
1030 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 4, FEBRUARY 15, 2015
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Abstract—This paper is concerned with estimation of two-di-
mensional (2-D) frequencies from partial time samples, which
arises in many applications such as radar, inverse scattering, and
super-resolution imaging. Suppose that the object under study
is a mixture of continuous-valued 2-D sinusoids. The goal is to
identify all frequency components when we only have information
about a random subset of regularly spaced time samples. We
demonstrate that under some mild spectral separation condition,
it is possible to exactly recover all frequencies by solving an atomic
norm minimization program, as long as the sample complexity
exceeds the order of . We then propose to solve the
atomic norm minimization via a semidefinite program and pro-
vide numerical examples to justify its practical ability. Our work
extends the framework proposed by Tang et al. for line spectrum
estimation to 2-D frequency models.

Index Terms—Atomic norm, basis mismatch, continuous-valued
frequency recovery, sparsity.

I. INTRODUCTION

T HE problem of estimating two-dimensional (2-D) spec-
trum is encountered in a variety of signal processing

applications. For instance, the multi-dimensional frequency
model naturally arises in several operational scenarios in mul-
tiple-input multiple-output (MIMO) radars [2], where multiple
components of each frequency correspond respectively to the
direction of arrival, direction of departure, and Doppler shift of
a scatter. Retrieving these parameters is of great importance for
localization and tracking of targets [3]. A second application
concerns channel sensing in wireless communications, where
accurate estimation of channel state information is crucial for
coherent detection in order to ensure high data rate. Physical
arguments and a growing body of experimental evidence sug-
gest that the number of significant paths in a wireless channel
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is typically small [4], [5]. Each path is specified by a triple of
time delay, Doppler shift and attenuation, and can be mapped to
a multi-dimensional frequency. Another example is super-reso-
lution imaging [6], where any 2-D point source translates into a
2-D complex sinusoid after passing through a Fourier imaging
system.
One of the essential goals in various applications is to mini-

mize the number of samples required to recover the underlying
frequencies. Take wireless communications as an example,
where training pilots are transmitted and extracted from the
received signal to estimate the channel. The smaller the number
of pilots, the higher the data rate. Conventional channel estima-
tion methods are often based on linear least-squares estimators
[7], which requires the sample size to be greater than the
dimensionality of the signal space determined by the maximal
time delay and Doppler shift. To reduce the required sample
size, conventional approaches are often based on parametric
representation, which directly estimate 2-D frequencies via
super-resolution methods such as 2-D unitary ESPRIT [8],
2-D MUSIC [9], Clark and Scharf’s IQML method [10], the
Matrix Enhancement Matrix Pencil (MEMP) method [11],
etc. However, many of these approaches require equi-spaced
time-domain samples. They also rely on prior knowledge on
the model order—the number of sinusoids. Moreover, these
methods are often sensitive to model order mismatch and noise.
Pioneered by the work of Candès et al. [12] and Donoho [13],

Compressive Sensing (CS) suggests that it is possible to recover
a spectrally sparse signal from highly incomplete time-domain
samples. Specifically, consider a time-domain signal of ambient
dimension , composed of distinct 2-D complex
sinusoids. If the frequencies of the sinusoids lie approximately
on the fine DFT grid of the normalized frequency plane [0,1)
[0,1), the signal of interest can be sparsely represented over

the DFT basis. It has been demonstrated that the signal can be
recovered from a random subset of time-domain samples with a
sample size of [14] via basis pursuit [15] or greedy
pursuit [16]. The success of CS has inspired a large body of
algorithm and system design enabling sub-Nyquist sampling,
notably for compressive channel sensing [17], [18], high-res-
olution radar [19], [20], and multi-user detection [21]. Caution
needs to be exercised, however, when approximating the contin-
uous-valued frequencies over a discrete (DFT) grid, since the
signal of interest often contains off-the-grid components and
might not enjoy a good sparse approximation over the discrete
basis. This effect has been studied in great details in [22], re-
vealing considerable performance degradation of conventional
CS algorithmswhen applied to off-the-grid signals. Several pos-
sible remedies have been suggested ever since, see for example
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[23]–[27]. Nevertheless, a grid is still assumed in these reme-
dies and therefore the continuous-valued frequencies cannot be
recovered perfectly. In addition, there seems to be little theoret-
ical understanding of these approaches.
Several recent works have been proposed to deal directly

with continuous-valued frequencies without imposing a dis-
crete dictionary. In the pioneer work of [28], Candès and
Fernandez-Granda proves that perfect frequency extrapolation
is possible from partial low-end time samples by solving a
total-variation minimization program. This analyses therein
readily extend to multi-dimensional frequency models. Tang
et al. [29] investigates the problem of 1-D spectral estimation
when one is given randomly observed time-domain samples,
and proves that atomic norm minimization [30] succeeds
with samples, assuming that the wrap-around
distance between distinct frequencies is at least . More
precisely, the atomic norm proposed by Chandrasekaran et al.
[30] is a general recipe for developing convex optimization
solutions for model selection, where the goal is to minimize
the number of selected atoms for a given parsimonious model.
Many w1ell-known problems can be treated as a special case
of atomic norm minimization, including -minimization for
sparse recovery where the atoms are unit-norm one-sparse
vectors, nuclear norm minimization for low-rank matrix com-
pletion where the atoms are unit-norm rank-one matrices, and
so on. For spectrally sparse signals, the atoms are Vandermonde
vectors with a continuous-valued frequency in [0,1). It is worth
noting that the atomic norm for spectrally sparse signals is
equivalent to the total-variation norm adopted in [28], [31].
Another line of work has approached the multi-dimensional
harmonic retrieval problem via Enhanced Matrix Completion
(EMaC) [32], [33], namely, to perform nuclear norm mini-
mization over multi-fold Hankel matrices constructed from the
time-domain samples. This algorithm is guaranteed to work
from random samples, provided that the signal
model obeys some mild incoherence properties.
In this paper, we extend the atomic norm minimization

approach by Tang et al. [29] to 2-D frequency models. When
the sample size exceeds the order of , the proposed
atomic norm minimization algorithm is guaranteed to perfectly
recover all 2-D frequency components with high probability,
under a mild frequency separation condition. The proof is
inspired by [29] and [28], that is, to construct a dual polynomial
certifying the optimality of the solution to the corresponding
convex program. We then propose to solve the atomic norm
minimization problem via semidefinite programming (SDP),
which can be performed tractably using off-the-shelf SDP
solvers. However, unlike the case in 1-D model [29], the equiv-
alence between the atomic normminimization and our proposed
SDP is not guaranteed, primarily beacuse the Caratheodory’s
theorem [34] does not hold in higher dimensions. Instead,
we validate the effectiveness of the proposed SDP through
numerical examples and its noise robustness is also examined.
After the conference version [1] of this paper was published,
Xu et al. developed a precise SDP characterization [35] of the
2-D atomic norm minimization based on the theory of positive
trigonometric polynomials [36], where our proposed SDP can

be regarded as a first-order relaxation in their sum-of-squares
relaxation hierarchy.
The rest of the paper is organized as follows. In Section II, we

formulate the problem and review related literature. Section III
presents the proposed atomic norm minimization algorithm
along with its performance guarantee, whose proof is deferred
to the Appendix. Section IV introduces a semidefinite program
to approximate the original atomic norm minimization. Nu-
merical experiments are supplied in Section V to validate the
practical applicability of our algorithm. Finally we conclude
in Section VI with a summary of our findings. Throughout the
paper, we use and to denote the transpose and the
conjugate transpose, respectively.

II. PROBLEM FORMULATION AND RELATED WORK

A. Problem Formulation

Without loss of generality, consider a 2-D square data ma-
trix of size , where

denotes the
union of the indices of . This assumption is imposed to sim-
plify the development of the theoretical guarantees, and can be
removed with little modifications, see [29] for a similar treat-
ment. Each entry of can be expressed as a superposition of
complex sinusoids observed at the time index ,
i.e.

(1)

where represents the complex amplitude associated with each
. Let

be the set of distinct frequencies. For notational simplicity,
we introduce the following unit-norm atoms:

where , and . This allows us to write
in a matrix form as follows

(2)

where is given by

(3)

(4)

and

(5)

Denote by the vectorized
data matrix, then one has

(6)
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where represents Kronecker product, and

satisfying .
In this paper, we assume that entries of are observed

uniformly at random. Specifically, denote by as the index
set such where are observed if and only iff .
Define the operator such that represents the orthog-
onal projection of onto the subspace of matrices supported
on . We shall abuse the notation, without ambiguity, to let ,
and represent the set of observed entries, all entries, and

the observation operator with respect to the vectorized signal
as well.
The primary focus of this paper is to recover the unobserved

entries of the original data matrix . We note that the frequen-
cies can also be recovered using conventional approaches
such as the MEMP method [11] once the data matrix is recov-
ered.

B. Conventional CS Approach

To apply conventional CS paradigms, we represents as a
sparse signal in a pre-determined basis by discretizing the 2-D
plane [0,1) [0,1) with grid points , where

. Write the resulting DFT basis as

where is a DFT matrix of dimension .
The vectorized signal can then be represented using as

(7)

where is approximately sparse. CS suggests that we could
recover using the -minimization as

where the minimizer is returned as an estimate of . The major
issue with the above approach is that the frequencies never lie
perfectly on the grid , resulting in inevitable mismatch issue
between the true frequencies and the discrete grid. It has been
demonstrated in [22] that the performance of sparse recovery
algorithms can degenerate considerably. In this paper we will
adopt a different approach and attempt to recover the frequen-
cies directly without imposing a grid.

III. ATOMIC NORM MINIMIZATION FOR 2-D
HARMONIC RETRIEVAL

The atomic norm is proposed in [30] as a general recipe of de-
signing convex optimization solutions for model selection, by
convexifying the atomic set of the parsimonious models. The
atomic set of a signal model is defined as the simplest building
blocks of the signal, such as unit-norm one-sparse vectors for
sparse recovery, unit-norm rank-one matrices for low-rank ma-
trix completion, and so on. Interested readers are referred to [30]
for a detailed discussion about the atomic norm. In the case of

2-D harmonic retrieval, it is straightforward to define the atomic
set as the collection of all normalized 2-D complex sinusoids:

and the atomic norm for a signal as

(8)

This is obtained by convexifying the atomic representation of
using the smallest number of 2-D frequency spikes:

The above definition generalizes the atomic norm for 1-D har-
monic signals in [29] and allows one to accommodate higher
dimensions. Given partial observations of (or equivalently

), we attempt recovery via the following atomic norm
minimization program

(9)

namely, to seek a signal with minimal atomic norm satisfying
the observation constraints. This approach is adopted in [29]
for line spectrum estimation when the set of atoms is

. In [29], it is shown that a random subset
containing samples can ensure exact frequency
recovery under a mild frequency separation condition.
The following theorem establishes similar performance guar-

antees hold in the 2-D case, namely, the proposed algorithm (9)
recovers the true data perfectly under a properly defined sep-
aration condition, provided that the sample complexity exceeds
the order of .
Theorem 1: Let . Suppose that we observe samples

of a data matrix in (1) on the index set of size
uniformly at random, where . Suppose that

the signs of ’s are i.i.d. and uniformly drawn from ,
and the minimum separation between ’s satisfies

(10)

where , are the wrap-around distances on
the unit circle. Then there exists a numerical constant
such that if

(11)

then the solution to (9) is exact and unique with probability at
least . The same results hold with a different constant in
(10) when the signs of ’s are i.i.d. uniformly generated on the
complex unit circle.
The proof can be found in Appendix B. Theorem 1 suggests

that as long as the frequencies are minimally separated as in
(10), the recovery via atomic norm minimization is exact once
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is on the order of . This orderwise
bound agrees with the performance guarantee for line spectrum
estimation as derived in [29].
We compare Theorem 1 with conventional subspace methods

such as ESPRIT. ESPRIT is able to recover the underlying fre-
quencies from consecutive samples of the data matrix .
The number of samples required for exact recovery depends
only on the underlying degrees of freedom irrespective of the
ambient dimension of . In contrast, the proposed algorithm
(9) assumes random subsampling of the data matrix and
requires a slightly higher sample complexity about the order of

. Moreover, in the absence of noise, ESPRIT allows
recovery without imposing a separation condition like (10).
Note, however, that a separation condition is necessary when
noise is present, as detailed in [28], [37]. We will demonstrate
through numerical examples that the proposed algorithm (9) is
stable under noisy observations as well.
We also compare Theorem 1 with standard results in CS

[14]. When the frequencies in are indeed on the DFT grid,
CS allows recovery of complex sinusoids from a number

of samples. The proposed algorithm (9) can be
regarded as a remedy of CS for targets off the grid with slightly
larger sample complexity.

IV. APPROXIMATE SEMIDEFINITE PROGRAM TO SOLVE ATOMIC
NORM MINIMIZATION

Theorem 1 indicates that solving the atomic norm minimiza-
tion problem (9) allows perfect recovery of the data matrix from
only a small number of its time samples. However, a natural
question arises as to how to solve (9) in a tractable manner.
Unfortunately, the exact semidefinite programming character-
ization of atomic norm minimization in the line spectrum case,
as proposed in [29], cannot be extended straightforwardly to
2-D models, due to the fundamental difficulty of generalizing
the classical Caratheodory’s theorem [34] to higher dimensions.
Nonetheless, in this section we propose a semidefinite program
to approximately solve (9), which exhibits excellent empirical
performance in Section V. We also provide a sufficient condi-
tion when the proposed semidefinite program returns the solu-
tion to (9).
We describe the algorithm in the general case when the di-

mension of is , which is not necessarily square. We
will still assume that satisfies (2), but slightly abuse nota-
tions by letting

with , and

with , wherever they
are clear from context.
Before presenting the algorithm, we first define a matrix en-

hancement using two-fold Toeplitz structures. Given a

matrix with and
, we define an block Toeplitz matrix

from as

...
...

...
...

(12)

where each block is an Toeplitz
matrix defined from the th row of :

...
...

...
...

We use to represent the corresponding
two-fold block Toeplitz matrix constructed from . It is
straightforward to verify that for any , an atom in the form
of forms a two-fold block
Toeplitz matrix. The following proposition presents a semidef-
inite program that allows approximation of the atomic norm

.
Proposition 1: Let be an matrix and

. Denote

(13)
and let the objective value under . Then we have

Furthermore, if can be written as

(14)

where

with ’s being real and positive values, then .
Proof: Let , where , then

where . This indicates that

Moreover, if the optimal and satisfy
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then we have and by Schur com-
plement condition. If we can write , then falls
within the column space of or, equivalently, for
some vector . Let be any vector such that ,
where is the sign vector of , then

This implies that

(15)

which is equivalent to . Therefore we have
.

We propose to approximate the atomic norm minimization
algorithm in (9) via the following semidefinite program

(16)

Unlike the 1-D algorithm proposed in [29], since it is not guaran-
teed to write into a form of (14), the semidefinite program
formulation (16) is in general not guaranteed to be equivalent to
(9).
Although the equivalence between (16) and (9) is not en-

sured, we can establish that if is not greater than
for certain matrix (in general it could be as large

as ), it can indeed be written uniquely in the form of (14).
This is characterized in the following proposition, whose proof
is deferred to Appendix H.
Proposition 2: If , then
is PSD if and only if it can be represented as (14).

From the above proposition, it is straightforward that if the
solution to (16) satisfies , the
semidefinite characterization of (16) is exact.
Remark 1: The dual problem of (16) can be written as

where , is the Knonecker product of the
symmetric Toeplitz matrix generated by the -th standard basis
vector, and the symmetric Toeplitz matrix generated
by the -th standard basis vector; and if ,
and otherwise. This is exactly the first-order relaxation
in sum-of-squares relaxation hierarchy proposed in [35] for the
precise SDP characterization of (19). Therefore, one can also
employ the checking mechanism proposed in [35] to determine
if (16) is exact.

V. NUMERICAL SIMULATIONS

We present numerical examples to verify the performance of
the proposed algorithm (16) for a data matrix of size .

In the first example, let . We randomly generated
frequency pairs in [0,1) [0,1), with

where the coefficient of each frequency was generated with con-
stant magnitude one and a random phase from . In typ-
ical applications of interest such as radar or channel estimation,
these frequency pairs correspond to delay, Doppler and ampli-
tudes of the scatters. The actual frequency locations are depicted
in Fig. 1(a). Each entry in was observed with probability

, with , which can be collected using
the sub-Nyquist sampling framework described in [38].We then
implemented (16) using CVX [39]. Notice that the number of
unknown parameters was . Fig. 1(b) shows the recov-
ered frequency locations using basis pursuit (BP) by assuming
the signal is sparse in a DFT basis, and Fig. 1(c) shows the re-
covered frequency locations using BP by assuming the signal is
sparse in a DFT frame oversampled by a factor of 4. Finally, the
recovered frequency locations using MEMP [11] from the data
matrix recovered from (16) are depicted in Fig. 1(d), superim-
posed on the ground truth. The reconstruction is perfect using
the proposed approach when the data is noise-free.
We also examine the phase transition of the proposed algo-

rithm (16). Let . For each pair of and the number
of modes , we ran 10 experiments, where in each experiment
complex sinusoids (a) are generated randomly, or (b) generated
randomly until a separation condition of is sat-
isfied. The recovery was claimed successful if the normalized
mean squared error (NMSE) error ,
where was the reconstructed data. Fig. 2 shows the success
rate for each pair of and , with the grayscale of each cell re-
flecting the empirical rate of success, for the two cases described
above respectively in (a) and (b). Fig. 2(b) has a much sharper
phase transition compared with (a), indicating that the number
of samples grows approximately linearly with respect to when
the separation condition is imposed, in line with our theoretical
analysis.
We further compare the proposed algorithm with the EMaC

algorithm proposed in [33] by setting the pencil parameters
therein to be and respectively, which yields
a two-fold Hankel matrix of size 20 20 to be completed.
Fig. 2(c) shows the success rate of EMaC for each pair of
and under the same condition as Fig. 2(a) when the

frequencies are randomly generated. Our numerical examples
also indicate that unlike the atomic norm approach, the phase
transition curve of EMaC is insensitive to the separation condi-
tion. While the EMaC algorithm yields a much sharper phase
transition than that of the proposed algorithm for randomly
generated frequencies, the range of its recoverable is
much smaller, partially due to the small dimensionality of the
relevant two-fold Hankel matrix when the data size is small.
We further examine the performance of (16) in the presence

of noise. The noisy data was generated as

where was generated in the same way as in Fig. 2 with
different frequencies, and was standard additive white
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Fig. 1. The recovered signal in the frequency domain for from measurements. (a) Ground truth; (b) BP (DFT basis); (c) BP (DFT
frame); (d) proposed approach.

Fig. 2. Phase transition plots when : (a) the proposed algorithm with randomly generated frequencies; (b) the proposed algorithm with randomly
generated frequencies satisfying a separation condition ; (c) the EMaC algorithm [33] with randomly generated frequencies. The success rate is
calculated by averaging over 10 runs.

Gaussian noise (AWGN) with each entry i.i.d. from .
The signal-to-noise ratio is defined as ,
which has been scaled with respect to the number of samples.
The proposed algorithm was modified to incorporate noise as

(17)

Fig. 3 illustrates the NMSE against SNR under different sample
complexity. When , there is a possibility of failure
that is not perfectly recovered even without noise, so the

NMSE is relatively large under all SNRs. When , 40,
and 50, it is with high possibility that is perfectly recovered
without noise. When this was the case, the performance degen-
erated gracefully as the SNR decreases. The performance also
improved when the number of samples increases, but the gain
was not as significant as long as it is above certain threshold.

VI. CONCLUSIONS

In this paper we explore estimation of 2-D frequency compo-
nents of a spectrally sparse signal, when we are given a random
subset of its regularly spaced samples. We formulate an atomic
norm minimization problem, and show that a sample size of
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Fig. 3. NMSE vs SNR when , where frequency locations are
generated randomly with a separation condition for different
numbers of samples.

is sufficient to guarantee perfect frequency re-
covery, provided that a mild separation condition is satisfied.
Our work can be extended to an arbitrary higher dimension and a
similar semidefinite program can be proposed using a multi-fold
block Toeplitz matrix constructed similar to (14). Finally, it re-
mains to be seen how to develop more efficient first-order algo-
rithms in solving the semidefinite program (16), as generic SDP
solvers based on interior point methods are limited to small-di-
mensionality problems.

APPENDIX A
USEFUL LEMMAS

We first present a few useful inequalities that will be used in
the proofs.
Lemma 1. (Noncommutative Bernstein’s Inequality) [40]:

Let be independent zero-mean symmetric random
matrices of dimension . Suppose
and almost surely for all . Then for any

,

(18)

Lemma 2. (Talagrand’s Concentration Inequality) [41]: Let
be a finite sequence of independent random variables

taking values in a Banach space and be defined as

for a countable family of real valued functions . Assume that
and for all and every . Then for

all ,

where , ,
and is a numerical constant.
Lemma 3. (Hoeffding’s Inequality) [42]: Let the components

of be sampled i.i.d. from a symmetric distribution on the

complex unit circle, , and be a positive real number.
Then

APPENDIX B
PROOF OF THEOREM 1

This section is dedicated to the proof of Theorem 1 when the
signs of ’s are randomly drawn from . The proof is
similar for the case where ’s are complex-valued, following
the discussions in [28, Section 1.3]. A road map of the proof
is given below. We will first characterize properties of a dual
polynomial that suffices to certify the optimality and unique-
ness of the solution to (9), and then present a randomized dual
construction scheme. Specifically, the construction scheme pro-
duces a polynomial by randomizing the dual polynomial in [28]
constructed for the full-observation case. Finally, we will show
that this random polynomial satisfies the optimality and unique-
ness conditions with high probability.

A. Optimality Conditions for Dual Polynomial

The dual norm of is defined as

where . As a result, the dual problem associated
with (9) is given by

(19)

where is the complement set of . Following stan-
dard analysis (see [28]), the optimal solution of (9) is unique if
there exists a dual polynomial

satisfying the following set of conditions

(20a)

(20b)

(20c)

where represents the complex sign. In the sequel we will
produce a dual polynomial satisfying the conditions (20a)–(20c)
with high probability.

B. Fejér’s Kernel

In [28], the dual polynomial is constructed from the squared
Fejér’s kernel [43], which is defined in the 1-D setting as

for , where
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Two important features of are worth mentioning: 1) it is
nonnegative, and 2) it exhibits rapid decay to zero as grows.
We note that , which will be
useful in later analysis.
In the 2-D setting, the corresponding Fejér’s kernel is defined

as

for . Let be the partial
derivative of given by

C. Construction of Dual Polynomial

Following the argument in [29, Section IV-B], it is sufficient
to consider a Bernoulli observation model such that each entry
in is observed with probability

Specifically, we assign an i.i.d. Bernoulli random variable to
indicate whether the th entry is observed, which satisfies

(21)

Define a randomized 2-D Fejér’s kernel as

(22)

where is defined in (21). Let be the partial deriva-
tive of as

for any ,1,2. Then their expected values with respect
to can be computed as

We propose to construct the dual polynomial of (19) as

(23)

i.e. a superposition of the randomized Fejér’s kernel and its first-
order partial derivatives at the frequencies in .
To establish Theorem 1, we need to verify that in

the form of (23) satisfies the hypotheses (20a)–(20c) with
high probability. Apparently, Condition (20a) is satisfied
by the randomized construction scheme. The next step is
to tweak the interpolation coefficients ,

and to satisfy
(20b). Specifically, let the th entry of be

where represents the partial derivative of .
Choose the coefficients , and such that

(24)

where1 , and obeys . De-
note by the matrix on the left-hand side of the above equation

whose expected value is given by . Here, denotes

with each sub-block defined with the th entry being

where . In order to find a solution to
(24), one first needs to demonstrate that is invertible. To this
end, we begin by presenting the following lemma, whose proof
is given in Appendix C.
Lemma 4: Under the conditions of Theorem 1, one has

Lemma 4 immediately implies that is invertible,

(25)

and

The matrix can then be expressed as

(26)

where is given by

... (27)

Similarly, one can write as

(28)

1 is the second-order derivative of at .
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We will establish that the spectral norm of can be well
controlled, as stated in the following lemma. The proof is de-
ferred to Appendix D.
Lemma 5: Let . If , and

for some positive constant , then with prob-
ability at least ,

Denote by the event , which
occurs with probability . Conditional on ,
one has

(29)

revealing the invertibility of . Writing for some
, we have

where follows from [29, Corollary IV.5]. The inter-
polation coefficients can thus be written as

(30)

With this choice, (20b) is satisfied trivially.

D. Verification of (20c)

What remains to be established is Condition (20c). We will
first show that it holds on a regular grid ,
and then extends it to the continuous domain.
To proceed, define as

...

...

...

(31)

then the derivatives of the dual polynomial in (23) can be
written as

Define the mean of such that

We have

where

We first need to establish that and can be
controlled uniformly over all . To this end, we apply similar
techniques adopted in [29], which first bound and

on a regular grid , and then extend the result to all
frequencies. The following lemma quantifies the perturbations
on a regular grid, whose proof is deferred to Appendix E.
Lemma 6: Suppose . For a regular grid , there

exists a numerical constant such that if

(32)

then and
for ,1,2,3 with probability at least .
Following Lemma 6, we immediately show that the event

occurs with probability at least on the grid .
We will first extend to the whole continuous domain by

the following lemma whose proof can be found in Appendix F.
Lemma 7: Suppose that . There exists a nu-

merical constant such that if satisfies (32) for some
constant , then

(33)

for with probability at least .
Finally, we can establishes (20c) through the following

lemma, where the proof is supplied in Appendix G.
Lemma 8: Suppose that . There exists a uni-

versal constant such that if

(34)

then with probability at least , one has for
.
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Combining the above lemmas, we have successfully con-
structed a dual polynomial when satisfies (34),
completing the proof of Theorem 1.

APPENDIX C
PROOF OF LEMMA 4

Proof: When , using the result in [28,
Proof of Lemma C.2], we have

where is the matrix infinity norm, i.e. the maximum abso-
lute row sum. Since is symmetric and its diagonal entries
are all zero, by the Gershgorin’s circle theorem [44],

APPENDIX D
PROOF OF LEMMA 5

Proof: First, write , where

is a random zero-mean self-adjoint matrix. We would like to
apply Lemma 1. Since and

(35)

(36)

where (35) follows from , (36) follows
from and

for where the last inequality follows from
in [29]. And

where the last inequality follows from (25). Applying Lemma 1
and setting , one obtains

(37)

for some constant , leading to .
APPENDIX E

PROOF OF LEMMA 6

Proof: We first write as

where

Write

where . To apply Lemma 2, we com-
pute

and

when . Then from Jensen’s inequality,

We can then upper bound
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thereafter following similar argument as in [29, Proof of Lemma
IV.6],

where we have used and . By Lemma 2,
if we let

and

if ,

otherwise,

then we have

with probability at least . Consequently

To bound on the set we use Hoeffding’s
inequality and the union bound (see [29, proof of Lemma IV.8]),
which gives

(38)

where the last term . Following similar arguments
in [29, Lemma IV.8] to bound each term in (38) we obtain

under (32) with probability at least
.

Similarly we can bound on the set . From
[29, Lemma IV.9], we can upper bound

under the event . Applying the Hoeffding’s inequality and the
union bound we have

(39)

following similar arguments in [29, proof of Lemma IV.9] to
bound each term in (39) we obtain
under (32) with probability at least .

APPENDIX F
PROOF OF LEMMA 7

First we have from [29] for some con-
stant . Then using Bernstein’s polynomial inequality [45], we
have

If we select the grid such that for any , there
exists a point such that

The size of the grid is no smaller than .
Conditioned on we have

Using the relationship , we can modify the
constant in the bound (32) accordingly.

APPENDIX G
PROOF OF LEMMA 8

Proof: We divide the whole frequency domain as

and . From [28], we have
for . By Lemma 7 and let ,

using triangle inequality, it is straightforward to show
, for with probability .
On the other hand, for , from [28] we have

, and the Hessian matrix

is negative definite. In particular, we have ,
, and . Let ,

with probability at least ,



CHI AND CHEN: COMPRESSIVE TWO-DIMENSIONAL HARMONIC RETRIEVAL VIA ATOMIC NORM MINIMIZATION 1041

following Lemma 7, hence and ,
the matrix is also negative definite. Therefore
for . Combining the above, we have for

with probability at least .

APPENDIX H
PROOF OF PROPOSITION 2

Proof: The sufficient condition is trivial. We now prove the
necessary condition. Since , the (1,1)-th block in (12),
is a PSD Toeplitz matrix, by the Vandermonde decomposition
lemma in 1-D, there exists a decomposition

(40)

where is an Vandermonde matrix with the th column
specified by , and

where for . Given that is a PSDmatrix of
rank , then , and each block admits a decomposition
from [46, Proposition 1] as

(41)

where and is a unitary matrix. Write as
, where is a unitary matrix, is a diagonal matrix as

, with . Then can be
rewritten as

(42)

with . Combining with (40), can be written as
for some unitary matrix

. On the other hand, the principal submatrix of with
entries from the first column of is also a PSD Toeplitz matrix,
which can be written as

. . .
...

...
. . .

. . .

where is the first row of .
The th entry of can be written as

Therefore we can write as

(43)

and is a Vandermonde matrix with the th column
. Then can be written as

(44)

where . Therefore we have established Proposition
2.
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