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Abstract

This paper is concerned with the interplay between statistical asymmetry and spectral methods.
Suppose we are interested in estimating a rank-1 and symmetric matrix M? ∈ Rn×n, yet only a randomly
perturbed version M is observed. The noise matrix M −M? is composed of independent (but not
necessarily homoscedastic) entries and is, therefore, not symmetric in general. This might arise if, for
example, we have two independent samples for each entry of M? and arrange them in an asymmetric
fashion. The aim is to estimate the leading eigenvalue and the leading eigenvector of M?.

We demonstrate that the leading eigenvalue of the data matrix M can be O(
√
n) times more accu-

rate (up to some log factor) than its (unadjusted) leading singular value of M in eigenvalue estimation.
Moreover, the eigen-decomposition approach is fully adaptive to heteroscedasticity of noise, without the
need of any prior knowledge about the noise distributions. In a nutshell, this curious phenomenon arises
since the statistical asymmetry automatically mitigates the bias of the eigenvalue approach, thus elimi-
nating the need of careful bias correction. Additionally, we develop appealing non-asymptotic eigenvector
perturbation bounds; in particular, we are able to bound the perterbation of any linear function of the
leading eigenvector of M (e.g. entrywise eigenvector perturbation). We also provide partial theory for the
more general rank-r case. The takeaway message is this: arranging the data samples in an asymmetric
manner and performing eigen-decomposition could sometimes be quite beneficial.

Keywords: asymmetric matrices, eigenvalue perturbation, entrywise eigenvector perturbation, linear forms
of eigenvectors, heteroscedasticity.
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1 Introduction
Consider an unknown symmetric and low-rank matrix M? ∈ Rn×n. What we have observed is a corrupted
version

M = M? + H, (1)

with H denoting a noise matrix. A classical problem is concerned with estimating the leading eigenvalues
and eigenspace of M? given observation M .
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The current paper concentrates on a scenario where the noise matrix H (and hence M) consists of
independently generated random entries and is hence asymmetric in general. This might arise, for exam-
ple, when we have available multiple (e.g. two) samples for each entry of M? and arrange the samples in
an asymmetric fashion. A natural approach that immediately comes to mind is based on singular value
decomposition (SVD), which employs the leading singular values (resp. subspace) of M to approximately
estimate the eigenvalues (resp. eigenspace) of M?. By contrast, a much less popular alternative is based
on eigen-decomposition of the asymmetric data matrix M , which attempts approximation using the leading
eigenvalues and eigenspace of M . Given that eigen-decomposition of an asymmetric matrix is in general
not as numerically stable as SVD, conventional wisdom often favors the SVD-based approach, unless certain
symmetrization step is implemented prior to eigen-decomposition.

When comparing these two approaches numerically, however, a curious phenomenon arises, which largely
motivates the research in this paper. Let us generate M? as a random rank-1 matrix with leading eigenvalue
λ? = 1, and let H be a Gaussian random matrix whose entries are i.i.d. N (0, σ2) with σ = 1/

√
n log n.

Fig. 1(a) compares the empirical accuracy of estimating the 1st eigenvalue of M? via the leading eigenvalue
(the blue line) and via the leading singular value of M (the red line). As it turns out, eigen-decomposition
significantly outperforms vanilla SVD in estimating λ?, and the advantage seems increasingly more remark-
able as the dimensionality n grows. To facilitate comparison, we include an additional green line in Fig. 1(a),
obtained by rescaling the red line by 2.5/

√
n. Interestingly, this green line coincides almost perfectly with

the blue line, thus suggesting orderwise gain of eigen-decomposition compared to SVD. What is more, this
phenomenon does not merely happen under i.i.d. noise. Similar numerical behaviors are observed in the
problem of matrix completion — as displayed in Fig. 1(b) — even though the components of the equivalent
perturbation matrix are apparently far from identically distributed or homoscedastic.
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(a) eigenvalue perturbation for matrix estimation (b) eigenvalue perturbation for matrix completion

Figure 1: Numerical error |λ − λ?| vs. the matrix dimension n, where λ is either the leading eigenvalue
(the blue line) or the leading singular value (the red line) of M . Here, (a) is the case when {Hij} are
i.i.d. N (0, σ2) with σ = 1/

√
n log n, and (b) is the matrix completion case with sampling rate p = 3 log n/n,

where Mi,j = 1
pM

?
i,j independently with probability p and 0 otherwise. The results are averaged over 100

independent trials. The green lines are obtained by rescaling the corresponding red lines by 2.5/
√
n.

The goal of the current paper is thus to develop a systematic understanding of this phenomenon, that
is, why statistical asymmetry empowers eigen-decomposition and how to exploit this feature in statistical
estimation. Informally, our findings suggest that: when M? is rank-1 and H is composed of zero-mean and
independent (but not necessarily identically distributed or homoscedastic) entries,

1. the leading eigenvalue of M could be O(
√
n) times (up to some logarithmic factor) more accurate

than the (unadjusted) leading singular value of M when estimating the 1st eigenvalue of M?;1

2. the perturbation of the leading eigenvector is well-controlled along an arbitrary deterministic di-
rection; for example, the eigenvector perturbation is well-controlled in any coordinate, indicating
that the eigenvector estimation error is spread out across all coordinates.

1More precisely, this gain is possible when ‖H‖ is nearly as large as ‖M?‖ (up to some logarithmic factor).
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We will further provide partial theory to accommodate the rank-r case. As an important application, such a
theory allows us to estimate the leading singular value and singular vectors of an asymmetric rank-1 matrix
via eigen-decomposition of a certain dilation matrix, which also outperforms the vanilla SVD approach.

We would like to immediately remark that: for some scenarios (e.g. the case with i.i.d. Gaussian noise),
it is possible to adjust the leading singular value of M to obtain the same accuracy as the leading eigenvalue
of M . As it turns out, the advantages of the eigen-decomposition approach may become more evident in
the presence of heteroscedasticity — the case where the noise has location-varying and unknown variance.
We shall elaborate on this point in Section 4.1.2.

All in all, when it comes to low-rank matrix estimation, arranging the observed matrix samples in an
asymmetric manner and invoking eigen-decomposition properly could sometimes be statistically beneficial.

2 Problem formulation

2.1 Models and assumptions
In this section, we formally introduce our models and assumptions. Consider a symmetric and low-rank
matrix M? = [M?

ij ]1≤i,j≤n ∈ Rn×n. Suppose we are given a random copy of M? as follows

M = M? + H, (2)

where H = [Hij ]1≤i,j≤n is a random noise matrix.
The current paper concentrates on independent — but not necessarily identically distributed or ho-

moscedastic — noise. Specifically, we impose the following assumptions on H throughout this paper.

Assumption 1.

1. (Independent entries) The entries {Hij}1≤i,j≤n are independently generated;

2. (Zero mean) E[Hij ] = 0 for all 1 ≤ i, j ≤ n;
3. (Variance) Var(Hij) = E

[
H2
ij

]
≤ σ2

n for all 1 ≤ i, j ≤ n;
4. (Magnitude) Each Hij (1 ≤ i, j ≤ n) satisfies either of the following conditions:

(a) |Hij | ≤ Bn;
(b) Hij has a symmetric distribution obeying P{|Hij | > Bn} ≤ cbn

−12 for some universal constant
cb > 0.

Remark 1 (Notational convention). In what follows, the dependency of σn and Bn on n shall often be
suppressed whenever it is clear from the context, so as to simplify notation.

Note that we do not enforce the constraint Hij = Hji, and hence H and M are in general asymmetric
matrices. Also, Condition 3 does not require the Hij ’s to have equal variance across different locations; in
fact, they can be heteroscedastic. In addition, while Condition 4(a) covers the class of bounded random
variables, Condition 4(b) allows us to accommodate a large family of heavy-tailed distributions (e.g. sub-
exponential distributions). An immediate consequence of Assumption 1 is the following bound on the spectral
norm ‖H‖ of H.

Lemma 1. Under Assumption 1, there exist some universal constants c0, C0 > 0 such that with probability
exceeding 1− C0n

−10,
‖H‖ ≤ c0σ

√
n log n+ c0B log n. (3)

Proof. This is a standard non-asymptotic result that follows immediately from the matrix Bernstein inequal-
ity Tropp (2015) and the union bound (for Assumption 4(b)). We omit the details for conciseness.

2.2 Our goal
The aim is to develop non-asymptotic eigenvalue and eigenvector perturbation bounds under this family of
random and asymmetric noise matrices. Our theoretical development is divided into two parts. Below we
introduce our goal as well as some notation used throughout.
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Rank-1 symmetric case. For the rank-1 case, we assume the eigen-decomposition of M? to be

M? = λ?u?u?> (4)

with λ? and u? being its leading eigenvalue and eigenvector, respectively. We also denote by λ and u the
leading eigenvalue and eigenvector of M , respectively. The following quantities are the focal points of this
paper (see Section 4):

1. Eigenvalue perturbation: |λ− λ?|;

2. Perturbation of linear forms of eigenvectors: min{|a>(u−u?)|, |a>(u+u?)|} for any fixed unit vector
a ∈ Rn;

3. Entrywise eigenvector perturbation: min{‖u− u?‖∞, ‖u + u?‖∞}.

Rank-r symmetric case. For the general rank-r case, we let the eigen-decomposition of M? be

M? = U?Σ?U?>, (5)

where the columns of U? = [u?1, · · · ,u?r ] ∈ Rn×r are the eigenvectors, and Σ? = diag(λ?1, · · · , λ?r) ∈ Rr×r is a
diagonal matrix with the eigenvalues arranged in descending order by their magnitude, i.e. |λ?1| ≥ · · · ≥ |λ?r |.
We let λ?max = |λ?1| and λ?min = |λ?r |. In addition, we let the top-r eigenvalues (in magnitude) of M be
λ1, · · · , λr (obeying |λ1| ≥ · · · ≥ |λr|) and their corresponding normalized eigenvectors be u1, · · · ,ur. We
will present partial eigenvalue perturbation results for this more general case, as detailed in Section 5.

As is well-known, eigen-decomposition can be applied to estimate the singular values and singular vectors
of an asymmetric matrix M? via the standard dilation trick Tropp (2015). As a consequence, our results
are also applicable for singular value and singular vector estimation. See Section 5.2 for details.

2.3 Incoherence conditions
Finally, we single out an incoherence parameter that plays an important role in our theory, which captures
how well the energy of the eigenvectors is spread out across all entries.

Definition 1 (Incoherence parameter). The incoherence parameter of a rank-r symmetric matrix M?

with eigen-decomposition M? = U?Σ?U?> is defined to be the smallest quantity µ obeying

‖U?‖∞ ≤
√
µ

n
, (6)

where ‖·‖∞ denotes the entrywise `∞ norm.

Remark 2. An alternative definition of the incoherence parameter (Candès and Recht, 2009; Keshavan
et al., 2010; Chi et al., 2019; Chen et al., 2019a) is the smallest quantity µ0 satisfying ‖U?‖2,∞ ≤

√
µ0r/n.

This is a weaker assumption than Definition 1, as it only requires the energy of U? to be spread out across
all of its rows rather than all of its entries. Note that these two incoherent parameters are consistent in the
rank-1 case; in the rank-r case one has µ0 ≤ µ ≤ µ0r.

2.4 Notation
The standard basis vectors in Rn are denoted by e1, · · · , en. For any vector z, we let ‖z‖2 and ‖z‖∞ denote
the `2 norm and the `∞ norm of z, respectively. For any matrix M , denote by ‖M‖, ‖M‖F and ‖M‖∞
the spectral norm, the Frobenius norm and the entrywise `∞ norm (the largest magnitude of all entries) of
M , respectively. Let [n] := {1, · · · , n}. In addition, the notation f(n) = O (g(n)) or f(n) . g(n) means
that there is a constant c > 0 such that |f(n)| ≤ c|g(n)|, f(n) & g(n) means that there is a constant
c > 0 such that |f(n)| ≥ c |g(n)|, and f(n) � g(n) means that there exist constants c1, c2 > 0 such that
c1|g(n)| ≤ |f(n)| ≤ c2|g(n)|.
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3 Preliminaries
Before continuing, we gather several preliminary facts that will be useful throughout. The readers familiar
with matrix perturbation theory may proceed directly to the main theoretical development in Section 4.

3.1 Perturbation of eigenvalues of asymmetric matrices
We begin with a standard result concerning eigenvalue perturbation of a diagonalizable matrix Bauer and
Fike (1960). Note that the matrices under study might be asymmetric.

Theorem 1 (Bauer-Fike Theorem). Consider a diagonalizable matrix A ∈ Rn×n with eigen-decomposition
A = V ΛV −1, where V ∈ Cn×n is a non-singular eigenvector matrix and Λ is diagonal. Let λ̃ be an eigen-
value of A + H. Then there exists an eigenvalue λ of A such that

|λ− λ̃| ≤ ‖V ‖
∥∥V −1

∥∥ ‖H‖ . (7)

In addition, if A is symmetric, then there exists an eigenvalue λ of A such that

|λ− λ̃| ≤ ‖H‖ . (8)

However, caution needs to be exercised as the Bauer-Fike Theorem does not specify which eigenvalue
of A is close to an eigenvalue of A + H. Encouragingly, in the low-rank case of interest, the Bauer-Fike
Theorem together with certain continuity of the spectrum allows one to localize the leading eigenvalues of
the perturbed matrix.

Lemma 2. Suppose M? is a rank-r symmetric matrix whose top-r eigenvalues obey
∣∣λ?1
∣∣ ≥ · · · ≥

∣∣λ?r
∣∣ > 0.

If ‖H‖ <
∣∣λ?r
∣∣/2, then the top-r eigenvalues λ1, · · · , λr of M = M? + H, sorted by modulus, obey that: for

any 1 ≤ l ≤ r,
|λl − λ?j | ≤ ‖H‖ for some 1 ≤ j ≤ r. (9)

In addition, if r = 1, then both the leading eigenvalue and the leading eigenvector of M are real-valued.

This result, which we establish in Appendix A.1, parallels Weyl’s inequality for symmetric matrices.
Note, however, that the above bound (9) might be quite loose for specific settings. We will establish much
sharper perturbation bounds when H contains independent random entries (see, e.g. Corollary 1).

3.2 The Neumann trick and eigenvector perturbation
Next, we introduce a classical result dubbed as the “Neumann trick” Eldridge et al. (2018). This theorem,
which is derived based on the Neumann series for a matrix inverse, has been applied to analyze eigenvectors
in various settings Erdős et al. (2013); Jain and Netrapalli (2015); Eldridge et al. (2018).

Theorem 2 (Neumann trick). Consider the matrices M? and M (see (5) and (2)). Suppose ‖H‖ < |λl|
for some 1 ≤ l ≤ n. Then

ul =

r∑

j=1

λ?j
λl

(
u?>j ul

)
{ ∞∑

s=0

1

λsl
Hsu?j

}
. (10)

Proof. We supply the proof in Appendix A.2 for self-containedness.

Remark 3. In particular, if M? is a rank-1 matrix and ‖H‖ < |λ1|, then

u1 =
λ?1
λ1

(
u?>1 u1

)
{ ∞∑

s=0

1

λs1
Hsu?1

}
. (11)

An immediate consequence of the Neumann trick is the following lemma, which asserts that each of
the top-r eigenvectors of M resides almost within the top-r eigen-subspace of M?, provided that ‖H‖ is
sufficiently small. The proof is deferred to Appendix A.3.
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Lemma 3. Suppose M? is a rank-r symmetric matrix with r non-zero eigenvalues obeying 1 = λ?max =
∣∣λ?1
∣∣ ≥

· · · ≥
∣∣λ?r
∣∣ = λ?min > 0 and associated eigenvectors u?1, · · · ,u?r. Define κ , λ?max/λ

?
min. If ‖H‖ ≤ 1/(4κ),

then the top-r eigenvectors u1, · · · ,ur of M = M? + H obey
r∑

j=1

|u?>j ul|2 ≥ 1− 64κ4

9
‖H‖2 , 1 ≤ l ≤ r. (12)

In addition, if r = 1, then one further has

min{‖u1 − u?1‖2, ‖u1 + u?1‖2} ≤
8
√

2

3
‖H‖. (13)

4 Perturbation analysis for the rank-1 case

4.1 Main results: the rank-1 case
This section presents perturbation analysis results when the truth M? is a symmetric rank-1 matrix. We
shall start by presenting a master bound which, as we will see, immediately leads to our main findings.

4.1.1 A master bound

Our master bound is concerned with the perturbation of linear forms of eigenvectors, as stated below.

Theorem 3 (Perturbation of linear forms of eigenvectors (rank-1)). Consider a rank-1 symmetric
matrix M? = λ?u?u?> ∈ Rn×n with incoherence parameter µ (cf. Definition 1). Suppose the noise matrix
H obeys Assumption 1, and assume the existence of some sufficiently small constant c1 > 0 such that

max
{
σ
√
n log n,B log n

}
≤ c1

∣∣λ?
∣∣. (14)

Then for any fixed vector a ∈ Rn with ‖a‖2 = 1, with probability at least 1−O(n−10) one has
∣∣∣∣a>

(
u− u?>u

λ/λ?
u?
)∣∣∣∣ .

max
{
σ
√
n log n,B log n

}
∣∣λ?
∣∣

√
µ

n
. (15)

Remark 4 (The noise size). We would like to remark on the range of the noise size covered by our theory.
If the incoherence parameter of the truth M? obeys µ � 1, then even the magnitude of the largest entry of
M? cannot exceed the order of |λ?|/n. One can thus interpret the condition (14) in this case as

σ .
√

n

log n
‖M?‖∞ and B . n

log n
‖M?‖∞.

In other words, the standard deviation σ of each noise component is allowed to be substantially larger
(i.e.

√
n/ log n times larger) than the magnitude of any of the true entries. In fact, this condition (14)

matches, up to some log factor, the one required for spectral methods to perform noticeably better than ran-
dom guessing.

In words, Theorem 3 tells us that: the quantity u?>u
λ/λ? a

>u? serves as a remarkably accurate approximation
of the linear form a>u. In particular, the approximation error is at most O(1/

√
n) under the condition (14)

for incoherent matrices. Encouragingly, this approximation accuracy holds true for an arbitrary deterministic
direction (reflected by a). As a consequence, one can roughly interpret Theorem 3 as

u ≈ λ?

λ
u?u?>u =

1

λ
M?u, (16)

where such an approximation is fairly accurate along any fixed direction. Compared with the identity
u = 1

λMu = 1
λ (M? + H)u, our results imply that Hu is exceedingly small along any fixed direction, even

though H and u are highly dependent. As we shall explain in Section 4.3, this observation usually cannot
happen when H is a symmetric random matrix or when one uses the leading singular vector instead, due to
the significant bias resulting from symmetry.

This master theorem has several interesting implications, as we shall elucidate momentarily.
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4.1.2 Eigenvalue perturbation

To begin with, Theorem 3 immediately yields a much sharper non-asymptotic perturbation bound regarding
the leading eigenvalue λ of M .

Corollary 1. Under the assumptions of Theorem 3, with probability at least 1−O(n−10) we have

|λ− λ?| . max
{
σ
√
n log n,B log n

}√µ

n
. (17)

Proof. Without loss of generality, assume that λ? = 1. Taking a = u? in Theorem 3, we get

∣∣u?>u
∣∣ |λ− 1|

λ
=
∣∣∣u?>u− u?>u?

u?>u
λ

∣∣∣ . max
{
σ
√
n log n,B log n

}√µ

n
. (18)

From Lemma 1 and the condition (14), we know ‖H‖ < 1/4, which combines with Lemma 2 and Lemma 3
yields λ � |u?>u| � 1. Substitution into (18) yields

|λ− 1| .
∣∣∣∣

λ

u?>u

∣∣∣∣max
{
σ
√
n log n,B log n

}√µ

n
. max

{
σ
√
n log n,B log n

}√µ

n
.

For the vast majority of applications we encounter, the maximum possible noise magnitude B (cf. As-
sumption 1) obeys B . σ

√
n/ log n, in which case the bound in Corollary 1 simplifies to

|λ− λ?| . σ
√
µ log n. (19)

This means that the eigenvalue estimation error is not much larger than the variability of each noise com-
ponent. In addition, we remind the reader that for a fairly broad class of noise (see Remark 4), the leading
eigenvalue λ of M is guaranteed to be real-valued, an observation that has been made in Lemma 2. In
practice, however, one might still encounter some scenarios where λ is complex-valued. As a result, we
recommend the practitioner to use the real part of λ as the eigenvalue estimate, which clearly enjoys the
same statistical guarantee as in Corollary 1.

Comparison to the vanilla SVD-based approach. In order to facilitate comparison, we denote by
λsvd the largest singular value of M , and look at |λsvd−λ?|. Combining Weyl’s inequality, Lemma 1 and the
condition (14), we arrive at

|λsvd − λ?| ≤ ‖H‖ . max
{
σ
√
n log n,B log n

}
. (20)

When µ � 1, this error bound w.r.t. this (unadjusted) singular value could be
√
n times larger than the

perturbation bound (17) derived for the leading eigenvalue. This corroborates our motivating experiments
in Fig. 1.

Comparison to vanilla eigen-decomposition after symmetrization. The reader might naturally
wonder what would happen if we symmetrize the data matrix before performing eigen-decomposition. Con-
sider, for example, the i.i.d. Gaussian noise case where Hij

i.i.d.∼ N (0, σ2), and assume λ? > 0 for simplicity.
The leading eigenvalue λsym of the symmetrized matrix (M + M>)/2 has been extensively studied in the
literature Füredi and Komlós (1981); Yin et al. (1988); Péché (2006); Féral and Péché (2007); Benaych-
Georges and Nadakuditi (2011); Renfrew and Soshnikov (2013); Knowles and Yin (2013). In particular, it
has been shown (e.g. Capitaine et al. (2009)) that, with probability approaching one,

λsym = λ? +
nσ2

2λ?
+O

(
σ
√

log n
)
. (21)
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If σ = |λ?|
√

1/(n log n) (which is the setting in our numerical experiment), then this can be translated into

λsym − λ?
λ?

=
1

2 log n
+O

(
1√
n

)
.

This implies that λsym suffers from a substantially larger bias than the leading eigenvalue λ obtained without
symmetrization, since in this case we have (cf. Corollary 1)

∣∣∣∣
λ− λ?
λ?

∣∣∣∣ .
1√
n
. (22)

Comparison to properly adjusted eigen-decomposition and SVD-based methods. Armed with
the approximation (21) in the i.i.d. Gaussian noise case, the careful reader might naturally suggest a properly
corrected estimate λsym,c as follows (again assuming λ > 0)

λsym,c =
1

2

(
λsym +

√
λ2
sym − 2nσ2

)
, (23)

which is a shrinkage-type estimate chosen to satisfy λsym = λsym,c + nσ2

2λsym,c
. A little algebra reveals that: if

σ = 1/
√
n log n, then ∣∣∣∣

λsym,c − λ?
λ?

∣∣∣∣ .
1√
n
,

thus matching the estimation accuracy of λ (cf. (22)). In addition, some sort of universality results has
been established as well in the literature (Capitaine et al., 2009), implying that the same approximation and
correction are applicable to a broad family of zero-mean noise with identical variance. As we shall illustrate
numerically in Section 4.2, this approach (i.e. λsym,c) performs almost identically to the one using vanilla
eigen-decomposition without symmetrization. In addition, very similar observations have been made for
the SVD-based approach (Silverstein, 1994; Yin et al., 1988; Péché, 2006; Féral and Péché, 2007; Benaych-
Georges and Nadakuditi, 2012; Bryc and Silverstein, 2018); for the sake of brevity, we do not repeat the
arguments here.

We would nevertheless like to single out a few statistical advantages of the eigen-decomposition approach
without symmetrization. To begin with, λ is obtained via vanilla eigen-decomposition, and computing it
does not rely on any kind of noise statistics. This is in stark contrast to the bias correction (23) in the
presence of symmetric data, which requires prior knowledge about (or a very precise estimate of) the noise
variance σ2. Leaving out this prior knowledge matter, a more important issue is that the approximation
formula (21) assumes identical variance of noise components across all entries (i.e. homoscedasticity). While
an approximation of this kind has been found for more general cases beyond homoscedastic noise (e.g. Bryc
and Silverstein (2018)), the approximation formula (e.g. (Bryc and Silverstein, 2018, Theorem 1.1)) becomes
fairly complicated, requires prior knowledge about all variance parameters, and is thus difficult to implement
in practice. In comparison, the vanilla eigen-decomposition approach analyzed in Corollary 1 imposes no
restriction on the noise statistics and is fully adaptive to heteroscedastic noise.

Lower bounds. To complete the picture, we provide a simple information-theoretic lower bound for the
i.i.d. Gaussian noise case, which will be established in Appendix B.

Lemma 4. Fix any small constant ε > 0. Suppose that Hij
i.i.d.∼ N (0, σ2). Consider three matrices

M = λ?u?u?> + H, M̃ = (λ? + ∆)u?u?> + H, M̂ = (λ? −∆)u?u?> + H

with ‖u?‖2 = 1. If ∆ ≤ σ
√

(log2 1.5− ε) log 2, then no algorithm can distinguish M , M̃ and M̂ with pe ≤ ε,
where pe is the minimax probability of error for testing three hypotheses (namely, the ones claiming that the
true eigenvalues are λ?, λ? + ∆, and λ? −∆, respectively).

In short, Lemma 4 asserts that one cannot possibly locate an eigenvalue to within a precision of ∆ much
better than σ, which reveals a fundamental limit that cannot be broken by any algorithm. In comparison, the
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vanilla eigen-decomposition method based on asymmetric data achieves an accuracy of |λ − λ?| . σ
√

log n
(cf. Corollary 1 and (19)) for the incoherent case, thus matching the information-theoretic lower bound up
to some log factor. In fact, the extra

√
log n factor arises simply because we are aiming for a high-probability

guarantee.

4.1.3 Perturbation of linear forms of eigenvectors

The master bound in Theorem 3 admits a more convenient form when controlling linear functions of the
eigenvectors. The result is this:

Corollary 2. Under the same setting of Theorem 3, with probability at least 1−O(n−10) we have

min
{∣∣a>(u− u?)

∣∣,
∣∣a>(u + u?)

∣∣} .
(
|a>u?|+

√
µ

n

)
max

{
σ
√
n log n,B log n

}
∣∣λ?
∣∣ . (24)

Proof. Without loss of generality, assume that u?>u ≥ 0 and that λ? = 1. Then one has

|a>(u− u?)| ≤
∣∣∣a>u− a>u?

u?>u
λ

∣∣∣+
∣∣a>u?

∣∣
∣∣∣∣
u?>u
λ
− 1

∣∣∣∣

≤ max
{
σ
√
n log n,B log n

}√µ

n
+ |a>u?|

∣∣∣∣
u?>u
λ
− 1

∣∣∣∣ ,

where the last inequality arises from Theorem 3 as well as the definition of µ. In addition, apply Lemma 2
and Lemma 3 to obtain

∣∣∣∣
u?>u
λ
− 1

∣∣∣∣ ≤
u?>u
λ
|1− λ|+

∣∣u?>u− 1
∣∣ . ‖H‖ . max

{
σ
√
n log n,B log n

}
.

Putting the above bounds together concludes the proof.

The perturbation of linear forms of eigenvectors (or singular vectors) has not yet been well explored
even for the symmetric case. One scenario that has been studied is linear forms of singular vectors under
i.i.d. Gaussian noise (Koltchinskii and Xia, 2016; Xia, 2016). Our analysis — which is certainly different from
Koltchinskii and Xia (2016) as our emphasis is eigen-decomposition — does not rely on the Gaussianality
assumption, and accommodates a much broader class of random noise. Another work that has looked at
linear forms of the leading singular vector is Ma et al. (2019) for phase retrieval and blind deconvolution,
although the vector a therein is specific to the problems (i.e. the design vectors) and cannot be made general.

Remark 5. The perturbation theory for linear forms of eigenvectors has been substantially extended in our
follow-up work; the interested reader is referred to Cheng et al. (2020) for details.

4.1.4 Entrywise eigenvector perturbation

A straightforward consequence of Corollary 2 that is worth emphasizing is sharp entrywise control of the
leading eigenvector as follows.

Corollary 3. Under the same setting of Theorem 3, with probability at least 1−O(n−9) we have

min {‖u− u?‖∞ , ‖u + u?‖∞} .
max

{
σ
√
n log n,B log n

}
∣∣λ?
∣∣

√
µ

n
. (25)

Proof. Recognizing that ‖u− u?‖∞ = maxi |e>i u− e>i u
?| and recalling our assumption |e>i u| ≤

√
µ/n, we

can invoke Corollary 2 and the union bound to establish this entrywise bound.

We note that: while the `2 perturbation (or sin Θ distance) of eigenvectors or singular vectors has been
extensively studied Davis and Kahan (1970); Wedin (1972); Vu (2011); Wang (2015); O’Rourke et al. (2013);
Cai and Zhang (2018), the entrywise eigenvector behavior was much less explored. The prior literature
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contains only a few entrywise eigenvector perturbation analysis results for settings very different from ours,
e.g. the i.i.d. random matrix case Vu and Wang (2015); O’Rourke et al. (2016), the symmetric low-rank
case Fan et al. (2018); Abbe et al. (2017); Eldridge et al. (2018), and the case with transition matrices for
reversible Markov chains (Chen et al., 2019b). Our results add another instance to this body of works in
providing entrywise eigenvector perburation bounds.

4.2 Applications
We apply our main results to two concrete matrix estimation problems and examine the effectiveness of these
bounds. As before, M? is a rank-1 matrix with incoherence parameter µ and leading eigenvalue λ?.

Low-rank matrix estimation from Gaussian noise. Suppose that H is composed of i.i.d. Gaussian
random variables N (0, σ2).2 If σ . 1√

n logn
, applying Corollaries 1-3 reveals that with high probability,

|λ− λ?| . σ
√
µ log n (26a)

min{‖u− u?‖∞, ‖u + u?‖∞} .
σ
√
µ log n∣∣λ?
∣∣ (26b)

min{|a>(u− u?)|, |a>(u + u?)|} .
(
|a>u?|+

√
µ

n

)
σ
√
n log n∣∣λ?
∣∣ (26c)

for any fixed unit vector a ∈ Rn. We have conducted additional numerical experiments in Fig. 2, which
confirm our findings. It is also worth noting that empirically, eigen-decomposition and SVD applied to M
achieve nearly identical `2 and `∞ errors when estimating the leading eigenvector of M?. In addition, we
also include the numerical estimation error of the corrected eigenvalue λsym,c (cf. (23)) of the symmetrized
matrix (M + M>)/2. As can be seen from Fig. 2, vanilla eigen-decomposition without symmetrization
performs nearly identically to the one with symmetrization and proper correction.
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(a) eigenvalue perturbation (b) `∞ eigenvector perturbation (c) `2 eigenvector perturbation

Figure 2: Numerical simulation for rank-1 matrix estimation under i.i.d. Gaussian noise N (0, σ2), where the
rank-1 truth M? is generated randomly with leading eigenvalue 1. (a): |λ−λ?| vs. σ when n = 1000; (b) and
(c): `∞ and `2 eigenvector estimation errors vs. n with σ = 1/

√
n log n, respectively. The blue (resp. red) lines

represent the average errors over 100 independent trials using the vanilla eigen-decomposition (resp. SVD)
approach applied to M . The orange line in (a) represents the average errors over 100 independent trials
using the corrected leading eigenvalue λsym,c of the symmetrized matrix (M + M>)/2 (cf. (23)).

Low-rank matrix completion. Suppose that M is generated using random partial entries of M? as
follows

Mij =

{
1
pM

?
ij , with probability p,

0, else,
(27)

where p denotes the fraction of the entries of M? being revealed. It is straightforward to verify that
H = M −M? is zero-mean and obeys |Hij | ≤ µ

np := B and Var(Hij) ≤ µ2

pn2 . Consequently, if p & µ2 logn
n ,

2In this case, one can take B � σ
√
logn, which clearly satisfies B logn�

√
nσ2 logn.
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then invoking Corollaries 1-3 yields

|λ− λ?|∣∣λ?
∣∣ . 1√

n

√
µ3 log n

pn
(28a)

min{‖u− u?‖∞, ‖u + u?‖∞} .
1√
n

√
µ3 log n

pn
(28b)

min{|a>(u− u?)|, |a>(u + u?)|} .
(
|a>u?|+

√
µ

n

)√
µ2 log n

pn
(28c)

with high probability, where a ∈ Rn is any fixed unit vector. Additional numerical simulations have been
carried out in Fig. 3 to verify these findings. Empirically, eigen-decomposition outperforms SVD in estimating
both the leading eigenvalue and eigenvector of M?.
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(a) eigenvalue perturbation (b) `∞ eigenvector perturbation (c) `2 eigenvector perturbation

Figure 3: Numerical simulation for rank-1 matrix completion, where the rank-1 truth M? is randomly
generated with leading eigenvalue 1 and sampling rate is p = 3 log n/n. (a) |λ − λ?| vs. p when n = 1000;
(b) and (c): `∞ and `2 eigenvector estimation errors vs. n, respectively. The blue (resp. red) lines represent
the average errors over 100 independent trials using the eigen-decomposition (resp. SVD) approach.

Finally, we remark that all the above applications assume the availability of an asymmetric data matrix
M . One might naturally wonder whether there is anything useful we can say if only a symmetric matrix
M is available. While this is in general difficult, our theory does have direct implications for both matrix
completion and the case with i.i.d. Gaussian noise in the presence of symmetric data matrices; that is, it
is possible to first asymmetrize the data matrix followed by eigen-decomposition. The interested reader is
referred to Appendix J for details.

4.3 Why asymmetry helps?
We take a moment to develop some intuition underlying Theorem 3, focusing on the case with λ? = 1 for
simplicity. The key ingredient is the Neumann trick stated in Theorem 2. Specifically, in the rank-1 case we
can expand

u =
1

λ

(
u?>u

)∑∞

s=0

1

λs
Hsu?.

A little algebra yields

∣∣∣∣a>
(
u− u?>u

λ
u?
)∣∣∣∣ =

∣∣∣∣∣
u?>u
λ

∞∑

s=1

a>Hsu?

λs

∣∣∣∣∣ .
∞∑

s=1

∣∣∣∣
a>Hsu?

λs

∣∣∣∣ , (29)

where the last inequality holds since (i) |u?>u| ≤ 1, and (ii) λ is real-valued and obeys λ ≈ 1 if ‖H‖ � 1
(in view of Lemma 2). As a result, the perturbation can be well-controlled as long as |a>Hsu?| is small for
every s ≥ 1.
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As it turns out, a>Hsu? might be much better controlled when H is random and asymmetric, in
comparison to the case where H is random and symmetric. To illustrate this point, it is perhaps the easiest
to inspect the second-order term.

• Asymmetric case: when H is composed of independent zero-mean entries each with variance σ2
n,

one has
E
[
a>H2u?

]
= a>E

[
H2
]
u? = a>(σ2I)u? = σ2a>u?.

• Symmetric case: when H is symmetric and its upper trangular part consists of independent zero-
mean entries with variance σ2

n, it holds that

E
[
a>H2u?

]
= a>E

[
H2
]
u? = a>(nσ2I)u? = nσ2a>u?.

In words, the term a>H2u? in the symmetric case might have a significantly larger bias compared to the
asymmetric case. This bias effect is substantial when a>u? is large (e.g. when a = u?), which plays a crucial
role in determining the size of eigenvalue perturbation.

The vanilla SVD-based approach can be interpreted in a similar manner. Specifically, we recognize that
the leading singular value (resp. left singular vector) can be computed via the leading eigenvalue (resp. eigen-
vector) of the symmetric matrixMM>. Given thatMM>−M?M?> is also symmetric, the aforementioned
bias issue arises as well. This explains why vanilla eigen-decomposition might have an advantage over vanilla
SVD when dealing with asymmetric matrices.

Finally, we remark that the aforementioned bias issue becomes less severe as ‖H‖ decreases. For example,
when ‖H‖ is exceedingly small, the only dominant term on the right-hand side of (29) is a>Hu?, with all
higher-order terms being vanishingly small. In this case, E[a>Hu?] = 0 for both symmetric and asymmetric
zero-mean noise matrices. As a consequence, the advantage of eigen-decomposition becomes negligible when
dealing with nearly-zero noise. This observation is also confirmed in the numerical experiments reported
in Fig. 2(a) and Fig. 3(a), where the two approaches achieve similar eigenvalue estimation accuracy when
σ → 0 (resp. p→ 1) in matrix estimation under Gaussian noise (resp. matrix completion). In fact, the case
with very small ‖H‖ has been studied in the literature O’Rourke et al. (2013); Vu (2011); Eldridge et al.
(2018). For example, it was shown in O’Rourke et al. (2013) that when ‖H‖ . 1√

n
‖M?‖, the singular value

perturbation is also
√
n times smaller than the bound predicted by Weyl’s theorem; similar improvement

can be observed w.r.t. eigenvalue perturbation when H is symmetric (cf. (Eldridge et al., 2018, Theorem
6)). By contrast, our eigenvalue perturbation results achieve this gain even when ‖H‖ is nearly as large as
‖M?‖ (up to some logarithmic factor).

4.4 Proof outline of Theorem 3
This subsection outlines the main steps for establishing Theorem 3. To simplify presentation, we shall assume
without loss of generality that

λ? = 1. (30)

Throughout this paper, all the proofs are provided for the case when Conditions 1-3, 4(a) in Assumption 1
are valid. Otherwise, if Condition 4(b) is valid, then we can invoke the union bound to show that

M = M? + H̃ (31)

with probability exceeding 1−O(n−10), where H̃ij , Hij 1{|Hij |≤B} is the truncated noise and has magnitude
bounded by B. Since Hij has symmetric distribution, it is seen that E[H̃ij ] = 0 and Var(H̃ij) ≤ σ2, which
coincides with the case obeying Conditions 1-3, 4(a) in Assumption 1.

As already mentioned in Section 4.3, everything boils down to controlling |a>Hsu?| for s ≥ 1. This is
accomplished via the following lemma.

Lemma 5 (Bounding higher-order terms). Consider any fixed unit vector a ∈ Rn and any positive
integers s, k satisfying Bsk ≤ 2 and nσ2sk ≤ 2. Under the assumptions of Theorem 3,

∣∣∣E
[(
a>Hsu?

)k]∣∣∣ ≤ sk

2
max

{
(Bsk)

sk
,
(
2nσ2sk

)sk/2}
(√

µ

n

)k
. (32)
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Proof. The proof of Lemma 5 is combinatorial in nature, which we defer to Appendix C.

Remark 6. A similar result in (Tao, 2013, Lemma 2.3) has studied the bilinear forms of the high order
terms of an i.i.d. random matrix, with a few distinctions. First of all, Tao (2013) assumes that each entry
of the noise matrix is i.i.d. and has finite fourth moment (if the noise variance is rescaled to be 1); these
assumptions break in examples like matrix completion. Moreover, Tao (2013) focuses on the case with k = 2,
and does not lead to high-probability bounds (which are crucial for, e.g. entrywise error control).

Using Markov’s inequality and the union bound, we can translate Lemma 5 into a high probability bound
as follows.

Corollary 4. Under the assumptions of Lemma 5, there exists some universal constant c2 > 0 such that

∣∣a>Hsu?
∣∣ ≤

(
c2 max

{
B log n,

√
nσ2 log n

})s√µ

n
, ∀s ≤ 20 log n

with probability 1−O(n−10).

Proof. See Appendix F.

In addition, in view of Lemma 1 and the condition (14), one has

‖H‖ . max
{
B log n,

√
nσ2 log n

}
< 1/10 (33)

with probability 1−O(n−10), which together with Lemma 2 implies λ ≥ 3‖H‖. This further leads to
∑

s:s≥20 logn

(‖H‖
λ

)s
≤ ‖H‖

λ

∑

s:s≥20 logn−1

(‖H‖
λ

)s
≤ ‖H‖

λ

∑

s:s≥20 logn−1

1

3s

. max
{
B log n,

√
nσ2 log n

}
· n−10.

Putting the above bounds together and using the fact that λ is real-valued and λ ≥ 1/2 (cf. Lemma 2),
we have

∣∣∣∣a>
(
u− u?>u

λ
u?
)∣∣∣∣ =

∣∣∣∣∣
u?>u
λ

+∞∑

s=1

a>Hsu?

λs

∣∣∣∣∣

.
20 logn∑

s=1

1

λs
∣∣a>Hsu?

∣∣+

+∞∑

s=20 logn

(‖H‖
λ

)s

≤
√
µ

n

20 logn∑

s=1

(
2c2 max

{
B log n,

√
nσ2 log n

})s
+

max
{
B log n,

√
nσ2 log n

}

n10

.max
{
B log n,

√
nσ2 log n

}√µ

n
,

as long as max
{
B log n,

√
nσ2 log n

}
is sufficiently small. Here, the last line also uses the fact that µ ≥ 1

(and hence
√
µ/n� n−10). This concludes the proof.

5 Extension: perturbation analysis for the rank-r case

5.1 Eigenvalue perturbation for the rank-r case
The eigenvalue perturbation analysis in Section 4 can be extended to accommodate the case where M? is
symmetric and rank-r, as detailed in this section. As before, assume that the r non-zero eigenvalues of M?

obey λ?max =
∣∣λ?1
∣∣ ≥ · · · ≥

∣∣λ?r
∣∣ = λ?min. Once again, we start with a master bound.
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Theorem 4 (Perturbation of linear forms of eigenvectors (rank-r)). Consider a rank-r symmetric
matrix M? ∈ Rn×n with incoherence parameter µ. Define κ , λ?max/λ

?
min. Suppose that

max
{
σ
√
n log n,B log n

}

λ?max

≤ c1
κ

(34)

for some sufficiently small constants c1 > 0. Then for any fixed unit vector a ∈ Rn and any 1 ≤ l ≤ r, with
probability at least 1−O(n−10) one has

∣∣∣∣∣a
>
(
ul −

r∑

j=1

λ?ju
?>
j ul

λl
u?j

)∣∣∣∣∣ . max
{
σ
√
n log n,B log n

} κ

|λl|

√
µr

n
(35)

.
max

{
σ
√
n log n,B log n

}

λ?max

κ2

√
µr

n
. (36)

This result allows us to control the perturbation of the linear form of eigenvectors. The perturbation
upper bound grows as either the rank r or the condition number κ increases.

One of the most important consequences of Theorem 4 is a refinement of the Bauer-Fike theorem con-
cerning eigenvalue perturbations as follows.

Corollary 5. Consider the lth (1 ≤ l ≤ r) eigenvalue λl of M . Under the assumptions of Theorem 4, with
probability at least 1−O(n−10), there exists 1 ≤ j ≤ r such that

∣∣λl − λ?j
∣∣ . max

{
σ
√
n log n,B log n

}
κr

√
µ

n
, (37)

provided that
max

{
σ
√
n log n,B log n

}

λ?max

≤ c1/κ2 (38)

for some sufficiently small constant c1 > 0.

Proof. See Appendix G.

In comparison, the Bauer-Fike theorem (Lemma 2) together with Lemma 1 gives a perturbation bound

∣∣λl − λ?j
∣∣ ≤ ‖H‖ . max

{
σ
√
n log n,B log n

}
for some 1 ≤ j ≤ r. (39)

For the low-rank case where r � √n, the eigenvalue perturbation bound derived in Corollary 5 can be much
sharper than the Bauer-Fike theorem.

Another result that comes from Theorem 4 is the following bound that concerns linear forms of the
eigen-subspace.

Corollary 6. Under the same setting of Theorem 4, with probability 1−O(n−9) we have

∥∥a>U
∥∥

2
. κ
√
r
∥∥a>U?

∥∥
2

+
max

{
σ
√
n log n,B log n

}

λ?max

κ2r

√
µ

n
. (40)

Proof. See Appendix H.

Consequently, by taking a = ei (1 ≤ i ≤ n) in Corollary 6, we arrive at the following statement regarding
the alternative definition of the incoherence of the eigenvector matrix U (see Remark 2).

Corollary 7. Under the same setting of Theorem 4, with probability 1−O(n−8) we have

‖U‖2,∞ . κr

√
µ

n
. (41)
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Proof. Given that ‖U‖2,∞ = max1≤i≤n
∥∥e>i U

∥∥
2
and recalling our assumption implies ‖U?‖2,∞ ≤

√
µr/n,

we can invoke Corollary 6 and the union bound to derive the advertised entrywise bounds.

Remark 7. The eigenvector matrix is often employed to form a reasonably good initial guess for several
nonconvex statistical estimation problems Keshavan et al. (2010), and the above kind of incoherence property
is crucial in guaranteeing fast convergence of the subsequent nonconvex iterative refinement procedures Ma
et al. (2019).

Unfortunately, these results fall short of providing simple perturbation bounds for the eigenvectors; in
other words, the above-mentioned bounds do not imply the size of the difference between U and U?. The
challenge arises in part due to the lack of orthonormality of the eigenvectors when dealing with asymmetric
matrices. Analyzing the eigenspace perturbation for the general rank-r case will likely require new analysis
techniques, which we leave for future work. There is, however, some special case in which we can develop
eigenvector perturbation theory, as detailed in the next subsection.

Remark 8. The theory for the rank-r case has recently been significantly improved; see our follow-up work
Cheng et al. (2020) for details.

5.2 Application: spectral estimation when M ? is asymmetric and rank-1
In some scenarios, the above general rank results allow us to improve spectral estimation when M? is
asymmetric. Consider the case where M? = λ?u?v?> ∈ Rn1×n2 is an asymmetric rank-1 matrix with
leading singular value λ?. Suppose that we observe two independent noisy copies of M?, namely,

M1 = M? + H1, M2 = M? + H2, (42)

where H1 and H2 are independent noise matrices. The goal is to estimate the singular value and singular
vectors of M? from M1 and M2.

We attempt estimation via the standard dilation trick (e.g. Tao (2012)). This consists of embedding the
matrices of interest within a larger block matrix

M?
d ,

[
0 M?

M?> 0

]
, Md ,

[
0 M1

M>
2 0

]
. (43)

Here, we place M1 and M2 in two different subblocks, in order to “asymmetrize” the dilation matrix. The
rationale is that M?

d is a rank-2 symmetric matrix with exactly two nonzero eigenvalues

λ1(M?
d ) = λ? and λ2(M?

d ) = −λ?,
whose corresponding eigenvectors are given by

1√
2

(
u?

v?

)
and

1√
2

(
u?

−v?
)
,

respectively. This motivates us to perform eigen-decomposition of Md, and use the top-2 eigenvalues and
eigenvectors to estimate λ?, u? and v?, respectively.

Eigenvalue perturbation analysis. As an immediate consequence of Corollary 5, the two leading eigen-
values of Md provide fairly accurate estimates of the leading singular value λ? of M?, as stated below.

Corollary 8. Assume M? ∈ Rn1×n2 is a rank-1 matrix with leading singular value λ? and incoherence
parameter µ. Define n , n1 + n2. Suppose that λd1 ≥ λd2 are the two leading eigenvalues of Md (cf. (43)),
and that H1 and H2 are independent and satisfy Assumption 1. Then with probability at least 1−O(n−10),

max
{∣∣λd1 − λ?

∣∣,
∣∣λd2 + λ?

∣∣} . max
{
σ
√
n log n,B log n

}√µ

n
, (44)

provided that
max

{
σ
√
n log n,B log n

}

λ?
≤ c1 (45)

for some sufficiently small constant c1 > 0.
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Proof. To begin with, it follows from Corollary 5 that both λd1 and λd2 are close to either λ? or −λ?. Repeating
similar arguments as in the proof of Lemma 2 (which we omit here), we can immediately show the separation
between these two eigenvalues, namely, λd1 (resp. λd2) is close to λ? (resp. −λ?).

Eigenvector perturbation analysis. We then move on to studying the eigenvector perturbation bounds.
Specifically, denote by ud

1 and ud
2 the eigenvectors of Md associated with its two leading eigenvalues λd1 and

λd2, respectively. Without loss of generality, we assume that λd1 ≥ λd2. If we write

udilation
1 =

(
ud

1,1

ud
1,2

)
with ud

1,1 ∈ Rn1 ,ud
1,2 ∈ Rn2 ,

then we can employ ud
1,1 and ud

1,2 to estimate u? and v? after proper normalization, namely,

u ,
ud

1,1∥∥ud
1,1

∥∥
2

, v ,
ud

1,2

‖ud
1,2‖2

. (46)

The following theorem develops error bounds for both u and v, which we establish in Appendix I. Here, we
denote min ‖x± y‖2 = min{‖x− y‖2, ‖x + y‖2}, and min ‖x± y‖∞ = min{‖x− y‖∞, ‖x + y‖∞}.
Theorem 5. Suppose M? = λ?u?v?> ∈ Rn1×n2 is a rank-1 matrix with leading singular value λ? and
incoherence parameter µ, where ‖u?‖2 = ‖v?‖2 = 1. Define n , n1 + n2, and fix any unit vectors a ∈ Rn1

and b ∈ Rn2 . Then with probability at least 1−O(n−10), the estimates u and v (cf. (46)) obey

max
{

min ‖u± u?‖2, min ‖v ± v?‖2
}
.

max
{
σ
√
n log n,B log n

}

λ?
, (47a)

max
{

min ‖u± u?‖∞ , min ‖v ± v?‖∞
}
.

max
{
σ
√
n log n,B log n

}

λ?

√
µ

n
, (47b)

min
{∣∣a>(u− u?)

∣∣,
∣∣a>(u + u?)

∣∣} .
(
|a>u?|+

√
µ

n

)
max

{
σ
√
n log n,B log n

}

λ?
, (47c)

min
{∣∣b>(v − v?)

∣∣,
∣∣b>(v + v?)

∣∣} .
(
|b>v?|+

√
µ

n

)
max

{
σ
√
n log n,B log n

}

λ?
, (47d)

provided that there exists some some sufficiently small constant c1 > 0 such that

max
{
σ
√
n log n,B log n

}

λ?
≤ c1. (48)

Similar to the symmetric rank-1 case, the estimation errors of the estimates u and v are well-controlled
in any deterministic direction (e.g. the entrywise errors are well-controlled). This allows us to complete the
theory for the case when M? is a real-valued and rank-1 matrix.

Further, we conduct numerical experiments for matrix completion when M? is a rank-1 and asymmetric
matrix in Fig. 4. Here, we suppose that at most 1 sample is observed for each entry, and we estimate
the singular value and singular vectors of M? via the above-mentioned dilation trick, coupled with the
asymmetrization procedure discussed in Section J. The numerical performance confirms that the proposed
technique outperforms vanilla SVD in spectral estimation.

Finally, we remark that the asymptotic behavior of the eigenvalues of asymmetric random matrices has
been extensively explored in the physics literature (e.g. (Sommers et al., 1988; Khoruzhenko, 1996; Brezin
and Zee, 1998; Chalker and Mehlig, 1998; Feinberg and Zee, 1997; Lytova and Tikhomirov, 2018)). Their
focus, however, has largely been to pin down the asymptotic density of the eigenvalues, similar to the semi-
circle law in the symmetric case. Nevertheless, a sharp perturbation bound for the leading eigenvalue —
particularly for the low-rank case — is beyond their reach. A few recent papers began to explore the locations
of eigenvalue outliers that fall outside the bulk predicted by the circular law Tao (2013); Rajagopalan (2015);
Benaych-Georges and Rochet (2016); Bordenave and Capitaine (2016). The results reported therein either
do not focus on obtaining the right convergence rate (e.g. providing only a bound like |λ − λ?| = o(|λ?|))
or are restricted to a special family of ground truth (e.g. the one with a diagonal block equal to identity)
or i.i.d. noise. As a result, these prior results are insufficient to demonstrate the power and benefits of the
eigen-decomposition method in the presence of data asymmetry.

17



200 400 600 800 1000 1200 1400 1600 1800 2000
n

10-1

100

j<
!
<

?
j

Asymmetrization + Eigen-Decomposition
SVD

E
ig

en
ve

ct
or

p
er

tu
rb

at
io

n
an

al
ys

is
.

W
e

th
en

m
ov

e
on

to
st

ud
yi

ng
th

e
ei

ge
nv

ec
to

r
pe

rt
ur

ba
ti

on
bo

un
ds

.
Sp

ec
ifi

ca
lly

,d
en

ot
e

by
u

d 1
an

d
u

d 2
th

e
ei

ge
nv

ec
to

rs
of

M
d

as
so

ci
at

ed
w

it
h

it
s

tw
o

le
ad

in
g

ei
ge

nv
al

ue
s
�

d 1
an

d
�

d 2
,r

es
pe

ct
iv

el
y.

W
it

ho
ut

lo
ss

of
ge

ne
ra

lit
y,

w
e

as
su

m
e

th
at
�

d 1
�
�

d 2
.

If
w

e
w

ri
te

u
d
il
a
ti
o
n

1
=

✓ u
d 1
,1

u
d 1
,2

◆
w

it
h

u
d 1
,1
2

R
n

1
,u

d 1
,2
2

R
n

2
,

th
en

w
e

ca
n

em
pl

oy
u

d 1
,1

an
d

u
d 1
,2

to
es

ti
m

at
e

u
?

an
d

v
?

af
te

r
pr

op
er

no
rm

al
iz

at
io

n,
na

m
el

y,

u
,

u
d 1
,1

� � u
d 1
,1

� � 2

,
v
,

u
d 1
,2

ku
d 1
,2
k 2

.
(4

6)

T
he

fo
llo

w
in

g
th

eo
re

m
de

ve
lo

ps
er

ro
r

bo
un

ds
fo

r
bo

th
u

an
d

v
,w

hi
ch

w
e

es
ta

bl
is

h
in

A
pp

en
di

x
I.

H
er

e,
w

e
de

no
te

m
in

kx
±

y
k 2

=
m

in
{k

x
�

y
k 2

,k
x

+
y
k 2

},
an

d
m

in
kx

±
y
k 1

=
m

in
{k

x
�

y
k 1

,k
x

+
y
k 1

}.

T
h
eo

re
m

5.
Su

pp
os

e
M

?
=
�
?
u
?
v
?
>

2
R

n
1
⇥

n
2

is
a

ra
nk

-1
m

at
ri

x
w
it
h

le
ad

in
g

si
ng

ul
ar

va
lu

e
�
?

an
d

in
co

he
re

nc
e

pa
ra

m
et

er
µ
,
w
he

re
ku

?
k 2

=
kv

?
k 2

=
1.

D
efi

ne
n
,

n
1

+
n

2
,
an

d
fix

an
y

un
it

ve
ct

or
s

a
2

R
n

1

an
d

b
2

R
n

2
.

T
he

n
w
it
h

pr
ob

ab
ili

ty
at

le
as

t
1
�

O
(n

�
1
0
),

th
e

es
ti
m

at
es

u
an

d
v

(c
f.

(4
6)

)
ob

ey

m
ax

� m
in
ku

±
u
?
k 2

,
m

in
kv

±
v
?
k 2
 
.

m
ax

� �
p

n
lo

g
n
,B

lo
g

n
 

�
?

,
(4

7a
)

m
ax

� m
in

ku
±

u
?
k 1

,
m

in
kv

±
v
?
k 1

 
.

m
ax

� �
p

n
lo

g
n
,B

lo
g

n
 

�
?

r
µ n

,
(4

7b
)

m
in
�� �

a
>

(u
�

u
?
)� � ,

� � a
>

(u
+

u
?
)� � 

.
✓ |a

>
u
?
|+

r
µ n

◆
m

ax
� �

p
n

lo
g

n
,B

lo
g

n
 

�
?

,
(4

7c
)

m
in
�� �

b
>

(v
�

v
?
)� � ,

� � b
>

(v
+

v
?
)� � 

.
✓ |b

>
v
?
|+

r
µ n

◆
m

ax
� �

p
n

lo
g

n
,B

lo
g

n
 

�
?

,
(4

7d
)

pr
ov

id
ed

th
at

th
er

e
ex

is
ts

so
m

e
so

m
e

su
ffi

ci
en

tly
sm

al
lc

on
st

an
t

c 1
>

0
su

ch
th

at

m
ax

� �
p

n
lo

g
n
,B

lo
g

n
 

�
?


c 1

.
(4

8)

Si
m

ila
r

to
th

e
sy

m
m

et
ri

c
ra

nk
-1

ca
se

,t
he

es
ti
m

at
io

n
er

ro
rs

of
th

e
es

ti
m

at
es

u
an

d
v

ar
e

w
el

l-c
on

tr
ol

le
d

in
an

y
de

te
rm

in
is

ti
c

di
re

ct
io

n
(e

.g
.t

he
en

tr
yw

is
e

er
ro

rs
ar

e
w

el
l-c

on
tr

ol
le

d)
.

T
hi

s
al

lo
w

s
us

to
co

m
pl

et
e

th
e

th
eo

ry
fo

r
th

e
ca

se
w

he
n

M
?

is
a

re
al

-v
al

ue
d

an
d

ra
nk

-1
m

at
ri

x.

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

n

10
-1

10
0

j<!<
?
j

As
ym

m
et

riz
at

io
n 

+ 
Ei

ge
n-

D
ec

om
po

si
tio

n
SV

D

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

p

10
-3

10
-2

10
-1

10
0

j<!<
?
j

As
ym

m
et

riz
at

io
n 

+ 
Ei

ge
n-

D
ec

om
po

si
tio

n
SV

D

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

n

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

1.
1

minfku'u
?
k1g+minfkv'v

?
k1g

As
ym

m
et

riz
at

io
n 

+ 
Ei

ge
n-

D
ec

om
po

si
tio

n
SV

D

(a
)

ei
ge

nv
al

ue
pe

rt
ur

ba
ti

on
vs

.n
(b

)
ei

ge
nv

al
ue

pe
rt

ur
ba

ti
on

vs
.p

(c
)
` 1

ei
ge

nv
ec

to
r

pe
rt

ur
ba

ti
on

F
ig

ur
e

4:
N

um
er

ic
al

ex
pe

ri
m

en
ts

fo
r

ra
nk

-1
m

at
ri

x
co

m
pl

et
io

n,
w

he
re

M
?

=
u
?
v
?
>
2

R
n

1
⇥

n
2

is
ra

nd
om

ly
ge

ne
ra

te
d

w
it

h
le

ad
in

g
si

ng
ul

ar
va

lu
e
�
?

=
1.

Le
t

n
=

n
1

=
2n

2
.

E
ac

h
en

tr
y

is
ob

se
rv

ed
in

de
pe

nd
en

tl
y

w
it

h
pr

ob
ab

ili
ty

p
.

(a
)

|�
�
�
?
|v

s.
n

w
it

h
p

=
3

lo
g

n
/

n
;

(b
)

|�
�
�
?
|v

s.
p

w
it

h
n

=
10

00
;

(c
)
` 1

ei
ge

nv
ec

to
r

es
ti
m

at
io

n
er

ro
r

vs
.
n

w
it

h
p

=
3

lo
g

n
/

n
.

T
he

bl
ue

(r
es

p.
re

d)
lin

es
re

pr
es

en
t

th
e

av
er

ag
e

er
ro

rs
ov

er
10

0
in

de
pe

nd
en

t
tr

ia
ls

us
in

g
us

in
g

th
e

ei
ge

n-
de

co
m

po
si

ti
on

(r
es

p.
SV

D
)

ap
pr

oa
ch

ap
pl

ie
d

to
M

d
il
a
ti
o
n

(r
es

p.
M

).

17

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p

10-3

10-2

10-1

100

j<
!
<

?
j

Asymmetrization + Eigen-Decomposition
SVD

E
ig

en
ve

ct
or

p
er

tu
rb

at
io

n
an

al
ys

is
.

W
e

th
en

m
ov

e
on

to
st

ud
yi

ng
th

e
ei

ge
nv

ec
to

r
pe

rt
ur

ba
ti

on
bo

un
ds

.
Sp

ec
ifi

ca
lly

,d
en

ot
e

by
u

d 1
an

d
u

d 2
th

e
ei

ge
nv

ec
to

rs
of

M
d

as
so

ci
at

ed
w

it
h

it
s

tw
o

le
ad

in
g

ei
ge

nv
al

ue
s
�

d 1
an

d
�

d 2
,r

es
pe

ct
iv

el
y.

W
it

ho
ut

lo
ss

of
ge

ne
ra

lit
y,

w
e

as
su

m
e

th
at
�

d 1
�
�

d 2
.

If
w

e
w

ri
te

u
d
il
a
ti
o
n

1
=

✓ u
d 1
,1

u
d 1
,2

◆
w

it
h

u
d 1
,1
2

R
n

1
,u

d 1
,2
2

R
n

2
,

th
en

w
e

ca
n

em
pl

oy
u

d 1
,1

an
d

u
d 1
,2

to
es

ti
m

at
e

u
?

an
d

v
?

af
te

r
pr

op
er

no
rm

al
iz

at
io

n,
na

m
el

y,

u
,

u
d 1
,1

� � u
d 1
,1

� � 2

,
v
,

u
d 1
,2

ku
d 1
,2
k 2

.
(4

6)

T
he

fo
llo

w
in

g
th

eo
re

m
de

ve
lo

ps
er

ro
r

bo
un

ds
fo

r
bo

th
u

an
d

v
,w

hi
ch

w
e

es
ta

bl
is

h
in

A
pp

en
di

x
I.

H
er

e,
w

e
de

no
te

m
in

kx
±

y
k 2

=
m

in
{k

x
�

y
k 2

,k
x

+
y
k 2

},
an

d
m

in
kx

±
y
k 1

=
m

in
{k

x
�

y
k 1

,k
x

+
y
k 1

}.

T
h
eo

re
m

5.
Su

pp
os

e
M

?
=
�
?
u
?
v
?
>

2
R

n
1
⇥

n
2

is
a

ra
nk

-1
m

at
ri

x
w
it
h

le
ad

in
g

si
ng

ul
ar

va
lu

e
�
?

an
d

in
co

he
re

nc
e

pa
ra

m
et

er
µ
,
w
he

re
ku

?
k 2

=
kv

?
k 2

=
1.

D
efi

ne
n
,

n
1

+
n

2
,
an

d
fix

an
y

un
it

ve
ct

or
s

a
2

R
n

1

an
d

b
2

R
n

2
.

T
he

n
w
it
h

pr
ob

ab
ili

ty
at

le
as

t
1
�

O
(n

�
1
0
),

th
e

es
ti
m

at
es

u
an

d
v

(c
f.

(4
6)

)
ob

ey

m
ax

� m
in
ku

±
u
?
k 2

,
m

in
kv

±
v
?
k 2
 
.

m
ax

� �
p

n
lo

g
n
,B

lo
g

n
 

�
?

,
(4

7a
)

m
ax

� m
in

ku
±

u
?
k 1

,
m

in
kv

±
v
?
k 1

 
.

m
ax

� �
p

n
lo

g
n
,B

lo
g

n
 

�
?

r
µ n

,
(4

7b
)

m
in
�� �

a
>

(u
�

u
?
)� � ,

� � a
>

(u
+

u
?
)� � 

.
✓ |a

>
u
?
|+

r
µ n

◆
m

ax
� �

p
n

lo
g

n
,B

lo
g

n
 

�
?

,
(4

7c
)

m
in
�� �

b
>

(v
�

v
?
)� � ,

� � b
>

(v
+

v
?
)� � 

.
✓ |b

>
v
?
|+

r
µ n

◆
m

ax
� �

p
n

lo
g

n
,B

lo
g

n
 

�
?

,
(4

7d
)

pr
ov

id
ed

th
at

th
er

e
ex

is
ts

so
m

e
so

m
e

su
ffi

ci
en

tly
sm

al
lc

on
st

an
t

c 1
>

0
su

ch
th

at

m
ax

� �
p

n
lo

g
n
,B

lo
g

n
 

�
?


c 1

.
(4

8)

Si
m

ila
r

to
th

e
sy

m
m

et
ri

c
ra

nk
-1

ca
se

,t
he

es
ti
m

at
io

n
er

ro
rs

of
th

e
es

ti
m

at
es

u
an

d
v

ar
e

w
el

l-c
on

tr
ol

le
d

in
an

y
de

te
rm

in
is

ti
c

di
re

ct
io

n
(e

.g
.t

he
en

tr
yw

is
e

er
ro

rs
ar

e
w

el
l-c

on
tr

ol
le

d)
.

T
hi

s
al

lo
w

s
us

to
co

m
pl

et
e

th
e

th
eo

ry
fo

r
th

e
ca

se
w

he
n

M
?

is
a

re
al

-v
al

ue
d

an
d

ra
nk

-1
m

at
ri

x.

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

n

10
-1

10
0

j<!<
?
j

As
ym

m
et

riz
at

io
n 

+ 
Ei

ge
n-

D
ec

om
po

si
tio

n
SV

D

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

p

10
-3

10
-2

10
-1

10
0

j<!<
?
j

As
ym

m
et

riz
at

io
n 

+ 
Ei

ge
n-

D
ec

om
po

si
tio

n
SV

D

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

n

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

1.
1

minfku'u
?
k1g+minfkv'v

?
k1g

As
ym

m
et

riz
at

io
n 

+ 
Ei

ge
n-

D
ec

om
po

si
tio

n
SV

D

(a
)

ei
ge

nv
al

ue
pe

rt
ur

ba
ti

on
vs

.n
(b

)
ei

ge
nv

al
ue

pe
rt

ur
ba

ti
on

vs
.p

(c
)
` 1

ei
ge

nv
ec

to
r

pe
rt

ur
ba

ti
on

F
ig

ur
e

4:
N

um
er

ic
al

ex
pe

ri
m

en
ts

fo
r

ra
nk

-1
m

at
ri

x
co

m
pl

et
io

n,
w

he
re

M
?

=
u
?
v
?
>
2

R
n

1
⇥

n
2

is
ra

nd
om

ly
ge

ne
ra

te
d

w
it

h
le

ad
in

g
si

ng
ul

ar
va

lu
e
�
?

=
1.

Le
t

n
=

n
1

=
2n

2
.

E
ac

h
en

tr
y

is
ob

se
rv

ed
in

de
pe

nd
en

tl
y

w
it

h
pr

ob
ab

ili
ty

p
.

(a
)

|�
�
�
?
|v

s.
n

w
it

h
p

=
3

lo
g

n
/

n
;

(b
)

|�
�
�
?
|v

s.
p

w
it

h
n

=
10

00
;

(c
)
` 1

ei
ge

nv
ec

to
r

es
ti
m

at
io

n
er

ro
r

vs
.
n

w
it

h
p

=
3

lo
g

n
/

n
.

T
he

bl
ue

(r
es

p.
re

d)
lin

es
re

pr
es

en
t

th
e

av
er

ag
e

er
ro

rs
ov

er
10

0
in

de
pe

nd
en

t
tr

ia
ls

us
in

g
us

in
g

th
e

ei
ge

n-
de

co
m

po
si

ti
on

(r
es

p.
SV

D
)

ap
pr

oa
ch

ap
pl

ie
d

to
M

d
il
a
ti
o
n

(r
es

p.
M

).

17

200 400 600 800 1000 1200 1400 1600 1800 2000

n

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
1.1

m
in

fk
u
'

u
?
k 1

g
+

m
in

fk
v
'

v
?
k 1

g

Asymmetrization + Eigen-Decomposition
SVD

(a) eigenvalue perturbation vs. n (b) eigenvalue perturbation vs. p (c) `∞ eigenvector perturbation

Figure 4: Numerical experiments for rank-1 matrix completion, where M? = u?v?> ∈ Rn1×n2 is randomly
generated with leading singular value λ? = 1. Let n = n1 = 2n2. Each entry is observed independently with
probability p. (a) |λ − λ?| vs. n with p = 3 log n /n; (b) |λ − λ?| vs. p with n = 1000; (c) `∞ eigenvector
estimation error vs. n with p = 3 log n /n. The blue (resp. red) lines represent the average errors over 100
independent trials using using the eigen-decomposition (resp. SVD) approach applied to Mdilation (resp. M).

5.3 Proof of Theorem 4
Without loss of generality, we shall assume λ?max = λ?1 = 1 throughout the proof. To begin with, Lemma 2
implies that for all 1 ≤ l ≤ r,

|λl| ≥ |λ?min| − ‖H‖ > 1/(2κ) > ‖H‖ (49)

as long as ‖H‖ < 1/(2κ). In view of the Neumann trick (Theorem 2), we can derive
∣∣∣∣∣a
>ul −

r∑

j=1

λ?ju
?>
j ul

λl
a>u?j

∣∣∣∣∣ =

∣∣∣∣∣
r∑

j=1

λ?j
λl

(
u?>j ul

)
{ ∞∑

s=1

1

λsl
a>Hsu?j

}∣∣∣∣∣

≤
(

r∑

j=1

∣∣λ?j
∣∣

|λl|
∣∣u?>j ul

∣∣
){

max
1≤j≤r

∞∑

s=1

1

|λl|s
∣∣a>Hsu?j

∣∣
}

≤

√√√√r

r∑

j=1

∣∣u?>j ul
∣∣2
{

max
1≤j≤r

∣∣λ?j
∣∣

|λl|

}{
max

1≤j≤r

∞∑

s=1

1

|λl|s
∣∣a>Hsu?j

∣∣
}

≤ √r · 1

|λl|
·
{

max
1≤j≤r

∞∑

s=1

1

|λl|s
∣∣a>Hsu?j

∣∣
}
, (50)

where the third line follows since
∑r
j=1

∣∣u?>j ul
∣∣2 ≤ ‖ul‖22 = 1, and the last inequality makes use of (49).

Apply Corollary 4 to reach

(50) ≤
√
r

|λl|
∞∑

s=1

(
2c2κmax

{
B log n,

√
nσ2 log n

})s√µ

n

. κ

|λl|
max

{
B log n,

√
nσ2 log n

}√µr

n

. κ2 max
{
B log n,

√
nσ2 log n

}√µr

n
,

with the proviso that |λl| > 1/(2κ) and max
{
B log n,

√
nσ2 log n

}
≤ c1/κ for some sufficiently small

constant c1 > 0. The condition |λl| > 1/(2κ) follows immediately by combining Lemma 2, Lemma 1
and the condition (34).
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Figure 5: Numerical experiments for the spiked covariance model, where the sample vectors are zero-mean
Gaussian vectors with covariance matrix Σ? (cf. (51)). We plot |λ − λ?| vs. n with d = n / 10. The blue
(resp. red) lines represent the average errors over 100 independent trials when λ is the leading eigenvalue of
Σ̂asym (resp. Σ̂).

6 Discussions
In this paper, we demonstrate the remarkable advantage of eigen-decomposition over SVD in the presence of
asymmetric noise matrices. This is in stark contrast to conventional wisdom, which is generally not in favor
of eigen-decomposition for asymmetric matrices. Our results only reflect the tip of an iceberg, and there are
many outstanding issues left answered. We conclude the paper with a few future directions.

Sharper eigenvalue perturbation bounds for the rank-r case. Our current results in Section 5 provide
an eigenvalue perturbation bound on the order of r/

√
n, assuming the truth is rank-r. However, numerical

experiments suggest that the dependency on r might be improvable. It would be interesting to see whether
further theoretical refinement is possible, e.g. whether it is possible to improve it to O(

√
r/n).

Eigenvector perturbation bounds for the rank-r case. As mentioned before, the current theory falls
short of providing eigenvector perturbation bounds for the general rank-r case. The main difficulty lies in
the lack of orthogonality of the eigenvectors of the observed matrix M . Nevertheless, when the size of the
noise is not too large, it is possible to establish certain near-orthogonality of the eigenvectors, which might
in turn lead to sharp control of eigenvector perturbation.

A challenging signal-to-noise ratio regime. Take the rank-1 case for example: the present work focuses
on the regime where ‖H‖ . ‖M?‖/√log n, and it is known that spectral methods fail to yield reliable
estimation if ‖H‖ � ‖M?‖. There is, however, a “gray” region (which includes, for example, the case
with ‖H‖ ≈ ‖M?‖) that has not been addressed. Developing non-asymptotic yet informative perturbation
bounds for this regime is likely very challenging and requires new analysis techniques, which we leave for
future investigation.

Correlated noise. The current theoretical development relies heavily on the assumption that the noise
matrix H contains independent random entries. There is no shortage of examples where the noise matrix is
asymmetric but is not composed of independent entries. For instance, in blind deconvolution Li et al. (2018),
the noise matrix is a sum of independent asymmetric matrices. Can we develop eigenvalue perturbation
theory for this class of noise?

Statistical inference of eigenvalues and eigenvectors. In various applications like network analysis and
inference, one might be interested in determining the (asymptotic) eigenvalue and eigenvector distributions
of a random data matrix, in order to produce valid confidence intervals Johnstone (2001); Bai and Yao
(2008); Cai et al. (2017); Cape et al. (2018); Xia (2018); Bao et al. (2018); Chen et al. (2019c). Can we use
the current framework to characterize the distributions of the leading eigenvalues as well as certain linear
forms of the eigenvectors of M when the noise matrix is non-symmetric?

Asymmetrization for other applications. Given the abundant applications of spectral estimation, our
findings are likely to be useful for other matrix eigenvalue problems and might extend to the tensor case Zhang
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and Xia (2018); Cai et al. (2019). Here, we conclude the paper with an example in covariance estimation
(Baik and Silverstein, 2006; Fan et al., 2018). Imagine that we observe a collection of n independent Gaussian
vectors X1, · · · ,Xn ∈ Rd, which have mean zero and covariance matrix

Σ? = vv> + Id (51)

with v being a unit vector. This falls under the category of the spiked covariance model (Johnstone and Lu,
2009). One strategy to estimate the spectral norm λ? = 2 of Σ? is to look at the spectrum of the sample
covariance matrix Σ̂ = 1

n

∑n
i=1 XiX

>
i . Motivated by the results of this paper, we propose an alternative

strategy by looking at the following asymmetrized sample covariance matrix

Σ̂asym =
2

n

(∑n/2

i=1
Upper

(
XiX

>
i

)
+
∑n

i=n/2+1
Lower

(
XiX

>
i

) )
, (52)

where Upper(·) (resp. Lower(·)) extracts out the upper (resp. lower) triangular part of the matrix, including
(resp. excluding) the diagonal entries. As can be seen from Fig. 5, the largest eigenvalue of the asymmetrized
Σ̂asym is much closer to the true spectral norm of Σ?, compared to the largest singular value of the sample
covariance matrix Σ̂. We leave the theoretical understanding of such findings to future investigation.
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A Proofs for preliminary facts

A.1 Proof of Lemma 2
Without loss of generality, suppose the leading eigenvalue of M? is 1.

(1) We start by proving the rank-1 case, in which the eigenvalues of M? are either 0 or 1. Theorem 1
immediately implies that

Λ(M) ⊆ B (1, ‖H‖) ∪ B (0, ‖H‖) , (53)

where Λ(M) is the set of eigenvalues of M , and B(z, r) , {x ∈ C : |x − z| ≤ r} denotes a disk of radius r
centered at z.

To establish the lemma, our aim is to show that there is exactly one eigenvalue of M — denoted by λ
— lying in the disk B (1, ‖H‖), and it has multiplicity 1. If this is true, then the assumption ‖H‖ < 1/2
indicates that |λ| ≥ 1−‖H‖ > ‖H‖ ≥ z for any z ∈ B(0, ‖H‖), and hence λ must be the leading eigenvalue.
Furthermore, since M is a real-valued matrix, both λ and its complex conjugate λ are eigenvalues of M .
However, if λ 6= λ, then both of these two eigenvalues fall within B(1, ‖H‖), resulting in contradiction. As a
result, one necessarily has λ = λ and both of them are real-valued. A similar argument demonstrates that
the eigenvector u associated with λ is also real-valued.

We then justify the existence and uniqueness of an eigenvalue in B (1, ‖H‖). Denote Λ(M) = {λ1, · · · , λn},
and define a set of auxiliary matrices

Mt = M? + tH, 0 ≤ t ≤ 1.

Similar to (53), one has
Λ(Mt) ⊆ B (1, t ‖H‖) ∪ B (0, t ‖H‖) . (54)

Recognizing that the set of eigenvalues of Mt depends continuously on t (e.g. (Embree and Trefethen, 2001,
Theorem 6)), we can write

Λ(Mt) = {λ1(t), λ2(t), · · · , λn(t)} , (55)

with each λj(t), 1 ≤ j ≤ n being a continuous function in t. Meanwhile, as long as ‖H‖ < 1/2 and 0 ≤ t ≤ 1,
the two disks B (1, t ‖H‖) and B (0, t ‖H‖) are always disjoint. Thus, the continuity of the spectrum (w.r.t. t)
requires λj(t) to always stay within the same disk where λj(0) ∈ {0, 1} lies, namely,

λj(t) ∈ B(λj(0), t ‖H‖). (56)

Given that M? (or M0) has n − 1 eigenvalues equal to 0 and one eigenvalue equal to 1, we establish the
lemma for the rank-1 case.

(2) We now turn to the rank-r case. Repeating the above argument for the rank-1 case, we can immedi-
ately show that: if ‖H‖ < λ?r/2, then (i) there are exactly n− r eigenvalues lying within B(0, ‖H‖); (ii) all
other eigenvalues lie within ∪1≤j≤rB(λ?j , ‖H‖), which are exactly the top-r leading eigenvalues of M . This
concludes the proof.

A.2 Proof of Theorem 2
From the definition of eigenvectors,

(M? + H)ul = λlul, or equivalently,
1

λl
M?ul =

(
I − 1

λl
H
)
ul.

When ‖H‖2 < |λl|, one can invert I − 1
λl
H and use the assumption (5) to reach

ul =
(
I − 1

λl
H
)−1 1

λl
M?ul

=
1

λl

(
I − 1

λl
H

)−1 (∑r

j=1
λ?ju

?
ju

?>
j

)
ul
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=

r∑

j=1

λ?j
λl

(
u?>j ul

)(
I − 1

λl
H

)−1

u?j ,

where the last line follows by rearranging terms. Finally, replacing
(
I − 1

λl
H
)−1 with the Neumann series∑∞

s=0
1
λs
l
Hs, we establish the theorem.

A.3 Proof of Lemma 3
(1) We start with the rank-1 case. Towards this, we resort to the Neumann trick in Theorem 2, which in the
rank-1 case reads

u =
1

λ

(
u?>u

) ∞∑

s=0

(
1

λ
H

)s
u?. (57)

From Lemma 2, we know that λ is real-valued and that λ > 1− ‖H‖ ≥ 3/4 > ‖H‖ under our assumption.
This together with (57) yields

∥∥∥∥u−
u?>u
λ

u?
∥∥∥∥

2

≤ 1

λ

∞∑

s=1

∥∥∥∥
1

λ
H

∥∥∥∥
s

‖u?‖2 =
1

λ

∞∑

s=1

∥∥∥∥
1

λ
H

∥∥∥∥
s

=
‖H‖

λ (λ− ‖H‖) ≤
8

3
‖H‖ , (58)

where the last inequality holds since λ ≥ 3/4 and λ− ‖H‖ ≥ 1− 2‖H‖ ≥ 1/2.
Next, by decomposing u into two orthogonal components u = (u?>u)u? + (u− (u?>u)u?), we obtain

∣∣u?>u
∣∣ =

∥∥(u?>u
)
u?
∥∥

2
=

√
1− ‖u− (u?>u)u?‖22

≥ 1−
∥∥u−

(
u?>u

)
u?
∥∥2

2

≥ 1−
∥∥∥∥u−

u?>u
λ

u?
∥∥∥∥

2

2

(59)

≥ 1− 64

9
‖H‖2 . (60)

The inequality (59) holds since
(
u?>u

)
u? is orthogonal projection of u onto the subspace spanned by u?,

and hence ‖u−
(
u?>u

)
u?‖2 ≤ ‖u− 1

λ

(
u?>u

)
u?‖2.

Finally, (60) together with the fact that u is real-valued (cf. Lemma 2) leads to the advertised bound:

min{‖u− u?‖2, ‖u + u?‖2} =
√
‖u‖22 + ‖u?‖22 − 2

∣∣u?>u
∣∣ ≤ 8

√
2

3
‖H‖.

(2) For the rank-r case, it is seen that for any 1 ≤ l ≤ r,
r∑

j=1

|u?>j ul|2 =
∥∥∥
∑r

j=1

(
u?>j ul

)
u?j

∥∥∥
2

2
= 1−

∥∥∥ul −
∑r

j=1

(
u?>j ul

)
u?j

∥∥∥
2

2

≥ 1−
∥∥∥∥∥ul −

r∑

j=1

λ?ju
?>
j ul

λl
u?j

∥∥∥∥∥

2

2

, (61)

where the inequality arises since
∑r
j=1

(
u?>j ul

)
u?j is the Euclidean projection of ul onto the span of

{u?1, · · · ,u?r}. In addition, observe that
∥∥∥
∑r

j=1
λ?j
(
u?>j ul

)
u?j

∥∥∥
2
≤
√∑

j

(
λ?j
)2∣∣u?>j ul

∣∣2 ≤ λ?max

√∑
j

∣∣u?>j ul
∣∣2 = λ?max‖ul‖2 = 1.

This taken collectively with Theorem 2 leads to
∥∥∥∥∥ul −

r∑

j=1

λ?ju
?>
j ul

λl
u?j

∥∥∥∥∥
2

=

∥∥∥∥∥
r∑

j=1

λ?j
λl

(
u?>j ul

)
{ ∞∑

s=1

1

λsl
Hsu?j

}∥∥∥∥∥
2
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=

∥∥∥∥∥
1

λl

∞∑

s=1

1

λsl
Hs

{
r∑

j=1

λ?j
(
u?>j ul

)
u?j

}∥∥∥∥∥
2

≤ 1

|λl|
|
∞∑

s=1

1

|λl|s
‖H‖s

∥∥∥∥∥
r∑

j=1

λ?j
(
u?>j ul

)
u?j

∥∥∥∥∥
2

≤ 1

|λl|
· ‖H‖
|λl| − ‖H‖

≤ 8κ2

3
‖H‖.

The last two lines follow since, when ‖H‖ < 1/(4κ), one can invoke Lemma 2 to show (i) |λl| > |λ?min|−‖H‖ ≥
3/(4κ) and (ii) |λl| − ‖H‖ ≥ |λ?min| − 2 ‖H‖ ≥ 1/(2κ). Substitution into (61) yields

(61) ≥ 1− 64κ4

9
‖H‖2

as claimed.

B Proof for the lower bound in Lemma 4
Here, we establish Lemma 4, towards which we intend to invoke Fano’s inequality. Let Pij and P̃ij represent
the distributions of Mij and M̃ij , respectively, and denote by P , P̃ , P̂ the distributions of M , M̃ and M̂ ,
respectively. Then the KL divergence between P and P̃ can be calculated as

KL
(
P̃ ‖P

)
=

∑

1≤i,j≤n
KL
(
P̃ij ‖Pij

)
=

∑

1≤i,j≤n

(∆u?i u
?
j )

2

2σ2
=

∆2

σ2
.

where the first identity comes from the property of KL divergence for product measures, the second identity
follows since KL(N (µ1, σ

2) ‖ N (µ2, σ
2)) = (µ1−µ2)2

2σ2 , and the third one holds since ‖u?‖2 = 1. The same
argument yields KL

(
P̂ ‖P

)
= ∆2/σ2. In view of (Tsybakov, 2009, Corollary 2.6), if

α log 2 ≥ 1

2

{
KL
(
P̃ ‖P

)
+ KL

(
P̂ ‖P

)}
=

∆2

σ2
,

then one has pe ≥ log 3−log 2
log 2 − α. Taking α = log2 1.5− ε immediately establishes the proof.

C Proof of Lemma 5
To establish this lemma, we exploit entrywise independence of H and develop a combinatorial trick.

To begin with, we expand the quantity of interest as

(
a>Hsu?

)k
=

∑

1≤i(b)t ≤n, 0≤t≤s, 1≤b≤k

k∏

b=1

a
i
(b)
0

(
s∏

t=1

H
i
(b)
t−1i

(b)
t

)
u?
i
(b)
s
.

Throughout this section, we will use

I :=
{
i
(b)
t | 0 ≤ t ≤ s, 1 ≤ b ≤ k

}
∈ [n](s+1)k (62)

to denote such a collection of (s+ 1)k indices. Thus, one can write

E
[(
a>Hsu?

)k]
=

∑

I∈[n](s+1)k

E

[
k∏

b=1

a
i
(b)
0

(
s∏

t=1

H
i
(b)
t−1i

(b)
t

)
u?
i
(b)
s

]
.
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Figure 6: (Left) An illustration of I :=
{
i
(b)
t | 0 ≤ t ≤ s, 1 ≤ b ≤ k

}
and the corresponding edges

{e(b)
t | 1 ≤ t ≤ s, 1 ≤ b ≤ k} when s = 4 and k = 2. (Right) An illustration of a type (or a partition of sk

edges), where the edges of the same color belong to the same subset of the partition.

We shall often think of this sum-product graphically by viewing each index pair
(
i
(b)
t−1, i

(b)
t

)
as a directed edge

over the vertex set [n](s+1)k. As a result, this gives us a set of sk edges in total {e(b)
t | 1 ≤ t ≤ s, 1 ≤ b ≤ k},

where e(b)
t represents

(
i
(b)
t−1, i

(b)
t

)
. See Fig. 6 for an illustration. In what follows, two edges e(b1)

t1 and e
(b2)
t2 are

said to be equivalent in I, denoted by
e

(b1)
t1 = e

(b2)
t2 ,

if the values of the corresponding vertices are identical (namely, i(b1)
t1−1 = i

(b2)
t2−1 and i(b1)

t1 = i
(b2)
t2 ).

When (s + 1)k � n, most of the summands in the above expansion vanish. In fact, for any summand
associated with a given I: as long as there exists a distinct edge

(
i
(b∗)
t∗−1, i

(b∗)
t∗
)
(i.e. not equal to any other

edge associated with I), then the contribution of this summand is zero, namely,

E

[
k∏

b=1

a
i
(b)
0

(
s∏

t=1

H
i
(b)
t−1i

(b)
t

)
u?
i
(b)
s

]
=

(
k∏

b=1

a
i
(b)
0
u?
i
(b)
s

)
E
[
H
i
(b∗)
t∗−1

i
(b∗)
t∗

]
E


 ∏

(t,b)∈[s]×[k], (t,b)6=(t∗,b∗)

H
i
(b)
t−1i

(b)
t




= 0. (63)

As a result, for any term with non-zero contribution, every edge
(
i
(b)
t−1, i

(b)
t

)
must appear at least twice.

To enable simple yet effective upper bounds on the non-vanishing terms, we group those terms of the
same “type” and look at each “type” separately. Specifically:

• We represent a collection of edges
{

(i
(b)
t−1, i

(b)
t ) | 1 ≤ t ≤ s, 1 ≤ b ≤ k

}
as
{
e

(b)
t | 1 ≤ t ≤ s, 1 ≤ b ≤ k

}
.

See Fig. 6 for an illustration.

• Each type encodes a set of constraints across edges, namely, which edges correspond to the same pair
of vertices. To be precise, we define each type to be a partition of {e(b)

t | 1 ≤ t ≤ s, 1 ≤ b ≤ k}
into a disjoint union of subsets, so that all edges falling within the same subset are equivalent. For
instance, when s = k = 2, one possible type is

{
{e(1)

1 , e
(2)
2 }, {e

(2)
1 , e

(1)
2 }
}
, which encodes the constraints

e
(1)
1 = e

(2)
2 and e

(2)
1 = e

(1)
2 .

• For each index collection I (defined in (62)), we write type(I) = T if the associated edge set of I
satisfies the constraints encoded by a type T .

• Define the set Γ+ as

Γ+ : the set of all types s.t. each subset of the associated partition has cardinality at least 2. (64)

With this grouping strategy and (63) in mind, we can derive

∣∣∣E
[(
a>Hsu?

)k]∣∣∣ =

∣∣∣∣∣∣
∑

I∈[n](s+1)k

E

[
k∏

b=1

a
i
(b)
0

(
s∏

t=1

H
i
(b)
t−1i

(b)
t

)
u?
i
(b)
s

]∣∣∣∣∣∣
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=

∣∣∣∣∣∣
∑

T ∈Γ+

∑

I∈[n](s+1)k: type(I)=T
E

[
k∏

b=1

a
i
(b)
0

(
s∏

t=1

H
i
(b)
t−1i

(b)
t

)
u?
i
(b)
s

]∣∣∣∣∣∣
, (65)

where the last line follows since all types outside Γ+ have vanishing contributions (cf. (63)). To bound the
right-hand side of (65), we need the following lemma. Here and throughout, |T | represents the number of
non-empty subsets in the partition associated with T .

Lemma 6. For any fixed unit vector a ∈ Rn×1 and any type T ∈ Γ+, one has
∣∣∣∣∣∣

∑

I∈[n](s+1)k: type(I)=T
E

[
k∏

b=1

a
i
(b)
0

(
s∏

t=1

H
i
(b)
t−1i

(b)
t

)
u?
i
(b)
s

]∣∣∣∣∣∣
≤ Bsk

(
σ2

B2

)|T |(√
µ

n

)k
n|T |. (66)

Armed with this lemma, we can further obtain

(65) ≤
∑

T ∈Γ+

Bsk
(
σ2

B2

)|T |(√
µ

n

)k
n|T | =

∑

T ∈Γ+

Bsk−2|T | (nσ2
)|T |

(√
µ

n

)k

≤
∑

T ∈Γ+

sk/2∑

l=1

1{|T |=l}B
sk−2|T | (nσ2

)|T |
(√

µ

n

)k

=

sk/2∑

l=1

{ ∑

T ∈Γ+

1{|T |=l}

}
Bsk−2l

(
nσ2

)l
(√

µ

n

)k
, (67)

where we have grouped the types based on their cardinality. The last inequality results from |T | ≤ sk/2 in
Lemma 9. The following lemma bounds the number of distinct types having the same cardinality.

Lemma 7.
∑
T ∈Γ+ 1{|T |=l} ≤

(
sk
l

)
lsk−l ≤ 2sklsk−l.

Proof. The quantity of interest is the number of ways to partition sk edges into l disjoint subsets, where
each subset contains at least 2 edges. To bound this quantity, we first pick l edges and assign each of them to
a distinct subset; there are

(
sk
l

)
different ways to achieve it. We still have sk − l edges left, and the number

of ways to assign them to l subsets is clearly upper bounded by lsk−l. This concludes the proof.

Consequently, Lemma 7 yields

(67) ≤ 2sk
sk/2∑

l=1

(Bl)
sk−2l (

nσ2l
)l
(√

µ

n

)k

(i)

≤ 2sk
sk/2∑

l=1

(
Bsk

2

)sk−2l(
nσ2sk

2

)l(√
µ

n

)k

(ii)

≤ 2sk
sk/2∑

l=1

max

{(
Bsk

2

)sk
,

(
nσ2sk

2

)sk/2}(√
µ

n

)k

=
sk

2
max

{
(Bsk)

sk
,
(
2nσ2sk

)sk/2}
(√

µ

n

)k
,

where (i) uses the condition l ≤ sk/2, and (ii) relies on the fact that ask−2lbl = ask−2l(
√
b)2l ≤ max{ask, (

√
b)sk}

for any a, b > 0.
Taken collectively, the preceding bounds conclude the proof of Lemma 5, provided that Lemma 6 can be

established.
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D Proof of Lemma 6
To begin with,

∣∣∣∣∣E
[
k∏

b=1

a
i
(b)
0

(
s∏
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H
i
(b)
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s

]∣∣∣∣∣ ≤ E

[
k∏

b=1

∣∣a
i
(b)
0

∣∣
(
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i
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s
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≤
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E

[
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∣∣H
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(b)
t

∣∣
]
, (68)

where the last inequality holds since each entry of u? is bounded in magnitude by
√
µ/n (see Definition 1).

According to the definition of Γ+ (see (64)), for any type T ∈ Γ+, each edge
(
i
(b)
t−1, i

(b)
t

)
is repeated at

least twice. The total number of distinct edges is exactly |T |. For notational simplicity, suppose the distinct
edges are e1, · · · , e|T |, where ei is repeated by li ≥ 2 times. Then we can write

E

[
k∏

b=1

s∏

t=1

∣∣H
i
(b)
t−1i

(b)
t
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]

=

|T |∏
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E
[∣∣Hei
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]
≤
|T |∏
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σ2Bli−2 =

(
σ2
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)|T |
B

∑
i li =

(
σ2
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)|T |
Bsk,

where the inequality follows since

E
[∣∣Hij

∣∣l
]
≤ Bl−2E

[∣∣Hij

∣∣2
]
≤ σ2Bl−2, l ≥ 2.

Substitution into (68) yields
∣∣∣∣∣∣
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≤
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
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I∈[n](s+1)k: type(I)=T

k∏

b=1

∣∣a
i
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0
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

 . (69)

It then boils down to controlling
∑
I∈[n](s+1)k: type(I)=T

∏k
b=1

∣∣a
i
(b)
0

∣∣. This is achieved by the following
lemma, which we establish in Appendix E.

Lemma 8. For any type T ∈ Γ+ and any unit vector a ∈ Rn, one has

∑

I∈[n](s+1)k: type(I)=T

k∏

b=1

∣∣a
i
(b)
0

∣∣ ≤ n|T |. (70)

This lemma together with (69) concludes the proof.

E Proof of Lemma 8

E.1 Graphical tools
The proof of Lemma 8 is combinatorial in nature. Before proceeding, we introduce a few graphical notions
that will be useful.

To begin with, recall that the index collection we have used so far is

I :=
{
i
(b)
t | 0 ≤ t ≤ s, 1 ≤ b ≤ k

}
∈ [n](s+1)k, (71)

which involves (s + 1)k vertices. As it turns out, it is helpful to further augment it into 2(s + 1)k vertices
via simple duplication. Specifically, introduce the following set of 2(s+ 1)k vertices

V =
{
q

(b)
t | 0 ≤ t ≤ s, 1 ≤ b ≤ k

} ⋃ {
p

(b)
t | 1 ≤ t ≤ s+ 1, 1 ≤ b ≤ k

}
. (72)

Throughout this paper, we shall
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Figure 7: An example of the induced graph, where s = 4, k = 2. The left plot shows the partition, while the
right plot displays the induced graph and the vertex set Q0 (the yellow region).

• view {q(b)
t | 0 ≤ t ≤ s, 1 ≤ b ≤ k} as a copy of {i(b)t | 0 ≤ t ≤ s, 1 ≤ b ≤ k};

• view {p(b)
t | 1 ≤ t ≤ s+ 1, 1 ≤ b ≤ k} as another copy of {i(b)t−1 | 1 ≤ t ≤ s+ 1, 1 ≤ b ≤ k}.

The main incentive is that it allows us to reparametrize

k∏

b=1

a
i
(b)
0

(
s∏

t=1

H
i
(b)
t−1i

(b)
t

)
u?
i
(b)
s
−→

k∏

b=1

a
q
(b)
0

(
s∏

t=1

H
p
(b)
t q

(b)
t

)
u?
p
(b)
s+1

(73)

Recall that we have categorized I into different “types”. Given that V is simply a redundant representation
of I, we can also associate a type with each V by enforcing proper constraints. These constraints can be
encoded via the following graphical notion.

Definition 2 (Induced graph). For any given type T , we define the induced graph G(T ) with the vertex
set V and the (undirected) edge set E(T ) as E(T ) = E1 ∪ E2(T ), where

E1 ,
{(
p

(b)
t , q

(b)
t−1

) ∣∣ 1 ≤ t ≤ s+ 1, 1 ≤ b ≤ k
}

;

E2(T ) ,
{(
p

(b1)
t1 , p

(b2)
t2

)
,
(
q

(b1)
t1 , q

(b2)
t2

) ∣∣ ∀t1, b1, t2, b2 :
(
i
(b1)
t1−1, i

(b1)
t1

)
=
(
i
(b2)
t2−1, i

(b2)
t2

)}
.

(74)

In words,

(1) we connect the vertices p(b)
t (which is a copy of i(b)t ) and q(b)

t−1 (which represents i(r)t−1) by an edge;

(2) whenever two edges
(
i
(b1)
t1−1, i

(b1)
t1

)
and

(
i
(b2)
t2−1, i

(b2)
t2

)
are equivalent in I (or T ), we draw two edges

connecting the corresponding vertices in the induced graph.

As an illustration, Fig. 7 displays the induced graph for a simple example with s = 4 and k = 2, where

T =
{{(

i
(1)
0 , i

(1)
1

)
︸ ︷︷ ︸

e
(1)
1

,
(
i
(2)
0 , i

(2)
1

)
︸ ︷︷ ︸

e
(2)
1

}
,
{(
i
(1)
1 , i

(1)
2

)
︸ ︷︷ ︸

e
(1)
2

,
(
i
(1)
3 , i

(1)
4

)
︸ ︷︷ ︸

e
(1)
4

}
,
{(
i
(2)
1 , i

(2)
2

)
︸ ︷︷ ︸

e
(2)
2

,
(
i
(2)
3 , i

(2)
4

)
︸ ︷︷ ︸

e
(2)
4

}
,
{(
i
(1)
2 , i

(1)
3

)
︸ ︷︷ ︸

e
(1)
3

}
,
{(
i
(2)
2 , i

(2)
3

)
︸ ︷︷ ︸

e
(2)
3

}}
.

Here, the 45-degree lines correspond to the edges in E1, and the remaining edges come from E2(T ). Through-
out the rest of the paper, we will abuse the notation and write type(V) = T if V is induced by an index set
of type T .

One useful feature of the above induced graph is that: each edge subset in the partition associated with
T corresponds to a connected component in G(T ). For our purpose, it is convenient to divide all connected
components of G(T ) into two classes. To this end, we first define Q0 ,

{
q

(b)
0 | 1 ≤ b ≤ k

}
(as illustrated in

Fig. 7).
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• Class 1: a connected component C belongs to Class 1 if |C ∩ Q0| ≤ 1;

• Class 2: a connected component C belongs to Class 2 if |C ∩ Q0| ≥ 2.

We denote by m1(T ) (resp. m2(T )) the total number of Class 1 (resp. 2) connected components in G(T ).

E.2 Proof of Lemma 8
Making use of the augmented set V (defined in (72)) and the way of reparametrization (73), we can write

∑

I∈[n](s+1)k: type(I)=T
E

[
k∏

b=1

∣∣a
i
(b)
0

∣∣
]
≤

∑

V∈[n]2(s+1)k: type(V)=T

E

[
k∏

b=1

∣∣a
q
(b)
0

∣∣
]
. (75)

As we shall see, the benefit of this bound is to allow us sum over the connected components of G(T ) in a
separate manner, since all indices in the same connected component must be identical. Specifically,

• Let X1,X2, · · · (resp. Y1,Y2, · · · ) denote the collection of Class 1 (resp. Class 2) connected components
in G(T );

• Denote by xi (resp. yi) the value assigned to all indices in Xi (resp. Yi);

With these notations in mind, we can decompose

(75) ≤
n∑

x1=1

n∑

x2=1

· · ·
n∑

y1=1

n∑

y2=1

· · ·E
[∣∣ax1

∣∣|X1∩Q0| ·
∣∣ax2

∣∣|X2∩Q0| · · ·
∣∣ay1

∣∣|Y1∩Q0| ·
∣∣ay2

∣∣|Y2∩Q0| · · ·
]

= E

[(
n∑

x1=1

∣∣ax1

∣∣|X1∩Q0|
)(

n∑

x2=1

∣∣ax2

∣∣|X2∩Q0|
)
· · ·
(

n∑

y1=1

∣∣ay1
∣∣|Y1∩Q0|

)(
n∑

y2=1

∣∣ay2
∣∣|Y2∩Q0|

)
· · ·
]

(i)
≤ E

[(
n∑

x1=1

1

)(
n∑

x2=1

1

)
· · ·
(

n∑

y1=1

∣∣ay1
∣∣2
)(

n∑

y2=1

∣∣ay2
∣∣2
)
· · ·
]

(ii)
=

(
n∑

x1=1

1

)(
n∑

x2=1

1

)
· · · 1 · 1 · · · = nm1(T ),

where m1(T ) is the total number of Class 1 connected components in the induced graph G(T ). Here, (i)
comes from the definitions of Class 1 and Class 2 connected components, and (ii) follows since ‖a‖22 = 1.

We can thus finish the proof by observing that m1(T ) ≤ |T |, as claimed in the following lemma.

Lemma 9. For any type T ∈ Γ+, one has m1(T ) ≤ |T | ≤ sk/2.

E.3 Proof of Lemma 9
Introduce two disjoint vertex sets:

Q\0 ,
{
q

(b)
t | 1 ≤ t ≤ s, 1 ≤ b ≤ k

}
⊂ V; (76)

Q0 ,
{
q

(b)
0 | 1 ≤ b ≤ k

}
⊂ V. (77)

Clearly, one can define a partition of Q\0 — denoted by TQ\0 — induced by T . Specifically, we say that
q

(b1)
t1 and q(b2)

t2 belong to the same connected subgraph of Q\0 if
(
i
(b1)
t1−1, i

(b1)
t1

)
=
(
i
(b2)
t2−1, i

(b2)
t2

)
in T . Clearly,

|T | =
∣∣TQ\0

∣∣.
In addition, for any connected subgraph Cq in Q\0, we denote by C the corresponding connected compo-

nent in G(T ). We can thus define a mapping ψ that maps Cq to C, whose domain is the set of all connected
subgraphs in Q\0. We claim that the collection of Class 1 connected components — denoted by {Xj} —
obeys

{Xj | 1 ≤ j ≤ m1(T )} ⊆ Imψ, (78)
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where Imψ denotes the image of ψ, and m1(T ) is the total number of Class 1 connected components. If this
holds true, then

|T | =
∣∣TQ\0

∣∣ ≥ |Imψ| ≥ | {Xj | 1 ≤ j ≤ m1(T )} | = m1(T ).

To justify the claim (78), it suffices to show that Xj ∩Q\0 6= ∅. Given that T ∈ Γ+ (so that each subset
of the partition associated with T has cardinality at least 2) and that Xj is defined over the induced graph
G(T ) (which is a redundant representation of the original index collection), one must have

max
{∣∣∣Xj ∩

{
p

(b)
t | 1 ≤ t ≤ s+ 1, 1 ≤ b ≤ k

}∣∣∣ ,
∣∣∣Xj ∩

{
q

(b)
t | 0 ≤ t ≤ s, 1 ≤ b ≤ k

}∣∣∣
}
≥ 2. (79)

Further, from the construction of the induced graph, it is easily seen that
∣∣∣Xj ∩

{
p

(b)
t | 1 ≤ t ≤ s+ 1, 1 ≤ b ≤ k

}∣∣∣ =
∣∣∣Xj ∩

{
q

(b)
t | 0 ≤ t ≤ s, 1 ≤ b ≤ k

}∣∣∣ ,

thus resulting in ∣∣∣Xj ∩
{
q

(b)
t | 0 ≤ t ≤ s, 1 ≤ b ≤ k

}∣∣∣ =
∣∣Xj ∩

(
Q0 ∪Q\0

)∣∣ ≥ 2.

However, by definition of Class 1 connected component, we have |Xj ∩Q0| ≤ 1, implying that Xj ∩Q\0 6= ∅.
This establishes the claim (78).

Finally, when T ∈ Γ+, each connected subgraph of TQ\0 also contains at least two nodes. As a conse-
quence,

|T | = |TQ\0 | ≤ |Q\0|/2 = sk/2.

F Proof of Corollary 4
In the sequel, we assume that 20 log n is an integer to avoid the clumsy notation b20 log nc. But it is
straightforward to extend it to the case where 20 log n is not an integer.

It follows from Markov’s inequality that for any even integer k,

P
(∣∣a>Hsu?

∣∣ ≥ τ
)
≤ E

[ ∣∣a>Hsu?
∣∣k ]

τk
.

This combined with Lemma 5 gives

P
(∣∣a>Hsu?

∣∣ ≤
(
c2 max

{
B log n,

√
nσ2 log n

})s√µ

n

)
≤

∣∣∣E
[ (

a>Hsu?
)k ]∣∣∣

(
c2 max

{
B log n,

√
nσ2 log n

})sk (√
µ
n

)k

≤ sk

2
max

{(
sk

c2 log n

)sk
,

(
2sk

c22 log n

)sk/2}
.

For any s ≤ 20 log n, choose k such that sk ∈ [20 log n, 40 log n]. It is straightforward to show — using the
union bound — that with probability at least 1−O(n−10),

∣∣a>Hsu?
∣∣ ≤

(
c2 max

{
B log n,

√
nσ2 log n

})s√
µ/n, ∀s ≤ 20 log n,

as long as c2 > 0 is some sufficiently large constant.

G Proof of Corollary 5
Taking a = u?i for some 1 ≤ i ≤ r in (35), we see that with high probability,

∣∣∣∣∣u
?>
i

(
ul −

r∑

j=1

λ?ju
?>
j ul

λl
u?j

)∣∣∣∣∣ . max
{
B log n,

√
nσ2 log n

} κ

|λl|

√
µr

n
.
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In addition, since u?1, · · · ,u?r are orthogonal to each other, we have that: for any 1 ≤ i ≤ r,
∣∣∣∣∣u
?>
i

(
ul −

r∑

j=1

λ?ju
?>
j ul

λl
u?j

)∣∣∣∣∣ =

∣∣∣∣∣u
?>
i ul −

λ?iu
?>
i ul
λl

∣∣∣∣∣ =
∣∣u?>i ul

∣∣
∣∣∣∣∣
λl − λ?i
λl

∣∣∣∣∣ ≥
∣∣u?>i ul

∣∣ min
1≤j≤r

∣∣∣∣∣
λl − λ?j
λl

∣∣∣∣∣.

Therefore, combining the above two bounds yields

min
1≤j≤r

∣∣∣∣∣
λl − λ?j
λl

∣∣∣∣∣ max
1≤i≤r

∣∣u?>i ul
∣∣ . max

{
B log n,

√
nσ2 log n

} κ

|λl|

√
µr

n
. (80)

Finally, it comes from Lemma 3 that if ‖H‖ � 1/κ2, then
∑

1≤i≤r
∣∣u?>i ul

∣∣2 & 1, and hence

max
1≤j≤r

∣∣u?>i ul
∣∣ ≥

√
1

r

∑

1≤i≤r

∣∣u?>i ul
∣∣2 & 1/

√
r. (81)

This combined with (80) establishes the claim, as long as the spectral norm condition on ‖H‖ can be
guaranteed. In view of Lemma 1, we have ‖H‖ � 1/κ2 under the condition (38), thus concluding the proof.

H Proof of Corollary 6
Since ‖a‖2 = 1, it follows immediately from (36) that

∥∥a>U
∥∥

2
=

√√√√
r∑

l=1

∣∣a>ul
∣∣2

.

√√√√√
r∑

l=1



∣∣∣∣∣∣

r∑

j=1

λ?ju
?>
j ul

λl
a>u?j

∣∣∣∣∣∣
+ max

{
B log n,

√
nσ2 log n

}
κ2

√
µr

n




2

. (82)

Further, we have

(82)
(i)

≤

√√√√√
r∑

l=1

∣∣∣∣∣∣

r∑

j=1

λ?ju
?>
j ul

λl
a>u?j

∣∣∣∣∣∣

2

+

√√√√
r∑

l=1

(
max

{
B log n,

√
nσ2 log n

}
κ2

√
µr

n

)2

(ii)

≤

√√√√√
r∑

l=1




r∑

j=1

∣∣∣∣∣
λ?ju

?>
j ul

λl

∣∣∣∣∣

2





r∑

j=1

∣∣a>u?j
∣∣2

+ max

{
B log n,

√
nσ2 log n

}
κ2r

√
µ

n

(iii)

.

√√√√√rκ2




r∑

j=1

∣∣a>u?j
∣∣2

+ max

{
B log n,

√
nσ2 log n

}
κ2r

√
µ

n

= κ
√
r
∥∥a>U?

∥∥
2

+ max
{
B log n,

√
nσ2 log n

}
κ2r

√
µ

n
, (83)

where (i) and (ii) make use of the Minkowski and the Cauchy-Schwarz inequalities, respectively, and (iii)
result from the facts |λ?j/λl| . κ (which follows from (39) and (38)) and

∑r
j=1

∣∣u?>j ul
∣∣2 ≤ 1. This concludes

the proof.

I Proof of Theorem 5
To simplify presentation, we introduce the following notation throughout this section:

ũ?1 =
1√
2

(
u?

v?

)
, ũ?2 =

1√
2

(
u?

−v?
)
, ũ1 = udilation

1 , ũ2 = udilation
2 ;
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λ̃?1 = λ1(M?
dilation) = 1, λ̃?2 = λ2(M?

dilation) = −1, λ̃1 = λdilation1 , λ̃2 = λdilation2 .

In addition, we denote ũ1,1 = udilation
1,1 and ũ1,2 = udilation

1,2 . Recall that we assume λ̃1 ≥ λ̃2. We also denote
min{‖x± y‖2} = min{‖x− y‖2, ‖x + y‖2}.

I.1 `2 eigenvector perturbation bounds
The `2 perturbation bound results from near orthogonality between ũ1 and ũ?2. By symmetry, it suffices to
establish the result for u.

To begin with, applying Theorem 4 on Mdilation and taking a = ũ?2, we derive
∣∣∣∣∣ũ
?>
2 ũ1

(
1− λ̃?2

λ̃1

)∣∣∣∣∣ =

∣∣∣∣∣ũ
?>
2

(
ũ1 −

λ̃?1ũ
?>
1 ũ1

λ̃1

ũ?1 −
λ̃?2ũ

?>
2 ũ1

λ̃1

ũ?2

)∣∣∣∣∣

. max
{
B log n,

√
nσ2 log n

}√µ

n
,

where the identity arises since ũ?>2 ũ?1 = 0. Given that λ̃?2 = −1 and λ̃1 > 0 (see Corollary 8), we have
1− λ̃?2/λ̃1 > 1. The near orthogonality property can then be described as follows

∣∣ũ?>2 ũ1

∣∣ ≤
∣∣∣ũ?>2 ũ1

(
1− λ̃?2/λ̃1

)∣∣∣ . max
{
B log n,

√
nσ2 log n

}√µ

n
. (84)

This combined with Lemma 3 yields

min{‖ũ1 ± ũ?1‖2} =

√
‖ũ?1‖22 + ‖ũ1‖22 − 2

∣∣ũ?>1 ũ1

∣∣

=
√

2
(
1−

∣∣ũ?>1 ũ1

∣∣) ≤
√

2
(
1−

∣∣ũ?>1 ũ1

∣∣2 )

(i)

≤
√

128

9
‖Hdilation‖2 + 2

∣∣ũ?>2 ũ1

∣∣2

(ii)

. ‖Hdilation‖+
∣∣ũ?>2 ũ1

∣∣
(iii)

. max
{
B log n,

√
nσ2 log n

}
, (85)

where (i) results from Lemma 3 and the fact that the condition number of M?
dilation is 1, (ii) follows

since
√
x2 + y2 ≤ x + y for all x, y ≥ 0, and (iii) arises from (84), Lemma 1, the identity ‖Hdilation‖ =

max{‖H1‖, ‖H2‖}, and the fact
√
µ/n ≤ 1.

It then boils down to showing that min{‖u ± u?‖2} . min{‖ũ1 ± ũ?1‖2}. To this end, we see that the
estimate (46) satisfies

‖u− u?‖2 =

∥∥∥∥
(

ũ1,1

‖ũ1,1‖2
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√

2ũ1,1

)
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(√
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2

≤
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1

‖ũ1,1‖2
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√

2

∣∣∣∣+
√

2
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u?√

2

∥∥∥∥
2

=

√
2

‖ũ1,1‖2
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u?√

2

∥∥∥∥
2

∣∣∣∣+
√

2
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2

≤
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1
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+ 1
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u?√

2
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(86)

≤
√

2

(
1 +

√
2

1−
√

2 ‖ũ1 − ũ?1‖2

)
‖ũ1 − ũ?1‖2 . (87)
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Here, (86) makes use of the triangle inequality, and (87) follows since

1

‖ũ1,1‖2
≤ 1

‖u?‖2/
√

2−
∥∥ũ1,1 − u?/

√
2
∥∥

2

=

√
2

1−
∥∥√2ũ1,1 − u?
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2

≤
√

2

1−
√

2 ‖ũ1 − ũ?1‖2
,

where the last inequality relies on the fact that
∥∥ũ1,1 − u?/

√
2
∥∥

2
≤ ‖ũ1 − ũ?1‖2 (the first n1 coordinates).

Similarly, one can derive the above bounds for ‖u + u?‖2 as well. Therefore, we are left with

min {‖u± u?‖2} ≤
√

2

(
1 +

√
2

1−
√

2 min{‖ũ1 ± ũ?1‖2}

)
min{‖ũ1 ± ũ?1‖2} (88)

. min{‖ũ1 ± ũ?1‖2} (89)

. max
{
B log n,

√
nσ2 log n

}
. (90)

This concludes the proof.

I.2 Perturbation bounds for linear forms of eigenvectors

Fix any unit vector a ∈ Rn1 . Considering the linear transformation by the vector
(
a
0

)
, we can apply

Theorem 4 to Mdilation and get
∣∣∣∣∣

(
a
0

)>(
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B log n,

√
nσ2 log n

}√µ

n
. (91)

Given that the first n1 coordinates of ũ?1 and ũ?2 are both u?/
√

2, we can invoke Corollary 8 (i.e. λ̃1 � 1) to
obtain
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nσ2 log n
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n
. (92)

In view of (84) and the fact
∣∣a>u?

∣∣ ≤ 1, one has
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n
. (93)

Recall that λ̃1 > 0 (cf. Corollary 8). If we further have
∣∣∣∣∣
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}
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then we can use the triangle inequality to reach

min
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} (95)

as claimed. It then remains to justify (94). Towards this, it suffices to combine a series of consequences from
(85), Corollary 8, and (90), namely,

1−
∣∣ũ?>1 ũ1

∣∣ =
1

2
min{‖ũ1 ± ũ?1‖22} . max

{
B log n,

√
nσ2 log n

}
, (96)

∣∣λ̃1 − λ̃?1
∣∣ =

∣∣λ̃1 − 1
∣∣ . max

{
B log n,

√
nσ2 log n

}√µ

n
, (97)

∣∣∣∣‖ũ1,1‖2 −
1√
2

∣∣∣∣ ≤ min

{∥∥∥∥ũ1,1 ±
u?√

2
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2

}
≤ min {‖ũ1 ± ũ?1‖2} . max

{
B log n,

√
nσ2 log n

}
. (98)

The proof for the bounds on v is similar and is thus omitted.
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I.3 Entrywise eigenvector perturbation bounds
Recognizing that ‖u− u?‖∞ = maxi

∣∣e>i u− e>i u
?
∣∣ and using the incoherence

∣∣e>i u
∣∣ ≤

√
µ/n, we can prove

this claim directly by invoking the results established in Appendix I.2 and taking the union bound.

J Asymmetrization of data samples: two examples
As mentioned earlier, an independent and asymmetric noise matrix arises when we collect two samples for
each entry of the matrix of interest and arrange the samples in an asymmetric manner (i.e. placing 1 sample
on the upper triangular part and the other on the lower triangular part). Interestingly, our results might
be applicable for some cases where we only have 1 sample for each entry. In what follows, we describe two
examples of this kind similar to the ones discussed in Section 4.2, but with a symmetric noise matrix. Once
again, it is assumed that M? is a rank-1 matrix with leading eigenvalue 1 and incoherence parameter µ.

Low-rank matrix estimation from Gaussian noise.3 Suppose that the noise matrix H is a symmetric
matrix, and that the upper triangular part of H is composed of i.i.d. Gaussian random variables N (0, σ2).

When σ is known, one can decouple the upper and low triangular parts of H by adding a skew-symmetric
Gaussian matrix ∆. Specifically, our strategy is:

(1) For each 1 ≤ i ≤ j ≤ n, generate ∆ij ∼ N (0, σ2) independently, and set ∆ji = −∆ij ;

(2) Compute the leading eigenvalue and eigenvector of M + ∆.

This is motivated by a simple observation from Gaussianality: H+∆ is now an asymmetric matrix whose off-
diagonal entries are i.i.d. N (0, 2σ2); in fact, it is easy to verify that Hij + ∆ij and Hji−∆ji are independent
Gaussian random variables. As a result, the orderwise bounds (26) continue to hold if λ and u are taken to
be the leading eigenvalue and eigenvector of M + ∆, respectively.

While this asymmetrization procedure comes with the price of doubling the noise variance, the eigenvalue
perturbation bound may still be significantly smaller — up to a factor of O(

√
n) — than the bound for the

SVD approach. This is also confirmed in the numerical simulations reported in Fig. 8.
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Figure 8: Numerical simulation for rank-1 matrix estimation when H is symmetric and its upper triangular
part consists of i.i.d. Gaussian entries N (0, σ2). The truth M? is rank-1 and is randomly generated with
leading eigenvalue λ? = 1. (a) |λ− λ?| vs. n with σ = 1/

√
n log n; (b) |λ− λ?| vs. σ with n = 1000; (c) `∞

eigenvector perturbation vs. n with σ = 1/
√
n log n. We compare eigen-decomposition applied to symmetric

matrix samples (the red lines) and asymmetrized data (the blue lines). In the green line, the estimate u is
obtained by generating 10 independent copies of ∆ and aggregating the leading eigenvectors of these copies
of M + ∆ (see Remark 9).

Remark 9. While this asymmetrization procedure achieves enhanced eigenvalue estimation accuracy com-
pared to the SVD approach (see Fig. 8(a)(b)), it results in higher eigenvector estimation errors (see Fig. 8(c)).
This is perhaps not surprising as we have added extra noise to the observed matrix. One way to mitigate

3We thank Prof. Zhou Fan for telling us this example.
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this issues is to (1) generate K independent copies of ∆; (2) compute the leading eigenvector of each copy
of M + ∆, denoted by {u(l) | 1 ≤ l ≤ K}; and (3) aggregate these eigenvectors, namely, compute the leading
eigenvector of 1

K

∑K
l=1 u

(l)u(l)>. As can be seen in the green line of Fig. 8(c), this allows us to mitigate the
effect of the extra noise component.

Low-rank matrix completion. Suppose that each entry M?
ij (i ≥ j) is observed independently with

probability p. This is different from the settings in Section 4.2, as we do not have additional samples for
M?
ji (i ≥ j). In order to arrange the data samples in an asymmetric and independent fashion, we employ a

simple resampling technique to decouple the statistical dependency between Mij and Mji:

(1) Define M sym such that

M sym
ij =

{
1
pM

?
ij , if M?

ij is observed;

0, else.

(2) Define pasym so that p = 1− (1− pasym)2 (i.e. pasym = p
1+
√

1−p ). For any pair i > j, set

(
M asym
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ji

)
=



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p
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(
M sym
ij , 0

)
with probability 1−pasym
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(99)

For any i, set

M asym
ii =

{
p

pasymM
sym
ii with probability pasym

p ,

0 else.

(3) Compute the leading eigenvalue and eigenvector of M asym.

As can be easily verified, this scheme is equivalent to saying that (i) with probability p, either M asym
ij or

M asym
ji is taken to be a rescaled version of M?

ij ; (ii) for any i 6= j, the entries {M asym
ij } are independently

drawn. Since pasym � p, our results (28) in Section 4.2 remain valid, as long as λ and u are set to be the
leading eigenvalue and eigenvector of M asym, respectively. Numerical simulations have been carried out in
Fig. 9 to verify the effectiveness of this scheme.
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Figure 9: Numerical experiments for rank-1 matrix completion, where the rank-1 truth M? is randomly
generated with leading eigenvalue 1. (a) |λ− λ?| vs. n with p = 3 log n /n; (b) |λ− λ?| vs. p with n = 1000;
(c) `∞ perturbation error vs. n with p = 3 log n /n. We compare eigen-decomposition applied to symmetric
matrix samples and asymmetrized data. The blue (resp. red) lines represent the average errors over 100
independent trials using the eigen-decomposition (resp. SVD) approach.
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