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Abstract

We consider the fundamental problem of solving quadratic systems of equations
in n variables, where yi D jhai ;xij2, i D 1; : : : ; m, and x 2 Rn is unknown.
We propose a novel method, which starts with an initial guess computed by
means of a spectral method and proceeds by minimizing a nonconvex functional
as in the Wirtinger flow approach [13]. There are several key distinguishing fea-
tures, most notably a distinct objective functional and novel update rules, which
operate in an adaptive fashion and drop terms bearing too much influence on
the search direction. These careful selection rules provide a tighter initial guess,
better descent directions, and thus enhanced practical performance. On the theo-
retical side, we prove that for certain unstructured models of quadratic systems,
our algorithms return the correct solution in linear time, i.e., in time proportional
to reading the data fai g and fyi g as soon as the ratiom=n between the number of
equations and unknowns exceeds a fixed numerical constant. We extend the the-
ory to deal with noisy systems in which we only have yi � jhai ;xij2 and prove
that our algorithms achieve a statistical accuracy, which is nearly unimprov-
able. We complement our theoretical study with numerical examples showing
that solving random quadratic systems is both computationally and statistically
not much harder than solving linear systems of the same size—hence the title of
this paper. For instance, we demonstrate empirically that the computational cost
of our algorithm is about four times that of solving a least squares problem of
the same size. © 2016 Wiley Periodicals, Inc.

1 Introduction
1.1 Problem Formulation

Imagine we are given a set of m quadratic equations taking the form

(1.1) yi D jhai ;xij
2; i D 1; : : : ; m;

where the data y D Œyi �1�i�m and design vectors ai 2 Rn=Cn are known whereas
x 2 Rn=Cn is unknown. Having information about jhai ;xij2—or, equivalently,
jhai ;xij—means that we a priori know nothing about the phases or signs of the
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linear products hai ;xi. The problem is this: can we hope to identify a solution, if
any, compatible with this nonlinear system of equations?

This problem is combinatorial in nature as one can alternatively pose it as re-
covering the missing signs of hai ;xi from magnitude-only observations. As is
well-known, many classical combinatorial problems with Boolean variables may
be cast as special instances of (1.1). As an example, consider the NP-hard stone
problem [8], in which we have n stones, each of weightwi > 0 (1 � i � n), which
we would like to divide into two groups of equal sum weight. Letting xi 2 f�1; 1g
indicate which of the two groups the i th stone belongs to, one can formulate this
problem as solving the following quadratic system:

(1.2)

(
x2i D 1; i D 1; : : : ; n;

.w1x1 C � � � C wnxn/
2 D 0:

However simple this formulation may seem, even checking whether a solution to
(1.2) exists is known to be NP-hard.

Moving from combinatorial optimization to the physical sciences, one applica-
tion of paramount importance is the phase retrieval [23, 24] problem, which per-
meates through a wide spectrum of techniques, including X-ray crystallography,
diffraction imaging, microscopy, and even quantum mechanics. In a nutshell, the
problem of phase retrieval arises due to the physical limitation of optical sensors,
which are often only able to record the intensities of the diffracted waves scattered
by an object under study. Notably, upon illuminating an object x, the diffraction
pattern is of the form of Ax; however, it is only possible to obtain intensity mea-
surements y D jAxj2 leading to the quadratic system (1.1).1 In the Fraunhofer
regime where data is collected in the far-field zone,A is given by the spatial Fourier
transform. We refer to [43] for in-depth reviews of this subject.

Continuing this motivating line of thought, recorded intensities in any real-world
application are always corrupted by at least a small amount of noise so that ob-
served data are only about jhai ;xij2; i.e.,

(1.3) yi � jhai ;xij
2; i D 1; : : : ; m:

Although we present results for arbitrary noise distributions—even for nonstochas-
tic noise—we shall pay particular attention to the Poisson data model, which as-
sumes

(1.4) yi
ind.
� Poisson.jhai ;xij

2/; i D 1; : : : ; m:

The reason that this statistical model is of special interest is that it naturally de-
scribes the variation in the number of photons detected by an optical sensor in
various imaging applications.

1 Here and below, for ´ 2 Cn, j´j (respectively, j´j2) represents the vector of magnitudes
.j´1j; : : : ; j´nj/

T (respectively, squared magnitudes .j´1j2; : : : ; j´nj2/T).
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1.2 Nonconvex Optimization
Under a stochastic noise model with independent samples, a first impulse for

solving (1.3) is to seek the maximum likelihood estimate (MLE), namely,

minimize´ �
mX
iD1

`.´Iyi /;(1.5)

where `.´Iyi / denotes the log-likelihood of a candidate solution ´ given the out-
come yi . For instance, under the Poisson data model (1.4) one can write

(1.6) `.´Iyi / D yi log.ja�i ´j
2/ � ja�i ´j

2

modulo some constant offset. Unfortunately, the log-likelihood is usually not con-
cave, thus making the problem of computing the MLE NP-hard in general.

To alleviate this computational intractability, several convex surrogates have
been proposed that work particularly well when the design vectors faig are chosen
at random [3, 9, 10, 14, 16, 18, 20, 25, 26, 29, 32, 33, 39, 44, 52]. The basic idea is
to introduce a rank 1 matrix X D xx� to linearize the quadratic constraints, and
then relax the rank 1 constraint. Suppose we have Poisson data; then this strategy
converts the problem into a convenient convex program:

minimizeX
mX
iD1

.�i � yi log�i /C �Tr.X/

subject to �i D a
T
iXai ; 1 � i � m;

X � 0:

Note that the log-likelihood function is augmented by the trace functional Tr.�/,
the role of which is to promote low-rank solutions. While such convex relax-
ation schemes enjoy intriguing performance guarantees in many aspects (e.g., they
achieve minimal sample complexity and near-optimal error bounds for certain noise
models), the computational cost typically far exceeds the order of n3. This limits
applicability to large-dimensional data.

This paper follows another route: rather than lifting the problem into higher
dimensions by introducing matrix variables, this paradigm maintains its iterates
within the vector domain and optimizes the nonconvex objective directly (e.g., [13,
22,24,34,36,40–42,54,56]). One promising approach along this line is the recently
proposed two-stage algorithm called Wirtinger flow (WF) [13]. Simply put, WF
starts by computing a suitable initial guess ´.0/ using a spectral method, and then
successively refines the estimate via an update rule that bears a strong resemblance
to a gradient descent scheme, namely,

´.tC1/ D ´.t/ C
�t

m

mX
iD1

r`.´.t/Iyi /;
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where ´.t/ denotes the t th iterate of the algorithm, and �t is the step size (or learn-
ing rate). Here, r`.´Iyi / stands for the Wirtinger derivative with respect to ´,
which in the real-valued case reduces to the ordinary gradient. The main results
of [13] demonstrate that WF is surprisingly accurate for independent Gaussian de-
sign. Specifically, when ai � N .0; I/ or ai � N .0; I/C jN .0; I/:

(1) WF achieves exact recovery from m D O.n logn/ quadratic equations
when there is no noise.2

(2) WF attains �-accuracy—in a relative sense—withinO.mn2 log.1=�// time
(or flops).

(3) In the presence of Gaussian noise, WF is stable and converges to the MLE
as shown in [45].

While these results formalize the advantages of WF, the computational complexity
of WF is still much larger than the best one can hope for. Moreover, the statistical
guarantee in terms of the sample complexity is weaker than that achievable by
convex relaxations.3

1.3 Truncated Wirtinger Flow
This paper develops an efficient linear-time algorithm, which also enjoys near-

optimal statistical guarantees. Following the spirit of WF, we propose a novel pro-
cedure called truncated Wirtinger flow (TWF) adopting a more adaptive gradient
flow. Informally, TWF proceeds in two stages:

(1) INITIALIZATION: compute an initial guess ´.0/ by means of a spectral
method applied to a subset T0 of the observations fyig;

(2) LOOP: for 0 � t < T ,

(1.7) ´.tC1/ D ´.t/ C
�t

m

X
i2TtC1

r`.´.t/Iyi /

for some index subset TtC1 � f1; : : : ; mg determined by ´.t/.
Three remarks are in order.
� First, we regularize both the initialization and the gradient flow in a data-

dependent fashion by operating only upon some iteration-varying index
subsets Tt . This is a distinguishing feature of TWF in comparison to WF
and other gradient descent variants. In words, Tt corresponds to those data
fyig whose resulting spectral or gradient components are in some sense
not excessively large; see Sections 2 and 3 for details. As we shall see

2 The standard notation f .n/ D O.g.n// or f .n/ . g.n/ (respectively, f .n/ D �.g.n// or
f .n/ & g.n/) means that there exists a constant c > 0 such that jf .n/j � cjg.n/j (respectively,
jf .n/j � cjg.n/j). f .n/ � g.n/ means that there exist constants c1; c2 > 0 such that c1jg.n/j �
jf .n/j � c2jg.n/j.

3 M. Soltanolkotabi recently informed us that the sample complexity of WF may be improved if
one employs a better initialization procedure.
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later, the main point is that this careful data-trimming procedure gives us a
tighter initial guess and more stable search directions.
� Second, we recommend that the step size �t is either taken as some appro-

priate constant or determined by a backtracking line search. For instance,
under appropriate conditions, we can take �t D 0:2 for all t .
� Finally, the most expensive part of the gradient stage consists in comput-

ing r`.´Iyi /, 1 � i � m, which can often be performed in an efficient
manner. More concretely, under the real-valued Poisson data model (1.4)
one has

r`.´Iyi / D 2

�
yi

jaT
i ´j

2
aia

T
i ´ � aia

T
i ´

�
D 2

�
yi � ja

T
i ´j

2

aT
i ´

�
ai :

Thus, calculating fr`.´Iyi /g essentially amounts to two matrix-vector
products. Letting A WD Œa1; : : : ; am�T as before, we have

X
i2TtC1

r`.´.t/Iyi / D A
Tv; vi D

8<:2
yi�ja

T
i
´j2

aT
i
´

; i 2 TtC1;
0 otherwise:

Hence, A´ gives v and ATv the desired regularized gradient.
A detailed specification of the algorithm is deferred to Section 2.

1.4 Numerical Surprises
To give the readers a sense of the practical power of TWF, we present here

three illustrative numerical examples. Since it is impossible to recover the global
sign—i.e., we cannot distinguish x from�x—we will evaluate our solutions to the
quadratic equations through the distance measure put forth in [13] representing the
euclidean distance modulo a global sign: for complex-valued signals,

dist.´;x/ WD min'W2Œ0;2�/ ke
�j'´ � xk;(1.8)

while it is simply min k´˙xk in the real-valued case. We shall use dist.yx;x/=kxk
throughout to denote the relative error of an estimate yx. In the following, TWF
proceeds by attempting to maximize the Poisson log-likelihood (1.6). Standalone
MATLAB implementations of TWF are available at http://statweb.stanford.
edu/~candes/publications.html (see [12] for straight WF implementations).

The first numerical example concerns the following two problems under noise-
less real-valued data:

(a) find x 2 Rn s.t. bi D aT
i x, 1 � i � m;

(b) find x 2 Rn s.t. bi D jaT
i xj, 1 � i � m.

Apparently, (a) involves solving a linear system of equations (or a linear least
squares problem), while (b) is tantamount to solving a quadratic system. Ar-
guably the most popular method for solving large-scale least squares problems
is the conjugate gradient (CG) method [38] applied to the normal equations. We
are going to compare the computational efficiency between CG (for solving least

http://statweb.stanford.edu/~candes/publications.html
http://statweb.stanford.edu/~candes/publications.html
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FIGURE 1.1. Relative errors of CG and TWF vs. iteration count. Here,
n D 1000, m D 8n, and TWF is seeded using just 10 power iterations.

squares) and TWF with a step size �t � 0:2 (for solving a quadratic system).
Set m D 8n and generate x � N .0; I/ and ai � N .0; I/, 1 � i � m, inde-
pendently. This gives a matrix ATA with a low condition number equal to about
.1C

p
1=8/2=.1 �

p
1=8/2 � 4:38 by the Marchenko-Pastur law. Therefore, this

is an ideal setting for CG as it converges extremely rapidly [49, theorem 38.5].
Figure 1.1 shows the relative estimation error of each method as a function of the
iteration count, where TWF is seeded through 10 power iterations. For ease of
comparison, we illustrate the iteration counts in different scales so that 4 TWF
iterations are equivalent to 1 CG iteration.

Recognizing that each iteration of CG and TWF involves two matrix-vector
products A´ and ATv, for such a design we reach a surprising observation:

Even when all phase information is missing, TWF is capable of
solving a quadratic system of equations only about 4 times slower
than solving a least squares problem of the same size!

To illustrate the applicability of TWF on real images, we turn to testing our
algorithm on a digital photograph of the Stanford main quad containing 320�1280
pixels. We consider a type of measurement that falls under the category of coded
diffraction patterns (CDP) [11] and set

(1.9) y.l/ D jFD.l/xj2; 1 � l � L:

Here F stands for a discrete Fourier transform (DFT) matrix, and D.l/ is a diag-
onal matrix whose diagonal entries are independently and uniformly drawn from
f1;�1; j;�j g (phase delays). In phase retrieval, each D.l/ represents a random
mask placed after the object so as to modulate the illumination patterns. When
L masks are employed, the total number of quadratic measurements is m D nL.
In this example, L D 12 random coded patterns are generated to measure each
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(a)

(b)

(c)

FIGURE 1.2. The recovered images after (a) spectral initialization; (b)
regularized spectral initialization; and (c) 50 TWF gradient iterations
following the regularized initialization.

color band (i.e., red, green, or blue) separately. The experiment is carried out on
a MacBook Pro equipped with a 3GHz Intel Core i7 and 16GB of memory. We
run 50 iterations of the truncated power method for initialization, and 50 regular-
ized gradient iterations, which in total costs 43.9 seconds or 2400 FFTs for each
color band. The relative errors after regularized spectral initialization and after 50
TWF iterations are 0.4773 and 2:16�10�5, respectively, with the recovered images
displayed in Figure 1.2. In comparison, the spectral initialization using 50 untrun-
cated power iterations returns an image of relative error 1.409, which is almost like
a random guess and extremely far from the truth.

While the above experiments concern noiseless data, the numerical surprise ex-
tends to the noisy realm. Suppose the data are drawn according to the Poisson
noise model (1.4), with ai � N .0; I/ independently generated. Figure 1.3 dis-
plays the empirical relative mean-square error (MSE) of TWF as a function of the
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FIGURE 1.3. Relative MSE vs. SNR in dB. The curves are shown for
two settings: TWF for solving quadratic equations (blue), and MLE had
we observed additional phase information (green). The results are shown
for n D 100, and each point is averaged over 50 Monte Carlo trials.

signal-to-noise ratio (SNR), where the relative MSE for an estimate yx and the SNR
are defined as4

(1.10) MSE WD
dist2.yx;x/
kxk2

and SNR WD 3kxk2:

Both SNR and MSE are displayed on a dB scale (i.e., the values of 10 log10.SNR/
and 10 log10.rel. MSE/ are plotted).

To evaluate the accuracy of the TWF solutions, we consider the performance
achieved by MLE applied to an ideal problem in which the true phases are revealed.
In this ideal scenario, in addition to the data fyig we are further given exact phase
information f'i D sign.aT

i x/g. Such precious information gives away the phase
retrieval problem and makes the MLE efficiently solvable since the MLE problem
with side information

minimize´2Rn �
Pm
iD1 yi log

�ˇ̌
aT
i ´
ˇ̌2�
C
�
aT
i ´
�2

subject to 'i D sign
�
aT
i ´
�

can be cast as a convex program

minimize´2Rn �
Pm
iD1 2yi log

�
'ia

T
i ´
�
C
�
aT
i ´
�2
:

Figure 1.3 illustrates the empirical performance for this ideal problem. The plots
demonstrate that even when all phases are erased, TWF yields a solution of nearly
the best possible quality, since it only incurs an extra 1:5 dB loss compared to ideal

4 To justify the definition of SNR, note that the signals and noise are captured by �i D .aT
i x/

2

and yi � �i , 1 � i � m, respectively. The ratio of the signal power to the noise power is thereforePm
iD1 �

2
iPm

iD1 VarŒyi �
D

Pm
iD1 ja

T
i xj

4Pm
iD1 ja

T
i xj

2
�
3mkxk4

mkxk2
D 3kxk2:
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MLE computed with all true phases revealed. This phenomenon arises regardless
of the SNR!

1.5 Main Results
The preceding numerical discoveries unveil promising features of TWF in three

aspects: (1) exponentially fast convergence, (2) exact recovery from noiseless data
with sample complexity O.n/, and (3) nearly minimal mean-square loss in the
presence of noise. This paper offers a formal substantiation of all these findings.
To this end, we assume a tractable model in which the design vectors ai ’s are
independent Gaussian:

(1.11) ai � N .0; In/:
For concreteness, our results are concerned with TWF based on the Poisson log-
likelihood function

`i .´/ WD `.´Iyi / D yi log
�ˇ̌
aT
i ´
ˇ̌2�
�
ˇ̌
aT
i ´
ˇ̌2
;(1.12)

where we shall use `i .´/ as a shorthand for `.´Iyi / from now on. We begin with
the performance guarantees of TWF in the absence of noise.

THEOREM 1.1 (Exact Recovery). Consider the noiseless case (1.1) with an arbi-
trary signal x 2 Rn. Suppose that the step size �t is either taken to be a positive
constant �t � � or chosen via a backtracking line search. Then there exist some
universal constants 0 < �; � < 1 and �0; c0; c1; c2 > 0 such that with probability
exceeding 1 � c1 exp.�c2m/, the truncated Wirtinger flow estimates (Algorithm 1
with parameters specified in Table 2.1) obey

dist.´.t/;x/ � �.1 � �/tkxk 8t 2 N(1.13)

provided that
m � c0n and 0 < � � �0:

As explained below, we can often take �0 � 0:3.

Remark 1.2. As will be made precise in Section 5 (and in particular Proposition
5.1), one can take

�0 D
0:994 � �1 � �2 �

p
2=.9�/˛�1

h

2.1:02C 0:665=˛h/

for some small quantities �1; �2 and some predetermined threshold ˛h that is usu-
ally taken to be ˛h � 5. Under appropriate conditions, one can treat �0 as
�0 � 0:3.

Theorem 1.1 justifies at least two appealing features of TWF: (i) minimal sample
complexity and (ii) linear-time computational cost. Specifically, TWF allows exact
recovery from O.n/ quadratic equations, which is optimal since one needs at least
nmeasurements to have a well-posed problem. Also, because of the geometric con-
vergence rate, TWF achieves �-accuracy (i.e., dist.´.t/;x/ � �kxk) within at most
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O.log.1=�// iterations. The total computational cost is thereforeO.mn log.1=�//,
which is linear in the problem size. These outperform the performance guarantees
of WF [13], which runs in O.mn2 log.1=�// time and requires O.n logn/ sample
complexity.

We emphasize that enhanced performance vis-à-vis WF is not the result of a
sharper analysis, but rather the result of key algorithmic changes. In both the ini-
tialization and iterative refinement stages, TWF proceeds in a more prudent manner
by means of proper regularization, which effectively trims away those components
that are too influential on either the initial guess or search directions, thus reducing
the volatility of each movement. With a tighter initialization and better-controlled
search directions in place, we take the step size in a far more liberal fashion—which
is some constant bounded away from 0—compared to a step size that isO.1=n/ as
explained in [13]. In fact, what enables the movement to be more aggressive is ex-
actly the cautious choice of Tt , which precludes adverse effects from high-leverage
samples.

To be broadly applicable, the proposed algorithm must guarantee reasonably
faithful estimates in the presence of noise. Suppose that

(1.14) yi D jhai ;xij
2
C �i ; 1 � i � m;

where �i represents an error term. We claim that TWF is stable against additive
noise, as demonstrated in the theorem below.

THEOREM 1.3 (Stability). Consider the noisy case (1.14). Suppose that the step
size �t is either taken to be a positive constant �t � � or chosen via a backtrack-
ing line search. If

(1.15) m � c0n; � � �0; and k�k1 � c1kxk
2;

then with probability at least 1� c2 exp.�c3m/, the truncated Wirtinger flow esti-
mates (Algorithm 1 with parameters specified in Table 2.1) satisfy

dist.´.t/;x/ .
k�k
p
mkxk

C .1 � �/tkxk 8t 2 N(1.16)

simultanesouly for all x 2 Rn. Here, 0 < � < 1 and �0; c0; c1; c2; c3 > 0 are
some universal constants.

Under the Poisson noise model (1.4), one has

dist.´.t/;x/ . 1C .1 � �/tkxk 8t 2 N(1.17)

with probability approaching 1, provided that kxk � log1:5m.

Remark 1.4. In the main text, we will prove Theorem 1.3 only for the case where x
is fixed and independent of the design vectors faig. Interested readers are referred
to the supplemental materials [15] for the proof of the universal theory (i.e., the
case simultaneously accommodating all x 2 Rn). Note that when there is no noise
(� D 0), this stronger result guarantees the universality of the noiseless recovery.
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Remark 1.5. [45] establishes stability estimates using the WF approach under
Gaussian noise. There, the sample and computational complexities are still on the
order of n logn and mn2, respectively, whereas the computational complexity in
Theorem 1.3 is linear, i.e., on the order of mn.

Theorem 1.3 essentially reveals that the estimation error of TWF rapidly shrinks
to O..k�k=

p
m/=kxk/ within logarithmic iterations. Put another way, since the

SNR for the model (1.14) is captured by

(1.18) SNR WD
Pm
iD1 jhai ;xij

4

k�k2
�
3mkxk4

k�k2
;

we immediately arrive at an alternative form of the performance guarantee:

dist.´.t/;x/ .
1

p
SNR
kxk C .1 � �/tkxk 8t 2 N;(1.19)

revealing the stability of TWF as a function of SNR. We emphasize that this es-
timate holds for any error term �—i.e., any noise structure, even deterministic.
This being said, specializing this estimate to the Poisson noise model (1.4) with
kxk & log1:5m gives an estimation error that will eventually approach a numeri-
cal constant, independent of n and m.

Encouragingly, this is already the best statistical guarantee any algorithm can
achieve. We formalize this claim by deriving a fundamental lower bound on the
minimax estimation error.

THEOREM 1.6 (Lower Bound on the Minimax Risk). Suppose that ai � N .0; I/,
m D �n for some fixed � independent of n, and n is sufficiently large. For any
K � log1:5m, define5

‡.K/ WD fx 2 Rn j kxk 2 .1˙ 0:1/Kg:

With probability approaching 1, the minimax risk under the Poisson model (1.4)
obeys

(1.20) inf
yx

sup
x2‡.K/

EŒdist.yx;x/ j faig1�i�m� �
"1
p
�
;

where the infimum is over all estimators yx. Here, "1 > 0 is a numerical constant
independent of n and m.

When the number m of measurements is proportional to n and the energy of the
planted solution exceeds log3m, Theorem 1.6 asserts that there exists absolutely
no estimator that can achieve an estimation error that vanishes as n increases. This
lower limit matches the estimation error of TWF, which corroborates the optimality
of TWF under noisy data.

Recall that in many optical imaging applications, the output data we collect are
the intensities of the diffractive waves scattered by the sample or specimen under

5 Here, 0:1 can be replaced by any positive constant within .0; 12 /.
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study. The Poisson noise model employs the input x and output y to describe the
numbers of photons diffracted by the specimen and detected by the optical sensor,
respectively. Each specimen needs to be sufficiently illuminated in order for the
receiver to sense the diffracted light. In such settings, the low-intensity regime
kxk � log1:5m is of little practical interest as it corresponds to an illumination
with just very few photons. We forego the details.

It is worth noting that apart from WF, various other nonconvex procedures have
been proposed as well for phase retrieval, including the error reduction schemes
dating back to Gerchberg-Saxton and Fienup [23,24], iterated projections [22], al-
ternating minimization [36], generalized approximate message passing [41], the
Kaczmarz method [53], and greedy methods that exploit additional sparsity con-
straint [42], to name just a few. While these paradigms enjoy favorable empirical
behavior, most of them fall short of theoretical support except for a version of alter-
nating minimization (called AltMinPhase) [36] that requires fresh samples for each
iteration. In comparison, AltMinPhase attains �-accuracy when the sample com-
plexity exceeds the order of n log3 nC n log2 n log.1=�/, which is at least a factor
of log3 n from optimal and is empirically largely outperformed by the variant that
reuses all samples.

In contrast, our algorithm uses the same set of samples all the time and is there-
fore practically appealing. Furthermore, none of these algorithms come with prov-
able stability guarantees, which are particularly important in most realistic scenar-
ios. Numerically, each iteration of Fienup’s algorithm (or alternating minimization)
involves solving a least squares problem, and the algorithm converges in tens or
hundreds of iterations. This is computationally more expensive than TWF, whose
computational complexity is merely about 4 times that of solving a least squares
problem. Interested readers are referred to [13] for a comparison of several noncon-
vex schemes and to [11] for a discussion of other alternative approaches (e.g., [1,5])
and performance lower bounds (e.g., [6, 21]).

2 Algorithm: Truncated Wirtinger Flow
This section describes the two stages of TWF in detail, presented in a reverse

order. For each stage, we start with some algorithmic issues encountered by WF,
which is then used to motivate and explain the basic principles of TWF. Here and
throughout, we let A W Rn�n 7! Rm be the linear map

M 2 Rn�n 7! A.M / WD
˚
aT
iMai

	
1�i�m

and A the design matrix

A WD Œa1; : : : ; am�
T:
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z

x

FIGURE 2.1. The locus of

�
1

2
r`i .´/ D

jaT
i ´j

2 � jaT
i xj

2

aT
i ´

ai

when ai ranges over all unit vectors, where x D .2:7; 8/ and ´ D .3; 6/.
For each direction ai , �12r`i .´/ is aligned with ai , and its length repre-
sents the weight assigned to this component. In particular, the red arrows
depict a few directions that behave like outliers, whereas the blue arrows
depict several directions whose resulting gradients take typical sizes.

2.1 Regularized Gradient Stage
For independent samples, the gradient of the real-valued Poisson log-likelihood

obeys

(2.1)
mX
iD1

r`i .´/ D

mX
iD1

2
yi � ja

T
i ´j

2

aT
i ´„ ƒ‚ …

WD�i

ai ;

where �i represents the weight assigned to each ai . This forms the descent direc-
tion of WF updates.

Unfortunately, WF moving along the preceding direction might not come close
to the truth unless ´ is already very close to x. To see this, it is helpful to consider
any fixed vector ´ 2 Rn independent of the design vectors. The typical size of
min1�i�m jaT

i ´j is about on the order of 1
m
k´k. This introduces some unreasonably

large weights �i , which can be as large asmkxk2=k´k. Consequently, the iterative
updates based on (1.2) often overshoot, and this arises starting from the very initial
stage.6

Figure 2.1 illustrates this phenomenon by showing the locus of �r`i .´/ when
ai has unit norm and ranges over all possible directions. Examination of the figure
seems to suggest that most of the gradient components r`i .´/ are more or less
pointing towards the truth x and forming reasonable search directions. But there

6 For complex-valued data where ai � N .0; I/ C jN .0; I/, WF converges empirically, as
mini ja�i ´j is much larger than the real-valued case.
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FIGURE 2.2. Relative MSE vs. SNR in dB. The curves are shown
for WF and TWF, both employing the Poisson log-likelihood. Here,
ai � N .0; I/, n D 1000, m D 8n, and each point is averaged over 100
Monte Carlo trials.

exist a few outlier components that are excessively large, which lead to unsta-
ble search directions. Notably, an underlying premise for a nonconvex procedure
to succeed is to ensure all iterates reside within a basin of attraction, that is, a
neighborhood surrounding x within which x is the unique stationary point of the
objective. When a gradient is not well controlled, the iterative procedure might
overshoot and end up leaving this basin of attraction. This intuition is corroborated
by numerical experiments under real-valued data. As illustrated in Figure 2.2, the
solutions returned by the WF (designed for a real-valued Poisson log-likelihood
and m D 8n) are very far from the ground truth.

Hence, to remedy the aforementioned stability issue, it would be natural to
separate the small fraction of abnormal gradient components by regularizing the
weights �i , possibly via data-dependent trimming rules. This gives rise to the up-
date rule of TWF:

´.tC1/ D ´.t/ C
�t

m
r`tr.´

.t// 8t 2 N;(2.2)

where r`tr.�/ denotes the regularized gradient given by7

(2.3) r`tr.´/ WD

mX
iD1

2
yi � ja

T
i ´j

2

aT
i ´

ai1Ei1.´/\E
i
2.´/

7 In the complex-valued case, the trimming rule is enforced upon the Wirtinger derivative, which
reads

r`tr.´/ WD

mX
iD1

2
yi � j´

�ai j
2

´�ai
ai1Ei

1
.´/\Ei

2
.´/
:
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for some trimming criteria specified by E i1.�/ and E i2.�/. In our algorithm, we take
E i1.´/ and E i2.´/ to be two collections of events given by

E i1.´/ WD
�
˛lb
´ �
jaT
i ´j

k´k
� ˛ub

´

�
;(2.4)

E i2.´/ WD
�ˇ̌
yi �

ˇ̌
aT
i ´
ˇ̌2ˇ̌
�
˛h

m
ky �A.´´T/k1

jaT
i ´j

k´k

�
;(2.5)

where ˛lb
´ , ˛ub

´ , ˛´ are predetermined thresholds. To keep notation light, we shall
use E i1 and E i2 rather than E i1.´/ and E i2.´/ whenever it is clear from context.

We emphasize that the above trimming procedure simply throws away those
components whose weights �i ’s fall outside some confidence range, so as to re-
move the influence of outlier components. To achieve this, we regularize both the
numerator and denominator of �i by enforcing separate trimming rules. Recognize
that for any fixed ´, the denominator obeys

E
�ˇ̌
aT
i ´
ˇ̌�
D
p
2=�k´k;

leading up to the rule (2.4). Regarding the numerator, by the law of large numbers
one would expect

E
�ˇ̌
yi �

ˇ̌
aT
i ´
ˇ̌2ˇ̌�
�
1

m
ky �A.´´T/k1;

and hence it is natural to regularize the numerator by ensuringˇ̌
yi �

ˇ̌
aT
i ´
ˇ̌2ˇ̌ .

1

m
ky �A.´´T/k1:

As a remark, we include an extra term jaT
i ´j=k´k in (2.5) to sharpen the theory, but

all our results continue to hold (up to some modification of constants) if we drop
this term in (2.5). Detailed procedures are summarized in Algorithm 1. 8

The proposed paradigm could be counterintuitive at first glance, since one might
expect the larger terms to be better aligned with the desired search direction. The
issue, however, is that the large terms are extremely volatile and could have too
high of a leverage on the descent directions. In contrast, TWF discards these high-
leverage data, slightly increasing the bias but remarkably reducing the variance of
the descent direction. We expect such gradient regularization and variance reduc-
tion schemes to be beneficial for solving a broad family of nonconvex problems.

8 Careful readers might note that we include some extra factor
p
n=kaik (which is approximately

1 in the Gaussian model) in Algorithm 1. This occurs since we present Algorithm 1 in a more general
fashion that applies beyond the model ai � N .0; I/, but all results and proofs continue to hold in
the presence of this extra term.
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Algorithm 1 Truncated Wirtinger Flow.
Input: Measurements fyi j 1 � i � mg and sampling vectors fai j 1 � i � mg;
trimming thresholds ˛lb

´ , ˛ub
´ , ˛h, and ˛y (see default values in Table 2.1).

Initialize ´.0/ to be
q

mnPm
iD1 kaik

2
�0ź, where �0 D

q
1
m

Pm
iD1 yi and ź is the

leading eigenvector of

(2.6) Y D
1

m

mX
iD1

yiaia
�
i 1
fjyi j�˛

2
y�
2
0g
:

Loop: for t D 0 W T do

´.tC1/ D ´.t/ C
2�t

m

mX
iD1

yi � ja
�
i ´
.t/j2

´.t/�ai
ai1Ei1\E

i
2
;(2.7)

where

(2.8)

E i1 WD
(
˛lb
´ �

p
n

kaik

ja�i ´
.t/j

k´.t/k
� ˛ub

´

)
;

E i2 WD
(
jyi � ja

�
i ´
.t/
j
2
j � ˛hKt

p
n

kaik

ja�i ´
.t/j

k´.t/k

)
;

and Kt WD
1

m

mX
lD1

ˇ̌
yl � ja

�
l ´
.t/
j
2
ˇ̌
:

Output ´T .

2.2 Truncated Spectral Initialization
In order for the gradient stage to converge rapidly, we need to seed it with a

suitable initialization. One natural alternative is the spectral method adopted in
[13, 36], which amounts to computing the leading eigenvector of

zY WD
1

m

mX
iD1

yiaia
T
i :

This arises from the observation that when ai � N .0; I/ and kxk D 1,

EŒzY � D I C 2xxT;

whose leading eigenvector is exactly x with an eigenvalue of 3.
Unfortunately, this spectral technique converges to a good initial point only

when m & n logn, due to the fact that .aT
i x/

2aia
T
i is heavy-tailed, a random

quantity that does not have a moment-generating function. To be more precise,
consider the noiseless case yi D jaT

i xj
2 and recall that maxi yi � 2 logm. Letting
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k D arg maxi yi , one can calculate�
ak

kakk

�T
zY
ak

kakk
�

�
ak

kakk

�T� 1
m
aka

T
k

��
aT
kx
�2� ak

kakk

�
�
2n logm
m

;

which is much larger than xT zYx D 3 unless m=n is very large. This tells us that
in the regime where m � n, there exists some unit vector ak=kakk that is closer
to the leading eigenvector of zY than x. This phenomenon happens because the
summands of zY have huge tails so that even one large term could end up dom-
inating the empirical sum, thus preventing the spectral method from returning a
meaningful initial guess.

To address this issue, we propose a more robust version of spectral method,
which discards those observations yi that are several times larger than the mean
during spectral initialization. Specifically, the initial estimate is obtained by com-
puting the leading eigenvector ź of the truncated sum

(2.9) Y WD
1

m

mX
iD1

yiaia
T
i 1fjyi j�˛2y. 1m

Pm
lD1 yl/g

for some predetermined threshold ˛y , and then rescaling ź so as to have roughly
the same norm as x (which is estimated to be 1

m

Pm
lD1 yl ); see Algorithm 1 for the

detailed procedure.
Notably, the aforementioned drawback of the spectral method is not merely a

theoretical concern but rather a substantial practical issue. We have seen this in
Figure 1.2 (main quad example) showing the enormous advantage of truncated
spectral initialization. This is also further illustrated in Figure 2.3, which compares
the empirical efficiency of both methods with ˛y D 3 set to be the truncation
threshold. For both Gaussian designs and CDP models, the empirical loss incurred
by the original spectral method increases as n grows, which is in stark constrast
to the truncated spectral method that achieves almost identical accuracy over the
same range of n.

2.3 Choice of Algorithmic Parameters
One implementation detail to specify is the step size�t at each iteration t . There

are two alternatives that work well in both theory and practice:

(1) Fixed step size. Take �t � � (8t 2 N) for some constant � > 0. As
long as � is not too large, our main results state that this strategy always
works—although the convergence rate depends on �. Under appropriate
conditions, our theorems hold for any constant 0 < � < 0:28.

(2) Backtracking line search with truncated objective. This strategy performs
a line search along the descent direction

pt WD
1

m
r`tr.´t /
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FIGURE 2.3. The empirical relative error for both the spectral and the
truncated spectral methods. The results are averaged over 50 Monte
Carlo runs, and are shown for: (a) 1-D Gaussian measurement where
ai � N .0; I/ and m D 6n; (b) 2-D CDP model (1.9) where the diago-
nal entries ofD.l/ are uniformly drawn from f1;�1; j;�j g, n D n1�n2
with n1 D 300 and n2 ranging from 64 to 1280, and m D 12n.

and determines an appropriate step size that guarantees a sufficient im-
provement. In contrast to the conventional search strategy that determines
the sufficient progress with respect to the true objective function, we pro-
pose to evaluate instead a regularized version of the objective function.
Specifically, put

(2.10) ỳ.´/ WD
X
i2�T .´/

˚
yi log

�ˇ̌
aT
i ´
ˇ̌2�
�
ˇ̌
aT
i ´
ˇ̌2	
;

where �T .´/ WD ˚i ˇ̌ ˇ̌aT
i ´
ˇ̌
� ˛lb

´ k´k and
ˇ̌
aT
i p
ˇ̌
� p̨kpk

	
:

Then the backtracking line search proceeds as follows:
(a) Start with � D 1;
(b) Repeat �  ˇ� until

(2.11)
1

m
�̀.´.t/ C �p.t// � 1

m
�̀.´.t//C 1

2
�kp.t/k2;

where ˇ 2 .0; 1/ is some predetermined constant;
(c) Set �t D � .

By definition (2.10), evaluating ỳ.´.t/ C �p.t// mainly consists in calcu-
lating the matrix-vector product A.´.t/ C �p.t//. In total, we are going to
evaluate ỳ.´.t/C �p.t// forO

�
log.1=ˇ/

�
different � ’s, and hence the total

cost amounts to computing A´.t/, Ap.t/ as well as O.m log.1=ˇ// addi-
tional flops. Note that the matrix-vector productsA´.t/ andAp.t/ need to
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TABLE 2.1. Range of algorithmic parameters

(a) When a fixed step size �t � � is employed: .˛lb
´ ; ˛

ub
´ ; ˛h; ˛y/ obeys

(2.13)

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

�1 WD max
˚
E
�
�21
fj�j�

p
1:01˛lb

´ or j�j�
p
0:99˛ub

´ g

�
;

P
�
j�j �

p
1:01˛lb

´ or j�j �
p
0:99˛ub

´

�	
�2 WD E

�
�21fj�j>0:473˛hg

�
;

2.�1 C �2/C
p
8=.9�/˛�1

h
< 1:99;

˛y � 3;

where � � N .0; 1/. By default, ˛lb
´ D 0:3, ˛ub

´ D ˛h D 5, and ˛y D 3.

(b) When �t is chosen by a backtracking line search: .˛lb
´ ; ˛

ub
´ ; ˛h; ˛y ; p̨/

obeys

(2.14) 0 < ˛lb
´ � 0:1; ˛ub

´ � 5; ˛h � 6; ˛y � 3; and p̨ � 5:

By default, ˛lb
´ D 0:1, ˛ub

´ D 5, ˛h D 6, ˛y D 3, and p̨ D 5.

be computed even when one adopts a predetermined step size. Hence, the
extra cost incurred by a backtracking line search, which is O.m log.1=ˇ//
flops, is negligible compared to that of computing the gradient even once.

Another set of important algorithmic parameters to determine is the trimming
thresholds ˛h, ˛lb

´ , ˛ub
´ , ˛y , and p̨ (for a backtracking line search only). The

present paper isolates the set of .˛h; ˛lb
´ ; ˛

ub
´ ; ˛y/ obeying (2.13) as given in Table

2.1 when a fixed step size is employed. More concretely, this range subsumes as
special cases all parameters obeying the following constraints:

(2.12) 0 < ˛lb
´ � 0:5; ˛ub

´ � 5; ˛h � 5; and ˛y � 3:

When a backtracking line search is adopted, an extra parameter p̨ is needed, which
we take to be p̨ � 5. In all theory presented herein, we assume that the parameters
fall within the range singled out in Table 2.1.

3 Why Does TWF Work?
Before proceeding, it is best to develop an intuitive understanding of the TWF

iterations. We start with a notation representing the (unrecoverable) global phase
[13] for real-valued data

(3.1) �.´/ WD

(
0 if k´ � xk � k´C xk;
� otherwise:



TRUNCATED WIRTINGER FLOW 841

It is self-evident that

.�´/C
�

m
rtr`.�´/ D �

n
´C

�

m
rtr`.´/

o
;

and hence (cf. Definition (1.8))

dist
�
.�´/C

�

m
rtr`.�´/;x

�
D dist

�
´C

�

m
rtr`.´/;x

�
despite the global phase uncertainty. To simplify presentation, we shall drop the
phase term by letting ´ be e�j�.´/´ and setting h D ´ � x whenever it is clear
from context.

The first object to consider is the descent direction. To this end, we find it
convenient to work with a fixed ´ independent of the design vectors ai , which is of
course heuristic but helpful in developing some intuition. Rewrite

r`i .´/ D 2
.aT
i x/

2 � .aT
i ´/

2

aT
i ´

ai
.i/
D �2

.aT
i h/.2a

T
i ´ � a

T
i h/

aT
i ´

ai

D �4
�
aT
i h
�
ai C 2

.aT
i h/

2

aT
i ´

ai„ ƒ‚ …
WDri

;(3.2)

where (i) follows from the identity a2�b2 D .aCb/.a�b/. The first component of
(3.2), which on average gives �4h, makes a good search direction when averaged
over all the observations i D 1; : : : ; m. The issue is that the other term r i—
which is in general nonintegrable—could be devastating. The reason is that aT

i ´

could be arbitrarily small, thus resulting in an unbounded r i . As a consequence, a
nonnegligible portion of the r i ’s may exert a very strong influence on the descent
direction in an undesired manner.

Such an issue can be prevented if one can detect and separate those gradient
components bearing abnormal r i ’s. Since we cannot observe the individual com-
ponents of the decomposition (3.2), we cannot reject indices with large values of r i
directly. Instead, we examine each gradient component as a whole and discard it if
its size is not absolutely controlled. Fortunately, such a strategy is sufficient to en-
sure that most of the contribution from the regularized gradient comes from the first
component of (3.2), namely, �4.aT

i h/ai . As will be made precise in Proposition
5.5 and Lemma 5.9, the regularized gradient obeys

�

�
1

m
r`tr.´/;h

�
� .4 � �/khk2 �O

�
khk3

k´k

�
(3.3)

and



 1
m
r`tr.´/




 . khk:(3.4)

Here, one has .4 � �/khk2 in (3.3) instead of 4khk2 to account for the bias in-
troduced by adaptive trimming, where � is small as long as we only throw away a
small fraction of data. Looking at (3.3) and (3.4), we see that the search direction
is sufficiently aligned with the deviation �h D x � ´ of the current iterate; i.e.,
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FIGURE 3.1. A function �`.´/ satisfying RC: �`.´/ D ´2 for any
´ 2 Œ�6; 6�, and �`.´/ D ´2 C 1:5j´j.cos.j´j � 6/ � 1/ otherwise.

they form a reasonably good angle that is bounded away from 90ı. Consequently,
´ is expected to be dragged towards x provided that the step size is appropriately
chosen.

The observations (3.3) and (3.4) are reminiscent of a (local) regularity condition
given in [13], which is a fundamental criterion that dictates rapid convergence of
iterative procedures (including WF and other gradient descent schemes). When
specialized to TWF, we say that � 1

m
r`tr.�/ satisfies the regularity condition, de-

noted by RC.�; �; �/, if

(3.5)
�
h;�

1

m
r`tr.´/

�
�
�

2





 1mr`tr.´/





2 C �

2
khk2

holds for all ´ obeying k´ � xk � �kxk, where 0 < � < 1 is some constant. Such
an �-ball around x forms a basin of attraction. Formally, under RC.�; �; �/, a little
algebra gives

dist2
�
´C

�

m
r`tr.´/;x

�
�




´C �

m
r`tr.´/ � x




2
D khk2 C




�
m
r`tr.´/




2 C 2��h; 1
m
r`tr.´/

�
� khk2 C




�
m
r`tr.´/




2 � �2



 1mr`tr.´/





2 � ��khk2
D .1 � ��/ dist2.´;x/(3.6)

for any ´ with k´ � xk � �. In words, the TWF update rule is locally contractive
around the planted solution, provided that RC.�; �; �/ holds for some nonzero �
and �. Apparently, conditions (3.3) and (3.4) already imply the validity of RC for
some constants �; � � 1 when khk=k´k is reasonably small, which in turn allows
us to take a constant step size � and enables a constant contraction rate 1 � ��.

Finally, caution must be exercised when connecting RC with strong convexity,
since the former does not necessarily guarantee the latter within the basin of attrac-
tion. As an illustration, Figure 3.1 plots the graph of a nonconvex function obeying
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FIGURE 4.1. Empirical success rate under real-valued Gaussian sam-
pling ai � N .0; In/.

RC. The distinction stems from the fact that RC is stated only for those pairs ´ and
h D ´� x with x being a fixed component, rather than simultaneously accommo-
dating all possible ´ and h D ´ � ź with ź being an arbitrary vector. In contrast,
RC says that the only stationary point of the truncated objective in a neighborhood
of x is x, which often suffices for a gradient-descent-type scheme to succeed.

4 Numerical Experiments
In this section, we report additional numerical results to verify the practical

applicability of TWF. In all numerical experiments conducted in the current paper,
we set

(4.1) ˛lb
´ D 0:3; ˛ub

´ D 5; ˛h D 5; and ˛y D 3:

This is a concrete combination of parameters satisfying our condition (2.13). Un-
less otherwise noted, we employ 50 power iterations for initialization, adopt a fixed
step size �t � 0:2 when updating TWF iterates, and set the maximum number of
iterations to be T D 1000 for the iterative refinement stage.

The first series of experiments concerns exact recovery from noise-free data.
Set n D 1000 and generate a real-valued signal x at random. Then for m vary-
ing between 2n and 6n, generate m design vectors ai independently drawn from
N .0; I/. An experiment is claimed to succeed if the returned estimate yx satisfies
dist.yx;x/=kxk � 10�5. Figure 4.1 illustrates the empirical success rate of TWF
(over 100 Monte Carlo trials for each m) revealing that exact recovery is prac-
tially guaranteed from fewer than 1000 iterations when the number of quadratic
constraints is about 5 times the ambient dimension.

To see how special the real-valued Gaussian designs are to our theoretical find-
ing, we perform experiments on two other types of measurement models. In the
first, TWF is applied to complex-valued data by generating ai � N .0; 1

2
I/ C

jN .0; 1
2
I/. The other is the model of coded diffraction patterns described in (1.9).
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FIGURE 4.2. Empirical success rate for exact recovery using TWF.
The results are shown for (a) complex-valued Gaussian sampling ai �
N .0; 1

2
In/ C jN .0; 12In/, and (b) CDP with masks uniformly drawn

from f1;�1; j;�j g.
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FIGURE 4.3. Relative MSE vs. SNR when the yi ’s follow the Poisson model.

Figure 4.2 depicts the average success rate for both types of measurements over
100 Monte Carlo trials, indicating that m > 4:5n and m � 6n are often sufficient
under complex-valued Gaussian and CDP models, respectively.

For the sake of comparison, we also report the empirical performance of WF in
all the above settings, where the step size is set to be the default choice of [13],
that is, �t D minf1 � e�t=330; 0:2g. As can be seen, the empirical success rates
of TWF outperform WF when T D 1000 under Gaussian models, suggesting that
TWF either converges faster or exhibits better phase transition behavior.

Another series of experiments has been carried out to demonstrate the stability
of TWF when the number m of quadratic equations varies. We consider the case
where n D 1000 and vary the SNR (cf. (1.10)) from 15 dB to 55 dB. The design
vectors are real-valued independent Gaussian ai � N .0; I/, while the measure-
ments yi are generated according to the Poisson noise model (1.4). Figure 4.3
shows the relative mean square error—in the dB scale—as a function of SNR,
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when averaged over 100 independent runs. For all choices of m, the numerical ex-
periments demonstrate that the relative MSE scales inversely proportional to SNR,
which matches our stability guarantees in Theorem 1.3 (since we observe that on
the dB scale, the slope is about �1 as predicted by the theory (1.19)).

5 Exact Recovery from Noiseless Data
This section proves the theoretical guarantees of TWF in the absence of noise

(i.e., Theorem 1.1). We separate the noiseless case mainly out of pedagogical
reasons, as most of the steps carry over to the noisy case with slight modification.

The analysis for the truncated spectral method relies on the celebrated Davis-
Kahan sin‚ theorem [19], which we defer to Appendix C. In short, for any fixed
ı > 0 and x 2 Rn, the initial point ´.0/ returned by the truncated spectral method
obeys

dist.´.0/;x/ � ıkxk

with high probability, provided that m=n exceeds some numerical constant. With
this in place, it suffices to demonstrate that the TWF update rule is locally contrac-
tive, as stated in the following proposition.

PROPOSITION 5.1 (Local Error Contraction). Consider the noiseless case (1.1).
Under condition (2.13), there exist some universal constants 0 < �0 < 1 and
c0; c1; c2 > 0 such that with probability exceeding 1 � c1 exp.�c2m/,

(5.1) dist2
�
´C

�

m
r`tr.´/;x

�
� .1 � �0/ dist2.´;x/

holds simultaneously for all x; ´ 2 Rn obeying

(5.2)
dist.´;x/
k´k

� min

(
1

11
;
˛lb
´

3˛h
;
˛lb
´

6
;
5:7
�
˛lb
´

�2
2˛ub
´ C ˛

lb
´

)
;

provided that m � c0n and that � is some constant obeying

0 < � � �0 WD
0:994 � �1 � �2 �

p
2=.9�/˛�1

h

2.1:02C 0:665=˛h/
:

Proposition 5.1 reveals the monotonicity of the estimation error: once entering a
neighborhood around x of a reasonably small size, the iterative updates will remain
within this neighborhood all the time and be attracted towards x at a geometric rate.

As shown in Section 3, under the hypothesis RC.�; �; �/ one can conclude

(5.3) dist2
�
´C

�

m
r`tr.´/;x

�
� .1 � ��/ dist2.´;x/ 8.´;x/ with dist.´;x/ � �:

Thus, everything now boils down to showing that RC.�; �; �/ for some constants
�; �; � > 0. This occupies the rest of this section.
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FIGURE 5.1. f .t/
p
1Ct2

as a function of t .

5.1 Preliminary Facts about
˚
Ei
1

	
and

˚
Ei
2

	
Before proceeding, we gather a few properties of the events E i1 and E i2, which

will prove crucial in establishing RC.�; �; �/. To begin with, recall that the trunca-
tion level given in E i2 depends on 1

m
kA.xxT�´´T/k1. Instead of working with this

random variable directly, we use deterministic quantities that are more amenable
to analysis. Specifically, we claim that 1

m
kA.xxT � ´´T/k1 offers a uniform and

orderwise tight estimate on khkk´k, which can be seen from the following two
facts.

LEMMA 5.2. Fix � 2 .0; 1/. If m > c0n�
�2 log 1

�
, then with probability at least

1 � C exp.�c1�2m/,

(5.4) 0:9.1 � �/kMkF �
1

m
kA.M /k1 � .1C �/

p
2kMkF

holds for all symmetric rank 2 matricesM 2 Rn�n. Here, c0; c1; C > 0 are some
universal constants.

PROOF. Since [14, lemma 3.1] already establishes the upper bound, it suffices
to prove the lower tail bound. Consider all symmetric rank 2 matrices M with
eigenvalues 1 and �t for some �1 � t � 1. When t 2 Œ0; 1�, it has been shown in
the proof of [14, lemma 3.2] that with high probability

(5.5)
1

m
kA.M /k1 � .1 � �/f .t/

for all such rank 2 matricesM , where

f .t/ WD
2

�

n
2
p
t C .1 � t /

��
2
� 2 arctan.

p
t /
�o
:

The lower bound in this case can then be justified by noting that f .t/=
p
1C t2 �

0:9 for all t 2 Œ0; 1�, as illustrated in Figure 5.1. The case where t 2 Œ�1; 0� is an
immediate consequence from [14, lemma 3.1]. �
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LEMMA 5.3. Consider any x; ´ 2 Rn obeying k´ � xk � ık´k for some ı < 1
2

.
Then one has

(5.6)
p
2 � 4ık´ � xkk´k � kxxT

� ´´T
kF � .2C ı/k´ � xkk´k:

PROOF. Take h D ´ � x and write

kxxT
� ´´T

k
2
F D k�h´

T
� ´hT

C hhT
k
2
F

D kh´T
C ´hT

k
2
F C khk

4
� 2hh´T

C ´hT;hhT
i

D 2k´k2khk2 C 2jhT´j2 C khk4 � 2khk2.hT´C ´Th/:

When khk < 1
2
k´k, the Cauchy-Schwarz inequality gives

2k´k2khk2 � 4k´kkhk3 �


xxT

� ´´T


2

F

� 4k´k2khk2 C 4khk3k´k C khk4
(5.7)

)
p
.2k´k � 4khk/k´k � khk �



xxT
� ´´T




F

� .2k´k C khk/ � khk
(5.8)

as claimed. �

With probability 1 � exp.��.m//, the above two facts taken together demon-
strate that

(5.9) 1:15k´ � xkk´k �
1

m
kA.xxT

� ´´T/k1 � 3k´ � xkk´k

holds simultaneously for all ´ and x satisfying khk � 1
11k´k. Conditional on

(5.9), the inclusion

(5.10) E i3 � E i2 � E i4
holds with respect to the following events:

E i3 WD
˚ˇ̌ˇ̌
aT
i x
ˇ̌2
�
ˇ̌
aT
i ´
ˇ̌2ˇ̌
� 1:15˛hkhk �

ˇ̌
aT
i ´
ˇ̌	
;(5.11)

E i4 WD
˚ˇ̌ˇ̌
aT
i x
ˇ̌2
�
ˇ̌
aT
i ´
ˇ̌2ˇ̌
� 3˛hkhk �

ˇ̌
aT
i ´
ˇ̌	
:(5.12)

The point of introducing these new events is that the E i3’s (respectively, E i4’s) are
statistically independent for any fixed x and ´ and are therefore easier to work
with.

Note that each E i3 (respectively, E i4) is specified by a quadratic inequality. A
closer inspection reveals that in order to satisfy these quadratic inequalities, the
quantity aT

i h must fall within two intervals centered around 0 and 2aT
i ´, respec-

tively. One can thus facilitate analysis by decoupling each quadratic inequality of
interest into two simple linear inequalities, as stated in the following lemma.

LEMMA 5.4. For any 
 > 0, define

Di
 WD
˚ˇ̌ˇ̌
aT
i x
ˇ̌2
�
ˇ̌
aT
i ´
ˇ̌2ˇ̌
� 
khk

ˇ̌
aT
i ´
ˇ̌	
;(5.13)
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Di;1
 WD
(
jaT
i hj

khk
� 


)
;(5.14)

and Di;2
 WD
(ˇ̌̌̌
ˇaT
i h

khk
�
2aT
i ´

khk

ˇ̌̌̌
ˇ � 


)
:(5.15)

Thus, Di;1
 and Di;2
 represent the two intervals on aT
i h centered around 0 and

2aT
i ´. If khk

k´k
�
˛lb
´



, then the following inclusion holds:

(5.16)

�
Di;1

=.1C

p
2/
\ E i1

�
[
�
Di;2

=.1C

p
2/
\ E i1

�
� Di
 \ E i1
�
�
Di;1
 \ E i1

�
[
�
Di;2
 \ E i1

�
:

5.2 Proof of the Regularity Condition
By definition, one step towards proving the regularity condition (3.5) is to con-

trol the norm of the regularized gradient. In fact, a crude argument already reveals
that k 1

m
r`tr.´/k . khk. To see this, introduce v D Œvi �1�i�m with

vi WD 2
jaT
i xj

2 � jaT
i ´j

2

aT
i ´

1Ei1\E
i
2
:

It comes from the trimming rule E i1 as well as the inclusion property (5.10) thatˇ̌
aT
i ´
ˇ̌

& k´k and
ˇ̌
yi �

ˇ̌
aT
i ´
ˇ̌2ˇ̌ .

1

m
kA.xxT

� ´´T/k1 � khkk´k;

implying jvi j . khk and hence kvk .
p
mkhk. The Marchenko-Pastur law gives

kAk .
p
m, whence

(5.17)
1

m
kr`tr.´/k D

1

m
kATvk �

1

m
kAk � kvk . khk:

A more refined estimate will be provided in Lemma 5.9.
The above argument essentially tells us that to establish RC, it suffices to verify

a uniform lower bound of the form

(5.18) �

�
h;
1

m
r`tr.´/

�
& khk2;

as formally derived in the following proposition.

PROPOSITION 5.5. Consider the noise-free measurements yi D jaT
i xj

2 and any
fixed constant � > 0. Under the condition (2.13), ifm > c1n, then with probability
exceeding 1 � C exp.�c0m/,

(5.19) �

�
h;
1

m
r`tr.´/

�
� 2

˚
1:99 � 2.�1 C �2/ �

p
8=.9�/˛�1h � �

	
khk2
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holds uniformly over all x, ´ 2 Rn obeying

(5.20)
khk

k´k
� min

(
1

11
;
˛lb
´

3˛h
;
˛lb
´

6
;
5:7
�
˛lb
´

�2
2˛ub
´ C ˛

lb
´

)
:

Here, c0; c1; C > 0 are some universal constants, and �1 and �2 are defined in
(2.13).

The basic starting point is noting that .aT
i ´/ � .a

T
i x/

2 D .aT
i h/.2a

T
i ´ � a

T
i h/

and hence

�
1

2m
r`tr.´/ D

1

m

mX
iD1

.aT
i ´/

2 � .aT
i x/

2

aT
i ´

ai1Ei1\E
i
2

D
1

m

mX
iD1

2
�
aT
i h
�
ai1Ei1\E

i
2
�
1

m

mX
iD1

.aT
i h/

2

aT
i ´

ai1Ei1\E
i
2
:(5.21)

One would expect the contribution of the second term of (5.21) (which is a second-
order quantity) to be small as khk=k´k decreases.

To facilitate analysis, we rewrite (5.21) in terms of the more convenient events
Di;1
 and Di;2
 . Specifically, the inclusion property (5.10) together with Lemma 5.4
reveals that

(5.22) Di;1
3 \ E i1 � E i3 \ E i1 � E i2 \ E i1 � E i4 \ E i1 �
�
Di;1
4 [Di;2
4

�
\ E i1;

where the parameters 
3; 
4 are given by

(5.23) 
3 WD 0:476˛h and 
4 WD 3˛h:

This taken collectively with the identity (5.21) leads to a lower estimate

(5.24)

�

�
1

2m
r`tr.´/;h

�
�
2

m

mX
iD1

�
aT
i h
�2

1Ei1\D
i;1

3

�
1

m

mX
iD1

jaT
i hj

3

jaT
i ´j

1Ei1\D
i;1

4

�
1

m

mX
iD1

jaT
i hj

3

jaT
i ´j

1Ei1\D
i;2

4

;

leaving us with three quantities in the right-hand side to deal with. We pause here
to explain and compare the influences of these three terms.

To begin with, as long as the trimming step does not discard too many data, the
first term should be close to 2

m

P
i ja

T
i hj

2, which approximately gives 2khk2 from
the law of large numbers. This term turns out to be dominant in the right-hand side
of (5.24) as long as khk=k´k is reasonably small. To see this, please recognize that
the second term in the right-hand side is O.khk3=k´k/, simply because both aT

i h

and aT
i ´ are absolutely controlled on Di;1
4 \E i1. However, Di;2
4 does not share such

a desired feature. By the very definition of Di;2
4 , each nonzero summand of the last
term of (5.24) must obey jaT

i hj � 2jaT
i ´j and therefore .jaT

i hj
3=jaT

i ´j/1Ei1\D
i;2

4

is
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roughly of the order of k´k2; this could be much larger than our target level khk2.
Fortunately, Di;2
4 is a rare event, thus precluding a noticeable influence upon the
descent direction. All of this is made rigorous in Lemma 5.6 (first term), Lemma
5.7 (second term), and Lemma 5.8 (third term) together with subsequent analysis.

LEMMA 5.6. Fix 
 > 0, and let E i1 and Di;1
 be defined in (2.4) and (5.14), respec-
tively. Set

�1 WD 1 �min
˚
E
�
�21
f
p
1:01˛lb

´�

ˇ̌
�
ˇ̌
�
p
0:99˛ub

´ g

�
;

E
�
1
f
p
1:01˛lb

´�

ˇ̌
�
ˇ̌
�
p
0:99˛ub

´ g

�	(5.25)

and �2 WD E
�
�21
fj�j>

p
0:99
g

�
;(5.26)

where � � N .0; 1/. For any � > 0, if m > c1n�
�2 log ��1, then with probability

at least 1 � C exp.�c0�2m/,

(5.27)
1

m

mX
iD1

ˇ̌
aT
i h
ˇ̌2

1Ei1\D
i;1


� .1 � �1 � �2 � �/khk

2

holds for all nonzero vectors h; ´ 2 Rn. Here, c0; c1; C > 0 are some universal
constants.

We now move on to the second term in the right-hand side of (5.24). For any
fixed 
 > 0, the definition of E i1 gives rise to an upper estimate

(5.28)

1

m

mX
iD1

jaT
i hj

3

jaT
i ´j

1Ei1\D
i;1


�

1

˛lb
´ k´k

1

m

mX
iD1

ˇ̌
aT
i h
ˇ̌3

1Di;1


�
.1C �/

p
8=�khk3

˛lb
´ k´k

;

where
p
8=�khk3 is exactly the untruncated moment EŒjaT

i hj
3�. The second in-

equality is a consequence of the lemma below, which arises by observing that the
summands jaT

i hj
31Di;1


are independent sub-Gaussian random variables.

LEMMA 5.7. For any constant 
 > 0, if m=n � c0 � ��2 log ��1, then

(5.29)
1

m

mX
iD1

ˇ̌
aT
i h
ˇ̌3

1Di;1

� .1C �/

p
8=�khk3 8h 2 Rn

with probability at least 1 � C exp.�c1�2m/ for some universal constants c0; c1;
C > 0.

It remains to control the last term of (5.24). As mentioned above, the influence
of this term is small since the set of ai’s satisfying Di;2
 accounts for a small fraction
of measurements. Put formally, the number of equations satisfying jaT

i hj � 
khk

decays rapidly for large 
 (at least at a quadratic rate), as stated below.
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LEMMA 5.8. For any 0 < � < 1, there exist some universal constants c0; c1; C >

0 such that

(5.30)

1

m

mX
iD1

1fjaT
i
hj� 
khkg �

1

0:49

exp.�0:485
2/C

�


2

8h 2 Rnnf0g and 
 � 2

with probability at least 1 � C exp.�c0�2m/. This holds with the proviso m=n �
c1 � �

�2 log ��1.

To connect this lemma with the last term of (5.24), we recognize that when

 � ˛lb

´ k´k=khk, one has

(5.31) 1Ei1\D
i;2


� 1fjaT

i
hj�˛lb

´k´kg
:

The constraint ˇ̌̌̌
aT
i h

khk
�
2aT
i ´

khk

ˇ̌̌̌
� 


of Di;2
 necessarily requires

(5.32)
jaT
i hj

khk
�
2jaT

i ´j

khk
� 
 �

2˛lb
´ k´k

khk
� 
 �

˛lb
´ k´k

khk
;

where the last inequality comes from our assumption on 
 . With Lemma 5.8 in
place, (5.31) immediately gives

mX
iD1

1Ei1\D
i;2


�

khk

0:49˛lb
´ k´k

exp
�
�0:485

�
˛lb
´ k´k

khk

�2�
C

�khk2�
˛lb
´

�2
k´k2

�
1

9800

�
khk

˛lb
´ k´k

�4
C

�

.˛lb
´ /
2

�
khk

k´k

�2
(5.33)

as long as khk=k´k � ˛lb
´ =6, where the last inequality uses the majorization

1
20000x4

�
1
x

exp.�0:485x2/ holding for any x � 6.

In addition, on E i1 \ Di;2
 , the amplitude of each summand can be bounded in
such a way that

jaT
i hj

3

jaT
i ´j
�
j2aT

i ´j C 
khk

jaT
i ´j

�
2˛ub
´ k´k C 
khk

�2
(5.34)

�

�
2C




˛lb
´

khk

k´k

��
2˛ub
´ C 


khk

k´k

�2
k´k2;(5.35)

where both inequalities are immediate consequences from the definitions of Di;2

and E i1 (see (5.15) and (2.4)). Taking this together with the cardinality bound (5.33)
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and picking � appropriately, we get

(5.36)
1

m

mX
iD1

jaT
i hj

3

jaT
i ´j

1Ei1\D
i;2


�

(�
2C 


˛lb
´

khk
k´k

��
2˛ub
´ C 


khk
k´k

�2
9800

�
˛lb
´

�4„ ƒ‚ …
#1

khk2

k´k2
C �

)
khk2:

Furthermore, under the condition that


 � ˛lb
´

k´k

khk
and

khk

k´k
�

p
98
�
˛lb
´

�2
p
3
�
2˛ub
´ C ˛

lb
´

� ;
one can simplify (5.36) by observing that #1 � 1

100
, which results in

(5.37)
1

m

mX
iD1

jaT
i hj

3

jaT
i ´j

1Ei1\D
i;2


�

�
1

100
C �

�
khk2:

Putting all preceding results in this subsection together reveals that with proba-
bility exceeding 1 � exp.��.m//,

�

�
h;

1

2m
r`tr.´/

�
�

�
1:99 � 2.�1 C �2/ �

p
8=�

khk

˛lb
´ k´k

� 3�

�
khk2

�
˚
1:99 � 2

�
�1 C �2

�
�
p
8=�.3˛h/

�1
� 3�

	
khk2(5.38)

holds simultaneously over all x and ´ satisfying

(5.39)



h


k´k
� min

(
˛lb
´

3˛h
;
˛lb
´

6
;

p
98=3

�
˛lb
´

�2
2˛ub
´ C ˛

lb
´

;
1

11

)
as claimed in Proposition 5.5.

To conclude this section, we provide a tighter estimate about the norm of the
regularized gradient.

LEMMA 5.9. Fix ı > 0 and assume that yi D .aT
i x/

2. Suppose that m � c0n for
some large constant c0 > 0. There exist some universal constants c; C > 0 such
that with probability at least 1 � C exp.�cm/,

(5.40)
1

m
kr`tr.´/k � .1C ı/ � 4

p
1:02C 0:665=˛hkhk

holds simultaneously for all x, ´ 2 Rn satisfying

khk

k´k
� min

(
˛lb
´

3˛h
;
˛lb
´

6
;

p
98=3

�
˛lb
´

�2
2˛ub
´ C ˛

lb
´

;
1

11

)
:
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Lemma 5.9 complements the preceding arguments by allowing us to identify
a concrete plausible range for the step size. Specifically, putting Lemma 5.9 and
Proposition 5.5 together suggests that

(5.41) �

�
h;
1

m
r`tr.´/

�
�
2
˚
1:99 � 2.�1 C �2/ �

p
8=.9�/˛�1

h
� �

	
.1C ı/2 � 16.1:02C 0:665=˛h/





 1mr`tr.´/





2:
Taking � and ı to be sufficiently small we arrive at a feasible range (cf. Definition
(3.5))

(5.42) � �
0:994 � �1 � �2 �

p
2=.9�/˛�1

h

2.1:02C 0:665=˛h/
WD �0:

This establishes Proposition 5.1 and in turn Theorem 1.1 when �t is taken to be a
fixed constant.

To justify the contraction under backtracking line search, it suffices to prove that
the resulting step size falls within this range (5.42), which we defer to Appendix D.

6 Stability
This section goes in the direction of establishing stability guarantees of TWF.

We concentrate on the iterative gradient stage, and defer the analysis for the initial-
ization stage to Appendix C.

Before continuing, we collect two bounds that we shall use several times. The
first is the observation that

1

m
ky �A.´´T/k1 �

1

m
kA.xxT

� ´´T/k1 C
1

m
k�k1

. khkk´k C
1

m
k�k1 . khkk´k C

1
p
m
k�k;(6.1)

where the last inequality follows from Cauchy-Schwarz. Setting

vi WD 2
yi � ja

T
i ´j

2

aT
i ´

1Ei1\E
i
2

as usual, this inequality together with the trimming rules E i1 and E i2 gives

(6.2)

jvi j . khk C
k�k
p
mk´k

H)





 1mr`tr.´/





 D 1

m
kATvk �





 1
p
m
A





 1
p
m
kvk

(i)
.

1
p
m
kvk . khk C

k�k
p
mk´k

;

where (i) arises from [51, cor. 5.35].
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As discussed in Section 3, the estimation error is contractive if � 1
m
r`tr.´/ sat-

isfies the regularity condition. With (6.2) in place, RC reduces to

(6.3) �
1

m
hr`tr.´/;hi & khk2:

Unfortunately, (6.3) does not hold for all ´ within the neighborhood of x due to the
existence of noise. Instead we establish the following:

� The condition (6.3) holds for all h obeying

(6.4) c3
k�k=
p
m

k´k
� khk � c4kxk

for some constants c3; c4 > 0 (we shall call it Regime 1); this will be
proved later. In this regime, the reasoning in Section 3 gives

(6.5) dist
�
´C

�

m
r`tr.´/; x

�
� .1 � �/ dist.´;x/

for some appropriate constants �; � > 0, and hence error contraction oc-
curs as in the noiseless setting.
� However, once the iterate enters Regime 2 where

(6.6) khk �
c3k�k
p
mk´k

;

the estimation error might no longer be contractive. Fortunately, in this
regime each move by �

m
r`tr.´/ is of size at most O.k�k=

p
mk´k/; com-

pare (6.2). As a result, at each iteration the estimation error cannot in-
crease by more than a numerical constant times k�k=

p
mk´k before pos-

sibly jumping out (of this regime). Therefore,

(6.7) dist
�
´C

�

m
r`tr.´/; x

�
� c5

k�k
p
mkxk

for some constant c5 > 0. Moreover, as long as k�k1=kxk2 is sufficiently
small, one can guarantee that

c5
k�k
p
mkxk

� c5
k�k1

kxk
� c4kxk:

In other words, if the iterate jumps out of Regime 2, it will still fall within
Regime 1.

To summarize, suppose the initial guess ´.0/ obeys dist.´.0/;x/ � c4kxk. Then
the estimation error will shrink at a geometric rate 1� � before it enters Regime 2.
Afterwards, ´.t/ will either stay within Regime 2 or jump back and forth between
Regimes 1 and 2. Because of the bounds (6.7) and (6.5), the estimation errors
will never exceed the order of k�k=

p
mkxk from then on. Putting these together

establishes (1.16), namely, the first part of the theorem.
Below we justify the condition (6.3) for Regime 1, for which we start by gath-

ering additional properties of the trimming rules. By Cauchy-Schwarz, 1
mk�k1 �
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1p
m
k�k � 1

c3
khkk´k. When c3 is sufficiently large, applying Lemmas 5.2 and 5.3

gives

(6.8)

1

m

mX
lD1

ˇ̌
yl �

ˇ̌
aT
l ´
ˇ̌2ˇ̌
�
1

m
kA.xxT

� ´´T/k1 C
1

m
k�k1 � 2:98khkk´k;

1

m

mX
lD1

ˇ̌
yl �

ˇ̌
aT
l ´
ˇ̌2ˇ̌
�
1

m
kA.xxT

� ´´T/k1 �
1

m
k�k1 � 1:151khkk´k:

From now on, we shall denote

zE i2 WD
�ˇ̌ˇ̌
aT
i x
ˇ̌2
�
ˇ̌
aT
i ´
ˇ̌2ˇ̌
�
˛h

m
ky �A.´´T/k1

jaT
i ´j

k´

�
to differentiate from E i2. For any small constant � > 0, we introduce the index set
G WD fi W j�i j � C�k�k=

p
mg that satisfies jGj D .1 � �/m. Note that C� must be

bounded as n scales, since

(6.9)
k�k2 �

X
i…G

�2i � .m � jGj/ � C 2� k�k2=m

� �C 2� k�k
2

) C� � 1=
p
�:

We are now ready to analyze the regularized gradient, which we separate into
several components as follows:

(6.10)

rtr`.´/ D 2
X
i2G

jaT
i xjb

2 � jaT
i ´j

2

aT
i ´

ai1Ei1\E
i
2
C 2

X
i…G

jaT
i xj

2 � jaT
i ´j

2

aT
i ´

ai1Ei1\zE
i
2„ ƒ‚ …

WDrclean
tr `.´/

C 2
X
i2G

�i

aT
i ´
ai1Ei1\E

i
2„ ƒ‚ …

WDrnoise
tr `.´/

C 2
X
i…G

�
yi � ja

T
i ´j

2

aT
i ´

1Ei1\E
i
2
�
jaT
i xj

2 � jaT
i ´j

2

aT
i ´

1Ei1\zE
i
2

�
ai„ ƒ‚ …

WDrextra
tr `.´/

:

� For each index i 2 G, the inclusion property (5.10) (i.e., E i3 � E i2 � E i4)
holds. To see this, observe thatˇ̌

yi �
ˇ̌
aT
i ´
ˇ̌2ˇ̌
2
�ˇ̌ˇ̌
aT
i x
ˇ̌2
� jaT

i ´j
2
ˇ̌
˙ j�i j

�
:

Since j�i j � C�k�k=
p
m � khkk´k when c3 is sufficiently large, one

can derive the inclusion (5.10) immediately from (6.8). As a result, all the
proof arguments for Proposition 5.5 carry over to rclean

tr `.´/, suggesting
that

(6.11) �
�
h;
1

m
r

clean
tr `.´/

�
� 2

˚
1:99 � 2

�
�1 C �2

�
�
p
8=.9�/˛�1h � �

	
khk2:
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� Next, letting wi D
2�i
aT
i
´
1Ei1\E

i
2
1fi2Gg, we see that for any constant ı > 0,

the noise component obeys



 1mrnoise
tr `.´/





 D 



 1mATw





 � 



 1
p
m
A









 1
p
m
w






(ii)
�
1C ı
p
m
kwk � .1C ı/

2k�k=
p
m

˛lb
´ k´k

(6.12)

provided thatm=n is sufficiently large. Here, (ii) arises from [51, cor. 5.35],
and the last inequality is a consequence of the upper estimate

(6.13) kwk2 � 4

mX
iD1

j�i j
2

.aT
i ´/

2
1Ei1\E

i
2
� 4

mX
iD1

j�i j
2

.˛lb
´ k´k/

2
D

4k�k2

.˛lb
´ k´k/

2
:

In turn, this immediately givesˇ̌̌̌�
h;
1

m
r

noise
tr `.´/

�ˇ̌̌̌
� khk





 1mrnoise
tr `.´/





 � 2.1C ı/

˛lb
´

k�k
p
mk´k

khk:(6.14)

� We now turn to the last term rextra
tr `.´/. According to the definition of E i2

and zE i2 as well as the property (6.8), the weight

qi WD 2

�
yi � ja

T
i ´j

2

aT
i ´

1Ei1\E
i
2
�
jaT
i xj

2 � jaT
i ´j

2

aT
i ´

1Ei1\zE
i
2

�
1fi…Gg

is bounded in magnitude by 6khk. This gives

kqk �
p
m � jGj � 6khk � 6

p
�mkhk;

and henceˇ̌̌̌�
1

m
r

extra
tr `.´/;h

�ˇ̌̌̌
� khk �





 1mrextra
tr `.´/





 D 1

m
khk � kATqk

� 6.1C ı/
p
�khk2:

(6.15)

Taking the above bounds together yields

�
1

m
hr`tr.´/;hi � 2

�
1:99 � 2.�1 C �2/ �

r
8

9�

1

˛h
� 6.1C ı/

p
� � �

�
khk2

�
2.1C ı/

˛lb
´

k�k
p
mk´k

khk:

Since khk � c3
k�k
p
mk´k

for some large constant c3 > 0, setting � to be small one
obtains

(6.16) �
1

m
hr`tr.´/;hi � 2

˚
1:95 � 2

�
�1 C �2

�
�
p
8=.9�/˛�1h

	
khk2
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for all h obeying

c3k�k=
p
m

k´k
� khk � min

(
1

11
;
˛lb
´

3˛h
;
˛lb
´

6
;

p
98=3

�
˛lb
´

�2
2˛ub
´ C ˛

lb
´

)
k´k;

which finishes the proof of Theorem 1.3 for general �.
Up until now, we have established the theorem for general �, and it remains to

specialize it to the Poisson model. Standard concentration results, which we omit,
give

(6.17)
1

m
k�k2 �

1

m

mX
iD1

E
�
�2i
�
D
1

m

mX
iD1

�
aT
i x
�2
� kxk2

with high probability. Substitution into (1.16) completes the proof.

7 Minimax Lower Bound

The goal of this section is to establish the minimax lower bound given in The-
orem 1.6. For notational simplicity, we denote by P .y j w/ the likelihood of
yi

ind.
� Poisson.jaT

iwj
2/, 1 � i � m conditional on faig. For any two probability

measures P andQ, we denote by KL.P kQ/ the Kullback-Leibler (KL) divergence
between them:

(7.1) KL.P kQ/ WD ∆ log
�

dP
dQ

�
dP:

The basic idea is to adopt the general reduction scheme discussed in [50, sec. 2.2],
which amounts to finding a finite collection of hypotheses that are minimally sep-
arated. Below we gather one result useful for constructing and analyzing such
hypotheses.

LEMMA 7.1. Suppose that ai � N .0; In/, n is sufficiently large, and m D �n for
some sufficiently large constant � > 0. Consider any x 2 Rnnf0g. On an event
B of probability approaching 1, there exists a collection M of M D exp.n=30/
distinct vectors obeying the following properties:

(i) x 2M;
(ii) for all w.l/;w.j / 2M,

(7.2)
1
p
8
� .2n/�1=2 � kw.l/ �w.j /k �

3

2
C n�1=2I

(iii) for all w 2M,

(7.3)
jaT
i .w � x/j

2

jaT
i xj

2
�
kw � xk2

kxk2
f2C 17 log3mg; 1 � i � m:
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In words, Lemma 7.1 constructs a set M of exponentially many vectors/hypoth-
eses scattered around x and yet well separated. From (ii) we see that each pair of
hypotheses in M is separated by a distance roughly on the order of 1, and all
hypotheses reside within a spherical ball centered at x of radius 3

2
C o.1/. When

kxk � log1:5m, every hypothesis w 2M satisfies kwk � kxk � 1. In addition,
(iii) says that the quantities jaT

i .w � x/j=ja
T
i xj are all very well controlled (modulo

some logarithmic factor). In particular, when kxk � log1:5m, one must have

(7.4)
jaT
i .w � x/j

2

jaT
i xj

2
.
kw � xk2

kxk2
log3m .

1

log3m
log3m . 1:

In the Poisson model, such a quantity turns out to be crucial in controlling the
information divergence between two hypotheses, as demonstrated in the following
lemma.

LEMMA 7.2. Fix a family of design vectors faig. Then for any w and r 2 Rn,

KL
�
P .y j wC r/kP .y j w/

�
�

mX
iD1

ˇ̌
aT
i r
ˇ̌2�

8C
2jaT

i rj
2

jaT
iwj

2

�
:(7.5)

Lemma 7.2 and (7.4) taken collectively suggest that on the event B \ C (B is
in Lemma 7.1 and C WD fkAk �

p
2mg), the conditional KL divergence (we

condition on the ai’s obeys

KL
�
P .y j w/kP .y j x/

�
� c3

mX
iD1

ˇ̌
aT
i .w � x/

ˇ̌2
� 2c3mkw � xk

2
8w 2MI

(7.6)

here, the inequality holds for some constant c3 > 0 provided that kxk � log1:5m,
and the last inequality is a result of C (which occurs with high probability). We
now use hypotheses as in Lemma 7.1 but rescaled in such a way that

(7.7) kw � xk � ı and kw � zwk � ı 8w; zw 2M with w ¤ zw

for some 0 < ı < 1. This is achieved via the substitution w  � x C ı.w � x/;
with a slight abuse of notation, M denotes the new set.

The hardness of a minimax estimation problem is known to be dictated by in-
formation divergence inequalities such as (7.6). Indeed, suppose that

(7.8)
1

M � 1

X
w2Mnfxg

KL
�
P .y j w/kP .y j x/

�
�
1

10
log.M � 1/

holds; then the Fano-type minimax lower bound [50, theorem 2.7] asserts that

(7.9) inf
yx

sup
x2M

E
�
kyx � xk

ˇ̌
faig

�
& min
w;zw2M;
w¤zw

kw � zwk:
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Since M D exp.n=30/, (7.8) would follow from

(7.10) 2c3kw � xk
2
�

n

300m
; w 2M:

Hence we just need to select ı to be a small multiple of
p
n=m. This in turn gives

(7.11) inf
yx

sup
x2M

E
�
kyx � xk

ˇ̌
faig

�
& min
w;zw2M;
w¤zw

kw � zwk &
p
n=m:

Finally, it remains to connect kyx � xk with dist.yx;x/. Since all the w 2M are
clustered around x and are at a mutual distance about ı that is much smaller than
kxk, we can see that for any reasonable estimator, dist.yx;x/ D kyx � xk. This
finishes the proof.

8 Discussion
To keep our treatment concise, this paper does not strive to explore all possi-

ble generalizations of the theory. There are nevertheless a few extensions worth
pointing out.

� MORE GENERAL OBJECTIVE FUNCTIONS. For concreteness, we restrict
our analysis to the Poisson log-likelihood function, but the analysis frame-
work we laid out easily carries over to a broad class of (nonconvex) objec-
tive functions. For instance, all results continue to hold if we replace the
Poisson log-likelihood by the Gaussian log-likelihood, that is, the polyno-
mial function �

Pm
iD1.yi � ja

T
i ´j

2/2 studied in [13].
A general guideline is to first check whether the expected regularity

condition
E
�
�
˝
1
m
r`tr.´/;h

˛�
& khk2

holds for any fixed ´ within a neighborhood around x. If so, then often
times RC holds uniformly within this neighborhood due to sharp concen-
tration of measure ensured by the regularization procedure.
� SUB-GAUSSIAN MEASUREMENTS. The theory extends to the situation

where the ai ’s are i.i.d. sub-Gaussian random vectors, although the trunca-
tion threshold might need to be tweaked based on the sub-Gaussian norm
of ai . A more challenging scenario, however, is the case where the ai’s
are generated according to the CDP model, since there is much less ran-
domness to exploit in the mathematical analysis. We leave this to future
research.

Having demonstrated the power of TWF in recovering a rank 1matrix xx� from
quadratic equations, we remark on the potential of TWF for recovering low-rank
matrices from rank 1 measurements.

Imagine that we wish to estimate a rank-r matrix X � 0 and that all we know
about X is

yi D a
T
iXai ; 1 � i � m:
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It is known that this problem can be efficiently solved by using more computa-
tionally intensive semidefinite programs [9, 16]. With the hope of developing a
linear-time algorithm, one might consider a modified TWF scheme, which would
maintain a rank-r matrix variable and operate as follows: perform truncated spec-
tral initialization and then successively update the current guess via a regularized
gradient descent rule applied to a presumed log-likelihood function.

Moving away from i.i.d. sub-Gaussian measurements, there is a proliferation
of problems that involve completion of a low-rank matrix X from partial entries,
where the rank is known a priori. It is self-evident that such entrywise observations
can also be cast as rank 1 measurements of X . Therefore, the preceding modified
TWF may add to recent literature in applying nonconvex schemes for low-rank
matrix completion [27,30,31,46], robust principal component analysis (PCA) [37],
or even a broader family of latent-variable models (e.g., dictionary learning [47,
48], sparse coding [2], and mixture problems [4, 55]).

A concrete application of this flavor is a simple form of the fundamental align-
ment/matching problem [7, 17, 28]. Imagine a collection of n instances, each
representing an image of the same physical object but with different shifts ri 2
f0; : : : ;M � 1g. The goal is to align all these instances from observations on the
relative shift between pairs of them. Denoting by X i the cyclic shift by an amount
ri of IM , one sees that the collection matrix X WD ŒXT

iXj �1�i;j�k is a rank-M
matrix, and the relative shift observations can be treated as rank 1 measurements
of X . Running TWF over this problem instance might result in a statistically and
computationally efficient solution. This would be of great practical interest.

Appendix A Proofs for Section 5
A.1 Proof of Lemma 5.4

First, we make the observation that .aT
i ´/

2 � .aT
i x/

2 D .2aT
i ´ � a

T
i h/a

T
i h is a

quadratic function in aT
i h. If we assume 
 � ˛lb

´ k´k=khk, then on the event E i1
one has

(A.1)
�
aT
i ´
�2
� ˛lb

´ k´k �
ˇ̌
aT
i ´
ˇ̌
� 
khk

ˇ̌
aT
i ´
ˇ̌
:

Solving the quadratic inequality that specifies Di
 gives

aT
i h 2

h
aT
i ´ �

q�
aT
i ´
�2
C 
khk

ˇ̌
aT
i ´
ˇ̌
; aT
i ´ �

q�
aT
i ´
�2
� 
khk

ˇ̌
aT
i ´
ˇ̌i
;

or aT
i h 2

h
aT
i ´C

q�
aT
i ´
�2
� 
khk

ˇ̌
aT
i ´
ˇ̌
; aT
i ´C

q�
aT
i ´
�2
C 
khk

ˇ̌
aT
i ´
ˇ̌i
;

which we will simplify in what follows.
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Suppose for the moment that aT
i ´ � 0; then the preceding two intervals are

respectively equivalent to

aT
i h 2

264 �
khk
ˇ̌
aT
i ´
ˇ̌

aT
i ´C

q�
aT
i ´
�2
C 
khk

ˇ̌
aT
i ´
ˇ̌ ; 
khk

ˇ̌
aT
i ´
ˇ̌

aT
i ´C

q�
aT
i ´
�2
� 
khk

ˇ̌
aT
i ´
ˇ̌
375

„ ƒ‚ …
WDI1

;

aT
i h � 2a

T
i ´ 2

264 �
khk
ˇ̌
aT
i ´
ˇ̌

aT
i ´C

q�
aT
i ´
�2
� 
khk

ˇ̌
aT
i ´
ˇ̌ ; 
khk

ˇ̌
aT
i ´
ˇ̌

aT
i ´C

q�
aT
i ´
�2
C 
khk

ˇ̌
aT
i ´
ˇ̌
375

„ ƒ‚ …
WDI2

:

Assuming (A.1) and making use of the observations


khk
ˇ̌
aT
i ´
ˇ̌

aT
i ´C

q�
aT
i ´
�2
� 
khk

ˇ̌
aT
i ´
ˇ̌ � 
khk

ˇ̌
aT
i ´
ˇ̌

aT
i ´

D 
khk

and

khk

ˇ̌
aT
i ´
ˇ̌

aT
i ´C

q�
aT
i ´
�2
C 
khk

ˇ̌
aT
i ´
ˇ̌ � 
khk

ˇ̌
aT
i ´
ˇ̌

.1C
p
2/
ˇ̌
aT
i ´
ˇ̌ D 


1C
p
2
khk;

we obtain the inner and outer bounds�
˙.1C

p
2/�1
khk

�
� I1; I2 �

�
˙ 
khk

�
:

Setting 
1 WD



1C
p
2

gives�
Di;1
1 \ Ei;1

�
[
�
Di;2
1 \ Ei;1

�
� D
 \ Ei;1 �

�
Di;1
 \ Ei;1

�
[
�
Di;2
 \ Ei;1

�
:

Proceeding with the same argument, we can derive exactly the same inner and
outer bounds in the regime where aT

i ´ < 0, concluding the proof.

A.2 Proof of Lemma 5.6
By homogeneity, it suffices to establish the claim for the case where both h

and ´ are unit vectors.
Suppose for the moment that h and ´ are statistically independent from faig.

We introduce two auxiliary Lipschitz functions approximating indicator functions:

�´.�/ WD

8̂̂̂<̂
ˆ̂:
1 if j� j 2

�p
1:01˛lb

´ ;
p
0:99˛ub

´

�
;

�100
�
˛ub
´

��2
�2 C 100 if j� j 2

�p
0:99˛ub

´ ; ˛
ub
´

�
;

100
�
˛lb
´

��2
�2 � 100 if j� j 2

�
˛lb
´ ;
p
1:01˛lb

´

�
;

0 otherwise:

(A.2)

�h.�/ WD

8̂<̂
:
1 if j� j 2

�
0;
p
0:99


�
;

�
100

2
�2 C 100 if j� j 2

�p
0:99
; 


�
;

0 otherwise:

(A.3)
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Since h and ´ are assumed to be unit vectors, these two functions obey

(A.4) 0 � �´
�
aT
i ´
�
� 1Ei1

and 0 � �h
�
aT
i h
�
� 1Di;1


;

and thus

(A.5)
1

m

mX
iD1

�
aT
i h
�2

1Ei1\D
i;1


�
1

m

mX
iD1

�
aT
i h
�2
�´
�
aT
i ´
�
�h.a

T
i h/:

We proceed to lower bound 1
m

Pm
iD1.a

T
i h/

2�´.a
T
i ´/�h.a

T
i h/.

Firstly, to compute the mean of .aT
i h/

2�´.a
T
i ´/�h.a

T
i h/, we introduce an aux-

iliary orthonormal matrix

(A.6) U ´ D

"
´T=k´k
:::

#
whose first row is along the direction of ´, and set

(A.7) zh WD U ´h and zai WD U ´ai :

Also, denote by zai;1 (respectively, zh1) the first entry of zai (respectively, zh), and
zai;n1 (respectively, zhn1) the remaining entries of zai (respectively, zh), and let � �
N .0; 1/. We have

(A.8)

E
��
aT
i h
�2
�´
�
aT
i ´
�
�h
�
aT
i h
��

� E
��
aT
i h
�2
�´
�
aT
i ´
��
� E

��
aT
i h
�2�
1 � �h

�
aT
i h
���

� E
��
zai;1zh1

�2
�´
�
aT
i ´
��
C E

��
zaT
i;n1
zhn1

�2�
E
�
�´
�
aT
i ´
��

� khk2E
�
�21
fj�j>

p
0:99
g

�
� jzh1j

2.1 � �1/C kzhn1k
2.1 � �1/ � �2khk

2

� .1 � �1 � �2/khk
2;

where identity (A.8) arises from (5.25) and (5.26). Since .aT
i h/

2�´.a
T
i ´/�h.a

T
i h/

is bounded in magnitude by 
2khk2, it is a sub-Gaussian random variable with sub-
Gaussian norm O.
2khk2/. Apply the Hoeffding-type inequality [51, prop. 5.10]
to deduce that for any � > 0,

1

m

mX
iD1

�
aT
i h
�2
�´
�
aT
i ´
�
�h
�
aT
i h
�
� E

��
aT
i h
�2
�´
�
aT
i ´
�
�h
�
aT
i h
��
� �khk2(A.9)

� .1 � �1 � �2 � �/khk
2(A.10)

with probability at least 1 � exp.��.�2m//.
The next step is to obtain uniform control over all unit vectors, for which we

adopt a basic version of an �-net argument. Specifically, we construct an �-net
N� with cardinality jN�j � .1C 2=�/2n (cf. [51]) such that for any .h; ´/ with
khk D k´k D 1, there exists a pair h0; ´0 2 N� satisfying kh � h0k � � and



TRUNCATED WIRTINGER FLOW 863

k´ � ´0k � �. Now that we have discretized the unit spheres using a finite set,
taking the union bound gives

(A.11)
1

m

mX
iD1

�
aT
i h0

�2
�´
�
aT
i ´0

�
�h
�
aT
i h0

�
�

.1 � �1 � �2 � �/kh0k
2
8h0; ´0 2 N�

with probability at least 1 � .1C 2=�/2n exp.��.�2m//.
Define f1.�/ and f2.�/ such that f1.�/ WD ��h.

p
�/ and f2.�/ WD �´.

p
�/,

which are both bounded functions with Lipschitz constant O.1/. This guarantees
that for each unit vector pair h and ´,ˇ̌�

aT
i h
�2
�´
�
aT
i ´
�
�h
�
aT
i h
�
�
�
aT
i h0

�2
�´
�
aT
i ´0

�
�h
�
aT
i h0

�ˇ̌
�
ˇ̌
�h
�
aT
i ´
�ˇ̌
�
ˇ̌�
aT
i h
�2
�h
�
aT
i h
�
�
�
aT
i h0

�2
�h
�
aT
i h0

�ˇ̌
C
ˇ̌�
aT
i h0

�2
�h
�
aT
i h0

�ˇ̌
�
ˇ̌
�h
�
aT
i ´
�
� �h

�
aT
i ´0

�ˇ̌
�
ˇ̌
�h
�
aT
i ´
�ˇ̌
�
ˇ̌
f1
�ˇ̌
aT
i h
ˇ̌2�
� f1

�ˇ̌
aT
i h0

ˇ̌2�ˇ̌
C
ˇ̌�
aT
i h0

�2
�h
�
aT
i h0

�ˇ̌
�
ˇ̌
f2
�ˇ̌
aT
i ´
ˇ̌2�
� f2

�ˇ̌
aT
i ´0

ˇ̌2�ˇ̌
.
ˇ̌�
aT
i h
�2
�
�
aT
i h0

�2ˇ̌
C
�
aT
i ´
�2
�
�
aT
i ´0

�2ˇ̌
:

Consequently, there exists some universal constant c3 > 0 such thatˇ̌̌̌
1

m

mX
iD1

�
aT
i h
�2
�´
�
aT
i ´
�
�h
�
aT
i h
�
�
1

m

mX
iD1

�
aT
i h0

�2
�´
�
aT
i ´0

�
�h
�
aT
i h0

�ˇ̌̌̌
.
1

m



A�hhT
� h0h

T
0

�


1
C
1

m



A�´´T
� ´0´

T
0

�


1

(i)
� c3

˚

hhT
� h0h

T
0




F C



´´T
� ´0´

T
0




F

	
(ii)
� 2:5c3

˚
kh � h0k � khk C k´ � ´0k � k´k

	
� 5c3�;

where (i) results from Lemma 5.2, and (ii) arises from Lemma 5.3 whenever � < 1
2

.
With the assertion (A.11) in place, we see that with high probability,

1

m

mX
iD1

�
aT
i h
�2
�´
�
aT
i ´
�
�h
�
aT
i h
�
� .1 � �1 � �2 � .5c3 C 1/�/khk

2

for all unit vectors h and ´. Since � can be arbitrary, putting this and (A.5) together
completes the proof.

A.3 Proof of Lemma 5.7
The proof makes use of standard concentration of measure and covering argu-

ments, and it suffices to restrict our attention to unit vectors h. We find it convenient
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to work with an auxiliary function

�2.�/ D

8̂<̂
:
j� j3=2 if j� j � 
2;
�
.j� j � 
2/C 
3 if 
2 < j� j � 2
2;
0 otherwise:

Apparently, �2.�/ is a Lipschitz function of � with Lipschitz normO.
/. Recalling
the definition of Di;1
 , we see that each summand is bounded above byˇ̌

aT
i h
ˇ̌3

1Di;1

� �2

�ˇ̌
aT
i h
ˇ̌2�
:

For each fixed h and � > 0, applying the Bernstein inequality [51, prop. 5.16] gives

1

m

mX
iD1

ˇ̌
aT
i h
ˇ̌3

1Di;1

�
1

m

mX
iD1

�2
�ˇ̌
aT
i h
ˇ̌2�
� E

�
�2
�ˇ̌
aT
i h
ˇ̌2��
C �

� E
�ˇ̌
aT
i h
ˇ̌3�
C � D

p
8=� C �

with probability exceeding 1 � exp.��.�2m//.
From [51, lemma 5.2], there exists an �-net N� of the unit sphere with cardinality

jN�j � .1C 2
�
/n. For each h, suppose that kh0 � hk � � for some h0 2 N�. The

Lipschitz property of �2 implies

1

m

mX
iD1

˚
�2
�ˇ̌
aT
i h
ˇ̌2�
� �2

�ˇ̌
aT
i h0

ˇ̌2�	 .
1

m

mX
iD1

ˇ̌̌ˇ̌
aT
i h
ˇ̌2
�
ˇ̌
aT
i h0

ˇ̌2 ˇ̌̌
.i/
� kh � h0kkhk � �;

where (i) arises by combining Lemmas 5.2 and 5.3. This demonstrates that with
high probability,

1

m

mX
iD1

ˇ̌
aT
i h
ˇ̌3

1Di;1

�
1

m

mX
iD1

�2
�ˇ̌
aT
i h
ˇ̌2�
�
p
8=� CO.�/

for all unit vectors h, as claimed.

A.4 Proof of Lemma 5.8
Without loss of generality, the proof focuses on the case where khk D 1. Fix an

arbitrary small constant ı > 0. One can eliminate the difficulty of handling the dis-
continuous indicator functions by working with the following auxiliary function:

(A.12) �3.�; 
/ WD

8̂<̂
:
1 if

p
� �  lb.
/;

100�

 2lb.
/
� 99 if

p
� 2

�p
0:99 lb.
/;  lb.
/

�
;

0 otherwise:

Here,  lb.�/ is a piecewise constant function defined as

 lb.
/ WD .1C ı/

�
log


log.1Cı/

˘
;
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which clearly satisfy 

1Cı
�  lb.
/ � 
 . Such a function is useful for our purpose

since for any 0 < ı � 0:005,

(A.13) 1fjaT
i
hj�
g � �3

�ˇ̌
aT
i h
ˇ̌2
; 

�
� 1
fjaT
i
hj�
p
0:99 lb.
/g

� 1fjaT
i
hj�0:99
g:

For any fixed unit vector h, the above argument leads to an upper tail estimate:
for any 0 < t � 1,

P
˚
�3
�ˇ̌
aT
i h
ˇ̌2
; 

�
� t

	
� P

˚
1fjaT

i
hj�0:99
g � t

	
D P

˚
1fjaT

i
hj�0:99
g D 1

	
D 2∆

1
0:99
 �.x/dx �

2

0:99

�.0:99
/;

where �.x/ is the density of a standard normal, and (A.14) follows from the tail
bound ∆1x �.x/dx � 1

x
�.x/ for all x > 0. This implies that when 
 � 2, both

�3.ja
T
i hj

2; 
/ and 1fjaT
i
hj�0:99
g are subexponential with subexponential norm

O.
�2/ (cf. [51, def. 5.13]). We apply the Bernstein-type inequality for the sum of
subexponential random variables [51, cor. 5.17], which indicates that for any fixed
h and 
 as well as any sufficiently small � 2 .0; 1/,

1

m

mX
iD1

�3
�ˇ̌
aT
i h
ˇ̌2
; 

�
�
1

m

mX
iD1

1fjaT
i
hj�0:99
g � E

�
1fjaT

i
hj�0:99
g

�
C �

1


2

�
2

0:99

exp.�0:49
2/C �

1


2

holds with probability exceeding 1 � exp
�
��.�2m/

�
.

We now proceed to obtain uniform control over all h and 2 � 
 � 2n. To
begin with, we consider all 2 � 
 � m and construct an �-net N� over the unit
sphere such that: (i) jN�j � .1 C 2

�
/n; (ii) for any h with khk D 1, there exists

a unit vector h0 2 N� obeying kh � h0k � �. Taking the union bound gives the
following: with probability at least 1 � logm

log.1Cı/.1C
2
�
/n exp.��.�2m//,

1

m

mX
iD1

�3
�ˇ̌
aT
i h0

ˇ̌2
; 
0

�
� .0:495
0/

�1 exp.�0:49
20 /C �

�2
0

holds simultaneously for all h0 2 N� and 
0 2 f.1C ı/k j 1 � k �
logm

log.1Cı/g.
Note that �3.�; 
0/ is a Lipschitz function in � with the Lipschitz constant

bounded above by 100= 2lb.
0/. With this in mind, for any .h; 
/ with khk D 1

and 
0 WD .1C ı/k � 
 < .1C ı/kC1, one hasˇ̌
�3
�ˇ̌
aT
i h0

ˇ̌2
; 
0

�
� �3

�ˇ̌
aT
i h
ˇ̌2
; 

�ˇ̌
D
ˇ̌
�3
�ˇ̌
aT
i h0

ˇ̌2
; 
0

�
� �3

�ˇ̌
aT
i h
ˇ̌2
; 
0

�ˇ̌
�

100

 2lb.
0/

ˇ̌̌ˇ̌
aT
i h
ˇ̌2
�
ˇ̌
aT
i h0

ˇ̌2 ˇ̌̌
:
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It then follows from Lemmas 5.2 and 5.3 that

1

m

ˇ̌̌̌ mX
iD1

�3
�ˇ̌
aT
i h0

ˇ̌2
; 
0

�
�

mX
iD1

�3
�ˇ̌
aT
i h
ˇ̌2
; 

�ˇ̌̌̌

�
100

 2lb.
0/

1

m



A�hhT
� h0h

T
0

�


1

�
250.1C ı/2


2
kh � h0kkhk �

250.1C ı/2�


2
:

Putting the above results together gives that for all 2 � 
 � .1C ı/
logm

log.1Cı/ D m,

1

m

mX
iD1

�3
�ˇ̌
aT
i h
ˇ̌2
; 

�
�
1

m

mX
iD1

�3
�ˇ̌
aT
i h0

ˇ̌2
; 
0

�
C
250.1C ı/2


2
�

�
1

0:495
0
exp

�
�0:49
20

�
C 251.1C ı/2

�


2

�
1

0:49

exp.�0:485
2/C 251.1C ı/2

�


2

with probability exceeding 1 � logm
log.1Cı/.1 C

2
�
/n exp.�c�2m/. This establishes

(5.30) for all 2 � 
 � m.
It remains to deal with the case where 
 > m. To this end, we rely on the

following observation:

1

m

mX
iD1

1fjaT
i
hj�mg �

1

m

mX
iD1

ˇ̌
aT
i h
ˇ̌2

m2

.i/
�
1C ı

m2
khk2 �

1

m
8h with khk D 1;

where (i) comes from [14, lemma 3.1]. This basically tells us that with high prob-
ability, none of the indicator variables can be equal to 1. Consequently,

1

m

mX
iD1

1fjaT
i
hj�mg D 0;

which proves the claim.

A.5 Proof of Lemma 5.9
Fix ı > 0. Recalling the notation

vi WD 2

(
2aT
i h �

ˇ̌
aT
i h
ˇ̌2

aT
i ´

)
1Ei1\E

i
2
;

we see from the expansion (5.21) that

(A.14)




 1mrtr`.´/





 D 



 1mATv





 � 1

m
kAk � kvk � .1C ı/

kvk
p
m
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as soon as m � c1n for some sufficiently large c1 > 0. Here, the norm estimate
kAk �

p
m.1C ı/ arises from standard random matrix results [51, cor. 5.35].

Everything then comes down to controlling kvk. To this end, making use of the
inclusion (5.22) yields

1

4m
kvk2 D

1

m

mX
iD1

�
2aT
i h �

jaT
i hj

2

aT
i ´

�2
1Ei1\E

i
2

�
1

m

mX
iD1

�
2
ˇ̌
aT
i h
ˇ̌
C
jaT
i hj

2

jaT
i ´j

�2
1Ei1\.D

i;1

4
[Di;2
4 /

�
1

m

mX
iD1

�
4
�
aT
i h
�2
C

�
4jaT

i hj
3ˇ̌

aT
i ´
ˇ̌ C jaT

i hj
4

jaT
i ´j

2

�
1
Ei1\

�
Di;1
4[D

i;2

4

��

D
1

m

mX
iD1

�
4
�
aT
i h
�2
C

�
4C
jaT
i hjˇ̌
aT
i ´
ˇ̌� jaT

i hj
3

jaT
i ´j

�
1Ei1\D

i;1

4

C 1Ei1\D
i;2

4

��
:

The first term is controlled by [14, lemma 3.1] in such a way that with probability
1 � exp.��.m//,

1

m

mX
iD1

4
�
aT
i h
�2
� 4.1C ı/khk2:

Turning to the remaining terms, we see from the definitions of Di;1
 and Di;2
 that

jaT
i hj

jaT
i ´j
�

8<:

khk

˛lb
´k´k

on E i1 \Di;1
 ;
2C 
khk

˛lb
´k´k

on E i1 \Di;2
 ;
�

(
1 on E i1 \Di;1
 ;
3 on E i1 \Di;2
 ;

as long as 
 � ˛lb
´k´k

khk
. Consequently, one can bound

1

m

mX
iD1

�
4C
jaT
i hj

jaT
i ´j

�
jaT
i hj

3

jaT
i ´j

�
1Ei1\D

i;1


C 1Ei1\D

i;2



�
�
5

m

mX
iD1

jaT
i hj

3

jaT
i ´j

1Ei1\D
i;1


C
7

m

mX
iD1

jaT
i hj

3

jaT
i ´j

1Ei1\D
i;2



�
5.1C ı/

p
8=�khk3

˛lb
´ k´k

C
7

100
.1C ı/khk2;

where the last inequality follows from (5.28) and (5.37).
Recall that 
4 D 3˛h. Taken together all these bounds lead to the upper bound

1

4m
kvk2 � .1C ı/

�
4C

5
p
8=�khk

˛lb
´ k´k

C
7

100

�
khk2

� .1C ı/

�
4C

5
p
8=�

3˛h
C

7

100

�
khk2
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whenever
khk

k´k
� min

�
˛lb
´

3˛h
;
˛lb
´

6
;

p
98=3.˛lb

´ /
2

2˛ub
´ C ˛

lb
´

;
1

11

�
:

Substituting this into (A.14) completes the proof.

Appendix B Proofs for Section 7
B.1 Proof of Lemma 7.1

First, we collect a few results on the magnitudes of aT
i x (1 � i � m) that will

be useful in constructing the hypotheses. Observe that for any given x and any
sufficiently large m,

P

�
min
1�i�m

ˇ̌
aT
i x
ˇ̌
�

1

m logm
kxk

�
D

�
P

�ˇ̌
aT
i x
ˇ̌
�

1

m logm
kxk

��m
�

�
1 �

2
p
2�

1

m logm

�m
� 1 � o.1/:

Besides, since

E
�
1
fjaT
i
xj� kxk

5 logm g

�
�

1
p
2�

2

5 logm
�

1

5 logm
;

applying Hoeffding’s inequality yields

P

� mX
iD1

1
fjaT
i
xj� kxk

5 logm g
>

m

4 logm

�

D P

�
1

m

mX
iD1

�
1
fjaT
i
xj� kxk

5 logm g
� E

�
1
fjaT
i
xj� k

xk
5 logm g

��
>

1

20 logm

�
� exp

�
��

�
m

log2m

��
:

To summarize, with probability 1 � o.1/, one has

min1�i�m
ˇ̌
aT
i x
ˇ̌
�

1

m logm
kxk;(B.1)

mX
iD1

1
fjaT
i
xj� kxklogm g

�
m

4 logm
WD k:(B.2)

In what follows, we will first produce a set M1 of exponentially many vectors
surrounding x in such a way that every pair is separated by about the same dis-
tance, and then verify that a nontrivial fraction of M1 obeys (7.3). Without loss of
generality, we assume that x takes the form x D Œb; 0; : : : ; 0�T for some b > 0.
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The construction of M1 follows a standard random packing argument. Letw D
Œw1; : : : ; wn�

T be a random vector with

wi D xi C
1
p
2n
´i ; 1 � i � n;

where ´i
ind.
� N .0; 1/. The collection M1 is then obtained by generating M1 D

exp. n
20
/ independent copies w.l/ (1 � l < M1) of w. For any w.l/;w.j / 2M1,

the concentration inequality [51, cor. 5.35] gives

P
˚
0:5
p
n � 1 �

p
nkw.l/ �w.j /k � 1:5

p
nC 1

	
� 1 � 2 exp.�n=8/;

P
˚
0:5
p
n � 1 �

p
2nkw.l/ � xk � 1:5

p
nC 1

	
� 1 � 2 exp.�n=8/:

Taking the union bound over all
�
M1
2

�
pairs we obtain

0:5 � n�1=2 � kw.l/ �w.j /k � 1:5C n�1=2 8l ¤ j;(B.3)

1=
p
8 � .2n/�1=2 � kw.l/ � xk �

p
9=8C .2n/�1=2; 1 � l �M1;(B.4)

with probability exceeding 1 � 2M 2
1 exp.�n

8
/ � 1 � 2 exp.� n

40
/.

The next step is to show that many vectors in M1 satisfy (7.3). For any given
w with r WD w � x, by letting ai;? WD Œai;2; : : : ; ai;n�

T, rk WD r1, and r? WD
Œr2; : : : ; rn�

T, we derive

(B.5)

jaT
i rj

2

jaT
i xj

2
�
2jai;1rkj

2 C 2jaT
i;?r?j

2

jai;1j
2
kxk2

�
2jrkj

2

kxk2
C
2jaT

i;?r?j
2

jai;1j
2
kxk2

�
2krk2

kxk2
C
2jaT

i;?r?j
2

jai;1j
2
kxk2

:

It then boils down to developing an upper bound on jaT
i;?r?j

2=jai;1j
2. This ratio

is convenient to work with since the numerator and denominator are stochastically
independent. To simplify presentation, we reorder faig in a way that

.m logm/�1kxk �
ˇ̌
aT
1x
ˇ̌
�
ˇ̌
aT
2x
ˇ̌
� � � � �

ˇ̌
aT
mx
ˇ̌
I

this will not affect our subsequent analysis concerning aT
i;?r? since it is indepen-

dent of aT
i x.

To proceed, we let r.l/
?

consist of all but the first entry ofw.l/�x, and introduce
the indicator variables

(B.6) �li WD

8<:
1
fjaT
i;?
r
.l/
?
j� 1
m

q
n�1
2n
g
; 1 � i � k;

1
fjaT
i;?
r
.l/
?
j�

q
2.n�1/ logn

n
g
; i > k;

where k D m
4 logm as before. In words, we divide aT

i;?r
.l/
?

, 1 � i � m, into two
groups, with the first group enforcing far more stringent control than the second
group. These indicator variables are useful since any w.l/ obeying

Qm
iD1 �

l
i D 1
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will satisfy (7.3) when n is sufficiently large. To see this, note that for the first
group of indices, �li D 1 requires

(B.7)
ˇ̌
aT
i;?r

.l/
?

ˇ̌
�
1

m

r
n � 1

2n
�
2

m

p
n � 1
p
n � 2

kr.l/k �
3

m
kr.l/k; 1 � i � k;

where the second inequality follows from (B.4). This taken collectively with (B.1)
and (B.5) yields

jaT
i r
.l/j2

jaT
i xj

2
�
2kr.l/k2

kxk2
C

9
m2
kr.l/k2

1

m2 log2m
kxk2

�
.2C 9 log2m/kr.l/k2

kxk2
; 1 � i � k:

Regarding the second group of indices, �li D 1 gives

(B.8)
ˇ̌
aT
i;?r

.l/
?

ˇ̌
�

r
2.n � 1/ logn

n
�
p
17 lognkr.l/k; i D k C 1; : : : ; m;

where the last inequality again follows from (B.4). Plugging (B.8) and (B.2) into
(B.5) gives

jaT
i r
.l/j2

jaT
i xj

2
�
2kr.l/k2

kxk2
C
17kr.l/k2 logn
kxk2= log2m

�
.2C 17 log3m/kr.l/k2

kxk2
; i � kC1:

Consequently, (7.3) is satisfied for all 1 � i � m. It then suffices to guarantee the
existence of exponentially many vectors obeying

Qm
iD1 �

l
i D 1.

Note that the first group of indicator variables is quite stringent, namely, for each
i only a fractionO.1=m/ of the equations could satisfy �li D 1. Fortunately,M1 is
exponentially large, and hence even M1=m

k is exponentially large. Put formally,
we claim that the first group satisfies

(B.9)
M1X
lD1

kY
iD1

�li �
1

2

M1

.2�/k=2.1C 4
p
k=n/k=2

�
1

p
2�m

�k
WD �M1

with probability exceeding 1 � exp.��.k// � exp.� �M1=4/. With this claim in
place (which will be proved later), one has

M1X
lD1

kY
iD1

�li �
1

2
M1

1�
e2m

�k D 1

2
exp

��
1

20
�
k.2C logm/

n

�
n

�
�
1

2
exp

�
1

25
n

�
when n and m=n are sufficiently large. In light of this, we will let M2 be a collec-
tion comprising all w.l/ obeying

Qk
iD1 �

l
i D 1, which has size M2 �

1
2

exp
�
1
25
n
�

based on the preceding argument. For notational simplicity, it will be assumed that
the vectors in M2 are exactly w.j / (1 � j �M2).

We now move on to the second group by examining how many vectors w.j / in
M2 further satisfy

Qm
iDkC1 �

j
i D 1. Notably, the above construction of M2 relies
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only on faig1�i�k and is independent of the remaining vectors faigi>k . In what
follows, the argument proceeds conditionally on M2 and faig1�i�k . Applying the
union bound gives

E

�M2X
jD1

�
1 �

Ym

iDkC1
�
j
i

��

D

M2X
jD1

P

�
9i.k < i � m/ W

ˇ̌
aT
i;?r

.l/
?

ˇ̌
>

r
2.n � 1/ logn

n

�

�

M2X
jD1

mX
iDkC1

P

�ˇ̌
aT
i;?r

.l/
?

ˇ̌
>

r
2.n � 1/ logn

n

�
�M2m

1

n2
:

This combined with Markov’s inequality gives

M2X
jD1

�
1 �

Ym

iDkC1
�
j
i

�
�
m logm
n2

�M2

with probability 1 � o.1/.
Putting the above inequalities together suggests that with probability 1 � o.1/,

there exist at least�
1 �

m logm
n2

�
M2 �

1

2

�
1 �

m logm
n2

�
exp

�
1

25
n

�
� exp

� n
30

�
vectors in M2 satisfying

Qm
lDkC1 �

l
i D 1. We then choose M to be the set con-

sisting of all these vectors, which forms a valid collection satisfying the properties
of Lemma 7.1.

Finally, the only remaining step is to establish the claim (B.9). To start with,
consider an n � k matrix B WD Œb1; : : : ;bk� of i.i.d. standard normal entries, and
let u � N .0; 1

n
In/. Conditional on the fbig,

bu D

264b1;u:::
bk;u

375 WD
264b

T
1u
:::

bT
ku

375 � N
�

0;
1

n
BTB

�
:

For sufficiently large m, one has k D m
4 logm �

1
4
n. Using [51, cor. 5.35] we get

(B.10)




1nBTB � I





 � 4pk=n
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with probability 1 � exp.��.k//. Thus, for any constant 0 < � < 1
2

, conditional
on fbig and (B.10), we obtain

P

� k\
iD1

�
jbT
i uj �

1

m

��

� .2�/�
k
2 det�

1
2

�
1

n
BTB

�
∆

bu2‡
exp

�
�
1

2
bT
u

�
1

n
BTB

��1
bu

�
dbu

� .2�/�
k
2

�
1C 4

p
k=n

��k
2 ∆
bu2‡

exp
�
�
1

2

�
1 � 4

p
k=n

��1 kX
iD1

b2i;u

�
dbu(B.11)

� .2�/�
k
2

�
1C 4

p
k=n

��k
2
�p
2�m

��k
;(B.12)

where ‡ WD fzb j jzbi j � m�1; 1 � i � kg and (B.11) is a direct consequence from
(B.10).

When it comes to our quantity of interest, the above lower bound (B.12) indi-
cates that on an event (defined via faig) of probability approaching 1, we have

(B.13) E

�M1X
lD1

Yk

iD1
�li

�
�M1.2�/

�k
2

�
1C 4

p
k=n

��k
2
�p
2�m

��k
:

Since conditional on faig,
Qk
iD1 �

l
i are independent across l , applying the Chern-

off-type bound [35, theorem 4.5] gives
M1X
lD1

Yk

iD1
�li �

M1

2
.2�/�

k
2

�
1C 4

p
k=n

��k
2
�p
2�m

��k
with probability exceeding

1 � exp
�
�
1

8

M1

.2�/k=2.1C 4
p
k=n/k=2

�
1

p
2�m

�k�
:

This concludes the proof.

B.2 Proof of Lemma 7.2
Before proceeding, we introduce the �2-divergence between two probability

measures P and Q as

(B.14) �2.P kQ/ WD ∆

�
dP
dQ

�2
dQ � 1:

It is well known (e.g., [50, lemma 2.7]) that

(B.15) KL.P kQ/ � log.1C �2.P kQ//;

and hence it suffices to develop an upper bound on the �2 divergence.
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Under independence, for any w0;w1 2 Rn, the decoupling identity of the �2

divergence [50, p. 96] gives

�2.P .y j w1/kP .y j w0// D
Ym

iD1

�
1C �2.P .yi j w1/kP .yi j w0//

�
� 1

D exp
� mX
iD1

�
jaT
iw1j

2 � jaT
iw0j

2
�2

jaT
iw0j

2

�
� 1:(B.16)

The preceding identity (B.16) arises from the following computation: by definition
of �2.� k �/,

�2.Poisson.�1/kPoisson.�0//

D

� 1X
kD0

.�k1 exp.��1//2

�k0 exp.��0/kŠ

�
� 1

D exp
�
�0 � 2�1 C

�21
�0

�� 1X
kD0

�
�21=�0

�k
kŠ

exp
�
�
�21
�0

��
� 1

D exp
�
.�1 � �0/

2

�0

�
� 1:

Set r WD w1 �w0. To summarize,

KL.P .y j w1/kP .y j w0// �
mX
iD1

�
jaT
iw1j

2 � jaT
iw0j

2
�2

jaT
iw0j

2

�

mX
iD1

jaT
i rj

2.2jaT
iw0j C ja

T
i rj/

2

jaT
iw0j

2

D

mX
iD1

ˇ̌
aT
i r
ˇ̌2�8jaT

iw0j
2 C 2jaT

i rj
2

jaT
iw0j

2

�
:(B.17)

Appendix C Initialization via Truncated Spectral Method
This section demonstrates that the truncated spectral method works when m �

n, as stated in the proposition below.

PROPOSITION C.1. Fix ı > 0 and x 2 Rn. Consider the model where yi D

jaT
i xj

2 C �i and ai
ind:
� N .0; I/. Suppose that

(C.1) j�i j � "max
˚
kxk2;

ˇ̌
aT
i x
ˇ̌2	
; 1 � i � m;

for some sufficiently small constant " > 0. The solution ´.0/ returned by the trun-
cated spectral method obeys

(C.2) dist.´.0/;x/ � ıkxk;
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with probability exceeding 1 � exp.��.m// provided that m > c0n for some
constant c0 > 0.

PROOF. By homogeneity, it suffices to consider the case where kxk D 1. Recall
from [14, lemma 3.1] that 1

m

Pm
iD1 ja

T
i xj

2 2 Œ1 ˙ "�kxk2 holds with probability
1 � exp.��.m//. Under the hypothesis (C.1), one has

1

m
k�k1 �

1

m

mX
iD1

"
�
kxk2 C

ˇ̌
aT
i x
ˇ̌2�
� "kxk2 C ".1C �/kxk2 � 3"kxk2;

which yields

�20 WD
1

m

mX
lD1

yl D
1

m

mX
lD1

ˇ̌
aT
l x
ˇ̌2
C
1

m

mX
lD1

�l 2 Œ1˙ 4"�kxk
2(C.3)

with probability 1 � exp.��.m//.
Consequently, when j�i j � "kxk2, one has

1
fj.aT

i
x/2C�i j�˛

2
y.
1
m

P
l yl /g

� 1
fjaT
i
xj2�˛2y.

1
m

P
l yl /Cj�i jg

� 1
fjaT
i
xj2�.1C4"/˛2yC"g

;
(C.4)

1
fj.aT

i
x/2C�i j�˛

2
y.
1
m

P
l yl /g

� 1
fjaT
i
xj2�˛2y.

1
m

P
l yl /�j�i jg

� 1
fjaT
i
xj2�.1�4"/˛2y�"g

:
(C.5)

In addition, in the case where j�i j � "jaT
i xj

2,

1
fj.aT

i
x/2C�i j�˛

2
y.
1
m

P
l yl /g

� 1
f.1�"/jaT

i
xj2�˛2y.

1
m

P
l yl /g

� 1
fjaT
i
xj2� 1C4"

1�"
˛2yg
;

(C.6)

1
fj.aT

i
x/2C�i j�˛

2
y.
1
m

P
l yl /g

� 1
f.1C"/jaT

i
xj2�˛2y.

1
m

P
l yl /g

� 1
fjaT
i
xj2� 1�4"

1C"
˛2yg
:

(C.7)

Taken collectively, these inequalities imply that

(C.8)
1

m

mX
iD1

aia
T
i

�
aT
i x
�2

1fjaT
i
xj�
2g„ ƒ‚ …

WDY 2

� Y �
1

m

mX
iD1

aia
T
i

�
aT
i x
�2

1fjaT
i
xj�
1g„ ƒ‚ …

WDY 1

;

where


1 WD max

(q
.1C 4"/˛2y C ";

r
1C 4"

1 � "
˛y

)
;


2 WD min

(q
.1 � 4"/˛2y � ";

r
1 � 4"

1C "
˛y

)
:
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Letting � � N .0; 1/, one can compute

(C.9) EŒY 1� D ˇ1xx
T
C ˇ2I and EŒY 2� D ˇ3xx

T
C ˇ4I ;

where

ˇ1 WD E
�
�41fj�j�
1g

�
� E

�
�21fj�j�
1g

�
; ˇ2 WD E

�
�21fj�j�
1g

�
;

ˇ3 WD E
�
�41fj�j�
2g

�
� E

�
�21fj�j�
2g

�
; ˇ4 WD E

�
�21fj�j�
2g�:

Recognizing that aiaT
i .a

T
i x/

21fjaT
i
x/j�cg can be rewritten as bibT

i for some sub-
Gaussian vector bi WD ai .a

T
i x/1fjaT

i
x/j�cg, we apply standard results on random

matrices with nonisotropic sub-Gaussian rows [51, eq. (5.26)] to deduce

(C.10) kY 1 � EŒY 1�k � ı; kY 2 � EŒY 2�k � ı;

with probability 1�exp.��.m//, provided thatm=n exceeds some large constant.
In addition, when " is sufficiently small, one also has kEŒY 1��EŒY 2�k � ı. These
taken collectively with (C.8) give

(C.11)


Y � ˇ1xxT

� ˇ2I


 � 3ı:

Fix some small zı > 0. With (C.11) in place, applying the Davis-Kahan sin‚
theorem [19] and taking ı; " to be sufficiently small, we obtain

dist.ź;x/ � zı;

where ź is the leading eigenvector of Y . Since ´.0/ WD �0ź, one derives

(C.12)
dist.´.0/;x/ � dist.�0ź; ź/C dist.ź;x/

� j�0 � 1j C zı � max
˚p
1C 2" � 1; 1 �

p
1 � 2"

	
C zı

as long as m=n is sufficiently large, where the last inequality follows from (C.3).
Picking zı and " to be sufficiently small, we establish the claim. �

We now justify that the Poisson model (1.4) satisfies the condition (C.1). Sup-
pose that �i D .aT

i x/
2 and hence yi � Poisson.�i /. It follows from the Chernoff

bound that for all t � 0,

P .yi � �i � �/ �
E
�
etyi

�
exp.t.�i C �//

D
exp

�
�i
�
et � 1

��
exp.t.�i C �//

D exp.�i .et � t � 1/ � t�/:

Taking � D 2z"�i and t D z" for any 0 � z" � 1 gives

P .yi � �i � 2z"�i / � exp.�i .et � t � 1 � 2z"t//
.i/
� exp.�i .t2 � 2z"t// D exp.��iz"2/;

where (i) follows since et � 1C t C t2 (0 � t � 1). In addition, for any z" > 1,
taking t D 1 we get

P .yi � �i � 2z"�i / � exp.�i .et � t � 1 � 2z"t// � exp.�0:5�iz"/:
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Suppose that kxk & logm. When �i & kxk2, setting z" D 0:5" < 1 yields

P .yi��i � "�i / � exp.��i"2=4/ � exp.��."2kxk2// D exp.��."2 log2m//:

When �i . kxk2, letting �i D �i=kxk2 and setting z" D "=2�i & ", we obtain

P .yi � �i � "kxk
2/ D P .yi � �i � 2z"�i /

� exp.�minfz"; 0:5g � z"�i /

D exp.�0:5minfz"; 0:5g"kxk2/ D exp.��."2 log2m//:

In view of the union bound,

P
�
9i W �i � "max

˚
kxk2;

ˇ̌
aT
i x
ˇ̌2	�
� m exp.��."2 log2m//! 0:(C.13)

Applying the same argument on �yi we get �i � �"maxfkxk2; jaT
i xj

2g for
all i , which together with (C.13) establishes the condition (C.1) with high proba-
bility. In conclusion, the claim (C.2) applies to the Poisson model.

Appendix D Local Error Contraction with Backtracking Line Search
In this section, we verify the effectiveness of a backtracking line search strategy

by showing local error contraction. To keep it concise, we only sketch the proof for
the noiseless case, but the proof extends to the noisy case without much difficulty.
Also, we do not strive to obtain an optimized constant. For concreteness, we prove
the following proposition.

PROPOSITION D.1. The claim in Proposition 5.1 continues to hold if ˛h � 6,
˛ub
´ � 5, ˛lb

´ � 0:1, p̨ � 5, and

(D.1) khk=k´k � �tr

for some constant �tr > 0 independent of n and m.

Note that if ˛h � 6, ˛ub
´ � 5, and ˛lb

´ � 0:1, then the boundary step size �0
given in Proposition 5.1 satisfies

0:994 � �1 � �2 �
p
2=.9�/˛�1

h

2.1:02C 0:665˛�1
h
/

� 0:384:

Thus, it suffices to show that the step size obtained by a backtracking line search
lies within .0; 0:384/. For notational convenience, we will set

p WD m�1r`tr.´/ and E i3 WD
˚ˇ̌
aT
i ´
ˇ̌
� ˛lb

´ k´k and
ˇ̌
aT
i p
ˇ̌
� p̨kpk

	
throughout the rest of the proof. We also impose the assumption

(D.2) kpk=k´k � �
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for some sufficiently small constant � > 0, so that jaT
i pj=ja

T
i ´j is small for all

nontruncated terms. It is self-evident from (5.38) that in the regime under study,
one has

(D.3) kpk � 2
˚
1:99 � 2.�1 C �2/ �

p
8=�.3˛h/

�1
� o.1/

	
khk � 3:64khk:

To begin, consider three scalars h, b, and ı. Setting bı WD Œ.b C ı/2 � b2�=b2,
we get

(D.4)

.b C h/2 log
.b C ı/2

b2
� .b C ı/2 C b2

D .b C h/2 log.1C bı/ � b
2bı

.i/
� .b C h/2fbı � 0:4875b

2
ı g � b

2bı

D ..b C h/2 � b2/bı � 0:4875.b C h/
2b2ı

D hı.2C h=b/.2C ı=b/ � 0:4875.1C h=b/2jı.2C ı=b/j2

D 4hı C
2h2ı

b
C
2hı2

b
C
h2ı2

b2
� 0:4875ı2

�
1C

h

b

�2�
2C

ı

b

�2
;

where (i) follows from the inequality log.1C x/ � x � 0:4875x2 for sufficiently
small x.

To further simplify the bound, observe that

ı2
�
1C

h

b

�2�
2C

ı

b

�2
� 4ı2

�
1C

h

b

�2
C ı2

�
1C

h

b

�2 4ı
b

and
2hı2

b
C
h2ı2

b2
D

��
1C

h

b

�2
� 1

�
ı2:

Plugging these two identities into (D.4) yields

(D.4) � 4hı C
2h2ı

b
�

 
0:95

�
1C

h

b

�2
C 1

!
ı2 � 0:4875ı2

�
1C

h

b

�2 4ı
b

� 4hı � 1:95ı2 C
2h2jıj

jbj
C
1:9jhj

jbj
ı2 C

1:95
ˇ̌
ı3
ˇ̌

jbj

�
1C

h

b

�2
:
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Replacing, respectively, b, ı, and h with aT
i ´, �aT

i p, and �aT
i h, one sees that the

log-likelihood `i .´/ D yi log.jaT
i ´j

2/ � jaT
i ´j

2 obeys

`i .´C �p/ � `i .´/ D yi log
jaT
i .´C �p/j

2

jaT
i ´j

2
�
ˇ̌
aT
i .´C �p/

ˇ̌2
C
ˇ̌
aT
i ´
ˇ̌2

� �4�
�
aT
i h
��
aT
i p
�„ ƒ‚ …

WDI1;i

� 1:95�2
�
aT
i p
�2„ ƒ‚ …

WDI2;i

C
2�.aT

i h/
2jaT

i pj

jaT
i ´j„ ƒ‚ …

WDI3;i

C
1:9�2jaT

i hj

jaT
i ´j

�
aT
i p
�2

„ ƒ‚ …
WDI4;i

C
1:95�3jaT

i pj
3

jaT
i ´j

�
1 �

aT
i h

aT
i ´

�2
„ ƒ‚ …

WDI5;i

:

The next step is then to bound each of these terms separately. Most of the fol-
lowing bounds are straightforward consequences from [14, lemma 3.1] combined
with the truncation rule. For the first term, applying the AM-GM inequality we get

1

m

mX
iD1

I1;i1Ei3
�

4�

3:64m

mX
iD1

�
3:642

2

�
aT
i h
�2
C
1

2

�
aT
i p
�2�

�
4�.1C ı/

3:64

�
3:642

2
khk2 C

1

2
kpk2

�
:

Secondly, it follows from Lemma 5.6 that

1

m

mX
iD1

I2;i1Ei3
D �1:95�2

1

m

mX
iD1

�
aT
i p
�2

1Ei3
� �1:95.1 � z�1 � z�2/�

2
kpk2;

where

z�1 WD max
˚
E
�
�21
fj�j�

p
1:01˛lb

´ g

�
; EŒ1

fj�j�
p
1:01˛lb

´ g
�
	
;

z�2 WD E
�
�21
fj�j>

p
0:99˛hg

�
:

The third term is controlled by

1

m

mX
iD1

I3;i1Ei3
� 2�

p̨kpk

˛lb
´ k´k

(
1

m

mX
iD1

�
aT
i h
�2) . ��khk2:

Fourthly, from the AM-GM inequality we get

1

m

mX
iD1

I4;i1Ei3
�
1:9�2 p̨kpk

˛lb
´ k´k

1

m

mX
iD1

ˇ̌
aT
i h
ˇ̌ˇ̌
aT
i p
ˇ̌

. ��2
1

m

mX
iD1

�
2
ˇ̌
aT
i h
ˇ̌2
C
1

8

ˇ̌
aT
i p
ˇ̌2� . ��2kpk2:
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Finally, the last term is bounded by

1

m

mX
iD1

I5;i1Ei3
�
1

m

mX
iD1

1:95�3jaT
i pj

3

jaT
i ´j

�
aT
i x

aT
i ´

�2
�
1:95�3˛3pkpk

3

.˛lb
´ /
3k´k3

1

m

mX
iD1

�
aT
i x
�2 . �3�

kxk2

k´k2
kpk2:

Under the hypothesis (D.3), we can further derive

1

m

mX
iD1

I1;i1Ei3
� �.1:1C ı/kpk2:

Putting all the above bounds together yields that the truncated objective function
is majorized by

(D.5)

1

m

mX
iD1

f`i .´C �p/ � `i .´/g1Ei3

�
1

m

mX
iD1

.I1;i C I2;i C I3;i C I4;i C I5;i /1Ei3

� �.1:1C ı/kpk2 � 1:95.1 � z�1 � z�2/�
2
kpk2 C �z�kpk2

D
˚
�.1:1C ı/ � 1:95.1 � z�1 � z�2/�

2
C �z�

	
kpk2

for some constant z� > 0 that is linear in �.
Note that the backtracking line search seeks a point satisfying

1

m

mX
iD1

f`i .´C �p/ � `i .´/g1Ei3
�
1

2
�kpk2:

Given the above majorization (D.5), this search criterion is satisfied only if

�=2 � �.1:1C ı/ � 1:95.1 � z�1 � z�2/�
2
C �z�

or, equivalently,

� �
0:6C ı C z�

1:95.1 � z�1 � z�2/
WD �ub:

Taking ı and z� to be sufficiently small, we see that � � �ub � 0:384, provided that
˛lb
´ � 0:1, ˛ub

´ � 5, ˛h � 6, and p̨ � 5.
Using very similar arguments, one can also show that

1

m

mX
iD1

f`i .´C �p/ � `i .´/g1Ei3
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is minorized by a similar quadratic function, which combined with the stopping
criterion 1

m

Pm
iD1f`i .´C �p/ � `i .´/g1Ei3

�
1
2
�kpk2 suggests that � is bounded

away from 0. We omit this part for conciseness.
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