity therein is proportional to k4, with k the intrinsic
dimension. This k-dependency was subsequently improved by Azangulov et al. (2024) to k3 and then tight-
ened by Potaptchik et al. (2024); Huang et al. (2024b) to linear scaling. However, all of these past results
focused on KL-based convergence, which are loose when translated to TV-based convergence theory using
Pinsker’s inequality. What is more, no prior theory studied how ODE-based samplers adapt to unknown
low-dimensional structure.

Apart from the above-mentioned convergence analysis for the sampling stage, the interplay between
diffusion models and low-dimensional structure has been investigated from other perspectives as well (Chen
et al., 2023b; Wang et al., 2024; Tang and Yang, 2024; Stanczuk et al., 2024; Mei and Wu, 2023; Li et al.,
2023b; Azangulov et al., 2024; Li et al., 2024f,e; Cui et al., 2025). For instance, Chen et al. (2023b) considered
the case where the target distribution lies on a linear subspace and developed sample complexity bounds
for score matching that are independent of the ambient dimension. Wang et al. (2024) assumed the target
distribution to be a mixture of low-rank Gaussians and explored the equivalence between score matching in
this setting and subspace clustering. Tang and Yang (2024) studied the case when the data are supported
on low-dimensional manifolds, and provided explicit convergence rates highlighting the importance of score
estimation methods in such settings. Stanczuk et al. (2024) showed that diffusion models encode the data
manifold by approximating its normal bundle. Moreover, Li et al. (2023b) established theoretical estimates
of the generalization gap that evolves with the training dynamics of score-based diffusion models, suggesting
a polynomially small generalization error that evades the curse of dimensionality.

5 Discussion

We have made progress towards understanding how diffusion models harness (unknown) low-dimensional
structure to accelerate data generation. For the DDIM sampler (or the ODE-based sampler), we have
provided the first analysis demonstrating its ability to adapt to low-dimensional structure. Along the way,
we have managed to eliminate the need of a large burn-in requirement imposed in the state-of-the-art work
Li et al. (2024c) for the general full-dimensional case with k = d. When it comes to the DDPM sampler (or

the SDE-based sampler), we have improved the TV-based iteration complexity from Õ(k/ε2) (Potaptchik

et al., 2024; Huang et al., 2024b) to Õ(k/ε). It is worth noting that the coefficients analyzed in the current
work align perfectly with the choices proposed originally in Ho et al. (2020); Song et al. (2020). Through a
lower bound analysis, we have offered insights into the critical role of such coefficient designs in facilitating
low-dimensional adaptation.

Before concluding this paper, we briefly point out a couple of directions worthy of future investigation.
First, careful readers would notice that the coefficients of the DDIM analyzed in Theorem 1 is a special case
of the ones satisfying (26) as isolated in Theorem 3. However, our current analysis for Theorem 3 does not
yet accommodate the case when ηt ≳ (1 − αt)σ

2
t , thus leaving a gap in the connection between DDIM and

DDPM samplers. Bridging this gap would offer a deeper understanding of the connection between DDPM
and DDIM and, potentially, offer a unified theoretical framework to study both types of samplers. Moreover,
Theorem 4 currently provides only a lower bound for a single step of the discretized reverse process, which
does not encompass all SDE/ODE-based samplers. It would be helpful to develop multi-step lower bounds
that apply to a wider family of diffusion-based samplers. Finally, while the present paper focuses on the
sampling stage, it does not unpack the score learning phase; in particular, it remains unclear how low-
dimensional structure affects the efficiency of score learning. Establishing an end-to-end theory that takes
into account the adaptivity of both score learning and sampling would be an avenue for future exploration.
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A Technical lemmas

In this section, we present several technical lemmas that prove useful for establishing our main theorems,
with their proofs deferred to Appendix G. For simplicity of presentation, we assume without loss of generality
that k ≥ log d throughout the proof.

Before proceeding, let us introduce several notation that will be useful throughout.

• Let {x⋆
i }1≤i≤Nϵ0

be an ϵ0-net of Xdata, with Nϵ0 denote its cardinality. Let {Bi}1≤i≤Nϵ0
be a disjoint ϵ0-

cover for Xdata such that x⋆
i ∈ Bi for each i. See, e.g., Vershynin (2018), for the definition of epsilon-net

and epsilon-cover.

• Define the following two sets:

I := {1 ≤ i ≤ Nϵ0 : P(X0 ∈ Bi) ≥ exp(−C1k log T )} (37)

and

G :=
{
ω ∈ Rd : ∥ω∥2 ≤ 2

√
d+

√
C1k log T ,

∣∣(x⋆
i − x⋆

j )
⊤ω
∣∣ ≤√C1k log T ∥x⋆

i − x⋆
j∥2, ∀1 ≤ i, j ≤ Nϵ0

}
.

for some sufficiently large universal constant C1 > 0. As it turns out, both
⋃

i∈I Bi and G can be
utilized to define certain high-probability sets related to the random vector X0 ∼ pdata and a standard
Gaussian random vector in Rd.
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• Let us express
Xt =

√
αtX0 +

√
1− αtZ (38)

for some random vector Z ∼ N (0, Id). By taking

Vα :=
√
αV1 +

√
1− αZ with V1 := X0, (39)

we see that
Xt = Vαt

(40)

for any t. For every α ∈ [0, 1− 1/T ], define a typical set for each Vα as follows

Tα :=

{√
αv1 +

√
1− αω : v1 ∈

⋃
i∈I

Bi, ω ∈ G
}
. (41)

• Next, we turn to the posterior distribution of V1 given Vα, which dictates the performance of DDIM
and DDPM samplers. Let us introduce the following shorthand notation:

µV1|Vα
(v) := E[V1 | Vα = v],

CovV1|Vα
(v) := E[V1V

⊤
1 | Vα = v]− µV1|Vα

(v)µV1|Vα
(v)⊤.

(42)

Given that the random objects µV1|Vαt
(Vαt

) and CovV1|Vαt
(Vαt

) will be used frequently throughout the
proof, we shall often employ the following shorthand notation

µ0|t := µV1|Vαt
(Vαt) and Cov0|t := CovV1|Vαt

(Vαt) (43)

as long as it is clear from the context.

• In addition, we find it convenient to define

εsct (x) := st(x)− s∗t (x) and εJt(x) :=
∂st(x)

∂x
− ∂s∗t (x)

∂x
. (44)

Now, let us proceed to present the technical lemmas. While some of these proofs can be found in Li and
Yan (2024a); Huang et al. (2024b), we provide them here for the sake of completeness.

The first lemma demonstrates that, for any α ∈ [0, 1 − 1/T ], Tα is a high-probability set for Vα. The
proof of this result is deferred to Appendix G.1.

Lemma 1 There exists some universal constant C1 ≫ Ccover such that for any α ∈ [0, 1− 1/T ], we have

P (Vα /∈ Tα) ≤ exp

(
−C1

4
k log T

)
.

Next, we develop a lemma that characterizes the concentration property of the point V1 given the obser-
vation Vα; the proof can be found in Appendix G.2.

Lemma 2 Consider any v ∈ Tα, and let us write v =
√
αv∗1 +

√
1− αω for some v∗1 ∈

⋃
i∈I Bi and ω ∈ G

(cf. (41)). Suppose that v∗1 ∈ Bi(v) for some i(v) ∈ I. Then there exists some universal constant C2 > 0
such that for any C ≥ C2,

P
(√

α
∥∥V1 − x∗

i(v)

∥∥
2
≥
√

Ck(1− α) log T | Vα = v
)
≤ exp

(
− C

20
k log T

)
.

Armed with the above lemma, we can readily establish, for any α ∈ [0, 1 − 1/T ], upper bounds on the
moments of V1 under the posterior distribution P(· | Vα = v), provided that v ∈ Tα. This is stated in the
following corollary.
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Corollary 1 There exists a universal constant C3 > 0, such that for any α ∈ [0, 1 − 1/T ], the following
inequalities hold for any point v ∈ Tα:

E
[∥∥V1 − µV1|Vα

(v)
∥∥l
2

∣∣ Vα = v
]
≤ C3

(
1− α

α
k log T

)l/2

, l = 1, 2, 3, 4. (45)

Moreover, we single out the lemma below that can help control the posterior covariance of interest. The
proof is postponed to Appendix G.3.

Lemma 3 Suppose that Assumptions 1 and 2 hold. Denote σ̃2
t = αt(1−αt)

(αt−αt)(1−αt)
. Then for any t ≥ 2, the

posterior covariance defined in (42) satisfies

σ̃2
tEXt

[ ∥∥Cov0|t∥∥2F ] ≤ 3
{
E
[
tr(Cov0|t)

]
− E

[
tr(Cov0|t−1)

]}
+

3

T 10
.

We also make note of the following basic property about {αt} (see Li et al. (2024c, Section 5.1)):

1

2

1− αt

1− αt
≤ 1

2

1− αt

αt − αt
≤ 1− αt

1− αt−1
≤ 4c1 log T

T
for any 2 ≤ t ≤ T. (46)

The lemma below is a consequence of this property, whose proof can be found in Appendix G.4.

Lemma 4 There exists some universal constant C6 > 0 such that for any t ≥ 1,

αt(1− αt)

(αt − αt)(1− αt)
− αt+1(1− αt+1)

(αt+1 − αt+1)(1− αt+1)
≤ C6 log

2 T

T 2

αt

1− αt
.

In addition, Lemma 5 below helps control the tightness of the second-order Taylor expansion of a certain
log-determinant function. Its proof is deferred to Appendix G.5.

Lemma 5 Let A ∈ Rd×d be any positive semi-definite matrix, and ∆ ∈ Rd×d be any square matrix. Suppose
η∥∆∥ ≤ 1

4 , where 0 < η < 1. Then it holds that

log det (I + ηA+ η∆) ≥ η
(
tr(A) + tr(∆)

)
− 4η2

(
∥A∥2F + ∥∆∥2F

)
.

Finally, the Tweedie formula as stated below (Efron, 2011), which establishes the intimate connection
between the score function (resp. its corresponding Jacobian matrix) and the posterior mean (resp. posterior
covariance) of X0 given Xt, will be invoked multiple times. For its proof, one can refer to Robbins (1992).

s∗t (xt) =

√
αt

1− αt
µ0|t(xt)−

1

1− αt
xt,

∂s∗t (xt)

∂xt
=

αt

(1− αt)2
Cov0|t(xt)−

1

1− αt
I.

(47)

where

µ0|t(xt) = E[X0 | Xt = xt], (48a)

Cov0|t(xt) = E[X0X
⊤
0 | Xt = xt]− E[X0 | Xt = xt]E[X0 | Xt = xt]

⊤. (48b)

B Analysis for DDIM (proof of Theorem 1)

In this section, we establish our convergence guarantees for the DDIM sampler as stated in Theorem 1.
Throughout this section, we define the (deterministic) mapping Φt(·) as

Φt(x) =
1

√
αt

(
x+ ηtst(x)

)
with ηt =

1− αt

1 +
√

αt−αt

1−αt

, (49)

22



where st(x) is the score estimate. According to the update rule (10) and (11a) of DDIM, we know that
(since ηddimt = ηt)

Yt−1 = Φt(Yt).

We begin by isolating the following recursion that plays an important role in our analysis: for any t ≥ 2,

TV(pXt−1
, pYt−1

) = sup
A⊆X

{
PXt−1

(A)− PYt−1
(A)
}
= sup

A⊆X

{
PXt−1

(A)− PYt

(
Φt

−1(A)
)}

≤ sup
A⊆X

{
PXt−1(A)− PXt

(
Φt

−1(A)
)}

+ sup
A⊆X

{
PXt

(
Φt

−1(A)
)
− PYt

(
Φt

−1(A)
)}

≤ sup
A

{
PXt−1

(A)− PΦt(Xt)(A)
}
+ TV(pXt

, pYt
)

= TV(pXt−1
, pΦt(Xt)) + TV(pXt

, pYt
),

(50)

where the first identity arises from the basic property of the TV distance.
Next, we define a set Et as

Et :=
{
x ∈ Xdata : ηt

∥∥εJt(x)∥∥ ≤ 1

8

}
. (51)

Based on the set Et, we define an auxiliary map Φ̃t : Xdata → Rd ∪ {∞} as

Φ̃t(x) =

{
Φt(x), if x ∈ Et,
∞, otherwise.

(52)

Further, for any vector v ∈ Rd with ∥v∥2 = 1 and any x ∈ Et, Tweedie’s formula (47) tells us that

v⊤
∂Φ̃t(x)

∂x
v = v⊤

∂Φt(x)

∂x
v = v⊤

(
I + ηt

∂st(x)

∂x

)
v = v⊤

(
I + ηt

∂s∗t (x)

∂x

)
v + ηtv

⊤εJt(x)v

≥ v⊤
(
I + ηt

∂s∗t (x)

∂x

)
v − 1

8
∥v∥22 = v⊤

{(
1− ηt

1− αt

)
I +

αtηt
(1− αt)2

Cov0|t(x)

}
v − 1

8
∥v∥22

≥
(
1− ηt

1− αt
− 1

8

)
∥v∥22 >

3

8
.

Here, the penultimate relation follows from the positive semidefiniteness of the covariance matrix Cov0|t(x);
and the last inequality holds since

ηt
1− αt

=
1− αt

1− αt +
√
(αt − αt)(1− αt)

≤ 1− αt

2(αt − αt)
≤ 4c1 log T

T
<

1

4
,

a consequence of property (46). This result implies that ∂Φ̃t(x)
∂x is positive definite uniformly over all x ∈ Et.

According to the inverse mapping theorem, we know that Φ̃t is a bijection on Et. Therefore, for any
xt−1 ∈ Φ̃t(Et), we can find a unique xt ∈ Et such that Φ̃t(xt) = xt−1, which in turn allows us to derive

pΦ̃t(Xt)
(xt−1) = pXt

(
Φ̃−1

t (xt−1)
)
· det

(
∂Φ̃−1

t (xt−1)

∂xt−1

)
= pXt

(xt) · det
(

∂xt

∂xt−1

)
.
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Consequently, we see that: for any t ≥ 2 and any xt−1 ∈ Φ̃t(Et),

pΦ̃t(Xt)
(xt−1)− pXt−1

(xt−1) = pXt
(xt) det

(
∂xt

∂xt−1

)
− pXt−1

(xt−1)

=

∫ {
pXt|X0

(xt | x0) det

(
∂xt

∂xt−1

)
− pXt−1|X0

(xt−1 | x0)

}
pX0

(x0)dx0

=

∫ 1−
pXt−1|X0

(xt−1 | x0)

pXt|X0
(xt | x0)

det

(
∂xt−1

∂xt

)
︸ ︷︷ ︸

=:T (xt,x0)

 pXt,X0(xt, x0) det

(
∂xt

∂xt−1

)
dx0

=

∫
{1− T (xt, x0)} pXt,X0

(xt, x0) det

(
∂xt

∂xt−1

)
dx0.

(53)

The next step is then to analyze T (xt, x0).

Controlling T (xt, x0): Given how Xt−1 and Xt are generated, we observe that

T (xt, x0) =
pXt−1|X0

(xt−1 | x0)

pXt|X0
(xt | x0)

det

(
∂xt−1

∂xt

)
=

(
1

1−αt−1

) d
2

exp
{

−∥xt−1−
√

αt−1x0∥2
2

2(1−αt−1)

}
(

1
1−αt

) d
2

exp
{

−∥xt−
√
αtx0∥2

2

2(1−αt)

} det

(
∂xt−1

∂xt

)

=

(
1− αt

1− αt−1

) d
2

det

(
∂xt−1

∂xt

)
︸ ︷︷ ︸

=:T1(xt,x0)

exp

{∥∥xt −
√
αtx0

∥∥2
2

2(1− αt)
−

∥xt−1 −
√
αt−1x0∥

2
2

2(1− αt−1)

}
︸ ︷︷ ︸

=:T2(xt,x0)

,

(54)

leaving us with two terms to control.
Let us first study the term T1(xt, x0), towards which we see that

T1(xt, x0) =

(
1− αt

1− αt−1

) d
2

det

(
∂(xt + ηtst(xt))/

√
αt

∂xt

)
=

(
1− αt

αt − αt

) d
2

det

(
∂(xt + ηtst(xt))

∂xt

)
=

(
1− αt

αt − αt

) d
2

det

(
I + ηt

∂

∂xt
s∗t (xt) + ηt

(
∂

∂xt
st(xt)−

∂

∂xt
s∗t (xt)

))
(a)
=

(
1− αt

αt − αt

) d
2

det

(
I + ηt

{
αt

(1− αt)2
Cov0|t(xt)−

1

1− αt
I

}
+ ηtε

J
t(xt)

)
= det

(√
1− αt

αt − αt

(
1− ηt

1− αt

)
I +

√
1− αt

αt − αt

αtηt
(1− αt)2

Cov0|t(xt) +

√
1− αt

αt − αt
ηtε

J
t(xt)

)
(b)
= det

(
I +

√
1− αt

αt − αt

αtηt
(1− αt)2

Cov0|t(xt) +

√
1− αt

αt − αt
ηtε

J
t(xt)

)
.

(55)

Here, (a) arises from Tweedie’s formula (47), whereas (b) follows since√
1− αt

αt − αt

(
1− ηt

1− αt

)
=

√
1− αt

αt − αt

(1− αt)− ηt
1− αt

=

√
1− αt

αt − αt

√
(αt − αt)(1− αt)

1− αt
= 1. (56)

Next, we turn attention to the term T2(xt, x0), which satisfies

log T2(xt, x0) =

∥∥xt −
√
αtx0

∥∥2
2

2(1− αt)
−
∥∥(xt + ηtst(xt))/

√
αt −

√
αt−1x0

∥∥2
2

2(1− αt−1)

=

∥∥xt −
√
αtx0

∥∥2
2

2(1− αt)
−
∥∥xt + ηtst(xt)−

√
αtx0

∥∥2
2

2(αt − αt)
.

(57)
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Let us first look at the term xt + ηtst(xt)−
√
αtx0. It follows from Tweedie’s formula (47) that

xt + ηtst(xt)−
√
αtx0 =

(
1− ηt

1− αt

)
xt +

√
αtηt

1− αt
µ0|t(xt)−

√
αtx0 + ηt

(
st(xt)− s∗t (xt)

)
=

(
1− ηt

1− αt

)
(xt −

√
αtx0) +

√
αtηt

1− αt
µ0|t(xt)−

ηt
1− αt

√
αtx0 + ηt

(
st(xt)− s∗t (xt)

)
=

(
1− ηt

1− αt

)
(xt −

√
αtx0) +

√
αtηt

1− αt

(
µ0|t(xt)− x0

)
+ ηt

(
st(xt)− s∗t (xt)

)
=

(
1− ηt

1− αt

)
(xt −

√
αtx0) +

√
αtηt

1− αt

(
µ0|t(xt)− x0

)
+ ηtε

sc
t (xt).

Substitution into (57) yields

log T2(xt, x0) =

∥∥xt −
√
αtx0

∥∥2
2

2(1− αt)
− 1

2(αt − αt)

(
1− ηt

1− αt

)2 ∥∥xt −
√
αtx0

∥∥2
2

+

(
1− ηt

1− αt

) √
αtηt

(αt − αt)(1− αt)
(xt −

√
αtx0)

⊤(x0 − µ0|t(xt)
)
− αtη

2
t

2(αt − αt)(1− αt)2
∥∥x0 − µ0|t(xt)

∥∥2
2

+
ηt

αt − αt

(
1− ηt

1− αt

)(
xt −

√
αtµ0|t(xt)

)⊤
εsct (xt) +

ηt
αt − αt

(
µ0|t(xt)−x0

)⊤
εsct (xt) +

η2t
2(αt − αt)

∥εsct (xt)∥22 .

(58)
We now control each term of the above display. It follows from (56) that

1

2(1− αt)
− 1

2(αt − αt)

(
1− ηt

1− αt

)2

=
1

2(1− αt)
− 1

2(αt − αt)

αt − αt

1− αt
= 0,

thus implying that ∥∥xt −
√
αtx0

∥∥2
2

2(1− αt)
− 1

2(αt − αt)

(
1− ηt

1− αt

)2 ∥∥xt −
√
αtx0

∥∥2
2
= 0.

Further, invoke Tweedie’s formula (47) once again to reach

ηt
αt − αt

(
1− ηt

1− αt

)(
xt −

√
αtµ0|t(xt)

)⊤
εsct (xt) = −ηt(1− αt − ηt)

αt − αt
s∗t (xt)

⊤εsct (xt).

Additionally, consider the following component of log T2(xt, x0):(
1− ηt

1− αt

) √
αtηt

(αt − αt)(1− αt)
(xt −

√
αtx0)

⊤(x0 − µ0|t(xt)
)

− αtη
2
t

2(αt − αt)(1− αt)2
∥∥x0 − µ0|t(xt)

∥∥2
2
+

ηt
αt − αt

(µ0|t(xt)− x0)
⊤εsct (xt).

Taking the expectation of the above expression under the conditional distribution pX0|Xt
, we find that

−
(
1− ηt

1− αt

)
αtηt

(αt − αt)(1− αt)
tr
(
Cov0|t(xt)

)
− αtη

2
t

2(αt − αt)(1− αt)2
tr
(
Cov0|t(xt)

)
= −

(
1− ηt

2(1− αt)

)
αtηt

(αt − αt)(1− αt)
tr
(
Cov0|t(xt)

)
.

Defining

ξ(xt, x0) :=

(
1− ηt

1− αt

) √
αtηt

(αt − αt)(1− αt)
(xt −

√
αtx0)

⊤(x0 − µ0|t(xt)
)
− αtη

2
t

2(αt − αt)(1− αt)2
∥∥x0 − µ0|t(xt)

∥∥2
2
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+
ηt

αt − αt

(
µ0|t(xt)− x0

)⊤
εsct (xt)+

(
1− ηt

2(1− αt)

)
αtηt

(αt − αt)(1− αt)
tr
(
Cov0|t(xt)

)
,

one can easily verify that ∫
x0

ξ(xt, x0)pX0|Xt
(x0 | xt) = 0, ∀xt ∈ Xdata.

Thus, based on Eqn. (58), we can further simplify log T2(xt, x0) as follows:

log T2(xt, x0) = ξ(xt, x0)−
αtηt

(αt − αt)(1− αt)

(
1− ηt

2(1− αt)

)
tr
(
Cov0|t(xt)

)
+

ηt(1− αt − ηt)

αt − αt
s∗t (xt)

⊤εsct (xt)−
η2t

2(αt − αt)
∥εsct (xt)∥22

= ξ(xt, x0)−
αtηt

(αt − αt)(1− αt)

(
1− ηt

2(1− αt)

)
tr
(
Cov0|t(xt)

)
+

√
1− αt

αt − αt
ηts

∗
t (xt)

⊤εsct (xt)−
η2t

2(αt − αt)
∥εsct (xt)∥22 ,

(59)

where the last equality holds since

1− αt − ηt
αt − αt

=

√
(1− αt)(αt − αt)

αt − αt
=

√
1− αt

αt − αt
.

Now, to streamline the presentation, define

W (xt) := log det

(
I +

√
1− αt

αt − αt

αtηt
(1− αt)2

Cov0|t(xt) +

√
1− αt

αt − αt
ηtε

J
t(xt)

)
− η2t

2(αt − αt)
∥εsct (xt)∥22

− αtηt
(αt − αt)(1− αt)

(
1− ηt

2(1− αt)

)
tr
(
Cov0|t(xt)

)
+

√
1− αt

αt − αt
ηts

∗
t (xt)

⊤εsct (xt).

Then for any xt ∈ Xdata, it holds that∫
x0

(
1− eξ(xt,x0)

)
eW (xt)pX0|Xt

(x0 | xt)dx0 ≤ −eW (xt)

∫
x0

ξ(xt, x0)pX0|Xt
(x0 | xt)dx0 = 0. (60)

where the inequality results from the elementary inequality 1 − ex ≤ −x for all x ∈ R. Putting (53), (54),
(55) and (58) together reveals that: for any A ⊆ Xdata ∩ Et,

PΦ̃t(Xt)
(A)− PXt−1

(A) =

∫
A

{
pΦ̃t(Xt)

(xt−1)− pXt−1
(xt−1)

}
dxt−1

=

∫
A×Xdata

{1− T (xt, x0)} pXt,X0
(xt, x0) det

(
∂xt

∂xt−1

)
dx0dxt−1

=

∫
Φ̃−1

t (A)×Xdata

{1− T (xt, x0)} pXt,X0
(xt, x0)dx0dxt

=

∫
Φ̃−1

t (A)×Xdata

{
1− eξ(xt,x0) · eW (xt)

}
pXt,X0

(xt, x0)dx0dxt

(a)
=

∫
Φ̃−1

t (A)×Xdata

{(
1− eξ(xt,x0)

)
eW (xt) +

(
1− eW (xt)

)}
pXt,X0(xt, x0)dx0dxt

(b)

≤
∫
xt∈Φ̃−1

t (A)

{
1− eW (xt)

}
pXt(xt)dxt ≤

∫
xt∈Φ̃−1

t (A)

−W (xt)pXt(xt)dxt,

(61)

where (a) follows from simple telescoping, (b) invokes (60), and the last inequality follows from the elementary
inequality 1− ex ≤ −x.
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B.1 Controlling the function −W (xt)

For xt ∈ Et, applying Lemma 5 reveals that

− log det

(
I +

√
1− αt

αt − αt

αtηt
(1− αt)2

Cov0|t(xt) +

√
1− αt

αt − αt
ηtε

J
t(xt)

)
≤ 4α2

tη
2
t

(αt − αt)(1− αt)3
∥∥Cov0|t(xt)

∥∥2
F
+

4(1− αt)η
2
t

αt − αt

∥∥εJt(xt)
∥∥2
F

−
√

1− αt

αt − αt

αtηt
(1− αt)2

tr
(
Cov0|t(xt)

)
−
√

1− αt

αt − αt
ηttr

(
εJt(xt)

)
,

provided that
√

1−αt

αt−αt
ηt
∥∥εJt(xt)

∥∥ ≤ 1
4 . Combining this with the definition of W (xt) results in

−W (xt) =
αtηt

(αt − αt)(1− αt)

(
1− ηt

2(1− αt)

)
tr
(
Cov0|t(xt)

)
+

η2t
2(αt − αt)

∥εsct (xt)∥22

−
√

1− αt

αt − αt
ηts

∗
t (xt)

⊤εsct (xt)− log det

(
I +

√
1− αt

αt − αt

αtηt
(1− αt)2

Cov0|t(xt)+

√
1− αt

αt − αt
ηtε

J
t(xt)

)
≤ 4α2

tη
2
t

(αt − αt)(1− αt)3
∥∥Cov0|t(xt)

∥∥2
F
+

4(1− αt)η
2
t

αt − αt

∥∥εJt(xt)
∥∥2
F
+

η2t
2(αt − αt)

∥εsct (xt)∥22

+

[
αtηt

(αt − αt)(1− αt)

(
1− ηt

2(1− αt)

)
−
√

1− αt

αt − αt

αtηt
(1− αt)2

]
tr
(
Cov0|t(xt)

)
−
√

1− αt

αt − αt
ηt

(
s∗t (xt)

⊤εsct (xt) + tr
(
εJt(xt)

) )
.

(62)

Recalling the choice of the coefficient ηt = (1− αt)
/(

1 +
√

αt−αt

1−αt

)
, we have

αtηt
(αt − αt)(1− αt)

(
1− ηt

2(1− αt)

)
−
√

1− αt

αt − αt

αtηt
(1− αt)2

=
αtηt

(αt − αt)(1− αt)

(
1− ηt

2(1− αt)
−
√

αt − αt

αt − αt

)
=

αtηt
(αt − αt)(1− αt)

(
1− ηt

1− αt
−
√

αt − αt

αt − αt
+

ηt
2(1− αt)

)
=

αtη
2
t

2(αt − αt)(1− αt)2
,

where the penultimate equality holds due to Eqn. (56). Substituting this result into (62) yields

−W (xt) ≤
4α2

tη
2
t

(αt − αt)(1− αt)3
∥∥Cov0|t(xt)

∥∥2
F
+

4(1− αt)η
2
t

αt − αt

∥∥εJt(xt)
∥∥2
F
+

η2t
2(αt − αt)

∥εsct (xt)∥22

+
αtη

2
t

2(αt − αt)(1− αt)2
tr
(
Cov0|t(xt)

)
−
√

1− αt

αt − αt
ηt
(
s∗t (xt)

⊤εsct (xt) + tr
(
εJt(xt)

))︸ ︷︷ ︸
=:∆(εsct (xt),εJt(xt))

≤ 4α2
tη

2
t

(αt − αt)(1− αt)3
∥∥Cov0|t(xt)

∥∥2
F
+

4(1− αt)η
2
t

αt − αt

∥∥εJt(xt)
∥∥2
F
+

η2t
2(αt − αt)

∥εsct (xt)∥22

+
αtη

2
t

2(αt − αt)(1− αt)2
tr
(
Cov0|t(xt)

)
−
√

1− αt

αt − αt
ηt∆

(
εsct (xt), ε

J
t(xt)

)
.

(63)

B.2 Controlling the term related to score estimation errors

In this subsection, we would like to control the term ∆
(
εsct (xt), ε

J
t(xt)

)
related to the score estimation error.

Specifically, we aim to prove the following lemma.
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Lemma 6 For any set A ⊆ X , we have∫
xt∈A

−∆
(
εsct (xt), ε

J
t(xt)

)
pXt(xt)dxt ≤

2√
1− αt

{εscore,t + εJacobi,1,t + εJacobi,2,t + εHess,t} .

Proof of Lemma 6. To begin with, consider the inner product term s∗t (xt)
⊤εsct (xt). For any set A,∫

xt∈A
−s∗t (xt)

⊤εsct (xt)pXt(xt)dxt =

∫
xt∈A

1

1− αt

(
xt −

√
αtµ0|t(xt)

)⊤
εsct (xt)pXt

(xt)dxt

=

∫
A×Xdata

1

1− αt
(xt −

√
αtx0)

⊤εsct (xt)pXt
(xt)pX0|Xt

(x0 | xt)dxtdx0

=

∫
x0,xt∈Xdata×A

1

1− αt
(xt −

√
αtx0)

⊤εsct (xt)pXt|X0
(xt | x0)pX0

(x0)dxtdx0

≤
∫
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∣∣∣∣ 1

1− αt
(xt −

√
αtx0)

⊤εsct (xt)

∣∣∣∣ pXt|X0
(xt | x0)pX0

(x0)dxtdx0.

(64)

For any given point x0 ∈ Xdata, applying the Cauchy-Schwartz inequality gives∫
Xdata

∣∣∣∣ 1

1− αt
(xt −

√
αtx0)

⊤εsct (xt)

∣∣∣∣ pXt|X0
(xt | x0)dxt

≤

(∫
Xdata

(
1

1− αt
(xt −

√
αtx0)

⊤εsct (xt)

)2

pXt|X0
(xt | x0)dxt

) 1
2

≤
(∫

Xdata

1

(1− αt)2
〈
εsct (xt)ε

sc
t (xt)

⊤, (xt −
√
αtx0)(xt −

√
αtx0)

⊤〉 pXt|X0
(xt | x0)dxt

) 1
2

.

(65)

Note that for given x0, one has Xt | X0 = x0 ∼ N
(√

αtx0, (1− αt)
−1I

)
. As a result,

∇2
xt
pXt|X0

(xt | x0) = ∇2
xt

{(
1

2π(1− αt)

) d
2

exp

(
−
∥∥xt −

√
αtx0

∥∥2
2

2(1− αt)

)}

=

(
1

2π(1− αt)

) d
2

∇xt

{
−xt −

√
αtx0

1− αt
exp

(
−
∥∥xt −

√
αtx0

∥∥2
2

2(1− αt)

)}

=

(
1

2π(1− αt)

) d
2

e−
∥xt−

√
αtx0∥22

2(1−αt)

{
(xt −

√
αtx0)(xt −

√
αtx0)

⊤

(1− αt)2
− 1

1− αt
I

}
= pXt|X0

(xt | x0)

{
(xt −

√
αtx0)(xt −

√
αtx0)

⊤

(1− αt)2
− 1

1− αt
I

}
.

From this, we can derive

(xt −
√
αtx0)(xt −

√
αtx0)

⊤

(1− αt)2
pXt|X0

(xt | x0) = ∇2
xt
pXt|X0

(xt | x0) + pXt|X0
(xt | x0)

1

1− αt
I.

Substituting this into (65) yields∫
Xdata

∣∣∣∣ 1

1− αt
(xt −

√
αtx0)

⊤εsct (xt)

∣∣∣∣ pXt|X0
(xt | x0)dxt

≤
(∫
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〈
εsct (xt)ε

sc
t (xt)
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pXt|X0

(xt | x0) +
1
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2

≤
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〈
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(xt | x0)
〉
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2

+
1√
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(∫
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∥εsct (xt)∥22 pXt|X0
(xt | x0)dxt

) 1
2

,

(66)
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where the last inequality follows since
√
a+ b ≤

√
a +

√
b, ∀a, b ≥ 0. With regards to the first term of the

above bound, note that

〈
εsct (xt)ε

sc
t (xt)

⊤,∇2pXt|X0
(xt | x0)

〉
=

d∑
i=1

d∑
j=1

[εsct (xt)]i[ε
sc
t (xt)]j

∂2

∂xi∂xj
pXt|X0

(xt | x0),

where [v]i represents the i-coordinate of the vector v. We can start by analyzing each (i, j) component. In
fact, for any 1 ≤ i, j ≤ d, we have∫

Xdata

[εsct (xt)]i[ε
sc
t (xt)]j

∂2

∂xi∂xj
pXt|X0

(xt | x0)dxt
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=−

∫
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∂
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t (xt)]j)

∂
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([εsct (xt)]i[ε

sc
t (xt)]j) pXt|X0

(xt | x0)dxt,

(67)
where (a) applies the integration by parts formula with respect to xi, and (b) applies integration by parts
with respect to xj . Denoting by [A]ij the (i, j)-th element of the matrix A, we have

∂2

∂xi∂xj
([εsct (xt)]i[ε

sc
t (xt)]j) =

(
∂2
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J
t(xt)]ji + [εJt(xt)]ii[ε

J
t(xt)]jj .

Substitution into (67) yields∫
Xdata

〈
εsct (xt)ε

sc
t (xt)

⊤,∇2pXt|X0
(xt | x0)

〉
dxt =

d∑
i=1

d∑
j=1

∫
Xdata

[εsct (xt)]i[ε
sc
t (xt)]j

∂2

∂xi∂xj
pXt|X0

(xt | x0)dxt

=

d∑
i=1

d∑
j=1

∫
Xdata

∂2

∂xi∂xj
([εsct (xt)]i[ε

sc
t (xt)]j) pXt|X0

(xt | x0)dxt

=

d∑
i=1

d∑
j=1

∫
Xdata

{(
∂2

∂xi∂xj
[εsct (xt)]i

)
[εsct (xt)]j + [εsct (xt)]i

(
∂2

∂xi∂xj
[εsct (xt)]j

)}
pXt|X0

(xt | x0)dxt

+

d∑
i=1

d∑
j=1

∫
Xdata

{
[εJt(xt)]ij [ε

J
t(xt)]ji + [εJt(xt)]ii[ε

J
t(xt)]jj

}
pXt|X0

(xt | x0)dxt.

(68)
We now proceed to investigate each term in the above expression. For any two indices i and j, we observe
that (

∂2

∂xi∂xj
[εsct (xt)]i

)
[εsct (xt)]j =

(
∂

∂xj

[
εJt(xt)

]
ii

)
[εsct (xt)]j .

Consequently, we have

d∑
i=1

d∑
j=1

∫
Xdata

{(
∂2

∂xi∂xj
[εsct (xt)]i

)
[εsct (xt)]j + [εsct (xt)]i

(
∂2

∂xi∂xj
[εsct (xt)]j

)}
pXt|X0

(xt | x0)dxt

= 2

d∑
j=1

∫
Xdata

∂

∂xj

(
d∑

i=1

[εJt(xt)]ii

)
[εsct (xt)]jpXt|X0

(xt | x0)dxt

=

∫
Xdata

2
〈
∇tr

(
εJt(xt)

)
, εsct (xt)

〉
pXt|X0

(xt | x0)dxt
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Next, for terms of the form [εJt(xt)]ij [ε
J
t(xt)]ji and [εJt(xt)]ii[ε

J
t(xt)]jj , simple calculations yield

d∑
i=1

d∑
j=1

[εJt(xt)]ij [ε
J
t(xt)]ji =

〈
εJt(xt), ε

J
t(xt)

〉
=
∥∥εJt(xt)

∥∥2
F
;

d∑
i=1

d∑
j=1

[εJt(xt)]ii[ε
J
t(xt)]jj =

(
d∑

i=1

[εJt(xt)]ii

) d∑
j=1

[εJt(xt)]jj

 = tr
(
εJt(xt)

)2
.

Substituting these results into (68), we obtain∫
Xdata

〈
εsct (xt)ε

sc
t (xt)

⊤,∇2pXt|X0
(xt | x0)

〉
dxt

=

∫
Xdata

{
2
〈
∇tr

(
εJt(xt)

)
, εsct (xt)

〉
+
(
tr(εJt(xt))

)2
+
∥∥εJt(xt)

∥∥2
F

}
pXt|X0

(xt | x0)dxt

≤
∫
Xdata

{∥∥∇tr(εJt(xt))
∥∥2
2
+ ∥εsct (xt)∥22 +

(
tr(εJt(xt))

)2
+
∥∥εJt(xt)

∥∥2
F

}
pXt|X0

(xt | x0)dxt.

Combining the above inequality with (64) and (66), we can obtain∫
xt∈A

−s∗t (xt)
⊤εsct (xt)pXt

(xt)dxt ≤
1√

1− αt

∫
Xdata

(∫
Xdata

∥εsct (xt)∥22 pXt|X0
(xt | x0)dxt

) 1
2

pX0
(x0)dx0

+

∫
x0∈Xdata

(∫
Xdata

〈
εsct (xt)ε

sc
t (xt)

⊤,∇2pXt|X0
(xt | x0)

〉
dxt

) 1
2

pX0(x0)dx0

≤
(
1 +

1√
1− αt

)(∫
Xdata

∥εsct (xt)∥22 pXt(xt)dxt

) 1
2

+

(∫
Xdata

∥∥∇tr(εJt(xt))
∥∥2
2
pXt

(xt)dxt

) 1
2

+

(∫
Xdata

∥∥εJt(xt)
∥∥2
F
pXt

(xt)dxt

) 1
2

+

(∫
Xdata

tr(εJt(xt))
2pXt

(xt)dxt

) 1
2

≤ 2√
1− αt

εscore,t + εJacobi,1,t + εJacobi,2,t + εHess,t.

(69)
Thus, we arrive at∫

xt∈A
−∆

(
εsct (xt), ε

J
t(xt)

)
pXt(xt)dxt =

∫
xt∈A

{
−s∗t (xt)

⊤εsct (xt)− tr(εJt(xt))
}
pXt(xt)dxt

≤ 2√
1− αt

εscore,t + εJacobi,1,t + εJacobi,2,t + εHess,t +

∫
Xdata

∣∣tr(εJt(xt))
∣∣ pXt(xt)dxt

≤ 2√
1− αt

(εscore,t + εJacobi,1,t + εJacobi,2,t + εHess,t) .

B.3 Controlling the TV distance between Xt−1 and Φt(Xt)

In Appendices B.1 and B.2, we have developed bounds for all terms in −W (xt). In this subsection, we
combine these results and substitute them into (61), in order to establish a bound on the TV distance

between Xt−1 and Φt(Xt). Recall the definition of the set Et (51) and the function Φ̃t (52). Then for any
set A ⊆ Xdata, we can partition the points in Xdata based on whether they belong to the set Et and obtain

PΦt(Xt)(A)− PXt−1(A) ≤ P
(
Φt(Xt) ∈ A; Xt ∈ Et

)
− P(Xt−1 ∈ A) + P(Xt /∈ Et)

(a)
= P

(
Φ̃t(Xt) ∈ A, Φ̃t(Xt) ∈ Φt(Et)

)
− PXt−1(A) + P(Xt /∈ Et)
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≤ PΦ̃t(Xt)

(
A ∩ Φt(Et)

)
− PXt−1(A ∩ Φt(Et)) + P(Xt /∈ Et)

(b)

≤
∫
xt∈Φ−1

t (A)∩Et

(
1− eW (xt)

)
pXt

(xt)dxt + P(Xt /∈ Et).

Here, (a) follows since Φt ≡ Φ̃t on Et, and (b) holds by combining (61) and the following fact:

Φ̃−1
t

(
A ∩ Φt(Et)

)
= Φ̃−1

t (A) ∩ Φ̃−1
t ◦ Φt(Et) = Φ̃−1

t (A) ∩ Et = Φ−1
t (A) ∩ Et.

Next, let us look at the two terms on the right-hand side of the above inequality.
In what follows, we would like to make use of inequality (63), which provides a bound for −W (xt).

Before applying this result, we look at the key coefficients in the inequality. According to Lemma 3, we

define σ̃2
t := αt(1−αt)

(αt−αt)(1−αt)
. For the DDIM coefficient choice (11a), it holds that ηt =

1−αt

1+
√

αt−αt
1−αt

≤ 1 − αt.

Taking these results collectively, we arrive at

α2
tη

2
t

(αt − αt)(1− αt)3
≤ αt − αt

1− αt
·
(

αt(1− αt)

(αt − αt)(1− αt)

)2

=
αt − αt

1− αt
σ̃4
t ;

αtη
2
t

(αt − αt)(1− αt)2
≤ ηt

1− αt
· αt(1− αt)

(αt − αt)(1− αt)
=

σ̃2
t ηt

1− αt
.

Substitution into (63) allows one to control the term
∫
xt∈Φ−1

t (A)∩Et
(−W (xt))pXt

(xt)dxt as follows:∫
Φ−1

t (A)∩Et

−W (xt)pXt
(xt)dxt ≤

∫
Φ−1

t (A)∩Et

{
σ̃2
t ηt

2(1− αt)
tr
(
Cov0|t(xt)

)
+

αt − αt

1− αt
σ̃4
t

∥∥Cov0|t(xt)
∥∥2
F

}
pXt

(xt)dxt

+

∫
Φ−1

t (A)∩Et

{
4(1− αt)η

2
t

αt − αt

∥∥εJt(xt)
∥∥2
F
+

η2t
2(αt − αt)

∥εsct (xt)∥22

}
pXt

(xt)dxt

−
√

1− αt

αt − αt
ηt

∫
Φ−1

t (A)∩Et

∆
(
εsct (xt), ε

J
t(xt)

)
pXt(xt)dxt

≤
∫
Xdata

{
σ̃2
t ηt

2(1− αt)
tr
(
Cov0|t(xt)

)
+

αt − αt

1− αt
σ̃4
t

∥∥Cov0|t(xt)
∥∥2
F

}
pXt

(xt)dxt

+

∫
Xdata

{
4(1− αt)η

2
t

αt − αt

∥∥εJt(xt)
∥∥2
F
+

η2t
2(αt − αt)

∥εsct (xt)∥22

}
pXt(xt)dxt

+

√
1− αt

αt − αt
ηt sup

A⊆Xdata

∫
A
−∆

(
εsct (xt), ε

J
t(xt)

)
pXt(xt)dxt.

In view of Lemma 6, we know that for any measurable set A ⊆ Xdata,√
1− αt

αt − αt
ηt

∫
A
−∆

(
εsct (xt), ε

J
t(xt)

)
pXt

(xt)dxt

≤ 2ηt√
αt − αt

{εscore,t + εJacobi,1,t + εJacobi,2,t + εHess,t} .

Thus, we can further deduce that∫
Φ−1

t (A)∩Et

−W (xt)pXt
(xt)dxt ≤

σ̃2
t ηt

2(1− αt)
EXt

[
tr(Cov0|t)

]
+

αt − αt

1− αt
σ̃4
tEXt

[ ∥∥Cov0|t∥∥2F ]
+

4(1− αt)η
2
t

αt − αt
ε2Jacobi,1,t +

η2t
2(αt − αt)

ε2score,t

+
2ηt√

αt − αt

{
εscore,t + εJacobi,1,t + εJacobi,2,t + εHess,t

}
.

(70)
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Regarding the second term P(Xt /∈ Et), apply Markov’s inequality to obtain

P(Xt /∈ Et) = P
(
ηt
∥∥εJt(Xt)

∥∥ >
1

8

)
≤ 64

1− αt

αt − αt
η2tEXt

[∥∥εJt(Xt)
∥∥2] ≤ 64

1− αt

αt − αt
η2tEXt

[∥∥εJt(Xt)
∥∥2
F

]
= 64

1− αt

αt − αt
η2t ε

2
Jacobi,1,t.

(71)

Putting (70) and (71) together yields

TV(pXt−1 , pΦt(Xt)) = sup
A⊂Xdata

{
PXt−1(A)− PΦt(Xt)(A)

}
≤ σ̃2

t ηt
2(1− αt)

EXt

[
tr(Cov0|t)

]
+

αt − αt

1− αt
σ̃4
tEXt

[ ∥∥Cov0|t∥∥2F ]+4(1− αt)η
2
t

αt − αt
ε2Jacobi,1,t +

η2t
2(αt − αt)

ε2score,t

+
2ηt√

αt − αt
{εscore,t + εJacobi,1,t + εJacobi,2,t + εHess,t}+ 16

1− αt

αt − αt
η2t ε

2
Jacobi,1,t

≤ σ̃2
t ηt

2(1− αt)
EXt

[
tr(Cov0|t)

]
+

αt − αt

1− αt
σ̃4
tEXt

[∥∥Cov0|t∥∥2F]+20(1− αt)η
2
t

αt − αt
ε2Jacobi,1,t+

η2t
2(αt − αt)

ε2score,t

+
2ηt√

αt − αt
{εscore,t + εJacobi,1,t + εJacobi,2,t + εHess,t} .

(72)

Lemma 3 tells us that

αt − αt

1− αt
σ̃4
tE
[∥∥Cov0|t∥∥2F] ≤ 3(αt − αt)

1− αt
σ̃2
t

{
E
[
tr(CovX0|Xt

)
]
− E

[
tr(CovX0|Xt−1

)
]}

+
1

T 10
. (73)

Taking (50), (72) and (73) collectively, we can demonstrate that

TV(pXt−1
, pYt−1

) ≤ TV(pXt−1
, pΦt(Xt)) + TV(pXt

, pYt
)

≤ TV(pXt
, pYt

) +
σ̃2
t (ηt + 3αt − 3αt)

1− αt
E
[
tr
(
Cov0|t

)]
− 3(αt − αt)

1− αt
σ̃2
tE
[
tr
(
Cov0|t−1

)]
+

1

T 10︸ ︷︷ ︸
=:St,1

+
2ηt√

αt − αt
{εscore,t+εJacobi,1,t+εJacobi,2,t+εHess,t}+

20(1− αt)η
2
t

αt − αt
ε2Jacobi,1,t +

η2t
2(αt − αt)

ε2score,t︸ ︷︷ ︸
=:St,2

.

(74)

Here, we divide the residual terms generated by recursion into two parts, St,1 and St,2. The term St,1

represents the discretization error, while St,2 is associated with the score estimation error.

Let us first cope with the accumulated discretization error
T∑

t=1
St,1. Simple algebraic transformation yields

T∑
t=1

St,1 =

T−1∑
t=1

(
σ̃2
t ηt

1− αt
+

3(αt − αt)σ̃
2
t

1− αt
−

3(αt+1 − αt+1)σ̃
2
t+1

1− αt+1

)
E
[
tr
(
Cov0|t

)]
+

σ̃2
T (ηT + αT − αT )

1− αT
E
[
tr
(
Cov0|T

)]
+

1

T 9
.

Applying Lemma 4 and the basic property (46), we can show that

σ̃2
t ηt

1− αt
+
3(αt − αt)σ̃

2
t

1− αt
−
3(αt+1 − αt+1)σ̃

2
t+1

1− αt+1
=

σ̃2
t ηt

1− αt
+3

(
1− 1− αt

1− αt

)
σ̃2
t−3

(
1− 1− αt+1

1− αt+1

)
σ̃2
t+1

≤ 3(1− αt)σ̃
2
t

1− αt
− 3(1− αt)σ̃

2
t

1− αt
+

3(1− αt+1)σ̃
2
t+1

1− αt+1
+ 3(σ̃2

t − σ̃2
t+1)
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≤ 3

(
1− αt+1

1− αt+1

)2 α2
t+1

1− αt+1
+

C6 log
2 T

T 2

αt

1− αt
≤ 2C6 log

2 T

T 2

αt

1− αt
.

Equipped with this, the accumulated discretization error can be further bounded as follows:

T∑
t=1

St,1≤
(
2C6 log T

T

)2 T−1∑
t=1

αt

1− αt
E
[
tr
(
Cov0|t

)]
+

2C6 log T

T

αT

1− αT
E
[
tr
(
Cov0|T

)]
+

1

T 9

(a)

≤ C3kT log T

(
2C6 log T

T

)2

+
2C3C6k log

2 T

T
+

1

T 9
≤ C9

k log3 T

T
+

1

T 9
≤ C10

k log3 T

T
,

(75)

where (a) applies the moment inequality (45) with l = 2.

Next, we turn to the cumulative estimation error
∑T

t=1 St,2. Given that ηt√
αt−αt

≤ ηt

1−αt
≤ 1−αt

1−αt
≤

8c1 log T
T , we can derive

T∑
t=2

St,2 =

T∑
t=2

2ηt√
αt − αt

{εscore,t+εJacobi,1,t+εJacobi,2,t+εHess,t}

+

T∑
t=2

20(1− αt)η
2
t

αt − αt
ε2Jacobi,1,t +

T∑
t=2

η2t
2(αt − αt)

ε2score,t

≤ 8c1 log T

T

{
T∑

t=1

εscore,t+

T∑
t=2

εJacobi,1,t+

T∑
t=2

εJacobi,2,t+

T∑
t=2

εHess,t

}

+
C10 log

2 T

T 2

{
T∑

t=1

ε2Jacobi,1,t +

T∑
t=1

ε2score,t

}

(a)

≤ 8c1 log T√
T


√√√√ T∑

t=2

ε2score,t +

√√√√ T∑
t=2

ε2Jacobi,1,t +

√√√√ T∑
t=2

ε2Jacobi,2,t +

√√√√ T∑
t=2

ε2Hess,t


+

C10 log
2 T

T 2

{
T∑

t=2

ε2Jacobi,1,t +

T∑
t=2

ε2score,t

}
(b)

≤ 8c1 (εscore + εJacobi,1 + εJacobi,2 + εHess) log T +
C10 log

2 T

T

(
ε2score + ε2Jacobi,1

)
≤ C11 (εscore + εJacobi,1 + εJacobi,2 + εHess) log T,

(76)

where (a) results from the Cauchy-Schwarz inequality, (b) follows from Assumption 4, and the last inequality
holds provided that log T

T (εscore + εJacobi,1) ≤ 1.
Applying inequality (74) recursively from 1 to T , and combining (75) and (76), we reach

TV(pX1 , pY1) ≤ TV(pXT
, pYT

) +

T∑
t=2

St,1 +

T∑
t=2

St,2

≤ C10
k log3 T

T
+ C11 (εscore + εJacobi,1 + εJacobi,2 + εHess) log T + TV(pXT

, pYT
)

≤ C10
k log3 T

T
+ C11 (εscore + εJacobi,1 + εJacobi,2 + εHess) log T +

1

T 10
,

where the last inequality arises from Li and Yan (2024a, Lemma 10). The proof is thus complete.

C Analysis for DDPM (proof of Theorem 3)

Given that Theorem 2 is a special case of Theorem 3, we shall focus on proving Theorem 3 in this section.
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Define the extended d-dimensional Euclidean space Rd ∪ {∞} by adding the point ∞ to Rd. From now
on, the random vectors can take value in Rd ∪ {∞}, namely, they can be constructed in the following way:

X =

{
X ′, with probability θ,

∞, with probability 1− θ,

where θ ∈ [0, 1] and X ′ is a random vector in Rd in the usual sense. If X ′ has a density pX′ , then the
generalized density of X is

pX(x) = θpX′(x)1{x ∈ Rd}+ (1− θ)δ∞,

where δ∞ indicates the Dirac measure at ∞.

C.1 Introducing auxiliary sequences

Let us define two auxiliary sequences that play a pivotal role in our theoretical analysis. First, define an
auxiliary reverse process Y t based on Y ∗

t as follows:

Y
−
t−1 | Y t ∼ Y ∗

t−1 | Y ∗
t , Y t | {Y

−
t = yt} =

 y−t , with prob.
pXt (y

−
t )

p
Y

−
t
(y−

t )
∧ 1,

∞, otherwise.

Here, a ∧ b := min{a, b}. One can derive the following property of the auxiliary sequence {Y t}∞t=1:

pY t
(yt) =

∫
Rd

p
Y t|Y

−
t
(yt | y−t )dy−t = pXt(yt) ∧ p

Y
−
t
(yt). (77)

To control the estimation error, we introduce another auxiliary reverse process Ŷt based on Yt:

Ŷ −
t−1 | Ŷt ∼ Yt−1 | Yt, Ŷt | {Ŷ −

t = yt} =

 y−t , with prob.
pXt (y

−
t )

p
Y

−
t
(y−

t )
∧ 1,

∞, otherwise.

We can use induction to show that

pYt
(x) ≥ pŶt

(x), ∀x ∈ Xdata (78)

holds for all t = 1, · · · , T . In fact, we can check that pYT
= pŶT

. Suppose (78) holds for t+ 1, then

pŶt
(x) =

∫
Rd

pŶt|Ŷ −
t
(x | x′)pŶ −

t
(x′)dx′ =

(
pXt

(x)

p
Y

−
t
(x)

∧ 1

)
pŶ −

t
(x) ≤ pŶ −

t
(x)

=

∫
Rd

pŶ −
t |Ŷt+1

(x | x′)pŶt+1
(x′)dx′ ≤

∫
Rd

pYt|Yt+1
(x | x′)pYt+1

(x′)dx′ = pYt
(x).

In order to facilitate discussion, we define the following set

At :=
{
x : pXt(x) ≥ p

Y
−
t
(x)
}
.

It can be easily verified that

TV(pXt , pY ∗
t
) =

∫
At

(
pXt(xt)− pY ∗

t
(x)
)
dx.

Note that, for density p
Y

−
t−1

(xt−1), we have

pY t−1
(xt−1) =

∫
Xdata

p
Y

−
t−1|Y t

(xt−1 | xt)pY t
(xt)dxt =

∫
Xdata

pY ∗
t−1|Y ∗

t
(xt−1 | xt)pY t

(xt)dxt
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=

∫
Xdata

pY ∗
t−1|Y ∗

t
(xt−1 | xt)pXt

(xt)dxt +

∫
Xdata

pY ∗
t−1|Y ∗

t
(xt−1 | xt)(pY t

(xt)− pXt
(xt))dxt.

Further, by plugging the above equation into the expression of the TV distance between pXt and pY ∗
t
, we

can derive the following recursive relationship for all t ≥ 2:

TV(pXt−1
, pY t−1

)=

∫
At−1

(
pXt−1

(xt−1)−pY t−1
(xt−1)

)
dxt−1

(a)
=

∫
At−1

(
pXt−1

(xt−1)−p
Y

−
t−1

(xt−1)
)
dxt−1

=

∫
At−1

pXt−1
(xt−1)−

∫
At−1×Xdata

pY ∗
t−1|Y ∗

t
(xt−1 | xt)pXt

(xt)dxt−1dxt︸ ︷︷ ︸
=:Rt−1

+

∫
At−1×Xdata

pY ∗
t−1|Y ∗

t
(xt−1 | xt)

(
pXt(xt)− pY t

(xt)
)
dxt−1dxt

(b)

≤ Rt−1 +

∫
At−1×At

pY ∗
t−1|Y ∗

t
(xt−1 | xt)

(
pXt

(xt)− pY t
(xt)

)
dxt−1dxt

= Rt−1 +

∫
At

PY ∗
t−1|Y ∗

t
(At−1|xt)

(
pXt

(xt)− pŶt
(xt)

)
dxt

(c)

≤ Rt−1 + TV(pXt
, pY t

).

(79)

Here, (a) follows since pY t−1
= p

Y
−
t−1

on At−1, (b) holds due to the fact that pY ∗
t−1|Y ∗

t
(xt−1 | xt)(pXt

(xt) −
pY ∗

t
(xt)) < 0 on Ac

t , and (c) is valid since PY ∗
t−1|Y ∗

t
(At−1 | xt) ≤ 1 for all xt ∈ Xdata. Denote pXt−1(xt−1) −∫

X pY ∗
t−1|Y ∗

t
(xt−1 | xt)pXt

(xt)dxt as Rt−1(xt−1), then we can see that

Rt−1 =

∫
At−1

Rt−1(xt−1)dxt−1.

In the ensuing subsections, we would like to bound Rt−1(xt−1) for xt−1 ∈ At−1, which can then be invoked
to bound Rt−1.

C.2 Analysis of Rt−1(xt−1)

Recall that Y ∗
t−1 = 1√

αt

(
Y ∗
t + ηts

∗
t (Y

∗
t ) + σtWt

)
. For the vector xt, denote

ut := xt + ηts
∗
t (xt).

Note that for t ≥ 2,

pXt−1|X0
(xt−1 | x0) =

(
1

2π(1− αt)

) d
2

exp

(
−
∥xt−1 −

√
αt−1x0∥

2
2

2(1− αt−1)

)
,

pY ∗
t−1|Y ∗

t
(xt−1 | ut) =

(
1

2πσ2
t

) d
2

exp

(
−
∥∥√αtxt−1 − ut

∥∥2
2

2σ2
t

)
,

which means both pXt−1|X0
and pY ∗

t−1|Y ∗
t

are density functions of conditional Gaussians. In light of this,

we can find another conditional Gaussian distribution p̃Ut|X0
(ut|x0) such that the following convolutional

formula holds

pXt−1|X0
(xt−1 | x0) =

∫
xt

pY ∗
t−1|Y ∗

t
(xt−1 | ut)p̃Ut|X0

(ut | x0)dut, ∀xt−1 ∈ At−1, x0 ∈ Xdata. (80)

Further, we can derive

Rt−1(xt−1) = pXt−1
(xt−1)−

∫
x0,xt

pY ∗
t−1|Y ∗

t
(xt−1 | xt)pXt|X0

(xt | x0)p(x0)dx0dxt
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= pX∗
t−1

(xt−1)−
∫
x0,xt

pY ∗
t−1|Y ∗

t
(xt−1 | ut)p̃Ut|X0

(ut | x0)
pXt|X0

(ut | x0)

p̃Ut|X0
(ut | x0)

p(x0)dx0dxt

= pX∗
t−1

(xt−1)−
∫
x0,xt

pY ∗
t−1|Y ∗

t
(xt−1 | ut)p̃Ut|X0

(ut | x0)
pXt|X0

(ut | x0)

p̃Ut|X0
(ut | x0)

det

(
dxt

dut

)
p(x0)dx0dut

=

(∫
x0

pXt−1|X0
(xt−1 | x0)p(x0)dx0 −

∫
x0,xt

pY ∗
t−1|Y ∗

t
(xt−1 | ut)p̃Ut|X0

(ut | x0)p(x0)dx0dut

)
−
∫
x0,xt

pY ∗
t−1|Y ∗

t
(xt−1 | ut)p̃Ut|X0

(ut | x0)

(
pXt|X0

(ut | x0)

p̃Ut|X0
(ut | x0)

det

(
dxt

dut

)
− 1

)
p(x0)dx0dut.

According to (80), the value in parentheses at the end of the above equation is 0. In addition, combining
the definition of ut leads to

−
∫
x0,xt

pY ∗
t−1|Y ∗

t
(xt−1 | ut)p̃Ut|X0

(ut | x0)

(
pXt|X0

(ut | x0)

p̃Ut|X0
(ut | x0)

det

(
dxt

dut

)
− 1

)
p(x0)dx0dut

= −
∫
x0,xt

pY ∗
t−1|Y ∗

t
(xt−1 | ut)pXt|X0

(ut | x0) det

(
dxt

dut

)(
1−

p̃Ut|X0
(ut | x0)

pXt|X0
(ut | x0)

det

(
dut

dxt

))
p(x0)dx0dut

=

∫
x0,xt

pY ∗
t−1|Y ∗

t
(xt−1 | ut)pXt|X0

(ut | x0)

(
p̃Ut|X0

(ut | x0)

pXt|X0
(ut | x0)

det

(
dut

dxt

)
− 1

)
p(x0)dx0dxt.

Let

G(xt | x0) :=
p̃Ut|X0

(ut | x0)

pXt|X0
(ut | x0)

det

(
dut

dxt

)
,

then we can derive the following equation via the above analysis

Rt−1(xt−1) =

∫
x0,xt

pY ∗
t−1|Y ∗

t
(xt−1 | ut)pXt|X0

(ut | x0)
(
G(xt, x0)− 1

)
p(x0)dx0dxt. (81)

Next, we have two steps to accomplish. The first one is to determine the specific form of the surrogate
distribution p̃Ut|X0

(ut | x0), while the second one is to control the magnitude of G(xt, x0) − 1. These are
detailed in the subsequent subsections.

C.3 Determining the surrogate distribution

Suppose that p̃Ut|X0
(ut|x0) satisfies Ut ∼ N (λtx0, σ

2
t I). It is easily seen that the distribution of the proba-

bilistic density function
∫
xt

pY ∗
t−1|Y ∗

t
(xt−1|ut)p̃Ut|X0

(ut|x0)dut is

Xt−1 ∼ N
(

λt√
αt

x0,
σ2
t + σ2

t

αt

)
,

while under the choice of p̃Ut|X0
we have

pXt−1|X0
(xt−1 | x0) =

∫
xt

pY ∗
t−1|Y ∗

t
(xt−1 | ut)p̃Ut|X0

(ut | x0)dut, ∀xt−1 ∈ At−1, x0 ∈ Xdata.

This implies that N
(

λt√
αt
x0,

σ2
t+σ2

t

αt

)
is the same as N (

√
αt−1x0, 1− αt−1). Combining this with the choice

of σ2
t leads to

λt =
√
αt ·

√
αt−1 =

√
αt; σ2

t = αt(1− αt−1)− σ2
t .

Hence, the surrogate distribution of density p̃Ut|X0
is N

(√
αtx0, αt − αt − σ2

t

)
.
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C.4 Bounding the residual G(xt, x0)− 1

Since both p̃Ut|X0
and pXt|X0

are Gaussian distributions, we can derive that

G(xt, x0) = det

(
d(xt + ηts

∗
t (xt))

dxt

)
·

(
σ2
t

)−d/2
exp

{
− ∥ut−

√
αtx0∥2

2

2σ2
t

}
(1− αt)−d/2 exp

{
− ∥xt−

√
αtx0∥2

2(1−αt)

}
= det

(
d(xt + ηts

∗
t (xt))

dxt

)
· (1− αt)

d/2

σd
t︸ ︷︷ ︸

=:G1(xt,x0)

· exp

{∥∥xt −
√
αtx0

∥∥2
2

2(1− αt)
−
∥∥ut −

√
αtx0

∥∥2
2

2σ2
t

}
︸ ︷︷ ︸

=:G2(xt,x0)

.

(82)

From Tweedie’s formula (42), we can further simplify G1(xt, x0) as follows:

G1(xt, x0) = det

(
I + ηt

∂s∗t (xt)

∂xt

)
· (1− αt)

d/2

σd
t

(a)
= det

(
I + ηt

{
αt

(1− αt)2
Cov0|t(xt)−

1

1− αt
I

})
· (1− αt)

d/2

σd
t

= det

((
1− ηt

1− αt

)
I +

αtηt
(1− αt)2

Cov0|t(xt)

)
· (1− αt)

d/2

σd
t

(b)
= det

(
I +

αtηt
(1− αt)(1− αt − ηt)

Cov0|t(xt)

)
=: det

(
I + αtη

(1)
t Cov0|t(xt)

)
.

(83)

Here, η
(1)
t := ηt

(1−αt)(1−αt−ηt)
. Eqn. (a) follows from the expression of

∂s∗t (xt)
∂xt

listed above, whereas (b) holds

by combining det(λA) = λd det(A) and the relationship (26).
We then move on to G2(xt, x0). Towards this end, we make the observation that

log G2(xt, x0) =

∥∥xt −
√
αtx0

∥∥2
2

2(1− αt)
−
∥∥ut −

√
αtx0

∥∥2
2

2σ2
t

=

∥∥xt −
√
αtx0

∥∥2
2

2(1− αt)
−
∥∥xt −

√
αtx0 + ηts

∗
t (xt)

∥∥2
2

2σ2
t

=

(
1

2(1− αt)
− 1

2σ2
t

)∥∥xt−
√
αtx0

∥∥2
2
− ηt

σ2
t

(xt−
√
αtx0)

⊤s∗t (xt)−
η2t
2σ2

t

∥s∗t (xt)∥22

(a)
= − ηt

σ2
t (1− αt)

(xt −
√
αtx0)

⊤(√αtµ0|t(xt)− xt

)
− η2t

2σ2
t (1− αt)2

∥∥√αtµ0|t(xt)− xt

∥∥2
2

+

(
1

2(1− αt)
− 1

2σ2
t

)∥∥xt−
√
αtx0

∥∥2
2

=

(
1

2(1− αt)
− 1

2σ2
t

)∥∥xt−
√
αtx0

∥∥2
2
+

(
ηt

σ2
t (1− αt)

− η2t
2σ2

t (1− αt)2

)∥∥√αtµ0|t(xt)− xt

∥∥2
2

+
ηt

σ2
t (1− αt)

(√
αtx0 −

√
αtµ0|t(xt)

)⊤(√
αtµ0|t(xt)− xt

)
,

(84)

where (a) follows since s∗t (xt) =
√
αt

1−αt
µ0|t(xt)− 1

1−αt
xt. Further, in view of (26), one has

1

2(1− αt)
− 1

2σ2
t

=
σ2
t − (1− αt)

2(1− αt)σ
2
t

=
(1− αt)

(
1− ηt

1−αt

)2
− (1− αt)

2(1− αt)σ
2
t

= −2(1− αt)ηt − η2t
2(1− αt)2σ

2
t

= −
(

ηt

(1− αt)σ
2
t

− η2t
2(1− αt)2σ

2
t

)
.
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Denote ηt

(1−αt)σ2
t
− η2

t

2(1−αt)2σ2
t
as η

(2)
t . Substituting these equations into (84) yields

log G2(xt, x0) = η
(2)
t

{∥∥√αtµ0|t(xt)−xt

∥∥2
2
−
∥∥√αtx0−xt

∥∥2
2

}
+

√
αtηt

σ2
t (αt − αt)2

(
x0−µ0|t(xt)

)⊤(√
αtµ0|t(xt)−xt

)
=: ζ(xt, x0)−

∫
x0

log G2(xt, x0)pX0|Xt
(x0 | xt)dx0 = ζ(xt, x0)−αtη

(2)
t tr

(
Cov0|t(xt)

)
.

(85)
Here, ζ(xt, x0) satisfies

∫
x0

ζ(xt, x0)pX0|Xt
(x0 | xt)dx0 = 0, ∀xt ∈ Xdata. Now, to streamline the presentation

of the proof, we define

Z(xt) := log det
(
I + αtη

(1)
t Cov0|t(xt)

)
− αtη

(2)
t tr

(
Cov0|t(xt)

)
.

It is readily seen that, for any xt ∈ X ,∫
x0

(
eζ(xt,x0) − 1

)
eZ(xt)pX0|Xt

(x0 | xt)dx0 ≥ eZ(xt)

∫
x0

ζ(xt, x0)pX0|Xt
(x0 | xt)dx0 = 0. (86)

We now proceed to the analysis of R(xt−1). With (81) in mind, we can obtain

Rt−1 =

∫
At−1

Rt−1(xt−1)dxt−1=

∫
At−1×X 2

data

pY ∗
t−1|Y ∗

t
(xt−1|ut)pXt,X0

(xt, x0) (G(xt, x0)− 1) dx0dxtdxt−1

=

∫
At−1×X 2

data

pY ∗
t−1|Y ∗

t
(xt−1|ut)pXt,X0(xt, x0) {G1(xt, x0)G2(xt, x0)− 1} dx0dxtdxt−1

(a)
=

∫
At−1×X 2

data

pY ∗
t−1|Y ∗

t
(xt−1|ut)pXt,X0

(xt, x0)
{
eζ(xt,x0)+Z(xt) − 1

}
dx0dxtdxt−1

≤
∫
xt

PY ∗
t−1|Y ∗

t
(At−1|ut) pXt

(xt)

{∫
x0

(eζ(xt,x0)−1)eZ(xt)pX0|Xt
(x0 | xt)dx0+

∣∣∣eZ(xt)−1
∣∣∣}dxt

(b)

≤
∫
xt

pXt
(xt)

{∫
x0

(eζ(xt,x0)−1)eZ(xt)pX0|Xt
(x0 | xt)dx0+

∣∣∣eZ(xt)−1
∣∣∣}dxt

=

∫
xt,x0

pXt,X0(xt, x0)e
ζ(xt,x0)+Z(xt)dxtdx0 −

∫
xt

pXt(xt)e
Z(xt)dxt +

∫
xt

pXt(xt)
∣∣∣eZ(xt) − 1

∣∣∣dxt.

(87)

Note that eζ(xt,x0)+Z(xt) = G(xt, x0) =
p̃Ut|X0

(ut|x0)

pXt|X0
(xt|x0)

det
(

dut

dxt

)
. As a result,∫

xt,x0

pXt,X0
(xt, x0)e

ζ(xt,x0)+Z(xt)dxtdx0 =

∫
xt,x0

p̃Ut|X0
(ut|x0)p(x0)dutdx0 = 1.

Substituting this into (87) gives

Rt−1 ≤ 1−
∫
xt

pXt
(xt)e

Z(xt)dxt +

∫
xt

pXt
(xt)

∣∣∣eZ(xt) − 1
∣∣∣dxt

= 2

∫
xt

pXt
(xt)

(
1− eZ(xt)

)
+
dxt ≤ 2EXt

(−Z(Xt))+ ,

(88)

where the last inequality holds by combining 1−ex ≤ −x and the fact that the function (·)+ is non-decreasing.

C.5 Controlling the discretization error

From equation (88), we know Rt−1 ≤ EXt

[(
−Z(Xt)

)
+

]
. By setting the square matrix ∆ in Lemma 5 to 0,

we can show that for any positive semi-definite matrix A ∈ Rd×d,

log det (I +A) ≥ tr(A)− ∥A∥2F . (89)
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Equipped with this result, we can derive the following inequality:

EXt

[
(−Z(Xt))+

]
= EXt

[(
αtη

′
ttr
(
Cov0|t

)
− log det(I + αtη

(1)
t Cov0|t)

)
+

]
(a)

≤ EXt

[(
αt

(
η
(2)
t − η

(1)
t

)
tr
(
Cov0|t

)
+ α2

t

(
η
(1)
t

)2 ∥∥Cov0|t∥∥2F)+
]

= αt

(
η
(2)
t − η

(1)
t

)
E
[
tr
(
Cov0|t

)]
+ α2

t

(
η
(1)
t

)2E [∥∥Cov0|t∥∥2F] .
(90)

Here, (a) holds by combining (89) and the fact that the function (·)+ is non-decreasing. Then we begin

to deal with the coefficient αt

(
η
(2)
t − η

(1)
t

)
and α2

t

(
η
(1)
t

)2
. Combining the definition of η

(1)
t , η

(2)
t and the

relationship (26) results in

αt

(
η
(2)
t − η

(1)
t

)
= αt

(
ηt

(1− αt)σ
2
t

− η2t
2(1− αt)2σ

2
t

− ηt
(1− αt)(1− αt − ηt)

)

≤ αtηt
1− αt

· 1− αt − ηt − σ2
t

σ2
t (1− αt − ηt)

=
αtηt
1− αt

·
1− αt − ηt − (1− αt)

(
1− 2ηt

1−αt
+

η2
t

(1−αt)2

)
(1− αt − ηt)σ

2
t

=
αtηt
1− αt

·
ηt − η2t

/
(1− αt)

(1− αt − ηt)σ
2
t

≤ 8αtη
2
t

(1− αt)3
,

where the last inequality holds by utilizing ηt ≤ 1
2 (1−αt) and σ2

t = (1−αt)
(
1− ηt

1−αt

)2
≥ (1−αt)

(
1− 1

2

)2
=

4(1− αt). Applying the same conclusion and arguments, we can also derive the following inequality:

α2
t

(
η
(1)
t

)2
=

α2
tη

2
t

(1− αt)2(1− αt − ηt)2
≤ 4α2

tη
2
t

(1− αt)2(αt − αt)2
≤ 4C2(1− αt)

2

(1− αt)2(αt − αt)2
= 4C2σ̃4

t ,

where σ̃2
t = αt(1−αt)

(αt−αt)(1−αt)
. According to Lemma 3, one has

σ̃4
tE
[∥∥Cov0|t∥∥2F] ≤ 3σ̃2

t

{
E
[
tr(CovX0|Xt

)
]
− E

[
tr(CovX0|Xt−1

)
]}

+
3

T 10
.

Back to (90), now we have

EXt

[(
− Z(Xt)

)
+

]
≤ 8αtη

2
t

(1− αt)3
E
[
tr(Cov0|t)

]
+ Cσ̃2

t

{
E
[
tr(CovX0|Xt

)
]
− E

[
tr(CovX0|Xt−1

)
]}

+
C

T 10
, (91)

where C represents a new universal constant in the above inequality. Taking (79), (88) and (91) together
results in

TV(pXt−1
, pY t−1

) ≤ Rt−1 + TV(pXt
, pY t

) ≤ TV(pXt
, pY t

) + EXt

[
(−Z(Xt))+

]
≤ TV(pXt , pY t

)+

(
Cσ̃2

t+
αtη

2
t

(1− αt)3

)
E
[
tr
(
Cov0|t

)]
− Cσ̃2

tE
[
tr
(
Cov0|t−1

)]
+

C

T 10
.
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Applying the above result from 1 to T recursively, we arrive at

TV(pX1 , pY 1
) ≤ TV(pXT

, pY ∗
T
) +

T−1∑
t=2

(
8αtη

2
t

(1− αt)3
+ C(σ̃2

t − σ̃2
t+1)

)
E
[
tr
(
Cov0|t

)]
+

(
Cσ̃2

t +
8αtη

2
t

(1− αt)3

)
E
[
tr
(
Cov0|T

)]
+

C

T 9

(a)

≤ TV(pXT
, pY T

)+

(
C log T

T

)2 T−1∑
t=1

αt

1− αt
E
[
tr
(
Cov0|t

)]
+

C log T

T

αT

1− αT
E
[
tr
(
Cov0|T

)]
+

1

T 9

(b)

≤ TV(pXT
, pY T

) + C3kT log T

(
C log T

T

)2

+
C3Ck log2 T

T
+

C

T 9

≤ 1

T 10
+ C2C3

k log3 T

T
+

C

T 9
≤ C8

k log3 T

T
.

(92)

Here, (a) applies Lemma 4 and the basic property (46), (b) makes use of the moment inequality (45) with
l = 2, whereas the penultimate inequality results from Li and Yan (2024a, Lemma 10).

C.6 Controlling the term related to score estimation errors

In this subsection, we bound the TV distance between pY1
and pY 1

. Observe that

TV(pY1
, pY 1

) =

∫
Rd

(
pY 1

(x)− pY1
(x)
)
1{pY 1

(x) > pY1
(x)}dx+ P(Y 1 = ∞)

(a)

≤
∫
Rd

(
pY 1

(x)− pŶ1
(x)
)
1{pY 1

(x) > pŶ1
(x)}dx+ P(Y 1 = ∞)

(b)

≤ TV(pY 1
, pŶ1

) + TV(pX1
, pY 1

)
(c)

≤
√

KL(pY 1
∥ pŶ1

) + C
k log3 T

T
,

(93)

where (a) holds due to (78), (b) follows since P(Y 0 = ∞) ≤ TV(X0, Y 0), and (c) invokes Pinsker’s inequality
and (92). Regarding the KL divergence term, it follows from the data processing inequality that

KL(pY 1
∥ pŶ1

) ≤ KL
(
p
Y 1,Y

−
1 ,··· ,Y T ,Y

−
T

∥∥ pŶ1,Ŷ
−
1 ,··· ,ŶT ,Ŷ −

T

)
(a)
= KL(p

Y
−
T
∥ pŶ −

T
) +

T∑
t=2

Ext∼pY t

[
KL
(
p
Y

−
t−1|Y t=xt

∥∥ pŶ −
t−1|Ŷt=xt

)]
+

T∑
t=2

Ext∼p
Y

−
t

[
KL
(
p
Y t−1|Y

−
t =xt

∥∥ pŶt−1|Ŷ −
t =xt

)]
(b)
=

T∑
t=2

Ext∼pY t

[
KL
(
p
Y

−
t−1|Y t=xt

∥∥ pŶ −
t−1|Ŷt=xt

)]
(c)
=

T∑
t=2

Ext∼pY t

[
KL
(
pY ∗

t−1|Y ∗
t =xt

∥∥ pYt−1|Yt=xt

)]
.

Here, (a) follows from the chain rule of KL divergence, (b) holds since the conditional distributions of Ŷt

given Ŷ −
t = x and Y t given Y

−
t = x are identical, and (c) arises from the construction of the two sequences

Y
−
t−1 | Y t and Ŷ −

t−1 | Ŷt.
Recall that Y ∗

t−1 | Y ∗
t = xt and Yt−1 | Yt = xt are two Gaussian distributions with different means but

the same covariance. More precisely,

Y ∗
t−1 | Y ∗

t = xt ∼ N
(
xt + ηts

∗
t (xt)√

αt
, σ2

t Id

)
, Yt−1 | Yt = xt ∼ N

(
xt + ηtst(xt)√

αt
, σ2

t Id

)
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with ηt, σ2
t satisfying η2t ≤ C(1 − αt)σ

2
t . Further, the KL divergence between two Gaussian measures can

be computed in closed form, i.e.,

KL
(
pY ∗

t−1|Y ∗
t
(·|xt) ∥ pYt−1|Yt

(·|xt)
)
= KL

(
N
(
xt + ηts

∗
t (xt)√

αt
, σ2

t Id

) ∥∥∥∥ N
(
xt + ηtst(xt)√

αt
, σ2

t Id

))
=

η2t /αt

2σ2
t

∥st(xt)− s∗t (xt)∥22 =
η2t /αt

2σ2
t

∥εsct (xt)∥22 =
C(1− αt)

2αt
∥εsct (xt)∥22 ≤ C(1− αt) ∥εsct (xt)∥22 .

Therefore, we can calculate that

KL(pY 1
∥ pŶ1

) ≤
T∑

t=2

Ext∼pY t

[
KL
(
pY ∗

t−1|Y ∗
t =xt

∥∥ pYt−1|Yt=xt

)]
≤

T∑
t=2

C(1− αt)Ext∼pY t

[
∥εsct (xt)∥22

] (a)

≤
T∑

t=2

C(1− αt)Ext∼pXt

[
∥εsct (xt)∥22

]
≤ c1C log T

T

T∑
t=2

ε2score,t ≤ c1C(log T )ε2score,

(94)

where (a) follows from (77). Combine (92), (93) and (94) to reach

TV(pX1
, pY1

) ≤ TV(pX1
, pY 1

) + TV(pY 1
, pY1

)

≤ C
k log3 T

T
+ C

k log3 T

T
+
√
KL(pY 1

∥ pŶ1
)

≤ 2C
k log3 T

T
+
√

c1ε2score log T = C
k log3 T

T
+
√
c1C log Tεscore,

thereby concluding the proof of Theorem 3.

D Equivalence between relation (26) and Song et al. (2020, Eq. (12))

Recall that ϵnoiset (Yt) = −
√
1− αtst(Yt). Substituting this expression into (29) (i.e., Song et al. (2020,

Eq. (12))) results in:

Yt−1 =
1

√
αt

(
Yt + (1− αt)st(Yt)−

√
(1− αt)(αt − αt − αtς2t ) st(Yt) +

√
αtςtZt

)
.

By taking

ηddpmt = (1− αt)−
√
(1− αt)(αt − αt − αtς2t ) and σddpm

t =
√
αtςt,

we can derive

(1− αt)

(
1− ηddpmt

1− αt

)2

= (1− αt)

(
1−

(1− αt)−
√
(1− αt)

(
αt − αt −

(
σddpm
t

)2)
1− αt

)2

= (1− αt)

√αt − αt −
(
σddpm
t

)2
1− αt

2

= αt − αt −
(
σddpm
t

)2
,

which is precisely the relation in (26).
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E Proofs about reverse-time differential equations

E.1 Generalized reverse-time differential equations

We formally state the time-reversal property of the generalized reverse-time differential equation introduced
in Section 2.

Proposition 3 Suppose the generalized reverse-time differential equation

dYt =
(
Yt +

(
1 + ξ(T − t)

)
s∗T−t(Yt)

)
β(T − t)dt+

√
2ξ(T − t)β(T − t) dWt, t ∈ [0, T ] (95)

has a unique strong solution, where (Wt) represents a standard Brownian motion in Rd. Then under the

boundary condition Y0
d
= XT , it satisfies YT−t

d
= Xt for all 0 ≤ t ≤ T .

Proof of Proposition 3. Recall that the continuous-time forward process is given by

dXt = −β(t)Xtdt+
√

2β(t) dBt,

with (Bt) a standard Brownian motion in Rd. Denote by pX(x, t) the probability density of Xt at point
x w.r.t. the Lebesgue measure in Rd. In the following proof, we use ∇ (resp. ∇·) to be the gradient
(resp. divergence) operator taken w.r.t. the first argument (i.e., x) of the function, and denote by ∆ the
corresponding Laplace operator. The Fokker-Planck equation then tells us that

∂

∂t
pX(x, t) = ∇ ·

(
xβ(t)pX(x, t)

)
+

1

2
∆
(
2β(t)pX(x, t)

)
= β(t)∇ ·

(
xpX(x, t)

)
+ β(t)∆

(
pX(x, t)

)
. (96)

Similarly, denoting by pY (x, t) the probability density of Yt at point x w.r.t. the Lebesgue measure in Rd,
then we can apply the Fokker-Planck equation once again to obtain

∂

∂t
pY (x, t) = −∇ ·

((
x+

(
1 + ξ(T − t)

)
s∗T−t(x)

)
β(T − t)pY (x, t)

)
+

1

2
∆
(
2ξ(T − t)β(T − t)pY (x, t)

)
= −

〈
x+

(
1 + ξ(T − t)

)
s∗T−t(x), β(T − t)∇pY (x, t)

〉
− tr

(
Id +

(
1 + ξ(T − t)

)
∇s∗T−t(x)

)
β(T − t)pY (x, t) + ξ(T − t)β(T − t)∆

(
pY (x, t)

)
. (97)

Recall that our goal is to show that Xt and YT−t have the same marginal distributions, i.e., pX(x, t) =
pY (x, T − t), or equivalently, pX(x, T − t) = pY (x, t). Since the generalized differential equation (95) is
assumed to have a unique strong solution, the induced Fokker-Planck equation has a unique strong solution.

From the assumption Y0
d
= XT , we know that pX(x, T ) = pY (x, 0), and hence it suffices to show that

pX(x, T − t) is a solution of the partial differential equation (PDE) (97). It is readily seen from PDE (96)
that

∂

∂t
pX(x, T − t) = −β(T − t)∇ ·

(
xpX(x, T − t)

)
− β(T − t)∆

(
pX(x, T − t)

)
. (98)

Replacing pY (x, t) with pX(x, T − t) on the right-hand side of PDE (97), one can derive

−
〈
x+

(
1 + ξ(T − t)

)
s∗T−t(x), β(T − t)∇pX(x, T − t)

〉
− tr(Id)β(T − t)pX(x, T − t)

−
(
1 + ξ(T − t)

)
β(T − t)∆

(
log(pX(x, T − t))

)
pX(x, T − t) + ξ(T − t)β(T − t)∆

(
pX(x, T − t)

)
= −β(T − t)

〈
x+

(
1 + ξ(T − t)

)∇pX(x, T − t)

pX(x, T − t)
,∇pX(x, T − t)

〉
− dβ(T − t)pX(x, T − t)

+
(
1 + ξ(T − t)

)
β(T − t)

∥∇pX(x, T − t)∥22
pX(x, T − t)

+
(
−
(
1 + ξ(T − t)

)
+ ξ(T − t)

)
β(T − t)∆

(
pX(x, T − t)

)
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= −β(T − t)
〈
x,∇pX(x, T − t)

〉
− dβ(T − t)pX(x, T − t)− β(T − t)∆

(
pX(x, T − t)

)
= −β(T − t)∇ ·

(
xpX(x, T − t)

)
− β(T − t)∆

(
pX(x, T − t)

)
=

∂

∂t
pX(x, T − t), (99)

where we invoke PDE (98) in the last line. Eqn. (99) reveals that pX(x, T − t) is a strong solution of
PDE (97), which is equivalent to pX(x, T − t) = pY (x, t).

E.2 Proof of Proposition 2

We prove this result by explicitly solving SDE (33) when t ∈ [tn, tn+1). To begin with, we make the
observation that: under the time transformation

t → t′ =

∫ t

0

β(s)ds, (100)

SDE (33) can be rewritten as

dỸt′ =

(
−ξ(T − t′n) + αT−t′

1− αT−t′
Ỹt′ +

(1 + ξ(T − t′n))
√
αT−t′

1− αT−t′
µT−t′n

(Ỹt′n
)

)
dt′ +

√
2ξ(T − t′n) dWt′

for t ∈ [t′n, t
′
n+1), where t′n and t′n+1 are the images of tn and tn+1 under the transformation (100). Note

that this transformed SDE has the same form as SDE (33) when β(t) = 1 for t ∈ [t′n, t
′
n+1). Thus, without

loss of generality, it suffices to assume β(t) = 1 for all t ∈ [0, T ] and solve SDE (33). Under this assumption,
we can simplify

αt = exp

(
−2

∫ t

0

β(s)ds

)
= e−2t. (101)

Recall that SDE (33) with ξ(T − tn) = ξ > 0 and β(t) = 1 can be written as

dỸt =

(
−ξ + αT−t

1− αT−t
Ỹt +

(1 + ξ)
√
αT−t

1− αT−t
µT−tn(Ỹtn)

)
dt+

√
2ξ dWt. (102)

To solve SDE (102), we find it convenient to introduce the following function

f(t) =
e−ξ(T−t)

(1− e−2(T−t))
1+ξ
2

.

It follows from Itô’s formula that

d
(
f(t)Ỹt

)
=

((
f ′(t)− ξ + αT−t

1− αT−t
f(t)

)
Ỹt +

(1 + ξ)
√
αT−t

1− αT−t
f(t)µT−tn(Ỹtn)

)
dt+

√
2ξf(t) dWt

=
(1 + ξ)

√
αT−t

1− αT−t
f(t)µT−tn(Ỹtn)dt+

√
2ξf(t) dWt.

Integrating both sides of the above display from tn to tn+1, we obtain

f(tn+1)Ỹtn+1
− f(tn)Ỹtn =

∫ tn+1

tn

(1 + ξ)
√
αT−t

1− αT−t
f(t)µT−tn(Ỹtn)dt+

∫ tn+1

tn

√
2ξf(t) dWt.

From Itô’s isometry property of the Brownian motion, we can write, for each 0 ≤ n ≤ T − 1,∫ tn+1

tn

√
2ξf(t) dWt =

(∫ tn+1

tn

2ξ
(
f(t)

)2
dt

)1/2

Z̃n
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for some Gaussian vector Z̃n ∼ N (0, Id), where {Z̃n}n=0,...,T−1 are statistically independent. Consequently,

f(tn+1)Ỹtn+1
= f(tn)Ỹtn +

∫ tn+1

tn

(1 + ξ)
√
αT−t

1− αT−t
f(t)dt︸ ︷︷ ︸

=:An

·µT−tn(Ỹtn) +

(∫ tn+1

tn

2ξ
(
f(t)

)2
dt︸ ︷︷ ︸

=:Bn

)1/2

· Z̃n.

Taking this together with the definition (31b) of µt, we can express the update rule induced by SDE (102)
as

Ỹtn+1
=

f(tn) +An/
√
αT−tn

f(tn+1)
Ỹtn +

1− αT−tn√
αT−tn

· An

f(tn+1)
sT−tn(Ỹtn) +

Bn

f(tn+1)
Z̃n. (103)

To simplify the notation, we define
γn = e−(T−tn).

The terms An and Bn can be explicitly calculated as follows:

An =

∫ tn+1

tn

(1 + ξ)
√
αT−t

1− αT−t
f(t)dt

=

∫ tn+1

tn

(1 + ξ)
e−(1+ξ)(T−t)(

1− e−2(T−t)
)(3+ξ)/2

dt

=
e−(1+ξ)(T−t)(

1− e−2(T−t)
)(1+ξ)/2

∣∣∣∣∣
tn+1

tn

=
γξ+1
n+1

(1− γ2
n+1)

1+ξ
2

− γξ+1
n

(1− γ2
n)

1+ξ
2

, (104)

where we have applied (101). Through similar calculation, we can reach

Bn =

∫ tn+1

tn

2ξ
(
f(t)

)2
dt

=

∫ tn+1

tn

2ξ
e−2ξ(T−t)(

1− e−2(T−t)
)1+ξ

dt

=
e−2ξ(T−t)(

1− e−2(T−t)
)ξ
∣∣∣∣∣
tn+1

tn

=
γ2ξ
n+1

(1− γ2
n+1)

ξ
− γ2ξ

n

(1− γ2
n)

ξ
. (105)

Substituting (104) and (105) into (103) and comparing the coefficients with the DDPM update rule (4), we
obtain

αtn =
f(tn) +An/

√
αT−tn

f(tn+1)
=

(
γn

γn+1

)2

= e−2(tn+1−tn), (106)

which coincides with our choice of αt, i.e.,

αtn = e−2(tn+1−tn) =
αtn+1

αtn

.

Additionally, we can easily verify that

ηddpmtn =
√
αtn · 1− γ2

n

γn
· An

f(tn+1)
=

1− γ2
n

γn+1
· 1

f(tn+1)
·

(
γξ+1
n+1

(1− γ2
n+1)

1+ξ
2

− γξ+1
n

(1− γ2
n)

1+ξ
2

)
,

σddpm
tn =

√
αtn · B

1/2
n

f(tn+1)
=

γn
γn+1f(tn+1)

·

(
γ2ξ
n+1

(1− γ2
n+1)

ξ
− γ2ξ

n

(1− γ2
n)

ξ

)1/2

.
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We are now ready to show that the relation (26)

(1− αtn)

(
1−

ηddpmtn

1− αtn

)2

= αtn − αtn −
(
σddpm
tn

)2
is satisfied by this solution for all n. Towards this end, calculate the left-hand side above as:

(1− αtn)

(
1−

ηddpmtn

1− αtn

)2

= (1− γ2
n)

(
1− 1

γn+1f(tn+1)
·

(
γξ+1
n+1

(1− γ2
n+1)

1+ξ
2

− γξ+1
n

(1− γ2
n)

1+ξ
2

))2

= (1− γ2
n)

(
γξ+1
n

γξ+1
n+1

·
(1− γ2

n+1)
1+ξ
2

(1− γ2
n)

1+ξ
2

)2

=
γ
2(ξ+1)
n

γ
2(ξ+1)
n+1

·
(1− γ2

n+1)
1+ξ

(1− γ2
n)

ξ

=
γ2
n

γ2
n+1

− γ2
n − (1− γ2

n+1)

(
γ2
n

γ2
n+1

− γ
2(ξ+1)
n

γ
2(ξ+1)
n+1

·
(1− γ2

n+1)
ξ

(1− γ2
n)

ξ

)
= αtn − αtn −

(
σddpm
tn

)2
.

Thus, setting tn = T − n for n = 0, 1, . . . , T exactly recovers the relation (26).

E.3 Proof of Proposition 1

Proposition 1 can be regarded as a corollary of Proposition 2 in the following sense: if we set ξ(T−tn) = 0 for
all n = 0, 1, . . . , T −1, then SDE (33) degenerates to ODE (32). In addition, the whole proof of Proposition 2
in Appendix E.2 works for ξ(T − tn) = 0. Thus, the proof of Proposition 1 can be directly completed by
repeating the proof arguments in Appendix E.2.

F Proof of the lower bound in Theorem 4

Let X0 ∼ N
(
0,
[

Ik
0

])
, then it follows from (7) that

Xt =
√
αtX0 +

√
1− αt W t ∼ N

(
0,

[
Ik

(1− αt)Id−k

])
. (107)

It is then easily seen that

s∗t (x) = −
[

Ik
(1− αt)Id−k

]−1

x =

[
Ik

1
1−αt

Id−k

]
x.

As a result, the mapping Φ∗
t admits a closed-form expression as follows

Φ∗
t (x, z) =

1√
αt

(
x+ ηts

∗
t (x) + σtz

)
=

1√
αt

(Aηt
x+ σtz)

where

Aηt
:=

[
(1− ηt)Ik (

1− ηt

1−αt

)
Id−k

]
.

These properties taken together further imply that

Φ∗
t (Xt, Zt) ∼ N

(
0,

1

αt
Aηt

[
Ik

(1− αt)Id−k

]
Aηt +

σ2
t

αt
Id

)
,
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or equivalently,

Φ∗
t (Xt, Zt) ∼ N

(
0,

[
(1−ηt)

2

αt
Ik

1−αt

αt

(
1− ηt

1−αt

)2
Id−k

]
+

σ2
t

αt
Id

)
. (108)

Armed with the above basic properties, we can proceed to derive the advertised lower bound. Towards
this end, we resort to the following result concerning the TV distance between two multivariate Gaussians
with the same mean, whose proof can be found in Devroye et al. (2018).

Lemma 7 (TV distance between Gaussians with the same mean) Consider any µ ∈ Rd, and any
positive semidefinite matrices Σ1,Σ2 ∈ Rd×d. Then it holds that

1

100
<

TV
(
N (µ,Σ1), N (µ,Σ2)

)
min

{
1,
∥∥Σ−1

1 Σ2 − I
∥∥
F

} ≤ 3

2
.

Recall from (107) that

Xt−1 ∼ N
(
0,

[
Ik

(1− αt−1)Id−k

])
.

With this and (108) in mind, we take

Σ1 =

[
Ik

(1− αt−1)Id−k

]
, Σ2 =

[
(1−ηt)

2

αt
Ik

1−αt

αt

(
1− ηt

1−αt

)2
Id−k

]
+

σ2
t

αt
Id,

which satisfy

Σ−1
1 Σ2 =

 (1−ηt)
2+σ2

t

αt
Ik (

1−αt

αt−αt

(
1− ηt

1−αt

)2
+

σ2
t

αt−αt

)
Id−k

 .

Invoke Lemma 7 to arrive at the following lower bound:

TV
(
Xt−1, Φ∗

t (Xt)
)
≥ 1

100
min

{
1,
∥∥Σ−1

1 Σ2 − I
∥∥
F

}
=

1

100
min

1,

√√√√k

(
(1− ηt)2 + σ2

t

αt
− 1

)2

+ (d− k)

(
1− αt

αt − αt

(
1− ηt

1− αt

)2

+
σ2
t

αt − αt
− 1

)2


≥ 1

100
min

1,

√√√√d

2

(
1− αt

αt − αt

(
1− ηt

1− αt

)2

+
σ2
t

αt − αt
− 1

)2
 ,

where the last line follows from our assumption that d ≥ 2k. This concludes the proof.

G Auxiliary lemmas and related proofs

G.1 Proof of Lemma 1

Recall that Vα =
√
αV1 +

√
1− αW , where V1 ∼ pdata and W ∼ N (0, Id). From this, we can derive that

P(Vα /∈ Tα) = P(
√
αV1 +

√
1− αW /∈ Tα) ≤ P

({
V1 /∈

⋃
i∈I

Bi

}
∪ {W /∈ G}

)
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≤
∑

j∈[Nϵ0
]\I

P(V1 ∈ Bj) + P(W /∈ G).

According to the definition (37) of I, we know that, for any j /∈ I,

P(V1 ∈ Bj) ≤ exp{−C1k log T},

with C1 > 0 a universal constant. Taking this with Assumption 1 yields∑
j∈[Nϵ0 ]\I

P(V1 ∈ Bj) ≤ Nϵ0 exp{−C1k log T}

≤ exp
{
Ccoverk log T − C1k log T

}
≤ exp

{
−3

8
C1k log T

}
,

where the last inequality holds as long as C1 ≥ 16Ccover.
In addition, we can establish an upper bound on P(W /∈ G) using the definition of G as follows:

P(W /∈ G) ≤ P
(
∥W∥2 > 2

√
d+

√
C1k log T

)
+ P

(
∃ 1 ≤ i, j ≤ Nϵ0 s.t.

∣∣(x∗
i − x∗

j )
⊤W

∣∣ >√C1k log T
∥∥x∗

i − x∗
j

∥∥
2

)
, (109)

leaving us with two terms to control.

• Using the concentration property of χ2 random variables (e.g., Laurent and Massart (2000, Lemma
1)), we find that the first term on the right-hand side of (109) satisfies

P
(
∥W∥2 > 2

√
d+

√
C1k log T

)
≤ exp

{
−C1

2
k log T

}
.

• When it comes to the second term on the right-hand side of (109), we observe that: for every pair of

fixed points x∗
i , x

∗
j , one has

(x∗
i −x∗

j )
⊤

∥x∗
i −x∗

j ∥2
W ∼ N (0, 1). Thus, it follows from the concentration property of

standard Gaussians that

P
(∣∣(x∗

i − x∗
j )

⊤W
∣∣ >√C1k log T

∥∥x∗
i − x∗

j

∥∥
2

)
= P

(∣∣∣∣∣ (x∗
i − x∗

j )
⊤∥∥x∗

i − x∗
j

∥∥
2

W

∣∣∣∣∣ >√C1k log T

)
≤ exp

{
−C1

2
k log T

}
.

Combining this with the union-bound and Assumption 1, we can obtain

P
(
∃ 1 ≤ i, j ≤ Nϵ0 s.t.

∣∣(x∗
i − x∗

j )
⊤W

∣∣ >√C1k log T
∥∥x∗

i − x∗
j

∥∥
2

)
≤

∑
1≤i,j≤Nϵ0

P
(∣∣(x∗

i − x∗
j )

⊤W
∣∣ >√C1k log T

∥∥x∗
i − x∗

j

∥∥
2

)
≤

∑
1≤i,j≤Nϵ0

exp

{
−C1

2
k log T

}

≤ N2
ϵ0 exp

{
−C1

2
k log T

}
≤ exp

{
(2Ccover − C1/2) k log T

}
≤ exp

{
−3

8
C1k log T

}
,

where the last inequality holds provided that C1 ≥ 16Ccover. Consequently, it holds that

P(W /∈ G) ≤ exp

{
−C1

2
k log T

}
+ exp

{
−3

8
C1k log T

}
≤ 2 exp

{
−3

8
C1k log T

}
.

To finish up, we make the observation that

P(Vα /∈ Tα) ≤
∑

j∈[Nϵ0
]\I

P(V1 ∈ Bj) + P(W /∈ G)

≤ 3 exp

{
−3

8
C1k log T

}
≤ exp

{
−1

4
C1k log T

}
.
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G.2 Proof of Lemma 2

Define the set
Eα,C(v) :=

{
v1

∣∣∣√α
∥∥v1 − x∗

i(v)

∥∥
2
≥
√
Ck(1− α) log T

}
.

Invoke the Bayes rule to obtain

P(Eα,C(v) | Vα = v) =

∫
Eα,C(v)

pX0
(v1)pVα|V1

(v | v1)dv1∫
pX0(ṽ1)pVα|V1

(v|ṽ1)dṽ1
≤

∫
Eα,C(v)

pX0
(v1)pVα|V1

(v | v1)dv1∫
ṽ1∈Bi(v)

pX0(ṽ1)pVα|V1
(v | ṽ1)dṽ1

≤

∫
Eα,C(v)

pX0(v1)pVα|V1
(v | v1)dv1

P(Bi(v)) inf ṽ1∈Bi(v)
pVα|V1

(v | ṽ1)
≤ 1

P(Bi(v))
·
supx0∈Eα,C(v) pVα|V1

(v | v1)
inf ṽ1∈Bi(v)

pVα|V1
(v|ṽ1)

≤ exp(C1k log T ) sup
v1∈Eα,C(v),ṽ1∈Bi(v)

exp

{
1

2(1− α)

[∥∥v −√
αṽ1
∥∥2
2
−
∥∥v −√

αv1
∥∥2
2

]}
.

(110)
Here, the last inequality follows from the property P(Bi(v)) ≥ exp (−C1k log T ), which is a direct consequence
of the assumption v ∈ Tα.

Further, consider any (v1, ṽ1) with v1 ∈ Eα,C(v) and ṽ1 ∈ Bi(v). Without loss of generality, suppose

v1 ∈ Bj . Using the expression v =
√
αv∗1 +

√
1− αω, we can show that∥∥v −√

αṽ1
∥∥2
2
−
∥∥v −√

αv1
∥∥2
2

= −α ∥v∗1 − v1∥22 + 2
√
α(1− α) ⟨v1 − ṽ1, ω⟩+ α ∥v∗1 − ṽ1∥22

(a)

≤ −α
(∥∥x∗

i(x) − x∗
j

∥∥
2
− 2ϵ0

)2
+ 2
√
α(1− α) ⟨v1 − ṽ1, ω⟩+ 4αϵ20

(b)

≤ 4αϵ0
∥∥x∗

i(v) − x∗
j

∥∥
2
−α
∥∥x∗

i(v)−x∗
j

∥∥2
2
+ 2
√
α(1− α)

{〈
x∗
j − x∗

i(v), ω
〉
+ 2(

√
d+

√
C1k log T )ϵ0

}
.

Here, (a) follows from the property of the ϵ0-net, while (b) combines the definition of the ϵ0-net with the
norm bound for ω ∈ G. Moreover, since ω ∈ G, it is clearly seen that〈

x∗
j − x∗

i(v), ω
〉
≤
√

C1k log T
∥∥x∗

j − x∗
i(v)

∥∥
2
.

In addition, with the choice of ϵ0 satisfying ϵ0 ≪
√

1−α
α min

{
1,
√

k log T
d

}
≤ 1∧

√
k log T

d

T , the following

property holds:
4
√
α(1− α)(

√
d+

√
C1k log T )ϵ0 ≤ 5(1− α)k log T .

With the preceding bounds in place, we can readily obtain∥∥v −√
αṽ1
∥∥2
2
−
∥∥v −√

αv1
∥∥2
2
≤ −α

∥∥x∗
i(v) − x∗

j

∥∥2
2
+ 4(1− α)k log T

+
(
2
√
C1α(1− α)k log T + 4αϵ0

)∥∥x∗
j − x∗

i(v)

∥∥
2

(a)

≤ −α

2

∥∥x∗
i(v) − x∗

j

∥∥2
2
+ 4(1− α)k log T

≤ −α

4

∥∥x∗
i(v) − x0

∥∥2
2
+ 4(1− α)k log T

≤ −C

4
(1− α)k log T + 4(1− α)k log T ≤ −C

5
(1− α)k log T.

Here, both (a) and the last inequality follow since v1 ∈ Eα,C(v) and C ≥ C2. Taking the above bound
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collectively with (110) yields

P(Eα,C(v) | Vα = v) ≤ exp(C1k log T ) sup
x∈Eα,C(v),ṽ1∈Bi(v)

exp

{
1

2(1− α)

[∥∥v −√
αṽ1
∥∥2
2
−
∥∥v −√

αv1
∥∥2
2

]}
≤ exp(C1k log T ) · exp

(
−C

5

1

2(1− α)
(1− α)k log T

)
≤ exp

(
− C

20
k log T

)
as claimed.

G.3 Proof of Lemma 3

To simplify notation of this proof, we shall often employ the following shorthand notation (cf. (42))

CovV1|Vα
= CovV1|Vα

(Vα) and CovX0|Xt
= CovX0|Xt

(Xt) (111)

whenever it is clear from the context.
To bound the term EXt

[ ∥∥CovX0|Xt

∥∥2
F

]
, we resort to the following result, originally developed in the

stochastic localization literature (Eldan, 2020) (see also Benton et al. (2024, Lemma 1)).

Lemma 8 Let λt :=
√
1− e−2t, then for all t > 0,

λ3
t

2λ̇t

d

dt
EUt

[
CovU0|Ut

(Ut)
]
= EUt

[(
CovU0|Ut

(Ut)
)2]

.

where Ut := e−tX0 +
√
1− e−2tZ with X0 ∼ pdata and Z ∼ N (0, Id). Here, we let CovU1|Ut

(u) = E[U1U
⊤
1 |

Ut = u]− E[U1 | Ut = u]E[U1 | Ut = u]⊤, and denote by λ̇t the derivative of λt with respect to t.

Now, let us introduce the bijection α(t) := e−2t that maps t ∈ [0,∞) to α ∈ (0, 1]. Define

Vα :=
√
αX0 +

√
1− αZ, να :=

√
1− α, and t(α) :=

1

2
log

1

α
. (112)

Then it can be readily seen that

Vα = Ut(α) and να = λt(α). (113)

Straightforward calculations allow one to rewrite the result in Lemma 8 as

dEVα

[
CovV1|Vα

]
=

2

λ3
t(α)

dλt

dt

∣∣∣∣
t=t(α)

EVα

[
Cov2V1|Vα

]
dt(α) =

2dνα

dα

ν3α
EVα

[
Cov2V1|Vα

]
dα

= − (1− α)−1/2

(1− α)3/2
EVα

[
Cov2V1|Vα

]
dα = − 1

(1− α)2
EVα

[
Cov2V1|Vα

]
dα.

(114)

Integrating the above equation over the interval [αt+1, αt), we obtain∫ αt

αt+1

1

(1− α)2
EVα

[
Cov2V1|Vα

]
dα = EVαt+1

[
CovV1|Vαt+1

]
− EVαt

[
CovV1|Vαt

]
= EXt+1

[
CovX0|Xt+1

]
− EXt

[
CovX0|Xt

]
. (115)

Next, we proceed to control the relative magnitude between CovV1|Vα
(with α ∈ [αt+1, αt]) and CovV1|Vαt+1

.

To achieve this, we resort to the following SDE to describe the random process {CovV1|Vα
}, whose proof can

be found in Eldan (2022, Section 4.2.1):

dCovV1|Vα
= − 1

(1− α)2
Cov2V1|Vα

dα+M(3)
α dB α

1−α
.
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Here, (Bt) denotes the standard Brownian motion in Rd and

M(l)
α := E

[
(V1 − E[V1|Vα])

⊗l | Vα

]
. (116)

For a vector-valued stochastic process (Mt), we denote its quadratic variation process by ⟨M⟩. Apply Itô’s
formula to obtain

d

(
tr
(
Cov2V1|Vα

))
= 2

〈
CovV1|Vα

,dCovV1|Vα

〉
+ d

[
tr
(〈
CovV1|Vα

〉)]
= 2

〈
CovV1|Vα

,M(3)
α dB α

1−α

〉
− 2

(1− α)2

〈
CovV1|Vα

,Cov2V1|Vα

〉
dα+

1

(1− α)2
〈
M(3)

α ,M(3)
α

〉
dα.

Taking expectation then yields

d
[
tr
(
E
[
Cov2V1|Vα

])]
= − 2

(1− α)2
E
[〈

CovV1|Vα
,Cov2V1|Vα

〉]
dα+

1

(1− α)2
E
[〈
M(3)

α ,M(3)
α

〉]
dα. (117)

We now analyze E
[〈
CovV1|Vα

,Cov2V1|Vα

〉]
. Towards this, use the symmetry of CovV1|Vα

to derive that

E
[〈

CovV1|Vα
,Cov2V1|Vα

〉]
= E

[
tr
(
Cov3V1|Vα

)]
≤ E

[∥∥CovV1|Vα

∥∥ · ∥∥CovV1|Vα

∥∥2
F

]
≤ E

[
tr(CovV1|Vα

) ·
∥∥CovV1|Vα

∥∥2
F

]
= E

[
tr(CovV1|Vα

)1{Vα ∈ Tα} ·
∥∥CovV1|Vα

∥∥2
F

]
+ E

[
tr(CovV1|Vα

)1{Vα /∈ Tα} ·
∥∥CovV1|Vα

∥∥2
F

]
≤ C3

1− α

α
(k log T )E

[∥∥CovV1|Vα

∥∥2
F

]
+ E

[
tr(CovV1|Vα

)1{Vα /∈ Tα} ·
∥∥CovV1|Vα

∥∥2
F

]
.

Here, the last inequality follows from the definition of Tα in (41) and Corollary 1. Regarding the last term
of the above inequality, combining Assumption 2 and Lemma 1 results in

E
[
tr(CovV1|Vα

)1{Vα /∈ Tα} ·
∥∥CovV1|Vα

∥∥2
F

]
≤ 8T 6cRP(Vα /∈ Tα) ≤

1

T 10
.

As a consequence, we arrive at

E
[〈

CovV1|Vα
,Cov2V1|Vα

〉]
≤ C3

1− α

α
(k log T )E

[∥∥CovV1|Vα

∥∥2
F

]
+

1

T 10
. (118)

Substitution into (117) yields

dE
[∥∥CovV1|Vα

∥∥2
F

]
= − 2

(1− α)2
E
[〈

CovV1|Vα
,Cov2V1|Vα

〉]
dα+

1

(1− α)2
E
[〈

M(3)
α ,M(3)

α

〉]
dα

≥ − 2

(1− α)2
E
[〈

CovV1|Vα
,Cov2V1|Vα

〉]
dα

≥ − 2

(1− α)2
C3

1− α

α
(k log T )E

[∥∥CovV1|Vα

∥∥2
F

]
dα− 1

T 10
dα

≥ − 2C3k log T

αt+1(1− αt)
E
[∥∥CovV1|Vα

∥∥2
F

]
dα− 1

T 10
dα,

where the last line holds since α ∈ [αt+1, αt]. In view of Grownwall’s inequality, we can derive

exp

{
2C3kα log T

αt+1(1− αt)

}
E
[∥∥CovV1|Vα

∥∥2
F

]
− exp

{
2C3kαt+1 log T

αt+1(1− αt)

}
E
[∥∥CovV1|Vαt+1

∥∥2
F

]
≥ − 1

T 10

∫ α

αt+1

exp

{
2C3kα

′ log T

αt+1(1− αt)

}
dα′
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= − αt+1(1− αt)

2C3kT 10 log T

(
exp

{
2C3kα log T

αt+1(1− αt)

}
− exp

{
2C3kαt+1 log T

αt+1(1− αt)

})
.

Dividing both sides of the above inequality by exp
{

2C3kαt+1 log T
αt+1(1−αt)

}
, we obtain

exp

{
2C3k(α− αt+1) log T

αt+1(1− αt)

}
E
[∥∥CovV1|Vα

∥∥2
F

]
− E

[∥∥CovV1|Vαt

∥∥2
F

]
≥ − αt+1(1− αt)

2C3kT 10 log T

(
exp

{
2C3k(α− αt+1) log T

αt+1(1− αt)

}
− 1

)
.

According to Lemma 4, any α ∈ [αt+1, αt] obeys

2C3k(α− αt+1) log T

αt+1(1− αt)
≤ 2C3k(1− αt+1) log T

αt+1 − αt+1
≤ 8C3c1k log

2 T

T
≤ 1,

provided that 8C3c1k log
2 T ≤ T . Consequently, we have

E
[∥∥∥CovV1|Vαt+1

∥∥∥2
F

]
≤ exp

{
2C3k(α− αt+1) log T

αt+1(1− αt)

}
E
[∥∥CovV1|Vα

∥∥2
F

]
+

αt+1(1− αt)

2C3kT 10 log T

(
exp

{
2C3k(α− αt+1) log T

αt+1(1− αt)

}
− 1

)
≤ 3E

[∥∥CovV1|Vα

∥∥2
F

]
+

αt+1(1− αt)

2C3kT 10 log T

(
exp

{
2C3k(α− αt+1) log T

αt+1(1− αt)

}
− 1

)
(a)

≤ 3E
[∥∥CovV1|Vα

∥∥2
F

]
+

2(αt − αt+1)

T 10
,

(119)

where (a) holds since ex−1 ≤ 2x for all x ≤ 1. Combining (115) and (119), and making use of the equivalence
between Xt and Vαt

, we arrive at

E
[
tr
(
CovX0|Xt+1

)]
−E

[
tr
(
CovX0|Xt

)]
=

∫ αt

αt+1

1

(1− α)2
E
[
tr
(
Cov2V1|Vα

)]
≥
∫ αt

αt+1

1

3(1− α)2

{
E
[∥∥∥Cov2V1|Vαt+1

∥∥∥2
F

]
− 2(αt − αt+1)

T 10

}
dα

=
αt(1− αt+1)

3(1− αt)(1− αt+1)
E
[∥∥CovX0|Xt+1

∥∥2
F

]
− α2

t (1− αt+1)
2

T 10(1− αt)(1− αt+1)
.

This in turn allows us to derive

σ̃2
tEXt

[∥∥CovX0|Xt

∥∥2
F

]
=

(1− αt)αt

(αt − αt)(1− αt)
EXt

[
tr
(
Cov2X0|Xt

)]
≤ 3

{
E
[
tr(CovX0|Xt

)
]
− E

[
tr(CovX0|Xt−1

)
]}

+
3

T 10
,

(120)

thus completing the proof of this lemma.

G.4 Proof of Lemma 4

A little algebra yields

αt(1− αt)

2(αt − αt)(1− αt)
− αt+1(1− αt+1)

2(αt+1 − αt+1)(1− αt+1)
=

αt−1(1− αt)(1− αt+1)− αt(1− αt+1)(1− αt−1)

2(1− αt−1)(1− αt)(1− αt+1)

(a)

≤ αt−1(1− αt)[(1− αt+1)− αt + αt]

2(1− αt−1)(1− αt)(1− αt+1)
=

αt−1(1− αt)[1− αt + αt(1− αt+1)]

2(1− αt−1)(1− αt)(1− αt+1)

≤ αt−1(1− αt)(1− αt+1)

(1− αt−1)(1− αt)(1− αt+1)
≤
(
8c1 log T

T

)2
αt

1− αt
,
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where (a) follows since 1− αt ≤ 1− αt+1, and the last inequality applies (46).

G.5 Proof of Lemma 5

Note that for any matrix B, we know that B and B⊤ have the same determinant. As a result,

log det(I + ηA+ η∆) =
1

2

{
log det(I + ηA+ η∆⊤) + log det(I + ηA+ η∆)

}
=

1

2
log det

(
I + 2ηA+ η(∆⊤ +∆) + η2(A+∆)⊤(A+∆)

)
.

(121)

For any vector x ∈ Rd, we observe that

x⊤(I + η(2A+∆⊤ +∆)
)
x = ∥x∥22 + 2ηx⊤Ax+ ηx⊤(∆⊤ +∆)x

≥ ∥x∥22 − η
∥∥∆⊤ +∆

∥∥ ∥x∥22 ≥ (1− 2η ∥∆∥) ∥x∥22 ≥ 1

2
∥x∥22 ,

which implies that the matrix I + 2ηA+ η(∆⊤ +∆) ≻ 0. Further, it is easily seen that

I + 2ηA+ η(∆⊤ +∆) ⪯ I + 2ηA+ η(∆⊤ +∆) + η2(A+∆)⊤(A+∆).

According to the Löwner–Heinz theorem, logA ⪯ logB holds for any 0 ⪯ A ⪯ B. This in turn allows one
to derive

log det
(
I + 2ηA+ η(∆⊤ +∆) + η2(A+∆)⊤(A+∆)

)
= tr

(
log
(
I + 2ηA+ η(∆⊤ +∆) + η2(A+∆)⊤(A+∆)

) )
≥ tr

(
log
(
I + 2ηA+ η(∆⊤ +∆)

))
= log det

(
I + 2ηA+ η(∆⊤ +∆)

)
.

(122)

For any symmetric matrix B ∈ Rd×d, we denote its eigenvalues as {λi(B)}di=1. Then according to Weyl’s
inequality, we have

λi

(
2ηA+ η(∆⊤ +∆)

)
≥ 2ηλi(A)− η

∥∥∆⊤ +∆
∥∥ ≥ −2η ∥∆∥ ≥ −1

2
for all i ≤ d.

Further, it can be verified that log(1 + x) ≥ x− x2 holds for any x ≥ −1/2, which results in

log det
(
I + 2ηA+ η(∆⊤ +∆)

)
≥

d∑
i=1

ηλi

(
2A+∆⊤ +∆

)
−

d∑
i=1

η2λ2
i

(
2A+∆⊤ +∆

)
= ηtr

(
2A+∆⊤ +∆

)
− η2

∥∥2A+∆⊤ +∆
∥∥2
F

≥ 2ηtr(A) + 2ηtr(∆)− 8η2 ∥A∥2F − 8η2 ∥∆∥2F .

(123)

The proof can thus be completed by combining (121), (122) and (123).
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