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Abstract

Q-learning, which seeks to learn the optimal Q-function of a Markov decision process (MDP) in
a model-free fashion, lies at the heart of reinforcement learning. When it comes to the synchronous
setting (such that independent samples for all state-action pairs are drawn from a generative model
in each iteration), substantial progress has been made towards understanding the sample efficiency of
Q-learning. Consider a 7-discounted infinite-horizon MDP with state space S and action space A: to yield
an entrywise e-approximation of the optimal Q-function, state-of-the-art theory for Q-learning requires a
sample size exceeding the order of %, which fails to match existing minimax lower bounds. This
gives rise to natural questions: what is the sharp sample complexity of Q-learning? Is Q-learning provably
sub-optimal? This paper addresses these questions for the synchronous setting: (1) when |A| =1 (so
that Q-learning reduces to TD learning), we prove that the sample complexity of TD learning is minimax
optimal and scales as % (up to log factor); (2) when |A| > 2, we settle the sample complexity of
Q-learning to be on the order of %
of Q-learning when |A| > 2, and rigorizes the negative impact of over-estimation in Q-learning. Finally,
we extend our analysis to accommodate asynchronous Q-learning (i.e., the case with Markovian samples),

sharpening the horizon dependency of its sample complexity to be ﬁ.

(up to log factor). Our theory unveils the strict sub-optimality

Keywords: Q-learning, temporal difference learning, effective horizon, sample complexity, minimax optimal-
ity, lower bound, over-estimation
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1 Introduction

Q-learning is arguably one of the most widely adopted model-free algorithms (Watkins and Dayan, 1992;
Watkins, 1989). Characterizing its sample efficiency lies at the core of the statistical foundation of reinforcement
learning (RL) (Sutton and Barto, 2018). While classical convergence analyses for Q-learning (Borkar and
Meyn, 2000; Jaakkola et al., 1994; Szepesvéari, 1998; Tsitsiklis, 1994) focused primarily on the asymptotic
regime — in which the number of iterations tends to infinity with other problem parameters held fixed —
recent years have witnessed a paradigm shift from asymptotic analyses towards a finite-sample / finite-time
framework (Beck and Srikant, 2012; Chen et al., 2020, 2021; Even-Dar and Mansour, 2003; Kearns and
Singh, 1999; Lee and He, 2018; Li et al., 2021b; Qu and Wierman, 2020; Wainwright, 2019b; Weng et al.,
2020a; Xiong et al., 2020). Drawing insights from high-dimensional statistics (Wainwright, 2019a), a modern
non-asymptotic framework unveils more clear and informative impacts of salient problem parameters upon
the sample complexity, particularly for those applications with enormous state/action space and long horizon.
Motivated by its practical value, a suite of non-asymptotic theory has been recently developed for Q-learning
to accommodate multiple sampling mechanisms (Beck and Srikant, 2012; Even-Dar and Mansour, 2003; Jin
et al., 2018; Li et al., 2021b; Qu and Wierman, 2020; Wainwright, 2019b).

In this paper, we revisit the sample complexity of Q-learning for tabular Markov decision processes
(MDPs). For concreteness, let us consider the synchronous setting, which assumes access to a generative
model or a simulator that produces independent samples for all state-action pairs in each iteration (Kakade,
2003; Kearns et al., 2002); this setting is termed “synchronous” as the estimates w.r.t. all state-action pairs
are updated at once. We investigate the f.,-based sample complexity, namely, the number of samples needed
for synchronous Q-learning to yield an entrywise e-accurate estimate of the optimal Q-function. Despite a
number of prior works tackling this setting, the dependence of the sample complexity on the effective horizon
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S remains unsettled. Take y-discounted infinite-horizon MDPs for instance: the state-of-the-art sample



paper learning rates sample complexity
Even-Dar and Mansour (2003) linear: 1 2T (1‘ﬂy‘;}|52

Even-Dar and Mansour (2003) polynomial: 4, w € (1/2,1) |SHA|{(W)1/N + (ﬁ)ﬁ}

Beck and Srikant (2012) constant: L2 S

Wainwright (2019b) rescaled linear: ﬁ (l‘ﬂ)’élﬁ
Wainwright (2019b) polynomial: t%, we (0,1) |5HA|{(W)1/N n (ﬁ)ﬁ}

Chen et al. (2020) rescaled linear: W %

Chen et al. (2020) constant: (1 — ~y)%e? (l‘fu;‘élﬁ

this work (Q-learning, |A| > 2) rescaled linear: ﬁ %

this work (Q-learning, |A| > 2) constant: (1 — )32 (1‘ﬂy‘;§‘|€2

this work (TD learning, |A| =1) rescaled linear: ﬁ (ljf)lggrz

this work (TD learning, |A| =1) constant: (1 — )32 %

Table 1: Comparisons of existing sample complexity upper bounds of synchronous Q-learning and TD learning
for an infinite-horizon y-discounted MDP with state space S and action space A, where 0 < € < 1 is the
target accuracy level. Here, sample complexity refers to the total number of samples needed to yield either
max; q |Q(s,a) — Q*(s,a)| < e with high probability or E[max, . |Q(s,a) — Q*(s,a)|] < e, where Q is the
estimate returned by Q-learning. All logarithmic factors are omitted in the table to simplify the expressions.

complexity bounds (Chen et al., 2020; Wainwright, 2019b) scale on the order of dfgﬁ‘ﬁ

factor), where S and A represent the state space and the action space, respectively. However, it is unclear

whether this scaling is sharp for Q-learning, and whether it can be further improved via a more refined theory.

On the one hand, the minimax lower limit for this setting has been shown to be on the order of (l‘fg)’é‘sg (up

(up to some log

to some log factor) (Azar et al., 2013); this limit is achievable by model-based approaches (Agarwal et al.,
2020; Li et al., 2020) and apparently smaller than prior sample complexity bounds for Q-learning. On the
other hand, Wainwright (2019¢) argued through numerical experiments that “the usual Q-learning suffers
from at least worst-case fourth-order scaling in the discount complexity ﬁ, as opposed to the third-order
scaling ...”; although no rigorous justification was provided therein. Given the gap between the achievability
bounds and lower bounds in the status quo, it is natural to seek answers to the following questions:

What is the tight sample complexity characterization of Q-learning?
How does it compare to the minimaz sample complexity limit?

1.1 Main contributions

Focusing on 7-discounted infinite-horizon MDPs with state space S and action space A, this paper settles
the £.-based sample complexity of synchronous Q-learning. Here and throughout, the standard notation
f()=0(g(")) (resp. f(-) = Q(g(-))) means that f(-) is orderwise no larger than (resp. no smaller than) g(-)
modulo some logarithmic factors. Our main contributions regarding synchronous Q-learning are summarized
below.

e When |A| = 1, Q-learning coincides with temporal difference (TD) learning in a Markov reward process.



For any 0 < € < 1, we prove that a total sample size of

0 (gi'ysgz) M)

is sufficient for TD learning to guarantee e-accuracy in an ¢, sense; see Theorem 1. This is sharp and
minimax optimal (up to some log factor).

e Moving on to the case with |A| > 2, we demonstrate that a sample size of

5(( [SIIA] ) @)

1= 7)ie2

suffices for Q-learning to yield e-accuracy in an ¢, sense for any 0 < € < 1; see Theorem 2. Conversely,
we construct a hard MDP instance with 4 states and 2 actions, for which Q-learning provably requires

at least B 1
=) 3)

iterations to achieve e-accuracy in an £, sense; see Theorem 3. These two theorems taken collectively
lead to the first sharp characterization of the sample complexity of Q-learning, strengthening prior
theory (Chen et al., 2020; Wainwright, 2019b) by a factor of ﬁ In addition, the discrepancy between
our sharp characterization and the minimax lower bound makes clear that Q-learning is not minimax
optimal when |A| > 2, and is outperformed by, say, the model-based approaches (Agarwal et al., 2020;
Li et al., 2020) in terms of the sample efficiency.

Our results cover both rescaled linear and constant learning rates; see Table 1 for more detailed comparisons
with previous literature. On the technical side, (i) our analysis for the upper bound relies on a sort of crucial
error decompositions and variance control that are previously unexplored, which might shed light on how
to pin down the finite-sample efficacy of other variants of Q-learning such as double Q-learning; (ii) the
development of our lower bound, which is inspired by Azar et al. (2013); Wainwright (2019c), puts the
negative impact of over-estimation on sample efficiency on a rigorous footing.

Finally, we extend our analysis framework to accommodate the asynchronous setting, in which the samples
are non-i.i.d. and take the form of a single Markovian trajectory. We show for the first time that the sample
complexity of asynchronous Q-learning exhibits a ﬁ scaling w.r.t. the effective horizon, improving upon

the prior state-of-the-art Li et al. (2021b).

1.2 Related works

There is a growing literature dedicated to analyzing the non-asymptotic behavior of value-based model-free
RL algorithms in a variety of scenarios. In the discussion below, we subsample the literature and discuss a
couple of papers that are the closest to ours.

Finite-sample /.,-based guarantees for synchronous Q-learning and TD learning. The sample
complexities derived in prior literature often rely crucially on the choices of learning rates. Even-Dar and
Mansour (2003) studied the sample complexity of Q-learning with linear learning rates 1/t or polynomial

learning rates 1/t*, which scales as 6(%) when optimized w.r.t. the effective horizon (attained when

w = 4/5). The resulting sample complexity, however, is sub-optimal in terms of its dependency on not only
ﬁ but also the target accuracy level . Beck and Srikant (2012) investigated the case of constant learning
rates; however, their result suffered from an additional factor of |S||.A|, which could be prohibitively large in
practice. More recently, Chen et al. (2020); Wainwright (2019b) further analyzed the sample complexity of
Q-learning with either constant learning rates or linearly rescaled learning rates, leading to the state-of-the-art
bound 5(%) However, this result remains sub-optimal in terms of its scaling with ﬁ See Table 1
for details. In the special case with |.A|] = 1, the recent works Khamaru et al. (2020); Mou et al. (2020)
developed instance-dependent results for TD learning with Polyak-Ruppert averaging, and studied the local

(sub)-optimality of TD learning in a different local minimax framework.



Finite-sample /,,-based guarantees for asynchronous Q-learning and TD learning. Moving be-
yond the synchronous model, Beck and Srikant (2012); Chen et al. (2021); Even-Dar and Mansour (2003);
Li et al. (2021b); Qu and Wierman (2020); Shah and Xie (2018) developed non-asymptotic convergence
guarantees for the asynchronous setting, where the data samples take the form of a single Markovian trajectory
(following some behavior policy) and only a single state-action pair is updated in each iteration. A similar

scaling of 6(@) also showed up in the state-of-the-art sample complexity bounds for asynchronous

Q-learning (Li et al., 2021b), and our theory is the first to sharpen it to 5(@) When it comes to the
special case with |A| = 1, the non-asymptotic performance guarantees TD learning with Markovian sample
trajectories (assuming that the behavior policy coincides with the target policy) have been recently derived

by Bhandari et al. (2021); Mou et al. (2020); Srikant and Ying (2019).

Finite-sample /,-based guarantees of other Q-learning variants. With the aim of alleviating the
sub-optimal dependency on the effective horizon in vanilla Q-learning and improving sample efficiency, several
variants of Q-learning have been proposed and analyzed. Azar et al. (2011) proposed speedy Q-learning,
which achieves a sample complexity of 5( (1|fu)’f‘1|62) at the expense of doubling the computation and storage
complexity. Our result on vanilla Q-learning matches that of speedy Q-learning in an order-wise sense. In
addition, Wainwright (2019¢) proposed a variance-reduced Q-learning algorithm that is shown to be minimax

optimal in the range € € (0,1) with a sample complexity 6( (1‘fU;§L2 ), which was subsequently generalized to

the asynchronous setting by Li et al. (2021b). The ¢, statistical bounds for variance-reduced TD learning
have been investigated in Khamaru et al. (2020) for the synchronous setting, and in Li et al. (2021b) for the
asynchronous setting. Last but not least, Xiong et al. (2020) established the finite-sample convergence of
double Q-learning following the framework of Even-Dar and Mansour (2003); however, it is unclear whether
double Q-learning can provably outperform vanilla Q-learning in terms of the sample efficiency.

Others. There are also several other strands of related papers that tackle model-free algorithms but do not
pursue ¢.-based non-asymptotic guarantees. For instance, Bhandari et al. (2018); Chen et al. (2019); Doan
et al. (2019); Gupta et al. (2019); Lakshminarayanan and Szepesvari (2018); Srikant and Ying (2019); Wu
et al. (2020); Xu et al. (2019a,b) developed finite-sample (weighted) ¢5 convergence guarantees for several
model-free algorithms, which also allow one to accommodate linear function approximation as well as off-policy
evaluation. Another line of recent work (Bai et al., 2019; Jin et al., 2018; Li et al., 2021a; Zhang et al., 2020)
considered the sample efficiency of Q-learning type algorithms paired with proper exploration strategies (e.g.,
upper confidence bounds) under the framework of regret analysis. The asymptotic behaviors of some variants
of Q-learning, e.g., double Q-learning (Weng et al., 2020b) and relative Q-learning (Devraj and Meyn, 2020)
are also studied. The effect of more general function approximation schemes (e.g., certain families of neural
network approximations) has been studied in Cai et al. (2019); Fan et al. (2019); Murphy (2005); Wai et al.
(2019); Xu and Gu (2020) as well. These are beyond the scope of the present paper.

2 Background and algorithms

This paper concentrates on discounted infinite-horizon MDPs (Bertsekas, 2017). We shall start by introducing
some basics of tabular MDPs, followed by a description of both Q-learning and TD learning. Throughout
this paper, we denote by § = {1,---,|S|} and A = {1,--- ,|A|} the state space and the action space of the
MDP, respectively, and let A(S) represent the probability simplex over the set S.

Basics of discounted infinite-horizon MDPs. Consider an infinite-horizon MDP as represented by a
quintuple M = (S, A, P,r,7), where v € (0,1) indicates the discount factor, P : S x A — A(S) represents
the probability transition kernel (i.e., P(s"|s, a) is the probability of transiting to state s’ from a state-action
pair (s,a) € S x A), and r : S x A — [0, 1] stands for the reward function (i.e., r(s, a) is the immediate reward
collected in state s € S when action a € A is taken). Note that the immediate rewards are assumed to lie
within [0, 1] throughout this paper. Moreover, we let 7 : S — A(A) represent a policy, so that 7(-|s) € A(A)
specifies the (possibly randomized) action selection rule in state s. If 7 is a deterministic policy, then we
denote by 7(s) the action selected by 7 in state s.



A common objective in RL is to maximize a sort of long-term rewards called value functions or Q-functions.
Specifically, given a policy 7, the associated value function and Q-function of 7 are defined respectively by

Z’Yk"”(sk,ak) ‘ So = 3‘|

k=0

VT(s) =E

for all s € S, and

Q7 (s,a) =E

o0

k
ZV T(Sk,ak)’80=87ao=a
k=0

for all (s,a) € S x A. Here, {(si,ax)}r>0 is a trajectory of the MDP induced by the policy 7 (except ag
when evaluating the Q-function), and the expectations are evaluated with respect to the randomness of the
MDP trajectory. Given that the immediate rewards fall within [0, 1], it can be straightforwardly verified
that 0 < V7(s) < ﬁ and 0 < Q™(s,a) < ﬁ for any 7 and any state-action pair (s,a). The optimal value
function V* and optimal Q-function Q* are defined respectively as
V*(s) == max V™ (s), Q*(s,a) = max Q" (s, a)
™ s

for any state-action pair (s,a) € S X A. It is well known that there exists a deterministic optimal policy,
denoted by 7*, that attains V*(s) and Q*(s,a) simultaneously for all (s,a) € S x A (Sutton and Barto,
2018).

Algorithms: Q-learning and TD learning (the synchronous setting). The synchronous setting
assumes access to a generative model (Kearns and Singh, 1999; Sidford et al., 2018) such that: in each
iteration ¢, we collect an independent sample s:(s,a) ~ P(-|s,a) for every state-action pair (s,a) € S x A.

With this sampling model in place, the Q-learning algorithm (Watkins and Dayan, 1992) maintains a
Q-function estimate @Q; : S x A — R for all ¢ > 0; in each iteration ¢, the algorithm updates all entries of the
Q-function estimate at once via the following update rule

Qe = (1—nt)Qt—1 +n:Te(Qs—1)- (4)

Here, 1; € (0,1] denotes the learning rate or the step size in the ¢-th iteration, and 7; denotes the empirical
Bellman operator constructed by samples collected in the ¢-th iteration, i.e.,

Ti(Q)(s,a) :==r(s,a) + Y max Q(st,a), st = si(s,a) ~ P(-]s,a) (5)

for each state-action pair (s,a) € S x A. Obviously, 7; is an unbiased estimate of the celebrated Bellman
operator T given by
V(s,a) €S x A: T(Q)(s,a) :=r(s,a) +

E [max s',a')|.
s'~P(-|s,a) a’eAQ( )

Note that the optimal Q-function Q* is the unique fixed point of the Bellman operator (Bellman, 1952), that
is, T(Q*) = Q*. Viewed in this light, synchronous Q-learning can be interpreted as a stochastic approximation
scheme (Robbins and Monro, 1951) aimed at solving this fixed-point equation. Throughout this work, we
initialize the algorithm in a way that obeys 0 < Qq(s,a) < ﬁ for every state-action pair (s,a). In addition,
the corresponding value function estimate V; : S — R in the ¢-th iteration is defined as

VseS: Vi(s) := max Q+(s,a). (6)

The complete description of Q-learning is summarized in Algorithm 1.

As it turns out, TD learning (Bhandari et al., 2021; Sutton, 1988; Tsitsiklis and Van Roy, 1997) in the
synchronous setting can be viewed as a special instance of Q-learning when the action set A is a singleton
(i.e., |[A] = 1). In such a case, the MDP reduces to a Markov reward process (MRP) (Bertsekas, 2017), and
we shall abuse the notation to use P : § — A(S) to describe the probability transition kernel, and employ



Algorithm 1 Synchronous Q-learning for infinite-horizon discounted MDPs.

inputs: learning rates {7}, number of iterations 7', discount factor -y, initial estimate Q.
:fort=1,2,---,T do

Draw s¢(s,a) ~ P(-]s,a) for each (s,a) € § x A.

Compute Q; according to (4) and (5).
end for

AN A S

Algorithm 2 Synchronous TD learning for infinite-horizon discounted MRPs.

inputs: learning rates {7}, number of iterations 7', discount factor ~, initial estimate Vj.
cfort=1,2,--- ,T do

Draw s¢(s) ~ P(-]s) for each s € S.

Compute V; according to (7).
end for

AN S S

r: S — [0, 1] to represent the reward function (with r(s) indicating the immediate reward gained in state s).
The TD learning algorithm maintains an estimate V; : S — R of the value function in each iteration ¢,* and
carries out the following iterative update rule

Vi(s) = (1= n)Via(s) + me(r(s) +9Vima(se)), 5o = si(s) ~ P(-]5) (7)

for each state s € S. As before, n; € (0, 1] is the learning rate at time ¢, the initial estimate Vj(s) is taken to
be within [0, ﬁ], and in each iteration, the samples {s;(s) |s € S} are generated independently. The whole
algorithm of TD learning is summarized in Algorithm 2.

Finally, while synchronous Q-learning is the main focal point of this paper, we shall also discuss extension
to the asynchronous Q-learning, which we will elaborate on in Section 5.

3 Main results: sample complexity of synchronous Q-learning

With the above backgrounds in place, we are in a position to state formally our main findings in this section,
concentrating on the synchronous setting.

3.1 Minimax optimality of TD learning

We start with the special with |4 = 1 and characterize the {.-based sample complexity of synchronous TD
learning.

Theorem 1. Consider any § € (0,1), € € (0,1], and v € [1/2,1). Suppose that for any 0 < t < T, the

learning rates satisfy
1 1
a(1-T S s

—_— — 8a)
ca(1—y)t (
1 log? T 1 zlog2 T

for some small enough universal constants c¢; > co > 0. Assume that the total number of iterations T obeys

7 ca(log"T) (log 57)
=T e

(8b)

for some sufficiently large universal constant cs > 0. If the initialization obeys 0 < Vy(s) < ﬁ forall s € S,
then with probability at least 1 — §, Algorithm 2 achieves

max [Vr(s) = V*(s)| <e.

IThere is no need to maintain additional Q-estimates, as the Q-function and the value function coincide when |A| = 1.



Remark 1. This high-probability bound immediately translates to a mean estimation error guarantee.
Recognizing the crude upper bound |V (s) — V*(s)| < ﬁ (see (93) in Section C.1) and taking 6 < (1 — ),
we reach L
]E[msax Vir(s) — v*(s)ﬂ Se(l=0)+ 0= <2, 9)
53(10g3 T) ( log E(‘f‘_q;) )
(1—v)3e? :

Given that each iteration of synchronous TD learning makes use of |S| samples, Theorem 1 implies that

the sample complexity of TD learning is at most

()

for any target accuracy level € € (0,1]. This non-asymptotic result is valid as long as the learning rates are
chosen to be either a proper constant or rescaled linear (see (8a)). Compared to a large number of prior works
studying the performance of TD learning (Bhandari et al., 2021; Borkar and Meyn, 2000; Chen et al., 2020;
Khamaru et al., 2021; Lakshminarayanan and Szepesvari, 2018; Wainwright, 2019b), Theorem 1 strengthens
prior results by uncovering an improved scaling (i.e., ﬁ) in the effective horizon. In fact, prior results on

provided that T >

plain TD learning were only able to obtain a scaling as ﬁ (Wainwright, 2019b).

To assess the tightness of the above result, we take a moment to compare it with the minimax lower bound
recently established in the context of value function estimation. Specifically, Pananjady and Wainwright
(2020, Theorem 2(b)) asserted that no algorithm whatsoever can obtain an entrywise € approximation of the
value function—in a minimax sense—unless the total sample size exceeds

In turn, this taken together with Theorem 1 unveils the minimax optimality of the sample complexity (modulo
some logarithmic factor) of TD learning for the synchronous setting. While prior works have demonstrated
how to attain the minimax limit (11) using model-based methods or variance-reduced model-free algorithms
(e.g., Azar et al. (2013); Khamaru et al. (2021); Li et al. (2020); Pananjady and Wainwright (2020)), our
theory provides the first rigorous evidence that plain TD learning alone is already minimax optimal, without
the need of Polyak-Ruppert averaging or variance reduction.

3.2 Tight sample complexity and sub-optimality of Q-learning

Next, we move on to the more general case with |A| > 2 and study the performance of Q-learning. As it
turns out, Q-learning with |.A| > 2 is considerably more challenging to analyze than the TD learning case,
due to the presence of the nonsmooth max operator. Our {,.-based sample complexity bound for Q-learning
is summarized as follows, strengthening the state-of-the-art results.

Theorem 2. Consider any 6 € (0,1), ¢ € (0,1], and v € [1/2,1). Suppose that for any 0 < t < T, the
learning rates satisfy

1
3 —— (12a)
=k T

for some small enough universal constants c; > co > 0. Assume that the total number of iterations T obeys

< 03(10g4 T)(log ‘SHAlT)
- (1_ )452

(12b)
for some sufficiently large universal constant c3 > 0. If the initialization obeys 0 < Qo(s,a) < ﬁ for any
(s,a) € S x A, then Algorithm 1 achieves

(G =@ ) <

with probability at least 1 — 9.



Remark 2. Repeating exactly the same argument as in Remark 1, one can readily translate this high-
probability bound into the following mean estimation error guarantee:

[ max |Qr (s, @) ~ Q*(s.a)]] < (1= 8) + 51— <2 (13)

cs(logt T ( log %)
(1-v)%e? :
In a nutshell, Theorem 2 develops a non-asymptotic bound on the iteration complexity of Q-learning in

the presence of the synchronous model. A few remarks and implications are in order.

holds as long as T' >

Sample complexity and sharpened dependency on 1% Recognizing that |S||.A| independent samples
are drawn in each iteration, we can see from Theorem 2 the following sample complexity bound
~(_ISIIA
o(ASIAL ) u
(= )e "

in order for Q-learning to attain e-accuracy (0 < € < 1) in an entrywise sense. To the best of our knowledge,
this is the first result that breaks the (llf‘v‘)'élaz barrier that is present in all state-of-the-art analyses for vanilla
Q-learning (Beck and Srikant, 2012; Chen et al., 2020; Li et al., 2021b; Qu and Wierman, 2020; Wainwright,

2019b).

Learning rates. Akin to the TD learning case, our result accommodates two commonly adopted learning

rate schemes (cf. (12a)): (i) linearly rescaled learning rates ﬁ, and (ii) iteration-invariant learning
log2 T
rates 1"1‘+”)T (which depend on the total number of iterations T' but not the iteration number t). In

log2 T
cs(log* T) ( log %)
(1-v)%e?

particular, when the sample size is T' = , the constant learning rates can be taken to be
on the order of

m=0(1-7)3%?), 0<t<T,

which depends almost solely on the discount factor v and the target accuracy e. Interestingly, both learning
rate schedules lead to the same /.-based sample complexity bound (in an order-wise sense), making them
appealing for practical use.

A matching lower bound and sub-optimality. The careful reader might remark that there remains a
gap between our sample complexity bound for Q-learning and the minimax lower bound (Azar et al., 2013).
e
logarithmic factor — by the model-based approach and variance-reduced methods (Agarwal et al., 2020;
Azar et al., 2013; Li et al., 2020; Wainwright, 2019¢). This raises natural questions regarding whether our
sample complexity bound can be further improved, and whether there is any intrinsic bottleneck that prevents
vanilla Q-learning from attaining optimal performance. To answer these questions, we develop the following
algorithm-dependent lower bound, which confirms the sharpness of Theorem 2 and reveals the sub-optimality
of vanilla Q-learning.

More specifically, the minimax lower bound scales on the order of

and is achievable — up to some

Theorem 3. Assume that 3/4 < v < 1 and that T > (lfﬁy)Z for some sufficiently large constant c3 > 0.
Suppose that the initialization is Qo = 0, and that the learning rates are taken to be either (i) n = m
n

forallt >0, or (i) . =n for allt > 0. There exists a y-discounted MDP with |S| = 4 and |A| = 2 such
that Algorithm 1 — with any ¢, > 0 and any n € (0,1) — obeys

2 Clb
max B |V(s) = V()] 2 e

where ¢ > 0 is some universal constant.



As asserted by this theorem, it is impossible for Q-learning to attain e-accuracy (in the sense that
max, E[|Vr(s) — V* (s)|2] < €?) unless the number of iterations exceeds the order of

o
(1—n)te?

up to some logarithmic factor. Consequently, the upper bound in Theorem 2 is tight in terms of its dependency
on the effective horizon ﬁ, which is larger than the minimax limit (Azar et al., 2013) by a factor of ﬁ
As a consequence, we need to resort to more sophisticated tricks like variance reduction in order to attain
minimax optimality when |A| > 2 (Li et al., 2021b; Wainwright, 2019c).

4 Key analysis ideas (the synchronous case)
This section outlines the key ideas for the establishment of our main results of Q-learning for the synchronous

case, namely Theorem 2 and Theorem 3. The proof for TD learning is deferred to Appendix C. Before delving
into the proof details, we first introduce convenient vector and matrix notation that shall be used frequently.

4.1 Vector and matrix notation

To begin with, for any matrix M, the notation || M||; := max; >, |M; ;| is defined as the largest row-wise

¢; norm of M. For any vector a = [a;]"; € R", we define v/ and | - | in a coordinate-wise manner,
ie. va:=[\/a;];.; € R" and |a| := [[a;|]}=; € R". For a set of vectors a1, -+ ,a,, € R" with ay, = [ay ;]7_;
(1 <k <m), we define the max operator in an entrywise fashion such that maxi<g<m @ = [maxy ak,j]?:l-

For any vectors @ = [a;]7-; € R™ and b = [b;]"_; € R", the notation a < b (resp. @ > b) means a; < b;
(vesp. a; > b;) for all 1 <4 < n. We also let a o b = [a;b;]?_; denote the Hadamard product. In addition,
we denote by 1 (resp. e;) the all-one vector (resp. the i-th standard basis vector), and let I be the identity
matrix.

We shall also introduce the matrix P € RISIIAIXIS| to represent the probability transition kernel P, whose
(s,a)-th row P; , is a probability vector representing P(-|s,a). Additionally, we define the square probability
transition matrix P™ e RISIAIXISIIAI (resp. P, € R'S‘Xm) induced by a deterministic policy m over the
state-action pairs (resp. states) as follows:

P™ = PII" and P, =1II"P, (15)
where II™ € {0, 1}ISI¥ISII4] is a projection matrix associated with the deterministic policy 7
e;rr(l)
(16)
€x(is)

with e; the i-th standard basis vector. Moreover, for any vector V € RIS, we define Varp(V) € RISIAL a5
follows:

Varp(V) = P(VoV)— (PV)o (PV). (17)

In other words, the (s,a)-th entry of Varp(V') corresponds to the variance Vary  p(.|s,q)(V(s')) w.r.t. the
distribution P(-|s,a).

Moreover, we use the vector 7 € RISIMI to represent the reward function 7, so that for any (s,a) € S x A,
the (s,a)-th entry of r is given by r(s,a). Analogously, we shall employ the vectors V™ € RISl V* ¢ RISI,
V; e RISl Q™ e RISIAI Q* € RISIAI and @, € RISIMAI to represent V™, V*, Vi, Q™, Q* and Qy, respectively.
Additionally, we define 7; to be the policy associated with @; such that for any state-action pair (s, a),

7:(s) = min {a’ | Qi(s,a") = max Q:(s, a”)}. (18)
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In other words, for any s € S, the policy m; picks out the smallest indexed action that attains the largest
Q-value in the estimate Q:(s,-). As an immediate consequence, one can easily verify

Q: (8,77',5(8)) = Vi(s) and PV, =P"Q; > P"Q; (19)
for any m, where P™ is defined in (15). Further, we introduce a matrix P, € {0, 1}ISI4IXISI such that

1

0, otherwise

, if 8 = si(s,a) (20)

P,((s,a),s') := {

for any (s,a), which is an empirical transition matrix constructed using samples collected in the ¢-th iteration.

Finally, let X == (|S|,|Al, 2=, 1). The notation f(X) = O(g(X)) or f(X) S g(X) (vesp. f(X) Z g(X))
means that there exists a universal constant Cy > 0 such that |f(X)| < Cp|g(X)| (resp. | f(X)] > Colg(X)]).
The notation f(X) =< g(&X) means f(X) < g(X) and f(X) = g(X) hold simultaneously. We define O(+) in

the same way as O(-) except that it hides logarithmic factors.

4.2 Proof outline for Theorem 2

We are now positioned to describe how to establish Theorem 2, towards which we first express the Q-learning
update rule (4) and (5) using the above matrix notation. As can be easily verified, Q-learning employs the
samples in P, (cf. (20)) to perform the following update

Qi =(1—-n)Qi—1+mn(r +vPVi_1) (21)
in the t-th iteration. In the sequel, we denote by
A =Q— Q" (22)

the error of the Q-function estimate in the t-th iteration.

4.2.1 Basic decomposition

We start by decomposing the estimation error term A;. In view of the update rule (21), we arrive at the
following elementary decomposition:

A=Q—-Q =1-n)Qi1+m(r+vPVio1) —Q~
=(1-—n)(Qi-1 — Q") +me(r + vPiVie1 — Q)
=1 =n)Ar 1+ (P Vir — PV?)
=1 —n)A1 + 7 {P(Vie1 = V*) + (P, — P)Vi_1 }, (23)

where the third line exploits the Bellman equation @* = r +vPV™*. Further, the term P(V;_; — V*) can be
linked with A;_; using the definition (18) of m; as follows

PViy— V=P 1Q, 1 —P" Q"< P 1Q,_1 — P"1Q* = P™" ' A,_4, (24a)
PVi,— V=P 1Q, 1 —P"Q">P" Qi1 —P"Q"=P" Ay, (24b)

where we have made use of the relation (19). Substitute (24) into (23) to reach

Ay <(I—m)Ay1 + UtV{Pﬂt’lAt—l + (P — P)V;s—l};

x 25
Av>(1- Ay + 17 PT Ay + (P~ P)Vi_y ). (25)
Applying these relations recursively, we obtain
®) S0 f pr
Ay <ny’ Ao+ Y n A{PT A+ (P — P)Viy },
=l (26)

t
A >0 Ag+ S P A+ (P~ P)Vi1 ),
=1

11



where we define

IT5= (1 =), if i =0,

t . .
7]1() = niH;:i+1(1—nj)7 if0<i<t, (27)

. ifi=t.

Comparisons to prior approaches. We take a moment to discuss how prior analyses handle the above
elementary decomposition. Several prior works (e.g., Li et al. (2021b); Wainwright (2019b)) tackled the
second term on the right-hand side of the relation (25) via the following crude bounds:
Pt Ay <[P Aic el = A ][,
PT A > —||P7 [, Ai]lecl = —[|Ai—1]01,

which, however, are too loose when characterizing the dependency on ﬁ By contrast, expanding terms
recursively without the above type of crude bounding and carefully analyzing the aggregate terms (e.g.,
Zle 772(':)P’”*1 A;_1) play a major role in sharpening the dependence of sample complexity on the effective

horizon.
4.2.2 Key intertwined relations underlying {||A¢|/«}

By exploiting the crucial relations (26) derived above, we proceed to upper and lower bound A; separately.
To be more specific, defining

ca(l—7)
P S 2
B log T (28)
for some constant ¢4 > 0, one can further decompose the upper bound in (26) into several terms:
(1-p)t
A < U(()t)AO + Z m(t)’)’(Pm*lAi—l + (P, — P)V;_1) (29)
i=1
=:(t
t t
+ Y PP+ Y Py PTALL (30)
i=(1-B)t+1 i=(1—B)t+1
=:&

Let us briefly remark on the effect of the first two terms:

e Each component in the first term {; is fairly small, given that nft) is sufficiently small for any ¢ < (1— )t

(meaning that each component has undergone contraction — the ones taking the form of 1 —n; — for
sufficiently many times). As a result, the influence of {; becomes somewhat negligible.

e The second term &;, which can be controlled via Freedman’s inequality (Freedman, 1975) due to its
martingale structure, contributes to the main variance term in the above recursion. Note, however, that
the resulting variance term also depends on {A,}.

In summary, the right-hand side of the above inequality can be further decomposed into some weighted
superposition of {A;} in addition to some negligible effect. This is formalized in the following two lemmas,
which make apparent the key intertwined relations underlying {A;}.

Lemma 1. Suppose that cico < c4/8. With probability at least 1 — 9,

(10g4 T) ( log El ‘(;MT)

A; <30 (1 m A; oo) 1
t= 2(1 —)*T pen 2l
holds simultaneously for all t > SlosT lng.
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Lemma 2. Suppose that c1ca < ¢y/8. With probability at least 1 — 6,

(10g4 T) ( log “SH;”T

A, >
=30 (1 —y)*T

)(1+ max ||Ai|\oo) 1
L<i<t

holds simultaneously for all t > = logT

Proof. The proofs of Lemma 1 and Lemma 2 are deferred to Appendices B.2 and B.3, respectively. As a
remark, our analysis collects all the error terms accrued through the iterations — instead of bounding them
individually — by conducting a high-order nonlinear expansion of the estimation error through recursion,
followed by careful control of the main variance term leveraging the structure of the discounted MDP.  [J

Putting the preceding bounds in Lemmas 1 and 2 together, we arrive at

(log4 T) ( log |SHA|T)
Atlloo <30 1 Al 31
12l < i (1 A ) (31)
for all t > = logT with probability exceeding 1 — 2§, which forms the crux of our analysis. Employing

elementary analy51s tailored to the above recursive relation, one can demonstrate that

o 4 o |SH.A|T o 4 o |SH.A|T
||AT||OQSO<\/(lg ?El S ) (g ?fl T )) (32)

with probability at least 1 — 26, which in turn allows us to establish the advertised result under the assumed
sample size condition. The details are deferred to Appendix B.4.

4.3 Proof outline for Theorem 3

Construction of a hard instance and its property Let us construct an MDP My,q with state space
S ={0,1,2,3} (see a pictorial illustration in Figure 4.3). We shall denote by A the action space associated
with state s. The probability transition kernel and reward function of My,4 are specified as follows

= {1}, P(0]0,1) =1, r(0,1) =0, (33a)
Ay :{172}7 P(1|171) =D, P(O‘lal) =1-p, 7‘(1,1) =1, (33b)
P(1|172):pa P(0‘132):1_pa T(LZ):L (33C)
Ay = {1}, P(2]2,1) = p, P(0|2,1)=1-p, r(2,1) =1, (33d)
= {1}, P(3]3,1) =1, r(3,1) =1, (33e)
where the parameter p is taken to be
4y —1
P=3 (34)

Before moving forward to analyze the behavior of Q-learning, we first characterize the optimal value
function and Q-function of this MDP; the proof is postponed to Section D.4.

Lemma 3. Consider the MDP Myag constructed in (33). One has

V*(0) = Q*(0,1) = 0; (35a)

V)= QL) = QLY = V) = Q) = = = g (35b)
* _* _ 1

Vi(3)=Q*(3,1) = 1—o (35¢)
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Figure 1: The constructed hard MDP instance used in the analysis of Theorem 3, where p = 4?,;1 and the

specifications are described in (33).

Recognizing the elementary decomposition
E[(V*(5) = V()] = (BIV*(5) = Vie(s)])” + Var (Vi () (36)

for any state s, our proof consists of lower bounding either the squared bias term (E[V*(s) — VT(S)])2 or the
variance term Var(VT(s)). In short, we shall primarily analyze the dynamics w.r.t. state 2 to handle the case
when the learning rates are either too small or too large, and analyze the dynamics w.r.t. state 1 to cope
with the case with medium learning rates (with state 3 serving as a helper state to simplify the analysis).
The latter case — corresponding to the learning rates adopted in establishing the upper bounds — is the
most challenging: critically, from state 1 the agent can take one of two identical actions, whose value tends to
be estimated with a high positive bias due to maximizing over the empirical state-action values, highlighting
the well-recognized “over-estimation” issue of Q-learning in practice (Hasselt, 2010). The complete proof is
deferred to Appendix D.

5 Extension: sample complexity of asynchronous Q-learning

Moving beyond the synchronous setting, another scenario of practical importance is the case where the
acquired samples take the form of a single Markovian trajectory (Tsitsiklis, 1994). In this section, we extend
our analysis framework for synchronous Q-learning to accommodate Markovian non-i.i.d. samples.

5.1 Markovian samples and asynchronous Q-learning

Markovian sample trajectory. Suppose that we obtain a Markovian sample trajectory {(ss, ar, m¢)}520,
which is generated by the MDP of interest when a stationary behavior policy 7, is employed; in other words,

a¢ NWb("St), Tt :r(st,at), St—‘rl NP("St,at)7 tZO (37)

When 7, is stationary, the trajectory {(s¢,at)}52, can be viewed as a sample path of a time-homogeneous
Markov chain; in what follows, we shall denote by p,, the stationary distribution of this Markov chain. Note
that the behavior policy mp can often be quite different from the target optimal policy 7*.

Asynchronous Q-learning. In the presence of a single Markovian sample trajectory, the Q-learning
algorithm implements the following iterative update rule

Qe(si—1,a-1) = (1 =ne)Qe—1(5¢-1,as-1) + Ut{T(Stfhatq) + 7 max Qi—1(st, a’)}, (38a)
Qi(s,a) = Qi—1(s,a) for all (s,a) # (st—1,a1—1) (38Db)

for all t > 1, where 0 < n; < 1 stands for the learning rate at time ¢. It is often referred to as asynchronous
Q-learning, as only a single state-action pair is updated in each iteration (in contrast, synchronous Q-learning
updates all state-action pairs simultaneously in each iteration). This also leads to the following estimate for
the value function at time ¢:

Vi(s) = max Qi(s,a) for all s € S. (39)
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As can be expected, the presence of Markovian non-i.i.d. data considerably complicates the analysis for
asynchronous Q-learning.

Assumptions. In order to ensure sufficient coverage of the sample trajectory over the state/action space,
we make the following assumption throughout this section, which is also commonly imposed in prior literature.

Assumption 1. The Markov chain induced by the behavior policy mp is uniformly ergodic.?

In addition, there are two crucial quantities concerning the sample trajectory that dictate the performance
of asynchronous Q-learning. The first one is the minimum state-action occupancy probability of the sample
trajectory, defined formally as

in ‘= min s,a). 40
Hmin (s,a)ESX.A‘uﬂ-b( ) ( )
This metric captures the information bottleneck incurred by the least visited state-action pair. The second
key quantity is the mixing time associated with the sample trajectory, denoted by

tmix ‘= min {t max dtv (Pt(- | s,a), ,u,rb) < i} (41)

(s,a)ESx A

Here, drv(p,v) = 2", v lu(x) — v(z)| indicates the total variation distance between two measures y and
v over X (Tsybakov and Zaiats, 2009), whereas P!(-|s,a) stands for the distribution of (s, a;) when the
sample trajectory is initialized at (sg,ap) = (s,a). In words, the mixing time reflects the time required for
the Markov chain to become nearly independent of the initial states. See Li et al. (2021b, Section 2) for a
more detailed account of these quantities and assumptions.

5.2 Sample complexity of asynchronous Q-learning

While a number of previous works have been dedicated to understanding the performance of asynchronous
Q-learning, its sample complexity bound remains loose when it comes to the dependency on the effective
horizon liv' Encouragingly, the analysis framework laid out in this paper allows us to tighten the dependency

on ﬁ7 as stated below.

Theorem 4. Consider any 6 € (0,1), ¢ € (0,1], and v € [1/2,1). Suppose that for any 0 < t < T, the
learning rates satisfy

3
c1log”™ T
m=n=——2 - 42a
' (1 = )T pmin (422)

for some universal constants 0 < ¢; < 1. Assume that the total number of iterations T obeys

Co log2 % ax log3 T tmix
Hmin (1 - ’7)452 ’ 1- Y

(42b)

for some sufficiently large universal constant co > 0. If the initialization obeys 0 < Qo(s,a) < ﬁ for all
(s,a) € S x A, then asynchronous Q-learning (cf. (38)) satisfies

10,00 (0] <

with probability at least 1 — 4.

Remark 3. Similar to Remark 1 and Remark 2, one can immediately translate the above high-probability
result into the following mean estimation error bound:

1
E[max |Qr(s,a) - Q*(s,a)ﬂ <e(l-8)+0—— <2, (43)
s,a -7
] G2 10g2 ‘;S(‘l‘f"}’j)ﬂ 10g3 T Emix
which holds as long as T' > — - max {W7 ﬁ} for some large enough constant ¢y > 0.

2See Paulin (2015, Section 1.2) for the definition of uniform ergodicity.
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This theorem demonstrates that with high probability, the total sample size needed for asynchronous
Q-learning to yield entrywise € accuracy is

~ 1 tmix
o (Nmin(l - ’7)452 * fomin (1 — '7))7 (44)

provided that the learning rates are taken to be some proper constant (see (42a)). The first term in (44)
resembles our sample complexity characterization of synchronous Q-learning (cf. (14)), except that we replace
the number |S||A| of state-action pairs in (14) with 1/pmin in order to account for non-uniformity across
state-action pairs. The second term in (44) is nearly independent of the target accuracy (except for some
logarithmic scaling), and can be viewed as the burn-in time taken for asynchronous Q-learning to mimic
synchronous Q-learning despite Markovian data.

We now pause to compare Theorem 4 with prior non-asymptotic theory for asynchronous Q-learning. As
far as we know, all existing sample complexity bounds (Beck and Srikant, 2012; Chen et al., 2021; Even-Dar
and Mansour, 2003; Li et al., 2021b; Qu and Wierman, 2020) scale at least as ﬁ in terms of the dependency
on the effective horizon, with Theorem 4 being the first result to sharpen this dependency to

1
= In

particular, our sample complexity bound strengthens the state-of-the-art result Li et al. (2021b) by a factor
up to ﬁ, while improving upon Qu and Wierman (2020) by a factor of at least % min {#mi; W}g

6 Concluding remarks

In this paper, we have settled the sample complexity of synchronous Q-learning in ~y-discounted infinite-horizon
MDPs, which is shown to be on the order of 6(%) when |A| =1 and 6((1@%3‘52) when |A] > 2. A
matching lower bound has been developed when |A| > 2 through studying the dynamics of Q-learning on a
hard MDP instance, which unveils the negative impact of an inevitable over-estimation issue. Our theory
has been further extended to accommodate asynchronous Q-learning, resulting in tight dependency of the
sample complexity on the effective horizon. The analysis framework developed herein—which exploits novel
error decompositions and variance control that differ substantially from prior approaches—might suggest
a plausible path towards sharpening the sample complexity of, as well as understanding the algorithmic
bottlenecks for, other model-free algorithms (e.g., double Q-learning (Hasselt, 2010)).
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A Freedman’s inequality

The analysis of this work relies heavily on Freedman’s inequality (Freedman, 1975), which is an extension
of the Bernstein inequality and allows one to establish concentration results for martingales. For ease of
presentation, we include a user-friendly version of Freedman’s inequality as follows.

3The sample complexity of Li et al. (2021b) scales as 5(
Wierman (2020) scales as 6(

. (1i7)552 + m _té“lii,y)), while the sample complexity of Qu and

W) It is worth noting that 1/pmin > |S||A| and is therefore a large factor.
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Theorem 5. Suppose that Y, = > ;_, X € R, where {Xy} is a real-valued scalar sequence obeying

Xk <R and E [Xk | {Xj}j:j<k} =0 for allk 2 1.
Define
W= Epy [X7],
k=1
where we write Ex_1 for the expectation conditional on {Xj}j:j<k' Then for any given o2 > 0, one has
P{|Y,| > 7 and W,, < 0%} < 2exp —i (45)
= "= - o2+ Rr/3)"

In addition, suppose that W,, < o2 holds deterministically. For any positive integer K > 1, with probability
at least 1 — § one has

o2 2K 2K
[V, < \/Smax{Wn, 2K}log 5 + 3Rlog 5 (46)

Proof. See Freedman (1975); Tropp (2011) for the proof of (45). As an immediate consequence of (45), one

has
2 4 2 9
P q[Yn| > /402 log 5T §R10g5 and W,, <o <. (47)

Next, we turn attention to (46). Consider any positive integer K. As can be easily seen, the event

K 2K
Hi :_{|Yn2\/8max{Wn,2K}lg5+ S Rlog = }

is contained within the union of the following K events

HKQ U Bk,
0<k<K
where we define
402 2K 4 2K o2 o?
Bk3={|YnZ 21v7711g5+3R10g5 d%SWﬂggkl}’ l<k<K-1,

402 2K 4 2K 0’2

Invoking inequality (47) with o2 set to be 2‘{—: and 0 set to be %, we arrive at P{B;} < §/K. Taken this
fact together with the union bound gives

K-1

P{Hk} < Z P{By} <é.

k=0

This concludes the proof. O

B Upper bounds for Q-learning (Theorem 2)

In this section, we fill in the details for the proof idea outlined in Section 4.2 for synchronous Q-learning. In
fact, our proof strategy leads to a more general version that accounts for the full e-range € € (0 as
stated below.

L],
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Theorem 6. Consider any v € (0,1) and any € € (0, ﬁ] Theorem 2 continues to hold if

c3 ( log* T) ( log ‘SHAlT)
7?(1 = 7)* min{e?, e}

for some large enough universal constant cg > 0.

(48)

Remark 4. Clearly, Theorem 6 subsumes Theorem 2 as a special case.

As one can anticipate, the proof of Theorem 6 for Q-learning includes many key ingredients for establishing
Theorem 1 for TD learning. We will elaborate on how to modify the proof argument to establish Theorem 1
in Section C.

B.1 Preliminaries

To begin with, we gather a few elementary facts that shall be used multiple times in the proof.

Ranges of Q; and V;. When properly initialized, the Q-function estimates and the value function estimates
always fall within a suitable range, as asserted by the following lemma.

Lemma 4. Suppose that 0 < n; <1 for allt > 0. Assume that 0 < Qo < ﬁl, Then for any t > 0,

1 1
0<Q<——1 and 0<V,<—1. (49)
L=y L=y
Proof. We shall prove this by induction. First, our initialization trivially obeys (49) for ¢ = 0. Next, suppose
that (49) is true for the (¢ — 1)-th iteration, namely,
1 1
0<Qi1 <——1 and 0<V,_; < —1, (50)
1—7 1—7v
and we intend to justify the claim for the ¢-th iteration. Recognizing that 0 <r <1, P, > 0 and ||P:|; =1,
one can straightforwardly see from the update rule (21) and the induction hypothesis (50) that

Qi=1-n)Qi—1+m(r+vP V1) >0

and

Q= 1—n)Qi—1+n(r +vPV,_1)
< (=1 1Qi-1lloc + ne(lI7llco + APl Vicilloo)1

1 0 1
<(1- 1+ (L+ )1: 1.
( M) S e 1—~ 1—~

1
In addition, from the definition V;(s) := max, Q:(s,a) for all £ > 0 and all s € S, it is easily seen that

1
o<V, < —1,
11—~

thus establishing (49) for the ¢-th iteration. Applying the induction argument then concludes the proof. [

As a result of Lemma 4 and the fact 0 < Q* < ﬁl, we have

1
1Q: — Q|00 < T for all ¢t > 0, (51)
-7
which also confirms that 0 < e < ﬁ is the full e-range we need to consider. Further, we make note of a

direct consequence of the claimed iteration number (48) when e < %

_ cs(log" T) (log SIRIT) ¢ (log" T) (log ISIAT)
(1 —79)*min{e, 2} — (1—7)3 ’

which will be useful for subsequent analysis.

(52)
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Several facts regarding the learning rates. Next, we gather a couple of useful bounds regarding the
learning rates {n:}. To begin with, we find it helpful to introduce the following related quantities introduced
previously in (27):

Mo0-n), iz
t . )

7]1() = niH;:i+1(1—nj)7 if0<i<t, (53)
- ifi=t.

®

We now take a moment to bound ;. From our assumption (12a) and the condition (52), we know that the

learning rate obeys

1 1 1 1

3 S 3 S ui S 3 S 3 (54)
2001 =v)T/1log”T — 1+ c1(1 —7)T/log” T 1+ ca(l=7)t/log”T = co(1 —7)t/log” T
for some constants ¢, cy > 0. Recalling that
cs(1 =)
= 55
B log T (55)
for some universal constant ¢4 > 0 and considering any ¢ obeying
T
> — 56
> s T’ (56)
we shall bound ngt) by looking at two cases separately.
e For any 0 < i < (1 — 8)t, we can use (54) to show that
® < (1 1 Bt < (1 1 ?2(110;3)7?
U 3 =\ " 3
2c1(1 —v)T/log” T 2c1(1 = )T/ log”> T
cylog T
1 zc}(lg;)T 2cqca 1
. )BT L s7a
<< 2¢1(1 — )T/ log® T 272 (572)
where the last inequality holds as long as cica < ¢4/8.
e When it comes to the case with ¢ > (1 — 8)t > ¢/2, one can upper bound
1 2 2log* T
771@) < < : — < 5 < 08 , (57b)
’ c2(1—7)i/log’ T~ co(l —y)t/log” T ~— (1 —=7)T
where we have used the constraint (56).
Moreover, the sum of ngt) over i obeys
t t t t
t
Sl =Tla=n)+m [ -n)+m [JA =)+ +mos(t —n) +me
i=0 j=1 j=2 j=3
¢ t
j=2 7j=3
=1 -nm)+m=1 (58)

>on =10 -n) (59)

for any 7 < t.
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B.2 Proof of Lemma 1

We shall exploit the relation (30) to prove this lemma. One of the key ingredients of our analysis lies in
controlling the terms ¢; and &; introduced in (30), which in turn enables us to apply (30) recursively to
control A;.

Step 1: bounding (;. We start by developing an upper bound on ¢{; (cf. (30)) for any ¢ obeying
)

= logT <t <T. Invoking the preceding upper bounds (57) on n;”’ implies that

(t) (®) T4
< A + max 1), [llaX Pmi-1 A, + P V; + P‘/
Hct”oo =T || 0”00 t <(1—p)t i 1<i<(1— (H i— lHoo || i— 1||oo || 1HOO)

< 18 Alloo + ¢ (®) {P”H Ai il + (I1P]1 + ||P]1) | Vie oo}
Mo [Bollso +¢ max 7 max  {IP" il Aizslloe + (1Bl + 1P Vi

D Moo+t max nf”  max (Ao +2[|Viea )

K2

<(1-p)t ' 1<i<(1-B)t
I N T
=921, o T,
<
T (=T
Here, (i) holds since ||[P™i-t||; = || P;||s = ||P]|1 =1 (as they are all probability transition matrices), whereas

(ii) arises from the previous bound (57a).

Step 2: bounding &;. Moving on to the term &;, let us express it as

t
& = Z z  with z; = n{"y(P; — P)V;_y,
i=(1-B)t+1

where the z;’s satisfy
E[zi|‘/;—17"' 5‘/0] =0.

This motivates us to invoke Freedman’s inequality (see Theorem 5) to control &; for any ¢ obeying
t <T. Towards this, we need to calculate several quantities.

T
co logT <

e First, it is seen that
B:i= max zille < max _|n{”(P— P)Vi_i|s
(1-B)t<i<t (1-B)t<i<t
4log T

< max_ " (IB )1+ |1Pl) | Vici ]l < A=°T

T (1-p)t<i<t

where the last inequality is due to (57b), Lemma 4, and the fact ||P;||; = || P|1 = 1.

e Next, we turn to certain variance terms. For any vector a = [q;], let us use Var(a |Vieq, - ,VO) to
denote a vector whose j-th entry is given by Var(aj | Vieq, - ,VO). With this notation in place, and
recalling the notation Varp(z) in (17), we obtain

t t
W, = Z Var(z; | Vicy, -+, Vo) =77 Z (n") Var((R- - P)Vi, |Vi—1>
i=(1—B)t+1 i=(1—B)t+1
t
2

=~° Z (771@) Varp(Vi_1)

i=(1—B)t+1

t

< ( max. ngt)) ( Z nl(f)) max Varp (VZ)

(1-p)t<i<t (P (1-p)t<i<t
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2log T
—-5 - Varp(V;), 60
-~ (1-yT (1—%1)?)3(1'« arp (Vi) (60)

where the last inequality relies on the previous bounds (57b) and (58).

e In the meantime, Theorem 4 leads us to the following trivial upper bound:

2log4T 1 _ 210g4T 1

. = = ¢21.
1-MNT (1-7?2 (Q-79)T

o? 210g4T
< e 7
28 7 (1=y)T

With the above bounds in place, applying the Freedman inequality in Theorem 5 and invoking the union
bound over all the |S||.A| entries of & demonstrate that

o2 8IS[|AIT log 11 /4 8|S AT log 4

2logh T S| AT S| AT
< 208 2 Blog 212 g
< \/16(Wt e 7)T1) log 5= + (3B1og )

(61)

32(10g4 T)(log ‘S”A‘T) 12(10g4 T)(log ‘SHAlT)
= \/ (1—~)T ((krﬂn)%)g(iqvarp(w) + 1) + (1—-7)2T 1

with probability at least 1 — 6/7T. Here, the second line holds due to (61) and the fact log %

2log |SHA|T (cf. (52)), whereas the last inequality makes use of the relation (60).

<

Step 3: using the bounds on ¢; and &; to control A;. Let us define

log* T'lo |SHA|T
Pt = 64 & & (

= )T max Varp(V;) + 1> (62)

Fy
5 <i<t

In view of the upper bounds derived in Steps 1 and 2, and § defined in (55), we have — with probability
exceeding 1 — § — that
Gkl + [€x| < /pr  forall 2t/3 <k <t, (63)

co(log? ISUAIT
o s 7 205552

(30), we can upper bound A, as follows

for some sufficiently large constant c¢g > 0. Substituting (63) into

k k—1
A<yt > ayPTA L = Vei+ Y gy P™A; forall 26/3<k<t.  (64)
i=(1-B)k+1 i=(1-B)k

Further, we find it convenient to define {agt)} as follows
(t)
) ._ Mit1
2 j=(1-pyt 41
Clearly, this sequence satisfies

—1
o >n®  and S a=a (66)
i=(1-B)t
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for any t, where the first inequality results from (58). With these in place, we can write (64) as

k—1 k—1

A<Vt > aaPm AL = Y (el Vel PTiA)  foral2t/3< k<t
h=(1-p)k i1=(1-B)k
(67)
Given that (1 — )t > 2t/3 (see (55)), we can invoke this relation recursively to yield
t—1
A< Y (ol tnlnPTA,)
i1 =(1-p)t
t—1 -1 ' '
< 8 vmetors $ (e enorna,)
(1-p)t i2=(1—p)i1
t—1 i1—1
t t T
S SIRTCNEID YD MR SN
=(1-p)t =(1-pB)t ia=(1-PB)ix
i1—1 2
t 7 5
F Y Y TP A,
i1=(1-p)t ia=(1—p)i1 k=1
i1—1 11—1 2
= Z > e TP} et Z >0 it [T (6 P™) A, (68)
=(1-pB)t i2=(1-p)i1 =(1—B)t ia=(1—P)i1 k=1

where the second inequality relies on (67), the third line uses the inequality 77( )+1 <oy () n (66), and the
fourth line is valid since Y 1_(1 iy @ ol =1 (see (66)).

ia
We intend to continue invoking (67) recursively — similar to how we derive (68) — in order to control
A;. To do so, we are in need of some preparation. First, let us define

_logT

=1_ 5 and Oé{ik}gl:1 = Oé(t)a(.“) . al(-;Hil) >0 (69)

21 12

for any t > iy >3 > --- > iy, which clearly satisfies (see (66))

t 7 7 1
a{ik}kH = nl(l)Jrlnl(zlﬁL)l nZ(HHJrl )' (70)
In addition, defining the index set
7 ::{(ih'" i) [(1=B)t<iy <t—1,V1<j<H:(1-pB)ij<ij gz'j—l} (71)

we have

(21, i )ELL
Additionally, recalling that 8 = ¢4(1 — v)/log T, we see that this choice of H satisfies

log T

(1-p8)1 = 1_04(17_7)ﬁ>g
logT -3
for ¢4 small enough, thus implying that
i1 >y > >ig > (1 -t >2t/3  forall (iy,--- ,ig) € Ty

This is an important property that allows one to invoke the relation (67). With these in place, applying the
preceding relation (67) recursively — in a way similar to (68) — further leads to

SEED SRR ( (2 oE | EES PERE) | EP]
h=1 k=1

(i1, yim) €Ly
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H-1 h H
< . max I+ T P ) e +42 T P | A 73
T (i1, in)€T { ( Z K H ) L kl;[l il } (73)

h=1 k=1

=:6: =: [

for all t > 1 7, Where we recall the definition of the entrywise max operator in Section 4.1. Here, the

last 1nequahty rehes on the fact that - . ; ez, gy =1 (see (72)). It remains to control 81 and SBs,
which we shall accomplish separately in the next two steps.

Step 4: bounding (2. The term B3, defined in (73) is relatively easier to control. Observing that
HkH:1 P7ix is still a probability transition matrix, we can derive

Bo| =" [ P™ II P

1<k<h 1<k<h
) (ii)
L
1—v (1=7)T

where (i) results from the crude bound (51). To justify the inequality (ii), we recall the definition (69) of H
to see that

1A oo =77 1A lls
1

Am’ <A

(

IN

ii 1 1o 1
~ ()(1_(1_7))17,Y1gTS6—10gT:T’

where the inequality comes from the elementary fact that Ayﬁ <elforany 0 <y <1

Step 5: bounding 3;. When it comes to the term (3; defined in (73), we can upper bound the entrywise
square of B; — denoted by |3;|> — as follows

|ﬁ1|2=‘(HZlvh 11 PW)\/E
h=0

1<k<h

2

h/2 'Yh/Q H Pk oy
1<k<h

(i) H-1

<2 " Y HP’“'“%
h=0

(ii1) 1 T)(1 lSHAlT
< = Z H Pk Og )( og ) ( max Varp(V}) + 1)
ViTe i (1-7T i<ict

) 64(log* T)(log ‘S“A'T h 64(log* T) (log [SIAT)

< =) Zv HP”% m?ictVarp(V)—i— T

1.

h=0 k=1 2S

Here, (i) follows from Jensen’s inequality and the fact that HZ:1 P™i is a probability transition matrix;
(ii) holds due to the Cauchy-Schwarz inequality, (iii) utilizes the definition of ¢, in (62); (iv) follows since
1L <k<h PTixl=1and )\ \pn < < 1= . To further control the right-hand side of the above inequality,
we resort to the following lemma.

Lemma 5. Suppose that t > For any (i1,--- ,ig) € Iy, the following holds:

ca logT

h
4
h T
P7™ix max Var ‘/1 < 7(1_’_2 max AZ 00)1 74
3 2" TLP o Vare(VD) < S (142 s, ] (74)

Proof. This lemma, which is inspired by but significantly more complicated than Azar et al. (2013, Lemma
8), plays a key role in shaving one ﬁ factor. See Section B.5 for the proof. O

Therefore, the above result directly implies that

320(log* T') (log SIAIT)

2
1B1]” < (1 = 4T

(1 +2 max HAiHOO)l. (75)
L<i<t
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Step 6: putting all this together. Substituting the preceding bounds for 3; and Bs into (73), we can
demonstrate that: with probability at least 1 — 4,

1 320(log* T) (1og 1SIAIT
A< — 14 ( % )( %3 )(1+2 max [|A) 1
(1=mT Y21 =T g<i<t
(log4T)(log L”(;UT)
<30 (1+ A, oo) 1 76

. T .. S 1 (log* T)(log ‘SHEA‘T)
holds simultaneously for all ¢ > ZlogT where the second line is valid since =T < T T

under our sample size condition (52).

B.3 Proof of Lemma 2

Next, we move forward to develop an lower bound on A;, which can be accomplished in an analogous manner
as for the above upper bound. Applying a similar argument for (73) (except that we need to replace m; with
7*), one can deduce that

H-1  h H
A;>— max {thHP”*\/@-ﬁ-’yHHPW*’AiA} (77)

i1, inr)ET
Gueim)ed | = o k=1

C2T
log ﬁ :

It is straightforward to bound the second term on the right-hand side of (77) as

II P~

1<k<H

for any t >

H * ) H . 71
YOI P A <o 1||A1H||m1§(1_7)T

1<k<H

1,

where the second inequality makes use of (51) as well as the fact that ], P™ is a probability transition
matrix (so that || ], P™ , = 1). As for the first term on the right-hand side of (77), we can invoke a similar
argument for (75) to obtain

2

log® T) ( log IS”;“T

< 320(
Y2(1 = y)iT

) (1 + 2 max ||Ai||oo)1'
L<i<t

Taking these two bounds together, we see that with probability at least 1 — 4,

loo T) ( log [SIALT
A; > 30 (log 2)( o8 =2 )(1+ max Ai||oo> 1 (78)
Y21 = )T f<i<t
holds simultaneously for all £ > ﬁ.

B.4 Solving the recurrence relation regarding A;

Recall from (31) that with probability exceeding 1 — 20, the following recurrence relation

loo® T (log [SHAIT T
<0g 2)( 0g4 5 )<1+ max ||A1||DO) for all t>
(A=) z<i<t cologT

[A¢]leo <30 (79)

holds, which plays a crucial role in establishing the desired estimation error bound. Specifically, for any k& > 0,
let us define

= A¢llso ’ ok
Uy maX{H <l loeT

gth}. (80)
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To bound this sequence, we first obtain a crude bound as a result of (51):
Uy < ——. (81)

Next, it is directly seen from (79) and the definition of uy that

4 \SHA|T
up < ce\/(log T) (log Vit k=1 (82)

P(L=)* T
for some constant cg = 20/ > 0. In order to analyze the size of u, we divide into two cases.

o If u, <1 for some k > 1, then (82) tells us that

log T (1 \SlIA\T 9(loe T (1 |S\|.A\T
Uk+1§ce\/(og ) (log )(1+uk)§06 (log_T) (Lo )<1

(1 - )T (1 - )4T 7
20% log* T log ls”#
as long as T > (A=) . In other words, once ui_; drops below 1, then all subsequent

quantities will remain bounded above by 1, namely, max;.j>; u; < 1. As a result,

log T (1 \SHAlT 9(Toe T ( log [SIAIT
u; < 06\/( Og’YZ()l(Og) T ) (1+wuj—1) <cg ( ngy2(i (0g)4T ) for all j > k.

e Instead, suppose that u; > 1 for all 0 < j < k. Then it is seen from (82) that

(log4 T)(log |SHA|T) 2(log4 T)(log ‘S”AlT) .
ujp1 < CG\/ V(1= )T (I4+u;) <cg V(L — )T uj for all j < k.

This is equivalent to saying that

1
loguj41 < loga, + 3 log u, for all j < k,

logd T) (1 [SIAIT
where «a,, = 06\/ ( % 7221(_?)471 ° ) . Invoking a standard analysis strategy for this type of recursive

relations yields

1
logujy1 —2log oy, < 3 (logu; — 2log avy,) for all j < k,
and hence

1 Jj+1
logujy1 < 2logay, + (2) (log up — 2log o) for all j < k.

This is equivalent to saying that

1/27 ; )
ujsaz(iii) = (02)"7" (wo)¥ forall j<h+1.

Putting the above two cases together and using (81), we conclude that

o < \/20%(10g4 T)(log #IHE) (QC%(log“ T) (log 'SA'T)>1—1/2k 12"

V(L =)'T 2(1—y)iT Yo
< 2¢3(log" T) (log lSHA‘T) 2¢2(log* T') (log |SHA|T) 1-1/2% 1\ /2 .
- (A=) i V(1 —)'T 1—v) 7 =
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In particular, as long as k > ¢7loglog —— T for some constant ¢; > 0, one has (%7)1/2 < O(1) and

(2c§(log4T)(log |SHA|T) 112k - 2c§(log4T)(log \SHAlT) 2c§(1og4T)(log \SHAlT)
L=)'T - PA-)T T PU-T

As a result, the above bound simplifies to

(log4T)(log |SHA\T) (10g4T)(10g |S\|.A\T)
uk§08<\/ (1 = 47T + (17T

1
), chﬂoglogli

for some constant cg > 0.
Consequently, taking ¢ = T and choosing k = c7 loglog —— 1 for some appropriate constant c; > 0 (so as

to ensure 2¢

< T), we immediately see from the deﬁmtlon (80) of uy, that

(log4 T)(log |SHA|T) (log4 T)(log |SHA|T)
[Arle = Cg<\/ PU-T T PRI ) (5

with probability at least 1 — 2. To finish up, we note that the sample size assumption (48) is equivalent to

log T

(log* T) (log IS”A‘T) - min{e?, ¢}
V@=T T e

When ¢3 > 0 is sufficiently large, substituting this relation into (83) gives

||AT|00§2\/M+2min{5275}:{38+26 if e <

iVe+ie ife>1
<e

as claimed in Theorem 6.

B.5 Proof of Lemma 5

We first claim that 4
max Varp(V;) — Varp(V*) < —— max [|A;]le1. (84)
I =7 g<i<t

L<i<t

If this claim were valid (which we shall justify towards the end of this subsection), then it would lead to

L<i<t 1<i<t

h T4 us? *
ST AT P max Varp(V; Z’y HP WVarp (V) + 73 7)2 max || Aol (85)

It then boils down to bounding the first term on the right-hand side of (85). Let us first upper bound the
variance term involving V*. For any 0 < h < H, one can express (see (17))

Varp(V*) = P(V* o V*) — (PV*) o (PV¥)
O . 1

Pt (Q* o Q*) + P(V* o V*) — PTing1 (Q* o Q*) — ?(Q* — r) o (Q* — T)

= P (Q* o Q*) + P (Q* o Q*) — P (Q* o Q*) — %(Q* —7r)o (Q* — r)
< PT(Q o QM) + |[PT(Q 0 Q) - PTr+1(Q 0 Q)] 1 - %(Q* —7)o(Q ~r)

() A 1
< P Qo Q)+ max Aol — 5 (@~ ) (@ 1)
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1 Uy * 4 1 2 N
:?(f}QP lh+1(Q OQ) Q Q)+7’y max HAl”OO 7?ror+?Q or

(iii) 1 4

< YPT 1 (Q o0 Q") —Q o Q") + =Q* or + —— max ||A;|lo01, 86
< SR (@ Q) =@ o Q) + 5@ or o max A (56)
where (i) relies on the identity Q@* = r + yPV™*, and (iii) holds since 0 < v < 1. To justify (ii), we make the
following observation:

[P (@0 @) = P7 (@ @) = [P (QU0@) ~ PI (@2 Q7))

- )
< e (@ o) I (QT o Q)|
= H (Hmhﬂ Q" - o Q*) o (Hﬂ—ih+1 Q* + HW*Q*) Hoo
v) 2 ‘ .
S LU A Ll

1—7v oo

2 _ | |
< ﬁ <||H7T1h+1 Q* — TI™h+1 Qih+1 ||c>o + ||]__[7"1h+1 Qih+1 _ V*HOO)
(vi) 2 . )

< j(HQ _Qih+1Hoo+H‘/ih+1 -V Hoo)

(21) 4 max || A oo,
1—7 t<i<t
where (iv) arises from the fact [|[Pz||oo < ||P]l1]|2|lcc = [|Z]lco, (V) is valid because ||Q*||oo < 1/(1 — ), (vi)
follows from the fact that V;, , = II""»+1Q;, ., and (vi) holds since ||V}, ., — V*||oc < [|Qi),, — Q" /o-
As it turns out, the first term in (86) allows one to build a telescoping sum. Specifically, invoking (86)
allows one to bound

H-1 h H—-1 h

1 v
ST I[P varp(v*) < = 3 [ 7P (P (Q* 0 Q") — Q* 0 Q)
h=0 k=1 v h=0 k=1
4 o H-1
+ ——— max ||A;l|eo 5y PTir]l + — fyh PTix (Q* o)
1—7ggi<t” | Z H V= kl;[l
@ 1l H-1 h
S P S IPm) @ o)
TN =0 k= h=0 k=1
4 h
h T *
+m§?§t”Ai||ooZV 1+ 2;:07 kl_[lP (Qor)

IA

=" 4
7(HvP% —I) (Q oQ") + A= 2 A1

L<i<t
+727 HP””“ (Q7or)

k=1

i) /2 4 1
< (21Q*2% + —— m A —Q* 1
= (’7” [ (1—7)2 t<a§t Al + 2 1 ’)/” ”oo”r”oo)

(iii) 1 2 2
< 2( +4 max 1Al + 2)1
(L=7)2\7  t<i< v

1 4
<— | = 4 n Al 1. 87
- (1—7)2<72+ %s?ftu | ) 57

Here, (i) comes from the identity HZ:1 P71 = 1; (ii) holds because each row of HZ:1 P7ir has unit || - ||
norm for any h; (iii) arises from the bound ||Q*|l« < 1/(1 — ). This completes the proof, as long as the
claim (84) can be justified.
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Proof of the inequality (84). To validate this result, we make the observation that
Varp(V;) — Varp(V*) = [P(V; 0 V;) — (PV;) o (PV;)| — [P(V* o V*) — (PV*) o (PV™)]
=P(V,oV,=V*oV*)+ (PV*)o (PV*)— (PV;) o (PV))
=P((V; = V*)o(V;+ V") + (PV* - PV;)o (PV* + PV,)
< {||P (V= Vo (it V)| +[[(PV* — PV o (PV* + PV 1

A

| /\

||A [
Here, the last inequality follows since (by applying Lemma 4)

* * * 2
[P(Vi= Vo Vit V)l < IPIIV: = Vsl Vit VY lloe < 77— 1Al
* * * * 2
and [[(PV* = PV) o (PV* + PV < [PV = Ve [PV + V7 oo < 1= 1A

A useful extension of Lemma 5. Before concluding, we make note of the following extension that proves
useful for studying asynchronous Q-learning.

Lemma 6. Suppose that t > ﬁ. Then one has
h 4
h %k
A TT P™ max Varp(V;) < 7<1 +2 max ||Ai||oo>1 (88)
,;) kl;[l L <i<t 72(1—7)? L <i<t

for any set of policies {7y} obeying {7} C II. Here, we define
I := {7 = [r(s)]ses | 7(s) € I, Vs € S}, IL, == {m;(s) | i € [t/2,1)}. (89)

The key difference between Lemma 6 and Lemma 5 is that: the components of 7y corresponding to
different states can be chosen in a separate manner. The proof follows from an identical argument as the
above proof of Lemma 5, and is hence omitted.

C Analysis for TD learning (Theorem 1)

As it turns out, if |A| =1 (which reduces to the case of TD learning), we can further modify the previous
analysis in Section B to yield an 1mproved v) ———= scaling. This forms the main content of this section, which

leads to the proof of Theorem 1 for TD learnmg Akin to the Q-learning case, we proceed to establish a more
general version of Theorem 1 that covers the full e-range. This is formally stated below, which subsumes
Theorem 1 as a special case.

Theorem 7. Consider any v € (0,1) and any € € (O, ﬁ] Theorem 1 continues to hold if

(10 T)(log ‘SIT)
~ 7*(1 =9)° min{e, e}

(90)
for some sufficiently large universal constant cz > 0.

C.1 Preliminary facts

Before embarking on the analysis, we begin by presenting several useful preliminary facts. The first one is a

direct consequence of the claimed iteration complexity (90) when e < ﬁ:

c3(log® T') (log lslT) - c3(log® T) (log ‘SlT)
7*(1 = v)? min{e, e2} — 721 —7)?

T > ; (91)
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a simple fact that will be used multiple times. In addition, the update rule (7) of TD learning can be expressed
using vector /matrix notation as follows

Vi=QQ—-n)Vier +mu(r +vPViq)  forallt >1, (92)
where the matrix P; € {0, 1}/S1XIS obeys

1, if s’ = s¢(s)
Pi(s,s') = {0 else t

for any s,s’ € S. In the sequel, we collect a few other facts concerning the range of V; and learning rates.

Range of V;. We claim that: when the initialization Vj obeys 0 < V < ﬁl, the TD learning iterates
obey

1 1
o<V, <——1 and Vi = Voo < —— for all t > 0, (93)
1—7v 1—7v

provided that 0 <7, <1 for all ¢ > 0. The proof follows immediately by repeating the proof of Lemma 4 (see
Section B.1) with |A| =1, and is hence omitted for brevity.

Learning rates. We shall also collect several useful results concerning the learning rates {n; }. Let us abuse
the notation by defining the following crucial quantities:

[Ty 1—m—9), if k=0,
t .
7712) =N Mk Hfzkﬂ (1-m(l—7)), fO<k<t, (94)
U if k=t

Note that this definition (94) differs from the one (53) used for Q-learning, and will only be employed in this
section. Consider any iteration number ¢ satisfying

T

> . 95
~ cologT (95)
Clearly, the learning rate n; under Assumption (8a) obeys
1—7 1—7 log? T
(L= > 7 2 507 = : (96)
s
In what follows, we intend to bound 771(5) for two cases separately.
e For any i obeying 0 <14 < ¢/2, it is easily seen from (96) that
2\ t/2 log? T\ ze5ber
(t) (1 1 t/2<<1_10g T) <<1_ og )MJOM
) < (L=l =)' < 2oT 20T
- log T
log? T ook | 17 1
=<(1—- ) N < —,
{( 2¢,T =72 (97a)
where the last inequality holds as long as c¢;c; < 1/8 and (91) holds.
e When it comes to the case with ¢ > ¢/2, we can develop the following upper bound
1 2log® T
0 < < o8 (97b)

< )
co(1—7)i/log?T ~ (1—T

which relies on Assumption (8a).
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In addition, given that P*1 = 1 for any integer k > 0, it can be easily verified that

t t

Il G-ma-yP)1= J[ (1-m@-)1,

i=k+1 1=k+1
and as a result,

t

I (-mI-~P))

i=k+1

t

=[] @=m@-n). (98)

1 i=k+1

C.2 Proof of Theorem 7
Step 1: decomposing the error V; — V*.  Taking A; = V; — V*, via the basic relation (23), the TD
learning update rule can be written as
Ay =1 =n)Ar 1+ (PAy + (P = P)V; )
= (I —n(I = ~vP))A¢ 1 + 1y (P: — P)V; 1. (99)
Invoking the above relation recursively then leads to

t t t

A = H (I — (I — ’yP))Ao + Zﬂk H (I —ni(I — 'YP))’Y(P’C —P)Vi1. (100)
i=1 k=1 i=k+1

=&

Step 2: controlling the first term of (100). With regards to the first term of (100), we make the
observation that

IN

ITL =t —P) o] < [T -t -2, Il

{f[ (1—ni(1— v))} 180l o0

@) 1 < 1

< . 101
where the second line arises from (98), and the last inequality holds true due to (97a) as long as t > ﬁ.

Step 3: controlling the second term of (100). We then move on to the second term &; in (100), which
admits the following expression

t t

&=> z withz=n [[ (I-n(T—~vP))y(P:— P)Vi1. (102)
k=1 i=k+1

Here, the summands {z;} clearly satisfy
Elz | Vi-1, -+, Vo] = 0.

We then attempt to invoke the Freedman inequality (see Theorem 5) to control this term. Towards this end,
there are several quantities that need to be calculated.

e First of all, we observe that

t

B = max ||zk||cc < max an H (I— m-(I—'yP))fy(P;C — P)Vk_lu

1<k<t T1<k<t oo
i=k+1
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M [T T—mr *7P))H1||(Pk ~P)WVii|

< max
tshst i=k+1
t
- 12113%(:& {Wk 'El (1 —m(1—- 7))} ||(Pk - P)Vk—lnoo
41og® T
S -
a1 (|1 Pells + 1PJ) [ Vil < T (103)

where the third line again makes use of the relation (98) and the last line follows the facts || Pyl =
IPll1 =1, [|[Vi-1lleo <1/(1 —7), as well as the properties (97).

e The next step is to control certain variance terms. Towards this, we first make note of a userful fact.
For any given non-negative vector u = [Uihgigm > 0 and any vector v, it is easily seen that

S|
Var(uT(Pk - P)v) = iusar((Pk - P)i7.v) < {mlax |ul|} [ug, -+ ,us)]Varp (v)

< ullyu"Varp (v), (104)
where we remind the reader of the notation Varp(v) in (17). Additionally, for any vector a = [a,],
let us employ the notation Var(a | Vi—1, - ,V(')) to represent a vector whose j-th entry is given by
Var(aj | Vie—1, - ,Vo). Armed with this notation, we obtain

t

Var(zi, | Vie1,- - Vo) < »yank [1 (I-mn-~P) Hl {nk I1 (-n-+P) } Varp (Vi_1)
i=k+1 i=k+1

=~° {nk I @=m@a- 7))} {nk I (1—m-~P) } Varp (Vi_1)

i=kt1 i=k 1
t
< 771@77;(:) H (I —ni(I —P))Varp (Vi_1), (105)
=kt 1

where the first inequality is a consequence of (104) and the definition of zj (cf. (102)), the second line
(t)

arises from (98), and the last relation results from the definition of 7,’. This in turn allows us to

compute
¢

= ZVar (z | Vi1, - ann(t) H (I —ni(I —~yP))Varp (Vi,_1)
k=1 i=k+1
t/2 t t t

¢

< T @=m@ =P IViealZr+ > menl® T[] (T—m(I = P)Varp (Vi)
=1 i=k+1 k=t/2+1 i=k+1
VRO 0§ t

t t

<> ) et ) 2w [T T —aP)Vare (Vi)

k=1 ’ - k—t/2+1 i=k+1

1 2log T
§2(1_ )2T31+ ( Z Mk H (I —n:i(I - VP))> max Varp(Vj)

k=t/2+1  i=k+1 k:t/2<k<t
1 2log® T .
< I-~P Vare (V; 06
> 2(1 _7)2T3 (1 _ ’Y) ( Y ) k:tr/%af)l(e<t arp( k:)7 ( 0 )

where the penultimate inequality results from (97); to see why the last inequality holds, observe that

oo [ (I-m(I—~P))

k=t/2+1  i=k+1
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=(I—yP)' =T -4P)"" [[ (I-nT-+P))<T-yP)",
i=t/2+1

where we have used the fact that all entries of (I —~P)~! and I — n;(I — v P) are non-negative.

e In addition, we also derive the following trivial upper bound based on (106):

1 2log® T
w,| <
Wil < s T T
3 3
< 1 14+ 2log” T 1< 3log” T
20 =723 (1=y)'T" ~ (1=y)'T

(=P, Narp (V)] 1

= 0’1, (107)

)
where we have invoked the fact that ||(I —~P)~!(|; = 1/(1—~). Therefore, by setting K = [2log, ﬁ],
one arrives at
o? 3log® T
oK = ({1 — 2T

IN

(108)

Equipped with the preceding bounds, let us apply the Freedman inequality in Theorem 5 and invoke the
union bound over all entries of & to show that

o2 8|S|T log 1= 4 8S|T log 1=
&) < \/S(Wt + 271) log fﬁf + (gBlog fv)l

3log® T S|T |S|T
< /1 2 1) log —— Blog —=)1
_\/G(WH_(l—v)?T )og 5 +(3 0g —5 )

32(log® T) (log I£I7) B 9 12(1og® T') (log 517)
= \/ (1-9T ((I —7P) k: tr/ge%);dVarp (Vi) + 71) + 1

with probability at least 1 — §/T. Here, the second line follows since

8|S|T log ——
log S| (Sgl_7 < 2log |56\T

as long as ‘S% > 8log ﬁ, whereas the last line holds by using (103), (106) and (108). Further, we make
the observation that

(I —4P) Warp(V*) = (I —yP)~ (P(V* oV*) — (PV*)o (PV*))

* * 1 * *

= (I —+P) 1<P(V \%4 )—?(v —r)o(V —r))

-1 * * 1 * * 2 *
< (I —-~P) PV oV)—WV oV +¥7’OV

-1 * * 1 * * 2 *
<(I—-~P) PV OV)—;V oV +?TOV

1 2

= ;(I*VP)’1 (YP=I) (V7o V") + ﬁ(vaP)’l (roV?)
<3(If P)yl(rov*) < 2
R V(=)



where the second line makes use of the basic relation V* = r + yPV™*. As a consequence, we conclude

4
I-~P)"! vV <(@-P)'(v ) Ayl
( "P) kitr/g(?zd arP(Vk)_( 7P) arP(V)_Fl—Vk:t%aSDqu” klloo
2
e\ t+2 A 00)1. 109
’7(1—7)2( T2 1A (109)

Here, the first inequality arises from (84), while the second inequality holds due to the facts that ||(I —
'YP)71||1 =1/(1—7).

Step 4: putting everything together. Consequently, substituting the bounds in Steps 2-3 into (100)
yields

(1og3 T) ( log w) T
Al < 30 9 (1 Al for all ¢ > . 110
I8l < 30y SR (1 e Adl)  poral 12 D (110)
Repeating the same argument as in Section B.4, we see that
3 |S|T 3 |S|T
1A < oo (log” T) (log 55-) N (log” T) (log 5-~) (111)
< V(1 —)3T 721 — )3T

holds with probability at least 1 — §, where ¢g > 0 is some universal constant. As a result, one has

1 1 1
AT |00 < 3 (x/min{e,ﬁ} + min{e,eQ}) =3 (e+e)1{e <1} + 3 (e+eH)1{e > 1} <e,

as long as the sample size satisfies the following

(log® T) (log %) - min{e,e?}
V(L=APT T

for some constant ¢z > max{1, 2¢cg}. This requirement is equivalent to condition (90) as claimed.

D Lower bound: sub-optimality of Q-learning (Theorem 3)

In this section, we establish the lower bound claimed in Theorem 3 by analyzing Q-learning for the MDP
instance constructed in Section 4.3. Without loss of generality, we assume

1
logT < —— 112
ogT < 7 (112)

throughout the proof; otherwise the lower bound in Theorem 3 is worse than the minimax lower bound

W in Azar et al. (2013).

Throughout, we shall use P; to represent the sample transitions such that for any triple (s, a,s’),

1

0, otherwise,

, if si(s,a) = ¢,

Py(s'|s,a) = { (113)

where s:(s,a) stands for the sample collected in the t-th iteration (see (5)). Recognizing that state 2 is
associated with a singleton action space, we shall often write

Pt(S/ | 2) = Pt(S/ | 2, 1)

for notational simplicity.
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D.1 Key quantities related to learning rates

We find it convenient to define the following quantities (by abuse of notation)

t
n,(f) = N H (1—mn:;(1—~p)) for any 1 < k < ¢, (114a)
i=k+1
t
t
ny) =[] (1= m( =), (114b)
1=1
n = (114c)

It is helpful to establish several basic properties about these quantities. As can be easily verified,
t t t t
+ =) Y 0l =T[a-m) +m [Ja-a) +m[JQ—5) + -+ Fer (1= 5) + 7 =1, (115)
k=1 i=1 i=2 i=3

where we denote 7; := 1;(1 — vp) to simplify notation. Similarly, for any given integer 0 < 7 < ¢ one has

t

[T G=m=p)+0=30) > n’=1 (116)

i=7+1 k=1+1

D.2 Preliminary calculations

Before moving forward, we record several basic relations as a result of the Q-learning update rule.

D.2.1 Basic update rules and expansion

Given that Qp = Vo = 0 and that state 0 is absorbing, the update rule (4) gives

Vi(0) = Qu0.1) = (1= m(1 = 1)Qe-s(0.) = T (1= (1 =) @0(0.1) =0 (117)

for all ¢ > 1. Regarding state 2, the update rule (4) taken together with (117) leads to

Vi(2) = Qu(2,1) = (1= 0¢) Qe-1(2,1) + ne{r(2,1) + v P1(2]2)Vi-1(2) +vP(0]2)Vi-1(0) }
= (1= 1) Vim1(2) + {1 +vP:(2|2)Vi1(2) }, (118)

and for state 3,

Vi(3) = Qi(3,1) = (1 = m) Qe—1(3,1) + e {r(3,1) +4Vi—1(3) }

= (1= (1 =) Vi (3) + - (119)

Similarly, one also has
Qi(1,1) = (1 =) Qi1 (1, 1) + ne {1 +vP(1]1,1)Vi1 (1)}, (120a)
Q:(1,2) = (1 = ) Q—1(1,2) + ne {1 +vP(1]1,2) Vi1 (1) }. (120b)

In what follows, we shall first determine a crude range for certain quantities relates to the learning rates 7y,
and then combine this with the above relations to establish the desired result.

Next, we record some elementary decomposition of V;(2). For any iteration ¢ and 7 < ¢, one can continue
the derivation in (118) to obtain

Vi(2) = (L= ne(1 = vp)) Vi1 (2) + me {1+ v(Pe(2]2) — p) Vie1(2) }
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t

IT C=-nO=-m)Va@+ > m [ C—m@—p){1+v(P:(2]2) —p)Vi-1(2)}

1=7+1 k=1+1 i=k+1
t t t
= I C=na-mw)v-@+ > 0’ + > 0?7(Pe(2]2) - p) Vi1 (2)
=741 k=1+1 k=1+1
: =TTy (L= m(1 = p))
= [I G-m-m)v:(2)+ H”“l(_ + Z 0y (Pu(2]2) = p) Vi1 (2)
=741 p k=7+1
1 i 1 t .
=T IT G=m@—p) L — - VT(2)] + 3 Py (Pu212) - p) Vi1 (2), (121)
P I P et

where the penultimate line arises from (116). In particular, in the special case where 7 = 0 (so that
V:(2) = V(2) = 0), this simplifies to

Vy(2) = 12" +Zn(“ Pi(2]2) — p) Vi1 (2), (122)

1—7p Pt

which relies on the definition of nét) in (114). With similar derivation, (119) leads to
1 T
@) =g [T m=) | =v@) - = [T - m =), (123)
i=1

D.2.2 Mean and variance of V*(2) — Vp(2)

We start by computing the mean V*(2) — E[V;(2)]. From the construction (33), it is easily seen that
E[P:(2]|2)] = p, which together with the identity (122) leads to

) 1- 77(()T) *( n(()T)

E\Vr(2)| = ——— and V*2)—-E|Vr(2)| = . 124
[Vr(2)] = T2 )—~E[Vr(@)] = {2 (124)
Similarly, applying the above argument to (121) and rearranging terms, we immediately arrive at

T

V') -EWVr2)] = J[ (1=n1-) T j,yp
i=T+1

- E[V-(2)] (125)

for any integer 0 < 7 < T.

Next, we develop a lower bound on the variance Var(VT(2)). Towards this end, consider first a martingale
sequence {Zj bo<k<r adapted to a filtration Fy C Fy C - -+ C Fp, namely, E[Z;11 | Fix] = 0 and E[Zy, | Fi] =
Zy for all 0 < k < T. In addition, consider any 0 < 7 < T, and let Wy be a random variable such that
E[Woy | Fr] = Wy. Then the law of total variance together with basic martingale properties tells us that

T T T
Var <W0+ > Zk> =E |Var <W0+ > Zka_1> + Var (IE Wo+ > Zk|fT_1D

k=741 [— et
T-1
=E[Var (Zr | Fr-1)] + Var <W0+ Z Zk) _ .

k=1+1
T T
= > E[Var(Z| Fi-1)] +Var(Wo) > > E[Var(Z, | Fi_1)]. (126)
k=141 k=1+1

Consequently, for any 0 < 7 < T — 1, it follows from the decomposition (121) (with 7 replaced by 7+ 1) that

Var(VT(Q)) >E

> Var(nf1(Pe(212) - p) Vi1 (2)| vk_1(2>)]

k=1+2
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T

= 3 ")’ p(1 - PE[(Veer(2))7]

k=142

(1-7)y—-1) 1 12
= 9 ’ 4(1 _ ,7)2 k;2 (nk )

_ h-l o o 127
R Z ("), (127)

k=142

where the first identity relies on the fact that P;(2|2) is a Bernoulli random variable with mean p, and the

inequality comes from the definition of 7 (see (133)) and the choice of p (see (34)). As an implication, the

sum of squares of n,iT) plays a crucial role in determining the variance of Vr(2).

D.3 Lower bounds for three cases

D.3.1 Case 1: small learning rates (¢, > logT or 0 <7 < ﬁ)

In this case, we focus on lower bounding V*(2) — E[V(2)]. In view of this identity (124), this boils down to
controlling 77( ),

Suppose that ¢, > logT (for rescaled linear learning rates) or 0 <7 < ﬁ (for constant learning rates).
A little algebra then gives

L i <h im= oty
m(1—p) < § O PET TN =2 el (128)
a-—T — 3T > 2> e =1

for any t > 1, provided that T' > 15. Consequently, one can derive

T
log 5" Zlog (1=m(l=p)) > =153 ni(1 —7p) > -2, (129)

=1 i=1

where the first inequality holds due to the elementary fact log(1 — ) > —1.5x for all 0 < z < 0.5, and the
last inequality follows from the following bound (which makes use of (128))

3TZ 1—% it =mn.

Combining the above result with the properties (124) and (129) then yields

1 . _ 1
an (1—=1p) {410gT Zf 17 <1 i = I4cp (1=t

V) —E[Ve()] = s €2 3 1
()7 [T()]il—’}/p_l_’yp74€2(1_’y)' (30)
This taken together with (36) gives
Iwww—wwﬁzwwwm%@Wzﬁgﬁwi (131)

D.3.2 Case 2: large learning rates (c77 <l—vyorn> W)

By virtue of (125), the mean gap V*(2) —E[V7(2)] depends on two factors: (i) the choice of the learning rates,
and (ii) the gap between

lfw and E[VT (2)]7 where 7 is an integer obeying 0 < 7 < T'. To control the factor

(ii), we need to choose T properly. Let us start by considering the simple scenario with E[(VT(Q))Q} < ﬁ,
for which we have

V*(2) -E[Vr(2)] > % E[(Vr(2)"] > ﬁ. (132)
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Here, we have used (35) and the elementary fact E[X] < \/E[X?]. Consequently, it remains to look at the
scenario obeying IE[(VT(2))2] > ﬁ, towards which we propose to set 7 as follows

1
T = min{() <7 <T-1 ‘ E[(Vi(2)7] > PTgE forall 7/ +1<t< T} . (133)
-
Clearly, 7 is well-defined in this scenario and obeys (in view of both (133) and the initialization V5 = 0)
2 1
E[(V,(2 —_. 134
[()°] < g (130
Our analysis for this scenario is divided into three subcases based on the size of the learning rates.
Case 2.1. Consider the case where
d 1
[T O=m@=p) =3 (135)
i=74+1
Invoke (125) to deduce that
T
V@) -EVe@)] = [[ (1 -n0-w)|i—— -EV()]
i=T+1 P
T 3 2
> 1—n(1=~p))|—— —VE[(V(2
RIRG Nz =~ VEL=@)]
T 1 1
> L—mni(1—=~p = ;
I Gont=w) g2 57—

where the second line makes use of the definition (34) and the elementary fact E[X] < 1/E[X?], and the last
line relies on the inequalities (134) and (135).

Case 2.2. We now move on to the case where
T

o< I O =m(=p) <

i=74+1

: (136)

DN =

We intend to demonstrate that the variance of Vp(2) — and hence the typical size of its fluctuation — is too
large. In view of the observation (127), it boils down to lower bounding ZZ:T 42 (n,(CT))Q
as follows.

, which we accomplish

e Consider constant learning rates n; = 7, and suppose that 7 obeys W <n<1l< 1_1,”7. It is

readily seen that n,iT) = 77(1 —n(l— ’yp))Tf]C for any k£ > 1. We claim that it suffices to focus on the
scenario where

F<T-2. (137)
In fact, if 7 > T — 1, then the definition (133) of 7 necessarily requires that
1
2(1—-7)
In view of (124) (with T replaced by T'— 1), a little algebra shows that this is equivalent to (1 —n(1 —
’yp))T_l > 1/3, and hence (1 —n(1 — *yp))T > 1/9. In turn, this combined with (124) leads to

E[Vr_1(2)] < VE[(Vr_1(2))?] <

T T
V*(2) - E[Vr(2)] = - Z(i;pw)) -4 _47(71(1__7)7]7)) = 12(11— )’ (138)
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which already suffices for our purpose.

Next, assuming that (137) holds, one can derive

T T 2 2(T—7—1)
(T2 _ 201 _ 1 apy2@—0) _ 1 [1= (1 =n(1 —7p)) ]
k;Q (i) k;Qn (1=n(1-~p) T
> n*/2 > B
1—(1=n(1—~p)) 16(1 — )

(139)

where the first inequality holds since (from the assumptions (136) and 7 < T — 2)

N |~

T
2(T—7—-1 T—1
0< (1—n(l—p)™ "<t -w)" = I t-mt-w) <
i=7+1
and the last inequality follows since

Substituting (139) into (127), we obtain

Ay =1 N~ 12 2 31
VerlVe @) = g, 2 O )2 =) )

__n !
©96(1 — )2 T 96(1 — )T

(140)

provided that v > 3/4 (so that 4y — 1 > 2). Here, the last inequality is valid since either 1 > W
e We then move on to linearly rescaled learning rates with n, =
Towards this, we first make the observation that

1
mforsome@gcn<lf’y.

T
oy _me@ o) o 150y 150y (Goe)-vm
i) M 1= (Gr = )me 1=cq(L=7)me L—cy(L = )me
<1—(1=7)ne <1—(1—)nr, (141)
with the proviso that ¢, <1 —~ < 1/3 (as long as v > 2/3). By defining 7/ =T — m, one can
deduce that
2
)2 - (T))2 1 - (T)
Z (nk ) = Z (nk ) ZT—max{7’—|—1 7'} Z Mk
k=142 k=max{7+2,7'+1} ’ k=max{7+2,7'+1}
. 2
T
> (1= ~)r SooaP . (142)

k=max{T+2,7'+1}

where the penultimate inequality comes from the Cauchy-Schwarz inequality. In addition, recognizing
that ng) <(1-(1- 'y)nT)krklng) for any ko > ki (see (141)), one has

. (1) ¢ (
T T
Z e " = Z M )7
k=141 k=1'+1

’
T

T
> ISR B C U 77 R N

k=max{27'—T+1,1} k=71'+1
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27’ —T

> D < (1= (=) Z s

k=max{37'—2T+1,1} k=141

Summing these inequalities up and rearranging terms, we reach

T T
Z 77(T)> Zk 177( : > Zk 177( :

j—— 1+(1—(1- V)TIT)Ti +(1-01- V)UT)Q(T%/) +...

T
S DU AR Sy o
k=1

which relies on the fact (1 — (1 — ’y)nT)T_T =(1-1/(T - Tl))T_T < e~ ! (using the definition of 7).
Consequently, it is easily seen that

T T
Z —mln{ Z nk 7 Z n,iT)} (1—e" Z n(T)

k:max{7+2,7’+1} k=142 k=1"+1 k: T+2

(1)(1_e )ll_ H (1—771(1—717))] 1_1

=742 P

(ii) 1 1—e 1 Gi)) 1 —¢e! 3
> [1- > > :
2(1=nrp1i(L=p)) | 1=9p = 4(1—1p) =~ 32(1—~)

Here, (i) and (ii) follow from (116) and (136), respectively, while (iii) holds since

1-9) _1
3 -3

Nrpi(l—7yp) <1 —7p=
as long as y > 3/4. Substitution into (142) yields
> 02 gy 1)
k=r+2 024(1 )

Substituting the above bound into (127), we obtain

T
4,7 _ 1 (T) 2 2 977T
V. 2)) > ———— = '
ar(Vr(2)) > 36(1—7) k;1 (m )" = 36(1 —v) 1024(1 — )

nr 1
— > 144
2048(1 — )2 = 4096(1 — 7)3T" (144)

provided that v > 3/4 (so that 4y — 1 > 2). Here, the last inequality is valid since nr = m >
1

1
1+(1—)2T z 2(1—7)2T

1
as long as T' > =z

Putting all this together. With the above bounds in place, it is readily seen that either the bias is too
large (see (138)) or the variance is too large (see (140) and (144)). These bounds taken collectively with (36)

provided T >

E[(V*(2) — Vr(2)?] = (V*(2) — E[Vi(2)]) + Var (Vi (2))

1 1 1 1
> mi - 145
= { 144(1 — )2’ 96(1 — 7)3T 4096(1 — 7)4T} 09601y )
1
(1-v)?"
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D.3.3 Case 3: medium learning rates (1 — v < ¢, <logT or ﬁ <n< W)

Throughout this case, we assume that

() < 1 146
(T)

In fact, if ny” ' > 1/75, then the scenario becomes much easier to cope with. To see this, applying the previous
result (130) and recalling the choice (34) of p immediately yield

(T)

* 770 1
2)—E 2)| > 14
V@) -EVe@)] 2 2 > (147)
which together with (36) and the assumption T' > ﬁ yields
2 2 1 1
E|(V*(2) — Vr(2 > (V*(2)-E 2 > > . 14
[(V ( ) VT( )) ] — (V ( ) [VT( )]) — 10000(1 _7)2 — 10000(1 —’y)4T ( 8)

We now turn our attention to the dynamics w.r.t. state 1 and its associated value function V;(1) under
the condition (146).

Two auxiliary sequences. Towards this, we first eliminate the effect of initialization on Q¢(1,a) by
introducing the following auxiliary sequence

Qi(a) = (1 = 1)Qi-1(a) + {1+ yPi(1]1,a)V,_1 }, (149)
with

~

‘//\thl = mélX@t(a) and Qola) = Q*(1,a) =

L—p’

where we recall the value of Q*(1,a) from Lemma 3. In other words, {Q:(a)} is essentially a Q-learning
sequence when initialized at the ground truth. Despite the difference in initialization, we claim that the
discrepancy between Q;(a) and Q+(1,a) can be well controlled in the following sense:

@@= Q) - = [J0-m-2). a1l (150)

which shall be justified in Section D.3.4. As we shall discuss momentarily, the gap ﬁ H§=1 (1 —ni(1— ’y))
is sufficiently small for this case.
Further, in order to control Q:(a), we find it convenient to introduce another auxiliary sequence as follows

Q= (=@ +n{1 ARG} ad  Go=V'()= =, (5]

which can be interpreted as a Q-learning sequence when there is only a single action (so that there is no max
operator involved). In view of the basic fact that V; = max, Q¢(a) > Q+(1), we can easily verify that

Q1) > (1 =) Qe1(1) + ne{1+~vP(1]1, 1)@:571(1)} > Qs (152)

allowing one to lower bound IA/t by controlling @Q,.

A useful lower bound on the auxiliary sequence (149). In what follows, let us establish a useful lower
bound on the sequence (149) introduced above. Then we claim that there exists some 7 < T (see (166) and
(168)) such that

~ 1 1
> — 5 > — > T
}P’{Vt_ 4(1_7)} >3, ort>r (153)

The auxiliary sequence constructed in (151) plays a crucial role in establishing this claim.

40



Proof of the claim (153). We intend to employ the sequence @, (cf. (151)) to help control Vi. Tt is first
observed that the sequence @, admits the following decomposition (akin to the derivation in (122))

Q = (1 - nt(l - ’Yp))at—l + nt{l + 'Y(Pt(l | 1, 1) _p)@t_1}

t

=T —n=p)Qo+> m [[ (1= —p) {1 ++(Pe(1]1,1) = p)Q)_, }
i=1

k=1 i=k+1

:773”1 +Z77(” +Zn(“ Py(1]1,1) = p) @y,

= +Z77 (Pe(111,1) = p) @)1, (154)

=:zZL

where the last line results from (115). In order to lower bound @,, it boils down to controlling Y, 2.
Note that the sequence {z;} defined above is a martingale satisfying

E[z | Peo1(1]1,1),..., P(1]1,1)] =0

d < ®, P
o 2] 1131?277 1—v

)

where the last inequality follows from the basic property 0 < Q,_; < ﬁ (akin to Lemma 4) and the fact that
|Pe(1]1,1) — p| < max{p,1 — p} = p since p = (4y — 1)/(37) and v > 3/4. We intend to invoke Freedman’s
inequality to control (154). Armed with these properties and the fact that P,(1]1,1) is a Bernoulli random
variable with mean p, we obtain

> Var(z | Poa(LL, 1), AL D) = 7 () p(1 = p) (5Qs)”

k=1 k=1
0 : ) 1 maxi <<t 7},(:)
< : : < skt
= 20E e ;nk 31—q) = 41— )2

Here, the penultimate inequality relies on the fact 0 < Q,_; < ﬁ (akin to Lemma 4) and the choice of p
(see definition (34)), whereas the last inequality results from the following condition (derived through (115))

t n® 1 1 3
:E: o )1‘7 < 1— ::4 1— .
Pt P o 4l=7)

Applying Freedman’s inequality (see (47)) then yields

P log 2 b <5, (155)

o

\/4 max1<k<tn,(€) log 2 4dmaxi<k<y T];i)
(1—7)? 55 3(1—1)

t
Ezk,
k=1

As an implication of the preceding result, a key ingredient towards bounding 22:1 2, lies in controlling
the quantity max;<p<; 77,(:). To do so, we claim for the moment that there exists some 7 < T such that
O
max 7, < — for t > T, (156)

1<k<t ~ 50’

whose proof is postponed to Section D.3.4. In light of this claim, setting § = 1/2 in the expression (155)

yields
P —
— 2(1=1)
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with probably at least 1/2. Combining this with the decomposition (154) and the property (152), we arrive at
1 11
- 2(1-7) 4(1-7)

with probability at least 1/2, where the last identity relies on the choice of p (see the definition (34)). This
establishes the advertised claim (153). O

V> Q1) > Q, >

Main proof. With the property (153) in place, we are positioned to prove our main result. Towards this,
we find it convenient to define

Aa) == Qia) — Q*(1,a), a=1,2; (157a)
At max = max A(a). (157Db)

The goal is thus to control Ap max; in fact, we intend to show that Az max is in expectation excessively large,
resulting in an “over-estimation” issue that hinders convergence. Towards this, it follows from the iterative
update rule (149) that

+ne(1+ P11, a)Vio1 — Q*(1,a))

+ney(Pe(1]1 La)Vmq —pV*(1 )

+ 0y (p(Vier = V(1)) + (Pi(1]1,0) — p)Vi1)

+77t7<pAt 1max+ (Pt(l‘ 1 a) )‘/}t—l)-

Here, the second line comes from the Bellman equation Q*(1,a) = 1 + ypV*(1), whereas the last line holds

since Vi_y — V*(1) = max, (@t,l(a) — V*(1)) = max, Ay—1(a) (as a consequence of the relation (35)).
Applying the above relation recursively leads to

t

Zﬁk IT (- Wi)“Y(pAk—l,max + (Pe(1]1,0) —p)‘A/k—1), (158)

k=1 i=k-+1
where we have used the initialization Ag(a) = 0. Letting

)= e [T (L= )y (Pe(1]1,a) = p) Vi, (159a)

k=1 i=k+1
§r,max = max &y (a), (159b)

one can express the above relation as follows
At,max = Z Nk H (1 - ni)'ypAkfl,max + ft,max-
k=1 i=k-+1

Next, we claim that E[§; max| satisfies the following property

gt ma>< forallt >7 (160)

\/ (1—=7)?TlogT

for some universal constant ¢ > 0, where

A 6
T = max {7-/ 1__[ (1—17i(1—'yp)) < 7}, (161)
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whose existence is ensured under the condition (146). Given the validity of this claim (which we shall justify
in Section D.3.4), we immediately arrive at

t t
C
At max > — ’YPE[AIC 1, max for all t > 7. (162)
kg :1;[ M(l—’y)leogT

In order to study the above recursion, it is helpful to look at the following sequence

(163)

c
xy = (1 —n)ri—1 + Ti_1 +
t ( 77t) t—1 77t<’7p t—1 (17)2T10gT)

with 2z = 0, where we recall the definition of 7 in (161). In comparison to the iterative relation (162) which
starts from E[Ag max] = 0 (and hence E[A; max] > 0), we let the sequence z; start from zz = 0, where 7 is
defined in (161). It is straightforward to verify that

E[AT,max:I 2 xT, (164)
recognizing that
¢ ¢ T T .
Te =) Mk L—mi)yprr—1+ D 1k 1—mn;) :
e Ao N (=

A little algebra reveals that the sequence (163) obeys

T T T
< 3 1
A=) Tlog T k:?”k i:|k+| 1 (1=m(1—p)) = \/ﬁlogT 1= J:L (1 =m(1—=p))

3c

T
3c
= 1- I—mni(1— 2 ;
4\/(1 —y)4Tlog T g( mi(L = 7)) 28/(1 —v)*TlogT

where the second equality arises from (116), and the last inequality holds as long as H;TF:? (1=n;(1—~p)) <6/7
(see (176)). This taken together with (164) leads to

E[Arma] > 21 > i .
28y/(1 — )T log T
Combining the above bound with (150) leads to
1 T
BVe) = V*@)] 2 E[Arm = [T = n1 =)

T
3c 1
> - L—ni(1—7)).
T 28y/(1—~)iTlog T 1—7};[1( (=)

Taking this together with (123), we arrive at

max {EUVT(S) - V*(?’)”’ E“VT(U B V*(l)‘] }

T T

1 3c

> — [ @ =m@-m), - (L—m(1—~

> max 1_7@‘:1( 73 ( 7)) 8 /(1 =) TlogT 1- 11 ni( )}
T T

11 1 3¢ 1

>—.— [l -na _ T m-

T2 1—7};[1( ni(1=7)) 28/(1 —~)*Tlog T 1—71.:1( il 7))]
C

©56y/(1 — ) Tlog T
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This combined with (36) establishes the following desired lower bound:

2

) 3¢ 9c?
maxE||Vp(s) = V*(s)|"| > - '
(Ve -Vl 2 (wmw> 30%(1 = )T log" T

D.3.4 Proofs of auxiliary results

Proof of the inequality (150). We shall establish this claim by induction. To begin with, the inequality
(150) holds trivially for the base case with ¢ = 0. Now, let us assume that the claim holds up to the (¢t — 1)-th
iteration, and we would like to justify it for the ¢-th iteration. As an immediate consequence of the claim
(150) for the (¢t — 1)-th iteration and the definitions of V;_; and V;_1, we have

t—1
Viei(1) = max Qi1 (1, a) > mgxétfl(a) - % (1=mi(1 =)

i=1

R =
=V — EH (1 —ni(1 *'Y))~
i=1

By virtue of the respective update rules of Q:(1,a) and @t(a), we can express their difference as follows:

Qi(1,0) — Qi(a) = (1 — 1) (Qi-1(1,a) — Qr—1(a)) + ey Pe(1] 1,a) (Vi1 (1) — Viy)

>~ =) [T 0= m =) —no R Lo [T 0 -n =)

Y
L

[
P
B3
S~—"

—
—
[

[
=
~—

[

\
2
S~—
SN—

\
P
=
=2

—
—~
—

\
P~
S
—

[

\
=2
S—"
~—

where the first inequality invokes the induction hypothesis for the (¢ — 1)-th iteration. This establishes (150)
for the t-th iteration, and hence the proof is complete via an induction argument.

Proof of the claim (156). When taking the constant learning rates n, = n < ﬁ < % (under the

condition T' > %), one has

1
max n;(f)ént:n<*

1<k<t 50’

thus allowing us to take 7 =1 for this case.

It then suffices to look at rescaled linear learning rates (i.e., n; = . As already calculated in

1
14c,(1—7)t )
the expression (141), the ratio of two consecutive quantities obeys

771(21 _ 1-3

g 1=y =)m

(165)

In what follows, we divide into two cases, depending on whether this sequence is decreasing or increasing.

o The case with 4/3 < ¢,, < logT. In this scenario, the ratio in (165) is larger than 1, and hence the
sequence {r],(:)} decreases with k. Let us define

7 = min {T' ’ H (1—m(1—9p)) < 510}7 (166)

i=1
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which clearly satisfies 7 < T (in view of (146)). For all ¢ > 7, one has

- 1
1 — (1 — —
12k s U ni(1=p)) < g5
At the same time, we claim that one must have
L 2
[T =n—p) < 3 (167)

Otherwise, recalling n(T) H;il (1 —mn;(1 —~p)), we have

T) ! T o
) = {H (l—m(l—w))} {H(l—m’(l—vp))} SR

=1 =T

which contradicts our assumption that n(T) > 1/75 (cf. (146)).

e The case with 1 —y < ¢, < 4/3. In this case, the sequence 77](:) increases with k. If we set

49 50
ro= [ ] < <T, 168
=) | < A= (16%)
then for all ¢ > 7 we have
&) _ () 1 1
maxn =1 =n < < = —.
203 R
Under the condition T > (1 7)2 > - (1150 3 (sothat T —7+1> Cn(lfﬂw) > (1_13)04/3), one can show that
e e S 1 -\ _ 3
1—n(1— <(17 ) <<1 ) < Z 1
E( (1 =) < 100 = 100 =7 (169)

e Putting these two cases together (with 7 specified in (166) and (168)), we obtain

1
ax ) < — (170)

1<k<t — 50

for all ¢ > 7, thus establishing the desired inequality (156).

Proof of the inequality (160). For every ¢, recalling the definition (159), it is convenient to write

El¢tmax] = E |:€t(1) + £4(2) 4‘2\&(1) - ft(2)|] _E [&(1);&(2)]
- %]E Some [T (0= m)v(Pe1,1) = Pu(1]1,2)) Vi) ||
k=1  i=k+1

where we have used the fact that E[¢;(a)] = 0. To control the right-hand side of the above equation, let us
define

t
Ct = sz, Zk = Mk H 17771 Pk(]‘|]‘ ]‘) Pk(1|1’2))Vk71
k=1 i=k+1

for any k > 1, where {2} also forms a martingale sequence since

B[ {P,01L1. 70112}, ] =0
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As a consequence of Freedman’s inequality, we claim that (; satisfies

RN Etjn [T -w) + et ar)
3 -y LAY 3(1 =)
To verify this relation, we first notice that
: 1 Nt
|2k| < 112222 Mk i_l;—[%1 (L—n;)- T—o < -5 (172)

provided that maxy n szkﬂ (1 — ni) < ;. To verify the condition maxy 1 szkﬂ (1 - m) < 1, one can
check — similar to (141) — that

-1 Ty (1 —m) —1_ (1 —cy(1 =)k <1
Mk HE:k+1 (1 - 771') L—ey(T=y)m —

which indicates that 7 HE:kH (1 — ;) is an increasing sequence as long as ¢, < logT < ﬁ (see (112)). In
addition to the boundedness condition (172), we can further calculate

(173)

)

t
3 WVar(zi | Peca(1]1,1), Peca(1]1,2), ..., Po(1]1,1), Py(1] 1,2))
k=1

kg |J IZ‘EI 1 - 77l)‘| . 2p(1 R ) P)/Vk 1 Z ]% |J IZ‘EI m)‘| . 3(12_ '7)’

where the last inequality comes from the facts that Vk 1 < —7 and the choice p = . These bounds
taken together with Freedman’s inequality (see (47)) validate (171).
2
By virtue of (171), setting 6 = (1;7) E[|¢:|?] yields that with probability at least 1 — 4,

2

8log 2 i ) ‘ 2 A log2 (1 )?
B= | —% 1—mn; _ hf=—~— . 174
Gl < M k_lnk[i_lll( m)| + T E[G7.  (174)

When T > =2 )2, one can ensure that

(61 mar] = Elll1(al < B)) > S=E[GP1(¢l < B)]

(il)

® 1 1
> —{Ela - _—WP{|ct| > B}}
(B - =5} = 75EIGEL (175)

Here, (i) holds since

|G| < lek<[2nk I1 1771')1-1_17§1_17

k=1 i=k+1

as a consequence of (172) and (58); (ii) holds by the choice of §. It is thus sufficient to lower bound E[|¢;|?].
Towards this, let us define

T
T = max {7" H (1=ni(1—~p)) < 675} (176)
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which clearly satisfies 7 <7 < T (in view of (167) and (169)). Then, for all ¢ > 7 one has (which shall be
proved towards the end of this subsection)

inﬁ[ f[ (1—m) r ;in [ H 1—772-)}2. (177)
k=1 i=k+1 k=1 i=k+1

We now proceed to lower bound E[|(;|?] for ¢t > 7. We first observe that for any t > 7,

E[lGP] =) E Var(nk IT C=n)v(Pe(1]1,1) = P(1] 1v2))‘7’€—1|‘7’“—1)
k=1 i=k+1
> % ZE lVar(n;€ H (1 —mi)y(Pe(1]1,1) — Py(1] 172))‘7’f—1 Vi1 > 4(11—fy)>] ’

k=1 1=k+1

where the first line relies on (126), and the last step makes use of the fact (153). To further control the
right-hand side of the above inequality, we take 7/ := max {t - L 1} and show that

Mt/2
@) t t
E[|¢:[%] > %Zni[ H L—n ] 72-21)(1—17)@
k=1 1=
1 t t (11) 1 t 2

Zm —~ ”’%Lzlll(l_m)} = 200(1 — ) 2177/3[ 111 1_’71')}
i ] 1 0w gt
—400 1—7) & L AL BT = 56001 =)

Here, (i) makes use of the constraint Vo1 > ﬁ, while (ii) makes use of (177), and (iii) are valid if the
following property holds (which shall be proved towards the end of this subsection)

t t

> ni{ IT - m)}2 > im (179)

k=T’ i=k+1

We are now well-equipped to control E[{; max] using the property (175). Recall the expression of B in
(174), we know that bounding E[|(;|?]/B boils down to controlling
and

E[lG|] E[l¢:”]
T—y log § log %

Nt 2.
t t
— D k=1 771% [Hi:kJrl (1 - 771‘)}

(180)

e For the first term in (180), recalling that § = %EHQP], we can demonstrate that

1 1—7)2 1— 19200(1 + (1 — y)Tlog T
log & = (1-1) E[|G[2] < —lo (1 —)m < log 9200(1 + (1 —v)T'logT)
19200 1—~

5 —log

SlogT,  (181)

where the first inequality makes use of the bound (178), and the second inequality arises from the fact
e > W (given the range of the learning rates in this case). Combining this with (178), we
can guarantee that

Bl o 1

171‘7 log % ~ logT

e Moving to the second term in (180), one can ensure that

i t

EUQP] 1 ¢ 2
log 2 <t t 2 R (1=7)logT Zn’%{ﬂ (l_m)}
173 Zk:l 771% [Hi:kJrl (1 - 771‘)} k=1 i=k+1

—
=
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Q T

(1—=7)logT m logT

Here, (i) follows from (178) and (181) since

E[|¢:[?] Zn { H 1—m)]2 and loggglogT;

(ii) arises from (179); and (iii) relies on the fact 7, 2> (given the range of the learning rates

~ (1- w)TlogT
in this case).

Substituting the above relations into (175) and using the expression of B in (174), we reach at

]E[gt,max}

= 4B Ellar] 2 V- 2TlogT
for some constant ¢ > 0. Thus, this validates the inequality (160).

Proof of the claim (177). By the definition of 7 in (176), we have HZT:? (1=n;(1—~p)) <6/7. An important
observation is that

Zmlﬂ (1—m)191—H(1—m 2%2%2 lH 1—771-)1. (182)
i=k+1 i=T k=1 i=k+1

Here, the relations (i) and (iii) arise from (59), and the inequality (ii) follows since

. d . : (1 — _ i, (1= m(1—p) 3/4 _ 7
H(l m)éi_ﬂT(l )z)ég(l mi(1 ’yp))_H;i;_i_l(lfm(lf'yp))g6/7§87 (183)

where 7 is defined in (166) and (168) for linearly rescaled learning rates and 7 = 1 for constant learning rates,
and we have also made use of (146), (167) and (169) in the penultimate inequality in (183).

With (182) in place, we can continue to prove the claim (177). Recognizing that nk[HZ:kH (1—m)] is
increasing in k (see (173)), we can obtain

7713[ ﬁ (1771)}2%21,357{77:@[ f[ (1771)}}721%[_1&[ (1—m)]

gD

k=1 i=k+1 i=k+1 k=1 i=k+1
t
SWTL-HH 1—mn ]an[llg[ﬂ 1*771')}
<7, I « )] an[ I o — )], (184)
i=7+1 k=t i=k+1

where the last inequality comes from (182). With the preceding inequality in place, the claim (177) then
follows by observing that

g:ni[ ﬁ (1_77i)}2>7_1<n]igt{77k[ f[ (1—771-)}}23771@[ ﬁ (1—771-)}

i=k+1 i=k+1 k=1  i=k+1
t t t
ZWT[ 11 (1—771-)} an[ II (1—771-)}7
i=T+1 k=7  i=k+1
where we make use of the monotonicity of [ H::k 41 (1 — 772)] again. O
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Proof of the claim (179). Note that for 7/ := max {t - Tl/z’ 1}, one has

t

o L1
7719[ II (1—771-)} > (L= mya) " =0 (1 = 10)0) M”Zgn for all 7/ < k < t,
i=k+1

as long as the following condition holds (recalling the definition of 7 in (176))
Ney2 < 2n¢ < 2nz < 1/10. (185)

In addition, similar to (116), we can derive

t t t t
| (1—m)=1—H(1—m)Zl‘max{(l—m)”"‘”“vH(l—m>}
k=7'  i=k+1 i=1' i1

T 1
>1—max{e 1/211_[1 1—771)} 3’

where we once again use the condition (185), and the last inequality comes from the derivation in (183).
Putting these two bounds together yields

t t 9 t t t
2 .
an[ 11 (1—711-)} Zk:}_pé%<t{"7k[ 11 (1—771-)}} an[ 11 (1—771-)}
; i=k+1 k=r" i=k+1
S 1 1 S 1
=3y =
To finish up, it remains to justify (185). This condition is obvious for constant learning rates. As for
rescaled learning rates, one can see that
1 19

i = > for all i > 7,
TR =)y T 200,(1—q)i =T

where T = ]'Cn (11"7”]. This allows one to obtain
T T T T ey (1—)T
1910g = 19log "~ 1
1 [ 1— (1 - }<— 1- T <- 0 <,
8 Z:H?( mi(l=)| < ; ) ; 150,7 =" 15, = 15¢, — 5

provided that T > (1
together with (176) implies that 7 > 7 and hence 7z < 7 =

)2 for some sufficiently large constant c; > 0and 1 -7 < ¢, <logT. Taking this

D.4 Proof of Lemma 3

Given that state 0 is an absorbing state with zero immediate reward, it is easily seen that
V™0)=0  forallw = V*(0) =Q*(0,1) =

Moreover, by construction, taking action 1 and taking action 2 in state 1 result in the same behavior (in
terms of both the reward function and the associated transition probability), and as a consequence,

Q"(1,1) =Q"(1,2) = V*(1). (186)
From Bellman’s equation, we can thus deduce that

Q*(1,1) = r(1,1) +yP(O[1, )V*(0) + yP(1|1, YV (1),
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which in conjunction with (186) and a little algebra leads to

N B T(Ll) +’yP(0| 1,1)V*(0) - 1 _ 3
e (T E N I e e

Here, the second identity follows since V*(0) = 0, and the third identity makes use of (34). The calculation
for V*(2) and @*(2,1) follows from an identical argument and is hence omitted.
Turning to state 3, by Bellman’s equation, we have

V*(3) = Q*(3,1) = r(3,1) + vP(3|3,1)V*(3) = 1 +V*(3),

which leads to V*(3) = ﬁ

E Analysis for asynchronous Q-learning (Theorem 4)

E.1 Notation and preliminary facts

Vector and matrix notation. We shall adopt the vector notation Q; € RISIIAl Vv, e RISI, ¢ € RISIAl i
the same way as in Section 4.1. The sample transition matrix P, € RISIMIXIS| in the asynchronous case is
defined such that

1 'f / — _ _ .
H((S,G),S/) — {07 lels(:aa7s) (St 1, Q¢ 175t)a (187)

It is also handy to introduce the diagonal matrix A, € RISIAIXISIAI guch that

At((s,a), (S,CL)) _ {777 if (S,Cl) = (St—hat—l); (188)

0, otherwise.

Armed with the above notation, the asynchronous Q-learning update rule (38) can be conveniently expressed
as follows:

Q=T -A)Qi1+Ai(r +7PViy). (189)
Range of V; and @);. Similar to the synchronous counterpart, we have the following elementary properties.
Lemma 7. Suppose that 0 < n < 1 for allt > 0. Assume that 0 < Qg < ﬁl. Then for anyt > 0, one has

1 1
0<@:<——1 and o<V, < —1. (190)
1—7v 1—7v

Proof. The proof is the same as that of Lemma 4, and is hence omitted for brevity. O

E.2 Main steps for proving Theorem 4

We are now in a position to outline the main steps for the proof of Theorem 4.

Step 1: deriving basic recursions. According to the update rule (189), we can derive the following
elementary decomposition

t—1— Q") +YA(P Vi — PV¥)
A1+ YA (P — P)Vioy + YA P (Vi — V), (191)
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where the penultimate identity follows from the Bellman optimality equation @* = r + PV*. Combining
(191) with the inequalities (24) and using the definition (18) of 7; result in

At S (I — At)At,1 + ’}/At<Pt - P)‘/t,1 + ’}/AtPTrtflAtfl, (1923,)
Ay > (I—A)A1 +7A(P, — P)Vioy +yAP™ Ay, (192b)

Apply the above two relations recursively to obtain

t t

<VZH (I-A)A(P—P)Via+7> ] (I- A)APHA,NLHI Aj) A, (193a)

zlj i+1 =1 j=i+1 j=1
t ot t
At>yz H (I-A)A(P—P)Viei+9> . [ T-A)APT A+ ][ (T—A;)Ac.  (193b)
i=1 j=i+1 i=1j=i+1 j=1
By defining the following diagonal matrices
[Tj— (I - A)), if i =0,
A = AT (T - Ay), if0<i<t, (194)
At, lfl = t,
and setting
cs(1—7)
- r 1
B log T (195)
for some constant ¢z > 0, we can rearrange terms in the upper bound (193a) to reach
(1-B8)t
A< APA +y 3 AP [(P - P)Vi + PR AL
i=1
=Gt
t t
+y Y AP -P)Viity Y. AYPTIAL (196)
i=(1—B)t+1 i=(1—B)t+1

=&

In the subsequent steps, we shall first develop bounds on the sizes of the terms ¢; and &; in (196) separately,
and then combine these bounds with (196) recursively in order to derive the advertised upper bound on A;.

Step 2: bounding the terms ¢; and &;. The terms {; and &; defined in (196) can be bounded with high
probability by the following lemmas.

Lemma 8. With probability at least 1 — §, we have

[Celloe < (197)

(1-=yT

for all t obeying o logT <t <T. Here, ¢y >0 is some constant obeying c4 < cic3/4, where the constants ¢

and c3 appear in (42a) and (195), respectively.

Proof. See Section E.3.1. O
Lemma 9. Suppose that 0 < n < % With probability at least 1 — 8, one has
16(log3 T)(log |SHA‘T) 6(10g3 T)(log |SHA|T)
< Varp(V;) + 1) 1 198
|€t| N \/ (1 - )T,Umm (1—%1)?;(i<t arP( ) N * (1 - ) T fimin ( )
for all t obeying ;o7 <t <T for some constant ¢y > 0.
Proof. See Sectlon E.3.2. O
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Step 3: controlling A;. Consider any t obeying o logT <t < T and any k obeying 2t/3 < k < t. Under

the sample size condition (42b), Lemmas 8-9 together with a little algebra lead to

3 |SH.A|T
|Ck|+€k§\/32(log T)(log )( max Varp(vi)+1>s\/a,

(1 = 9)T ttmin (1-B)k<i<k

where we define

3 S|IA|T
Pt = 32(10?1 T) ();)inilrjl | ) (grrézi%i(tVarp(V}) + 1). (199)
Combining this inequality with (196) allows us to obtain
k k—1
Av<veit Y. AYPTAL = o+ Y AP APTA; forall 2t/3<k <t (200)
i=(1—B)k+1 i=(1-B)k

Similar to the quantity agt) defined in (65), let us define

t—1 -1
t t t
D= ( 3 A Al (200
Jj=Q1-p)t
which, according to (58) and the definition (188), clearly satisfies
t—1
D >A" >0  and > DY=1I (202)
i=(1—B)t
Set i = t for notational convenience. With this set of notation and the property (202) in mind, we can derive
the following bound

t—1

A< Y (DY Ve + AL v P A)

i1=(1-p)t

t—1 i1—1
< 8 [ovaeator S (o)
ilf(l—ﬁ)t i2:(1—B)i1

i1

S S CTID W SO

i1=(1-p58)t i1=(1-08)t io=(1—PB)i1

211 2

+ Z > H AP A,

’Ll (1 ﬂ)tlz (1 ) k=1

7 1 7 1
5 D<t>{1+ § mep<“>}r+ TS [T Pr)AL. (20

1= (1 ) ’l‘2:(17ﬁ) 1= (1 )t’LQ (1 ,B)Zlk‘ 1

Here, the first relation makes use of the second property in (202), the second relation further expands A;, in
the same way as in the first line of (203), whereas the third inequality relies on the first property in (202).
Next, we intend to invoke the above relation multiple times to reach a simpler relation. Set

_ logT
=1

(204)

Similar to the way we derive (73), we can apply the relation (203) recursively and use the basic relation
Ay < =1 for any k to show that

H-1 h H
A< 2 { m( 2.1 P””“Dfi’fl)@”HH (Al P”Lk)IA1H|} (205)
h=1 k=1

(i1, i) €Ly k=1
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where Z; has been defined in (71). To further simplify (205), we need to control the two terms on the
right-hand side of (205) separately.

e We shall begin with the first term on the right-hand side of (205). Towards this end, let us define a
collection of policies {7;} recursively and backward as follows:

=R arg max e ™\ /x, iftk=H—1, (206)
T = _
* arg maxyery IT™ (I+Zh k+1'yh H?Zl P’TJ)\/@, ifk=H-2,---,1,
or alternatively (in view of the definition (15) of P™),
R arg max e P™\/@t, ifk=H—1; (20
T = - ] - .
T g maxeen P71+ SIS A T, PP ) yr, k= H =2, 1.
Here, II is a policy set satisfying
= {r = [r(s)]ses | 7(s) €T, Vs €8}, T,i= {mils) | i € [t/2,0)}; (208)

in words, for any policy 7 belonging to II, each 7(s) coincides with one of the policy iterates 7;(s) during
the latest St iterations, although we do not require all {m(s)} across different states to be associated
with the same time stamp ¢. With this collection of policies in place, we can deduce that

H-1 h
DI (I +> [T 6P DZ’;’J)\/@

11, 5t H h=1 k=1
H-2 h H-2 ]
= % S0 (re S IL 60 + IT (om0l (P Dl ) ) v
1 7'LH—1 TH h=1 k=1 k=1
H-2 h H—2
- Y DY (I+ S II P=D) + IT (2P D)) (v > Dl ))\/a
21, JH—1 h=1 k=1 k=1 iy
0 H-2 h H-2
LS D1+ X IT6Ppi) + IT GPreni) P ) o
i1, i1 h=1 k=1 k=1
(if) . H-2 h H-2 R
> o (re X IT6Pmeni) + IT 6Peni P ) v
11 ,Z‘H71 h=1 k=1 k=1
H-3 h ] H-3 ) -
= % (14 XTI 6P + IT GPran)spmos (X Dl )1 4P ) v
i1, iH 2 h=1 k=1 k=1 TH—1
(iif) -3 h ) H-3 R
D o1+ S IT 6P + T GPreDi japrs (1+4P7) ) Vo
11 iH_Q h=1 k=1 k=1
(iv) H-3 h _ H-3 ) R R
< > DY (” [] (PD) + (vP“kDii’i’l)vP””2(I+vP’”’1)>¢%
U1,y H—2 h=1 k=1 k=1

where we abbreviate E(il,»-- in)ET, 85 Z“ iy as long as it is clear from the context. Here, (i) and (iii)

arise from the second property in (202), while (ii) and (iv) are due to the construction (207). Continuing
the derivation of the above inequality recursively, we arrive at

H-1 h

H-1
> o (H > 11 PW”“DfZi)I))@S (I+ v HP@@
h=1 k=1

(ARREINT ¢ =1 k=1

>
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e We now turn attention to the second term on the right-hand side of (205). It is seen that

Z H’Y z:ii-ll Pmk)|AlH| > Z H lk 1)P7T1k)
i1,

sy k=1 11 cig k=1
H H—1 ) ]
—= X [ ol ee (ol )
T T k=1 iEr
H H—-1 ) )
- X o r (o
T i kel in
H H-1 ‘
D S | R At
T i kel
log T
N AP b i)
1—v 1—»v
<t 4
T (1-yT

where the first line follows from the first property in (202), the third line is due to the fact P™1 =1 for
any 7, and the fourth line arises from the second property in (202).

Substituting the above two bounds into (205) yields

< <I+ Z v HP%’“)\/@+<1_1W)T1. (209)
h=1

=0

Step 4: putting all pieces together. Repeating our analysis for the term B; in Section B.2 (i.e., Step 5
of Section B.2 with Lemma 5 replaced by Lemma 6), we arrive at

320( log® T) ( log ‘SHAlT)
V(L =)*T

B < (1+2 max A)1
Y

with probability at least 1 — 4. Substitution into (209) then yields

32()( log® T) (log |SHA|T)

1
1 A, Oo) 14— 1
T e (L e [Adlee) 1+
(log3 T)(log ‘SHAlT)
< 30 (1+ max [|A; Oo) 1 210
72(1_ )4Tﬂm|n %§i<t” || ( )

holds simultaneously for all ¢t > ﬁ, provided that the sample size condition (42b) is satisfied. Similarly,

we can also establish the following lower bound on A; (which we omit the details for the sake of brevity)

(log4 T) (log ISHA‘T)

A > 30
72(1 - )4T,Umm

(1+ max HAi||OO) 1
L<i<t

with probability at least 1 — §. To summarize, it is seen that with probability exceeding 1 — 24,

(log4 T)(log |SHA|T)
72 (L = )*T pimin

| Al <30 (14 max |Ai«)- (211)
L<i<t
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This resembles the relation (31) derived for the synchronous case, except that 7" in the denominator is replaced
with pminT'. As a result, we can readily repeat the argument in Appendix B.4 to reach

o 4 o |S|[A|T o 4 o |S|[A|T
Jari <o [UosDlor BE0) | Gor' Ty (1 22%)) 12

which in turn establishes the claimed result in Theorem 4.

E.3 Proofs of technical lemmas
E.3.1 Proof of Lemma 8

In view of the definition of ¢; in (196) and the fact that A(()t) is a diagonal matrix, we can deduce that

< IAD Al t AW P" A _illoe + |1PiVicilloo + |1 PViei| s
[Gelloo < 1AG [I[[ Aol + m(axﬁ)tll i nggggﬁﬁ)t(ll 1o + || 1llee + ] 1o0)

< AP 1A A® {P”H A, P, P }
<A N Aol +¢_max  [AC]_max (1P Arille + (P + 1P Vi o

(i) (t) (t)
= ||A A + m A m A, 2||Vi_
|| 0 ”” O”oo tlgig(al)iﬁ)t” i || 1§i§(al)iﬁ)t(” i 1H<>o + || i 1”00)

(g)i 1 —&—it 3
-T2 11—~ T2 1—7
<4
T (=T

Here, (i) holds true since ||P™i-t||; = || Pi||l1 = || P|l1 = 1. To verify (ii), we first define
ti(s,a) == the time stamp when the trajectory visits (s, a) for the k-th time (213)

and

K. (s,a) ‘{k > 1| ty(s, (214)

namely, the total number of times — before the t-th iteration — that the sample trajectory visits (s, a).
Then Li et al. (2021b, Lemma 8) tells us that with probability at least 1 — §,

1
Ky, (s,a) — K, (s,a) > §(t1 — t2) fhmins (215)

holds uniformly for all (s,a) € S x A and 0 < to <¢; < T obeying

886tmix | SIAIT

t] —ta >
Hmin 5

This in turn implies that: if St > % log % and i < (1 — )¢, then one has

¢
1
AD | = I—A — 1 — n)EKe(5:0) < (1 _ 57) 3 thmin < = 216
IAG” | jl;[l( ) o max (1=m) <(1—-n)> 72 (216a)
t
_K; 1 . 1
HAl('t)H = ‘ A, H (I—-A)) ’ < I(rgla(?)((l — p)Kelsa)=Ki(s:a) < (1 _ ) zBthmin < 5 (216b)

j=i+1

with probability at least 1 — §, provided that nStumi, > 4logT. In other words, (216) holds with probability
at least 1 — ¢, as long as

4logT 886%mix |S|| AT 4T 886t mix |S||A|T
t > max , log = max , log logT ;.
NBitmin Bhimin d ciczlog T c3(1 — ) fimin d

This taken together with the sample size assumption (42b) concludes the proof of Lemma 8.
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E.3.2 Proof of Lemma 9

Fix any state-action pair (s,a) € S x A, and let us look at the (s,a)-th entry of &, i.e., &(s,a). For
notational simplicity, let A;(s, a) denote the (s, a)-th diagonal entry of the diagonal matrix A;, and P,(s,a)
(resp. P(s,a)) the (s,a)-th row of P, (resp. P).

Using the definition of & in (196) and the above notation, we can derive

&(s,a) =~ Z H (1= A (s,a))Ai(s,a)(Pi(s,a) — P(s,a)) V;_1. (217)

i=(1—B)t+1 j=i+1
Equipped with the definitions of t4(s,a) (cf. (213)) and K(s,a) (cf. (214)), we can further rewrite (217) as

Ki(s,a)

Gls,a)=v Y, (=09 k(P 1(s,0) - P(s,0)) V. (218)
k=K1_pyt+1

In what follows, we shall suppress the notation and write ¢t = t;(s,a) and K; = K(s,a) to streamline
notation.

The main step thus boils down to controlling (218). Towards this, we claim that: with probability at
least 1 — 6,

K
Z (1 - U)K_kU(PtkH(Sv a) - P(Sa a))‘/tk
k=Kp
16(log® T') (log SIAT) 6(log® T) (log 1SIAIT)
= =T (5, Veretea (V0 1) + 2 (219)

holds simultaneously for all (s,a) € S x Aand all 1 < K3 < K < T, provided that 0 < n < % If

this claim were true, then taking Kz = K(1_g)+1 and K = K; and substituting the bound (219) into the
expression (218) would lead to

max
(1 - ) Tﬂmln

16(log® T) (log |SHA|T 6(log® T (log ‘SHAlT
|£t§\/ | (1 )()TM : (1—ﬂ)t<i<tvarP(Vi)+1)+ ( 5 )1’ (220)

thus concluding the proof of this lemma. To finish up, it is sufficient to justify the claim (219), which forms
the content of the remainder of this proof.

Proof of the claim (219). Let us use the notation in (53) to express n,(cK) = (1—n)K~*n. For any fixed integer
K > 0, the following vectors
{Pi+1(s,a) [1<k < K}

are identically and independently distributed; see Li et al. (2021b, Section B.1). We can then express the

term
K

Xk = Z (1 - U)K_kn(Ptk-H(Sa a) - P(37 a))‘/;fka
k=Kgz

as follows:

X = Z Zk with z, = 77;(€K) (P 41(s,a) — P(s,a)) Vi,
k=K

where the z;’s satisfy
E['zk‘tka 7t17‘/tk7”' 7%1] =
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We intend to invoke the Freedman inequality to control Xy for any K obeying K < T. Similar to the
synchronous counterpart, we can see that

kK 2n
B = 123}( Izlloo < 0 (|| Prosalls + [1P]1) | Vi lloo < ﬁ < T
K

W = Z Var(zk |ty b1, Vi, o ,th) =2 Z (ﬂ;(fK))2Var((Ptk+1 — PV, | ‘/;k)

k:K/3 k:K/j

X KN 2 5 &
< X () Varpq (Vi) < ([ max i ))< > )>Varp<s,a)(Vtk)
k}:K[-; k:K[:f

< 77Kﬁﬂ<1%X VarP(s a) (‘/tk) < 77 Hé%}ét VarP(s,a) (‘/;);

where we have made use of (58). In addition, we make note of a trivial upper bound on W as follows

2. n
0" = W = WtKTIgDét VarP(s,a)(Vi) > W;.
B

With the preceding bounds in place, applying the Freedman inequality in Theorem 5 and taking L = log, ﬁ
imply that

o2 4|S|A|T? log, —li 8n 4|S||A|T? 1og, —li
Xrl <14/8 W, — 51 il 1 il
| K|_\/max{ ,2L}0g 3 +3(1*7) og 5

2 1 2 1
4|S||A|T? logy 1 L log 4|S||AIT" logy 1
] 3(1—7) ]

< Snmax{ max Varp(sta)(Vi),l}log

tr g <i<tx

16( log® T) ( log |'S”A‘T) 6( log® T) ( log |SHA‘T)

< Varp(s.a) (V) + 1)

B (1 - )T,umm tK;I%%étK arP(” )( ) N * (1 - ) Tﬂ'mln
with probability at least 1 — W, provided that n < U_bf)% We can thus conclude the proof by taking
the union bound over all (s,a) e S x Aandall 1 < Kg <K <T. O
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