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Robust Spectral Compressed Sensing
via Structured Matrix Completion

Yuxin Chen, Student Member, IEEE, and Yuejie Chi, Member, IEEE

Abstract— This paper explores the problem of spectral com-
pressed sensing, which aims to recover a spectrally sparse signal
from a small random subset of its n time domain samples.
The signal of interest is assumed to be a superposition of
r multidimensional complex sinusoids, while the underlying
frequencies can assume any continuous values in the normalized
frequency domain. Conventional compressed sensing paradigms
suffer from the basis mismatch issue when imposing a discrete
dictionary on the Fourier representation. To address this issue,
we develop a novel algorithm, called enhanced matrix completion
(EMaC), based on structured matrix completion that does not
require prior knowledge of the model order. The algorithm starts
by arranging the data into a low-rank enhanced form exhibiting
multifold Hankel structure, and then attempts recovery via
nuclear norm minimization. Under mild incoherence conditions,
EMaC allows perfect recovery as soon as the number of samples
exceeds the order of r log4 n, and is stable against bounded
noise. Even if a constant portion of samples are corrupted with
arbitrary magnitude, EMaC still allows exact recovery, provided
that the sample complexity exceeds the order of r2 log3 n.
Along the way, our results demonstrate the power of convex
relaxation in completing a low-rank multifold Hankel or Toeplitz
matrix from minimal observed entries. The performance of our
algorithm and its applicability to super resolution are further
validated by numerical experiments.

Index Terms— Spectral compressed sensing, matrix
completion, Hankel matrices, Toeplitz matrices, basis mismatch,
off-grid compressed sensing, incoherence, super-resolution.

I. INTRODUCTION

A. Motivation and Contributions

A large class of practical applications features
high-dimensional signals that can be modeled or approximated
by a superposition of spikes in the spectral (resp. time) domain,
and involves estimation of the signal from its time (resp.
frequency) domain samples. Examples include acceleration
of medical imaging [1], target localization in radar and
sonar systems [2], inverse scattering in seismic imaging [3],
fluorescence microscopy [4], channel estimation in wireless
communications [5], analog-to-digital conversion [6], etc.
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The data acquisition devices, however, are often limited by
hardware and physical constraints, precluding sampling with
the desired resolution. It is thus of paramount interest to
reduce sensing complexity while retaining recovery accuracy.

In this paper, we investigate the spectral compressed sensing
problem, which aims to recover a spectrally sparse signal from
a small number of randomly observed time domain samples.
The signal of interest x (t) with ambient dimension n is
assumed to be a weighted sum of multi-dimensional complex
sinusoids at r distinct frequencies { f i ∈ [0, 1]K : 1 ≤ i ≤ r},
where the underlying frequencies can assume any continuous
values on the unit interval.

Spectral compressed sensing is closely related to the prob-
lem of harmonic retrieval, which seeks to extract the under-
lying frequencies of a signal from a collection of its time
domain samples. Conventional methods for harmonic retrieval
include Prony’s method [7], ESPRIT [8], the matrix pencil
method [9], the Tufts and Kumaresan approach [10], the finite
rate of innovation approach [11], [12], etc. These methods
routinely exploit the shift invariance of the harmonic structure,
namely, a consecutive segment of time domain samples lies
in the same subspace irrespective of the starting point of the
segment. However, one weakness of these techniques if that
they require prior knowledge of the model order, that is, the
number of underlying frequency spikes of the signal or at least
an estimate of it. Besides, these techniques heavily rely on the
knowledge of the noise spectra, and are often sensitive against
noise and outliers [13].

Another line of work is concerned with Compressed Sensing
(CS) [14], [15] over a discrete domain, which suggests that
it is possible to recover a signal even when the number of
samples is far below its ambient dimension, provided that the
signal enjoys a sparse representation in the transform domain.
In particular, tractable algorithms based on convex surrogates
become popular due to their computational efficiency and
robustness against noise and outliers [16], [17]. Furthermore,
they do not require prior information on the model order.
Nevertheless, the success of CS relies on sparse representation
or approximation of the signal of interest in a finite discrete
dictionary, while the true parameters in many applications
are actually specified in a continuous dictionary. The basis
mismatch between the true frequencies and the discretized
grid [18] results in loss of sparsity due to spectral leakage
along the Dirichlet kernel, and hence degeneration in the
performance of conventional CS paradigms.

In this paper, we develop an algorithm, called Enhanced
Matrix Completion (EMaC), that simultaneously exploits the
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shift invariance property of harmonic structures and the
spectral sparsity of signals. Inspired by the conventional
matrix pencil form [19], EMaC starts by arranging the data
samples into an enhanced matrix exhibiting K -fold Hankel
structures, whose rank is bounded above by the spectral
sparsity r . This way we convert the spectral sparsity into the
low-rank structure without imposing any pre-determined grid.
EMaC then invokes a nuclear norm minimization program
to complete the enhanced matrix from partially observed
samples. When a small constant proportion of the observed
samples are corrupted with arbitrary magnitudes, EMaC solves
a weighted nuclear norm minimization and �1 norm minimiza-
tion to recover the signal as well as the sparse corruption
component.

The performance of EMaC depends on an incoherence
condition that depends only on the frequency locations regard-
less of the amplitudes of their respective coefficients. The
incoherence measure is characterized by the reciprocal of
the smallest singular value of some Gram matrix, which is
defined by sampling the Dirichlet kernel at the wrap-around
differences of all frequency pairs. The signal of interest is
said to obey the incoherence condition if the Gram matrix is
well conditioned, which arises over a broad class of spectrally
sparse signals including but not restricted to signals with
well-separated frequencies. We demonstrate that, under this
incoherence condition, EMaC enables exact recovery from
O(r log4 n) random samples,1 and is stable against bounded
noise. Moreover, EMaC admits perfect signal recovery from
O(r2 log3 n) random samples even when a constant propor-
tion of the samples are corrupted with arbitrary magnitudes.
Finally, numerical experiments validate our theoretical find-
ings, and demonstrate the applicability of EMaC in super
resolution.

Along the way, we provide theoretical guarantees for
low-rank matrix completion of Hankel matrices and Toeplitz
matrices, which is of great importance in control, natural
language processing, and computer vision. To the best of our
knowledge, our results provide the first theoretical guarantees
for Hankel matrix completion that are close to the information
theoretic limit.

B. Connection and Comparison to Prior Work

The K -fold Hankel structure, which plays a central role
in the EMaC algorithm, roots from the traditional spec-
tral estimation technique named Matrix Enhancement Matrix
Pencil (MEMP) [19] for multi-dimensional harmonic retrieval.
The conventional MEMP algorithm assumes fully observed
equi-spaced time domain samples for estimation, and
require prior knowledge on the model order. Cadzow’s
denoising method [20] also exploits the low-rank struc-
ture of the matrix pencil form for denoising line spec-
trum, but the method is non-convex and lacks performance
guarantees.

1The standard notation f (n) = O (g(n)) means that there exists a constant
c > 0 such that f (n) ≤ cg(n); f (n) = �(g(n)) indicates that there are
numerical constants c1, c2 > 0 such that c1g(n) ≤ f (n) ≤ c2g(n).

When the frequencies of the signal indeed fall on a grid, CS
algorithms based on �1 minimization [14], [15] assert that it is
possible to recover the spectrally sparse signal from O(r log n)
random time domain samples. These algorithms admit faith-
ful recovery even when the samples are contaminated by
bounded noise [16], [21] or arbitrary sparse outliers [17].
When the inevitable basis mismatch issue [18] is present,
several remedies of CS algorithms have been proposed to
mitigate the effect [22], [23] under random linear projection
measurements, although theoretical guarantees are in general
lacking.

More recently, Candès and Fernandez-Granda [24]
proposed a total-variation norm minimization algorithm to
super-resolve a sparse signal from frequency samples at the
low end of the spectrum. This algorithm allows accurate
super-resolution when the point sources are sufficiently
separated, and is stable against noise [25]. Inspired by
this approach, Tang et. al. [26] then developed an atomic
norm minimization algorithm for line spectral estimation
from O(r log r log n) random time domain samples, which
enables exact recovery when the frequencies are separated
by at least 4/n with random amplitude phases. Similar
performance guarantees are later established in [27] for
multi-dimensional frequencies. However, these results are
established under a random signal model, i.e. the complex
signs of the frequency spikes are assumed to be i.i.d.
drawn from a uniform distribution. The robustness of the
method against noise and outliers is not established either.
In contrast, our approach yields deterministic conditions for
multi-dimensional frequency models that guarantee perfect
recovery with noiseless samples and are provably robust
against noise and sparse corruptions. We will provide detailed
comparison with the approach of Tang et. al. after we
formally present our results. Numerical comparison will also
be provided in Section V-C for the line spectrum model.

Our algorithm is inspired by recent advances of Matrix
Completion (MC) [28], [29], which aims at recovering a low-
rank matrix from partial entries. It has been shown [30]–[32]
that exact recovery is possible via nuclear norm minimization,
as soon as the number of observed entries exceeds the order
of the information theoretic limit. This line of algorithms is
also robust against noise and outliers [33], [34], and allows
exact recovery even in the presence of a constant portion of
adversarially corrupted entries [35]–[37], which have found
numerous applications in collaborative filtering [38], medical
imaging [39], [40], etc. Nevertheless, the theoretical guaran-
tees of these algorithms do not apply to the more structured
observation models associated with the proposed multi-fold
Hankel structure. Consequently, direct application of existing
MC results delivers pessimistic sample complexity, which far
exceeds the degrees of freedom underlying the signal.

Preliminary results of this work have been presented in [41],
where an additional strong incoherence condition was intro-
duced that bore a similar role as the traditional strong incoher-
ence parameter in MC [30] but lacked physical interpretations.
This paper removes this condition and further improves the
sample complexity.



6578 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 10, OCTOBER 2014

C. Organization

The rest of the paper is organized as follows. The signal and
sampling models are described in Section II. By restricting
our attention to two-dimensional (2-D) frequency models,
we present the enhanced matrix form and the associated
structured matrix completion algorithms. The extension to
multi-dimensional frequency models is discussed in
Section III-C. The main theoretical guarantees are summarized
in Section III, based on the incoherence condition introduced
in Section III-A. We then discuss the extension to low-
rank Hankel and Toeplitz matrix completion in Section IV.
Section V presents the numerical validation of our algorithms.
The proofs of Theorems 1 and 3 are based on duality analysis
followed by a golfing scheme, which are supplied in
Section VI and Section VII, respectively. Section VIII
concludes the paper with a short summary of our findings as
well as a discussion of potential extensions and improvements.
Finally, the proofs of auxiliary lemmas supporting our results
are deferred to the appendices.

II. MODEL AND ALGORITHM

Assume that the signal of interest x(t) can be modeled
as a weighted sum of K -dimensional complex sinusoids at
r distinct frequencies f i ∈ [0, 1]K , 1 ≤ i ≤ r , i.e.

x(t) =
r∑

i=1

di e
j2π〈t, f i〉, t ∈ Z

K. (1)

It is assumed throughout that the frequencies f i ’s are nor-
malized with respect to the Nyquist frequency of x(t) and
the time domain measurements are sampled at integer values.
We denote by di ’s the complex amplitudes of the associated
coefficients, and 〈·, ·〉 represents the inner product. For con-
creteness, our discussion is mainly devoted to a 2-D frequency
model when K = 2. This subsumes line spectral estima-
tion as a special case, and indicates how to address multi-
dimensional models. The algorithms for higher dimensional
scenarios closely parallel the 2-D case, which will be briefly
discussed in Section III-C.

A. 2-D Frequency Model

Consider a data matrix X = [Xk,l ]0≤k<n1,0≤l<n2 of ambient
dimension n := n1n2, which is obtained by sampling the
signal (1) on a uniform grid. From (1) each entry Xk,l can
be expressed as

Xk,l = x(k, l) =
r∑

i=1

di yk
i zl

i , (2)

where for any i (1 ≤ i ≤ r ) we define

yi := exp ( j2π f1i) and zi := exp ( j2π f2i )

for some frequency pairs
{

f i = ( f1i , f2i ) | 1 ≤ i ≤ r
}
.

We can then express X in a matrix form as follows

X = Y DZ�, (3)

where the above matrices are defined as

Y :=

⎡

⎢⎢⎢⎣

1 1 · · · 1
y1 y2 · · · yr
...

...
...

...

yn1−1
1 yn1−1

2 · · · yn1−1
r

⎤

⎥⎥⎥⎦, (4)

Z :=

⎡
⎢⎢⎢⎣

1 1 · · · 1
z1 z2 · · · zr
...

...
...

...

zn2−1
1 zn2−1

2 · · · zn2−1
r

⎤
⎥⎥⎥⎦, (5)

and

D := diag [d1, d2, · · · , dr ] . (6)

The above form (3) is sometimes referred to as the
Vandemonde decomposition of X .

Suppose that there exists a location set � of size m such
that the Xk,l is observed if and only if (k, l) ∈ �. It is assumed
that � is sampled uniformly at random. Define P�(X) as the
orthogonal projection of X onto the subspace of matrices that
vanish outside �. We aim at recovering X from P�(X).

B. Matrix Enhancement

One might naturally attempt recovery by applying the
low-rank MC algorithms [28], arguing that when r is small,
perfect recovery of X is possible from partial measurements
since X is low rank if r � min{n1, n2}. Specifically, this
corresponds to the following algorithm:

minimize
M∈Cn1×n2

‖M‖∗
subject to P� (M) = P� (X), (7)

where ‖M‖∗ denotes the nuclear norm (or sum of all singular
values) of a matrix M = [Mk,l ]. This is a convex
relaxation paradigm with respect to rank minimization.
However, naive MC algorithms [31] require at least the order
of r max (n1, n2) log (n1n2) samples in order to allow perfect
recovery, which far exceeds the degrees of freedom (which is
� (r)) in our problem. What is worse, since the number r of
spectral spikes can be as large as n1n2, X might become full-
rank once r > min (n1, n2). This motivates us to seek other
forms that better capture the harmonic structure.

In this paper, we adopt one effective enhanced form
of X based on the following two-fold Hankel structure.
The enhanced matrix Xe with respect to X is defined as
a k1 × (n1 − k1 + 1) block Hankel matrix

Xe :=

⎡

⎢⎢⎢⎣

X0 X1 · · · Xn1−k1

X1 X2 · · · Xn1−k1+1
...

...
...

...
Xk1−1 Xk1 · · · Xn1−1

⎤

⎥⎥⎥⎦, (8)

where k1 (1 ≤ k1 ≤ n1) is called a pencil parameter. Each
block is a k2× (n2 − k2 + 1) Hankel matrix defined such that
for every � (0 ≤ � < n1):

X� :=

⎡

⎢⎢⎢⎣

X�,0 X�,1 · · · X�,n2−k2

X�,1 X�,2 · · · X�,n2−k2+1
...

...
...

...
X�,k2−1 X�,k2 · · · X�,n2−1

⎤

⎥⎥⎥⎦, (9)
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where 1 ≤ k2 ≤ n2 is another pencil parameter. This enhanced
form allows us to express each block as2

X� = ZLY �
d DZR, (10)

where ZL, ZR and Y d are defined respectively as

ZL :=

⎡
⎢⎢⎢⎣

1 1 · · · 1
z1 z2 · · · zr
...

...
...

...

zk2−1
1 zk2−1

2 · · · zk2−1
r

⎤
⎥⎥⎥⎦,

ZR :=

⎡

⎢⎢⎢⎢⎣

1 z1 · · · zn2−k2
1

1 z2 · · · zn2−k2
2

...
...

...
...

1 zr · · · zn2−k2
r

⎤

⎥⎥⎥⎥⎦
,

and

Y d := diag [y1, y2, · · · , yr ].

Substituting (10) into (8) yields the following:

Xe =

⎡

⎢⎢⎢⎣

ZL
ZLY d

...

ZLY k1−1
d

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸√
k1k2 EL

D
[

ZR, Y d ZR, · · · , Y n1−k1
d ZR

]

︸ ︷︷ ︸√
(n1−k1+1)(n2−k2+1)ER

, (11)

where EL and ER span the column and row space of Xe,
respectively. This immediately implies that Xe is low-rank, i.e.

rank (Xe) ≤ r. (12)

This form is inspired by the traditional matrix pencil approach
proposed in [9] and [19] to estimate harmonic frequencies if all
entries of X are available. Thus, one can extract all underlying
frequencies of X using methods proposed in [19], as long as
X can be faithfully recovered.

C. The EMaC Algorithm in the Absence of Noise

We then attempt recovery through the following Enhance-
ment Matrix Completion (EMaC) algorithm:

(EMaC) minimize
M∈Cn1×n2

‖Me‖∗
subject to P� (M) = P� (X), (13)

where Me denotes the enhanced form of M. In other words,
EMaC minimizes the nuclear norm of the enhanced form over
all matrices compatible with the samples. This convex program
can be rewritten into a semidefinite program (SDP) [42]

minimize
M∈Cn1×n2

1

2
Tr
(

Q1
)+ 1

2
Tr
(

Q2
)

subject to P� (M) = P� (X),[
Q1 M∗e
Me Q2

]
� 0,

2Note that the lth (0 ≤ l < n1) row Xl∗ of X can be expressed as

Xl∗ =
[
yl

1, · · · , yl
r
]

DZ� = [yl
1d1, · · · , yl

r dr
]
Z�,

and hence we only need to find the Vandemonde decomposition for X0 and
then replace di by yl

i di .

which can be solved using off-the-shelf solvers in a tractable
manner (see [42]). It is worth mentioning that EMaC has a
similar computational complexity as the atomic norm mini-
mization method [26] when restricted to the 1-D frequency
model.

Careful readers will remark that the performance of EMaC
must depend on the choices of the pencil parameters k1 and k2.
In fact, if we define a quantity

cs := max

{
n1n2

k1k2
,

n1n2

(n1 − k1 + 1) (n2 − k2 + 1)

}
(14)

that measures how close Xe is to a square matrix, then it
will be shown later that the required sample complexity for
faithful recovery is an increasing function of cs. In fact,
both our theory and empirical experiments are in favor of a
small cs, corresponding to the choices k1 = � (n1), n1− k1+
1 = � (n1), k2 = � (n2), and n2 − k2 + 1 = � (n2).

D. The Noisy-EMaC Algorithm With Bounded Noise

In practice, measurements are often contaminated by a
certain amount of noise. To make our model and algorithm
more practically applicable, we replace our measurements by
Xo = [Xo

k,l ]0≤k<n1,0≤l<n2 through the following noisy model

Xo
k,l = Xk,l + Nk,l , ∀(k, l) ∈ �, (15)

where Xo
k,l is the observed (k, l)-th entry, and N =

[Nk,l ]0≤k<n1,0≤l<n2 denotes some unknown noise. We assume
that the noise magnitude is bounded by a known amount
‖P� (N)‖F ≤ δ, where ‖·‖F denotes the Frobenius norm.
In order to adapt our algorithm to such noisy measurements,
one wishes that small perturbation in the measurements should
result in small variation in the estimate. Our algorithm is then
modified as follows

(Noisy-EMaC) : minimize
M∈Cn1×n2

‖Me‖∗
subject to ‖P� (M − Xo)‖F ≤ δ. (16)

That said, the algorithm searches for a candidate with
minimum nuclear norm among all signals close to the
measurements.

E. The Robust-EMaC Algorithm With Sparse Outliers

An outlier is a data sample that can deviate arbitrarily from
the true data point. Practical data samples one collects may
contain a certain portion of outliers due to abnormal behav-
ior of data acquisition devices such as amplifier saturation,
sensor failures, and malicious attacks. A desired recovery
algorithm should be able to automatically prune all outliers
even when they corrupt up to a constant portion of all data
samples.

Specifically, suppose that our measurements Xo are given by

Xo
k,l = Xk,l + Sk,l , ∀(k, l) ∈ �, (17)

where Xo
k,l is the observed (k, l)-th entry, and S =

[Sk,l ]0≤k<n1,0≤l<n2 denotes the outliers, which is assumed to
be a sparse matrix supported on some location set �dirty ⊆ �.
The sampling model is formally described as follows.
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1) Suppose that � is obtained by sampling m entries
uniformly at random, and define ρ := m

n1n2
.

2) Conditioning on (k, l) ∈ �, the events {(k, l) ∈ �dirty}
are independent with conditional probability

P{(k, l) ∈ �dirty | (k, l) ∈ �} = τ

for some small constant corruption fraction 0 <
τ < 1.

3) Define �clean := �\�dirty as the location set of
uncorrupted measurements.

EMaC is then modified as follows to accommodate sparse
outliers:

(Robust-EMaC) minimize
M,Ŝ∈Cn1×n2

‖Me‖∗ + λ‖Ŝe‖1

subject to P�

(
M + Ŝ

)
= P� (X + S), (18)

where λ > 0 is a regularization parameter that will be
specified later. As will be shown later, λ can be selected in a
parameter-free fashion. We denote by Me and Ŝe the enhanced
form of M and Ŝ, respectively. Here, ‖Ŝe‖1 := ‖vec(Ŝe)‖1
represents the elementwise �1-norm of Ŝe. Robust-EMaC
promotes the low-rank structure of the enhanced data matrix as
well as the sparsity of the outliers via convex relaxation with
respective structures.

F. Notations

Before continuing, we introduce a few notations that will be
used throughout. Let the singular value decomposition (SVD)
of Xe be Xe = U�V ∗. Denote by

T : =
{

U M∗ + M̃V ∗ : M ∈ C
(n1−k1+1)(n2−k1+1)×r ,

M̃ ∈ C
k1k2×r

}
(19)

the tangent space with respect to Xe, and T⊥ the orthogonal
complement of T . Denote by PU (resp. PV , PT ) the orthog-
onal projection onto the column (resp. row, tangent) space
of Xe, i.e. for any M,

PU (M) = UU∗M, PV (M) = MV V ∗,
and PT = PU + PV − PUPV .

We let PT⊥ = I − PT be the orthogonal complement of PT ,
where I denotes the identity operator.

Denote by ‖M‖, ‖M‖F and ‖M‖∗ the spectral norm
(operator norm), Frobenius norm, and nuclear norm of M,
respectively. Also, ‖M‖1 and ‖M‖∞ are defined to be the
elementwise �1 and �∞ norm of M. Denote by ei the i th

standard basis vector. Additionally, we use sgn (M) to denote
the elementwise complex sign of M.

On the other hand, we denote by �e(k, l) the set of locations
of the enhanced matrix Xe containing copies of Xk,l . Due
to the Hankel or multi-fold Hankel structures, one can easily
verify the following: each location set �e(k, l) contains at
most one index in any given row of the enhanced form, and
at most one index in any given column. For each (k, l) ∈

Fig. 1. (a) The 2-D Dirichlet kernel when k = k1 = k2 = 6; (b) The empirical
distribution of the minimum eigenvalue σmin(GL) for various choices of k
with respect to the sparsity level.

[n1]×[n2], we use A(k,l) to denote a basis matrix that extracts
the average of all entries in �e (k, l). Specifically,

(
A(k,l)

)
α,β
:=
{

1√|�e(k,l)| , if (α, β) ∈ �e (k, l),

0, else.
(20)

We will use

ωk,l := |�e (k, l)| (21)

throughout as a short-hand notation.

III. MAIN RESULTS

This section delivers the following encouraging news: under
mild incoherence conditions, EMaC enables faithful signal
recovery from a minimal number of time-domain samples,
even when the samples are contaminated by bounded noise
or a constant portion of arbitrary outliers.

A. Incoherence Measure

In general, matrix completion from a few entries is hopeless
unless the underlying structure is sufficiently uncorrelated with
the observation basis. This inspires us to introduce certain
incoherence measures. To this end, we define the 2-D Dirichlet
kernel as

D(k1, k2, f ) := 1

k1k2

(
1− e− j2πk1 f1

1− e− j2π f1

)(
1− e− j2πk2 f2

1− e− j2π f2

)
,

(22)

where f = ( f1, f2) ∈ [0, 1]2. Fig. 1 (a) illustrates the
amplitude of D(k1, k2, f ) when k1 = k2 = 6. The value of
|D(k1, k2, f )| decays inverse proportionally with respect to the
frequency f . Set GL and GR to be two r × r Gram matrices
such that their entries are specified respectively by

(GL)i,l = D(k1, k2, f i − f l),

(GR)i,l = D(n1 − k1 + 1, n2 − k2 + 1, f i − f l),

where the difference f i− f l is understood as the wrap-around
distance in the interval [−1/2, 1/2)2. Simple manipulation
reveals that

GL = E∗L EL, GR =
(

ER E∗R
)�

,

where EL and ER are defined in (11).
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Our incoherence measure is then defined as follows.
Definition 1 (Incoherence): A matrix X is said to obey the

incoherence property with parameter μ1 if

σmin (GL) ≥ 1

μ1
and σmin (GR) ≥ 1

μ1
. (23)

where σmin (GL) and σmin (GR) represent the least singular
values of GL and GR, respectively.

The incoherence measure μ1 only depends on the locations
of the frequency spikes, irrespective of the amplitudes of
their respective coefficients. The signal is said to satisfy
the incoherence condition if μ1 scales as a small constant,
which occurs when GL and GR are both well-conditioned.
Our incoherence condition naturally requires certain separation
among all frequency pairs, as when two frequency spikes
are closely located, μ1 gets undesirably large. As shown in
[43, Th. 2], a separation of about 2/n for line spectrum
is sufficient to guarantee the incoherence condition to hold.
However, it is worth emphasizing that such strict separation is
not necessary as required in [26], and thereby our incoherence
condition is applicable to a broader class of spectrally sparse
signals.

To give the reader a flavor of the incoherence condition,
we list two examples below. For ease of presentation, we
assume below 2-D frequency models with n1 = n2. Note,
however, that the asymmetric cases and general K -dimensional
frequency models can be analyzed in the same manner.
• Random frequency locations: suppose that the r fre-

quencies are generated uniformly at random, then the
minimum pairwise separation can be crudely bounded
by �

(
1

r2 log n1

)
. If n1 � r2.5 log n1, then a crude bound

reveals that ∀i1 �= i2,

max

⎧
⎨

⎩
1

k1

1− (y∗i1 yi2

)k1

1− y∗i1 yi2
,

1

k2

1− (z∗i1 zi2

)k2

1− z∗i1 zi2

⎫
⎬

⎭�
1√
r

holds with high probability, indicating that the off-
diagonal entries of GL and GR are much smaller than
1/r in magnitude. Simple manipulation then allows us
to conclude that σmin (GL) and σmin (GR) are bounded
below by positive constants. Fig. 1 (b) shows the min-
imum eigenvalue of GL for different k = k1 = k2 =
6, 36, 72 when the spikes are randomly generated and
the number of spikes is given as the sparsity level. The
minimum eigenvalue of GL gets closer to one as k grows,
confirming our argument.

• Small perturbation off the grid: suppose that all fre-
quencies are within a distance at most 1

n1r1/4 from some

grid points
(

l1
k1

, l2
k2

)
(0 ≤ l1 < k1, 0 ≤ l2 < k2). One can

verify that ∀i1 �= i2,

max

⎧
⎨

⎩
1

k1

1− (y∗i1 yi2

)k1

1− y∗i1 yi2
,

1

k2

1− (z∗i1 zi2

)k2

1− z∗i1 zi2

⎫
⎬

⎭ <
1

2
√

r
,

and hence the magnitude of all off-diagonal entries of
GL and GR are no larger than 1/(4r). This immediately
suggests that σmin (GL) and σmin (GR) are lower bounded
by 3/4.

Note, however, that the class of incoherent signals are far
beyond the ones discussed above.

B. Theoretical Guarantees

With the above incoherence measure, the main theoretical
guarantees are provided in the following three theorems each
accounting for a distinct data model: 1) noiseless measure-
ments, 2) measurements contaminated by bounded noise,
and 3) measurements corrupted by a constant proportion of
arbitrary outliers.

1) Exact Recovery From Noiseless Measurements: Exact
recovery is possible from a minimal number of noise-free
samples, as asserted in the following theorem.

Theorem 1: Let X be a data matrix of form (3), and � the
random location set of size m. Suppose that the incoherence
property (23) holds and that all measurements are noiseless.
Then there exists a universal constant c1 > 0 such that X
is the unique solution to EMaC with probability exceeding
1− (n1n2)

−2, provided that

m > c1μ1csr log4(n1n2). (24)
Theorem 1 asserts that under some mild deterministic

incoherence condition such that μ1 scales as a small constant,
EMaC admits prefect recovery as soon as the number of
measurements exceeds O(r log4 (n1n2)). Since there are �(r)
degrees of freedom in total, the lower bound should be no
smaller than �(r). This demonstrates the orderwise optimality
of EMaC except for a logarithmic gap. We note, however, that
the polylog factor might be further refined via finer tuning of
concentration of measure inequalities.

It is worth emphasizing that while we assume random obser-
vation models, the data model is assumed deterministic. This
differs significantly from [26], which relies on randomness in
both the observation model and the data model. In particular,
our theoretical performance guarantees rely solely on the
frequency locations irrespective of the associated amplitudes.
In contrast, the results in [26] require the phases of all
frequency spikes to be i.i.d. drawn in a uniform manner in
addition to a separation condition.

Remark 1: Theorem 1 significantly strengthens our
prior results reported in [41] by improving the required
sample complexity from O (μ2

1c2
s r2poly log(n1n2)

)
to

O (μ1csrpoly log(n1n2)).
2) Stable Recovery in the Presence of Bounded Noise: Our

method enables stable recovery even when the time domain
samples are noisy copies of the true data. Here, we say the
recovery is stable if the solution of Noisy-EMaC is close to
the ground truth in proportion to the noise level. To this end,
we provide the following theorem, which is a counterpart
of Theorem 1 in the noisy setting, whose proof is inspired
by [44].

Theorem 2: Suppose Xo is a noisy copy of X that satisfies
‖P�(X − Xo)‖F ≤ δ. Under the conditions of Theorem 1, the
solution to Noisy-EMaC in (16) satisfies

‖X̂e − Xe‖F ≤ 5n3
1n3

2δ (25)

with probability exceeding 1− (n1n2)
−2.
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Theorem 2 reveals that the recovered enhanced matrix
(which contains �(n2

1n2
2) entries) is close to the true enhanced

matrix at high SNR. In particular, the average entry inaccuracy
of the enhanced matrix is bounded above by O(n3

1n3
2δ), ampli-

fied by the subsampling factor. In practice, one is interested in
an estimate of X , which can be obtained naively by randomly
selecting an entry in �e(k, l) as X̂k,l , then we have

‖X̂ − X‖F ≤ ‖X̂e − Xe‖F.

This yields that the per-entry noise of X̂ is about O(n2.5
1 n2.5

2 δ),
which is further amplified due to enhancement by a poly-
nomial factor. However, this factor arises from an analysis
artifact due to our simple strategy to deduce X̂ from X̂e,
and may be elevated. We note that in numerical experiments,
Noisy-EMaC usually generates much better estimates, usually
by a polynomial factor. The practical applicability will be
illustrated in Section V.

It is worth mentioning that to the best of our knowledge,
our result is the first stability result with partially observed
data for spectral compressed sensing off the grid. While the
atomic norm approach is near-minimax with full data [45], it
is not clear how it performs with partially observed data.

3) Robust Recovery in the Presence of Sparse Outliers:
Interestingly, Robust-EMaC can provably tolerate a constant
portion of arbitrary outliers. The theoretical performance is
formally summarized in the following theorem.

Theorem 3: Let X be a data matrix with matrix form (3),
and � a random location set of size m. Set λ = 1√

m log(n1n2)
,

and assume τ ≤ 0.1 is some small positive constant. Then
there exist a numerical constant c1 > 0 depending only on τ
such that if (23) holds and

m > c1μ
2
1c2

s r2 log3(n1n2), (26)

then Robust-EMaC is exact, i.e. the minimizer (M̂, Ŝ) satisfies
M̂ = X , with probability exceeding 1− (n1n2)

−2.
Remark 2: Note that τ ≤ 0.1 is not a critical threshold.

In fact, one can prove the same theorem for a larger τ
(e.g. τ ≤ 0.25) with a larger absolute constant c1. However,
to allow even larger τ (e.g. in the regime where τ ≥ 50%),
we need the sparse components exhibit random sign patterns.

Theorem 3 specifies a candidate choice of the regularization
parameter λ that allows recovery from a few samples, which
only depends on the size of � but is otherwise parameter-free.
In practice, however, λ may better be selected via cross valida-
tion. Furthermore, Theorem 3 demonstrates the possibility of
robust recovery under a constant proportion of sparse corrup-
tions. Under the same mild incoherence condition as for The-
orem 1, robust recovery is possible from O (r2 log3 (n1n2)

)

samples, even when a constant proportion of the samples are
arbitrarily corrupted. As far as we know, this provides the
first theoretical guarantees for separating sparse measurement
corruptions in the off-grid compressed sensing setting.

C. Extension to Higher-Dimensional and Damping
Frequency Models

By letting n2 = 1 the above 2-D frequency model reverts to
the line spectrum model. The EMaC algorithm and the main

results immediately extend to higher dimensional frequency
models without difficulty. In fact, for K -dimensional frequency
models, one can arrange the original data into a K -fold Hankel
matrix of rank at most r . For instance, consider a 3-D model
such that

Xl1,l2,l3 =
r∑

i=1

di yl1
i zl2

i wl3
i , ∀ (l1, l2, l3) ∈ [n1] × [n2] × [n3].

An enhanced form can be defined as a 3-fold Hankel matrix
such that

Xe :=

⎡
⎢⎢⎢⎣

X0,e X1,e · · · Xn3−k3,e
X1,e X2,e · · · Xn3−k3+1,e

...
...

...
...

Xk3−1,e Xk1,e · · · Xn3−1,e

⎤
⎥⎥⎥⎦,

where X i,e denotes the 2-D enhanced form of the matrix
consisting of all entries Xl1,l2,l3 obeying l3 = i . One can verify
that Xe is of rank at most r , and can thereby apply EMaC
on the 3-D enhanced form. To summarize, for K -dimensional
frequency models, EMaC (resp. Noisy-EMaC, Robust-EMaC)
searches over all K -fold Hankel matrices that are consistent
with the measurements. The theoretical performance guar-
antees can be similarly extended by defining the respective
Dirichlet kernel in 3-D and the coherence measure. In fact, all
our analyses can be extended to handle damping modes, when
the frequencies are not of time-invariant amplitudes. We omit
the details for conciseness.

IV. STRUCTURED MATRIX COMPLETION

One problem closely related to our method is comple-
tion of multi-fold Hankel matrices from a small number of
entries. While each spectrally sparse signal can be mapped to
a low-rank multi-fold Hankel matrix, it is not clear whether
all multi-fold Hankel matrices of rank r can be written as the
enhanced form of a signal with spectral sparsity r . Therefore,
one can think of recovery of multi-fold Hankel matrices as a
more general problem than the spectral compressed sensing
problem. Indeed, Hankel matrix completion has found numer-
ous applications in system identification [46], [47], natural
language processing [48], computer vision [49], magnetic
resonance imaging [50], etc.

There has been several work concerning algorithms and
numerical experiments for Hankel matrix completions [46],
[47], [51]. However, to the best of our knowledge, there
has been little theoretical guarantee that addresses directly
Hankel matrix completion. Our analysis framework can be
straightforwardly adapted to the general K -fold Hankel matrix
completions. Below we present the performance guarantee
for the two-fold Hankel matrix completion without loss of
generality. Notice that we need to modify the definition of μ1
as stated in the following theorem.

Theorem 4: Consider a two-fold Hankel matrix Xe of
rank r . The bounds in Theorems 1, 2 and 3 continue to hold,
if the incoherence μ1 is defined as the smallest number that
satisfies

max
(k,l)∈[n1]×[n2]

{‖U∗A(k,l)‖2F, ‖A(k,l)V‖2F
} ≤ μ1csr

n1n2
. (27)
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Fig. 2. Phase transition plots where frequency locations are randomly
generated. The plot (a) concerns the case where n1 = n2 = 11, whereas
the plot (b) corresponds to the situation where n1 = n2 = 15. The empirical
success rate is calculated by averaging over 100 Monte Carlo trials.

Condition (27) requires that the left and right singular
vectors are sufficiently uncorrelated with the observation basis.
In fact, condition (27) is a weaker assumption than (23).

It is worth mentioning that a low-rank Hankel matrix
can often be converted to its low-rank Toeplitz counterpart,
by reversely ordering all rows of the Hankel matrix. Both
Hankel and Toeplitz matrices are effective forms that capture
the underlying harmonic structures. Our results and analysis
framework extend to low-rank Toeplitz matrix completion
problem without difficulty.

V. NUMERICAL EXPERIMENTS

In this section, we present numerical examples to evaluate
the performance of EMaC and its variants under different
scenarios. We further examine the application of EMaC in
image super resolution. Finally, we propose an extension of
singular value thresholding (SVT) developed by Cai et. al. [52]
that exploits the multi-fold Hankel structure to handle larger
scale data sets.

A. Phase Transition in the Noiseless Setting

To evaluate the practical ability of the EMaC algorithm,
we conducted a series of numerical experiments to examine
the phase transition for exact recovery. Let n1 = n2, and
we take k1 = k2 = �(n1 + 1)/2� which corresponds to the
smallest cs. For each (r, m) pair, 100 Monte Carlo trials were
conducted. We generated a spectrally sparse data matrix X by
randomly generating r frequency spikes in [0, 1]× [0, 1], and
sampled a subset � of size m entries uniformly at random. The
EMaC algorithm was conducted using the convex program-
ming modeling software CVX with the interior-point solver
SDPT3 [53]. Each trial is declared successful if the normalized
mean squared error (NMSE) satisfies ‖X̂ − X‖F/‖X‖F ≤
10−3, where X̂ denotes the estimate returned by EMaC.
The empirical success rate is calculated by averaging over
100 Monte Carlo trials.

Fig. 2 illustrates the results of these Monte Carlo experi-
ments when the dimensions3 of X are 11× 11 and 15× 15.
The horizontal axis corresponds to the number m of samples

3We choose the dimension of X to be odd simply to yield a squared
matrix Xe. In fact, our results do not rely on n1 or n2 being either odd
or prime. We note that when n1 and n2 are known to be prime numbers,
there might exist computationally cheaper methods to enable perfect recovery
(see [54]).

Fig. 3. The reconstruction NMSE with respect to δ for a dataset with
n1 = n2 = 11, r = 4 and m = 50.

revealed to the algorithm, while the vertical axis corresponds
to the spectral sparsity level r . The empirical success rate is
reflected by the color of each cell. It can be seen from the plot
that the number of samples m grows approximately linearly
with respect to the spectral sparsity r , and that the slopes
of the phase transition lines for two cases are approximately
the same. These observations are in line with our theoretical
guarantee in Theorem 1. This phase transition diagrams justify
the practical applicability of our algorithm in the noiseless
setting.

B. Stable Recovery From Noisy Data

Fig. 3 further examines the stability of the proposed
algorithm by performing Noisy-EMaC with respect to different
parameter δ on a noise-free dataset of r = 4 complex sinusoids
with n1 = n2 = 11. The number of random samples is
m = 50. The reconstructed NMSE grows approximately linear
with respect to δ, validating the stability of the proposed
algorithm.

C. Comparison With Existing Approaches for Line
Spectrum Estimation

Suppose that we randomly observe 64 entries of an
n-dimensional vector (n = 127) composed of r = 4 modes.
For such 1-D signals, we compare EMaC with the atomic norm
approach [26] as well as basis pursuit [55] assuming a grid of
size 212. For the atomic norm and the EMaC algorithm, the
modes are recovered via linear prediction using the recovered
data [56]. Fig. 4 demonstrates the recovery of mode locations
for three cases, namely when (a) all the modes are on the
DFT grid along the unit circle; (b) all the modes are on
the unit circle except two closely located modes that are off
the presumed grid; (c) all the modes are on the unit circle
except that one of the two closely located modes is a damping
mode with amplitude 0.99. In all cases, the EMaC algorithm
successfully recovers the underlying modes, while the atomic
norm approach fails to recover damping modes, and basis
pursuit fails with both off-the-grid modes and damping modes.

We further compare the phase transition of the EMaC algo-
rithm and the atomic norm approach in [26] for line spectrum
estimation. We assume a 1-D signal of length n = n1 = 127
and the pencil parameter k1 of EMaC is chosen to be 64.
The phase transition experiments are conducted in the same
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Fig. 4. Recovery of mode locations when (a) all the modes are on the DFT grid along the unit circle; (b) all the modes are on the unit circle except two
closely located modes that are off the DFT grid; (c) all the modes are on the unit circle except that one of the two closely located modes is a damping mode.
The panels from the upper left, clockwise, are the ground truth, the EMaC algorithm, the atomic norm approach [26], and basis pursuit [55] assuming a grid
of size 212.

Fig. 5. Phase transition for line spectrum estimation of EMaC and the atomic norm approach [26]. (a) EMaC without imposing separation; (b) atomic norm
approach without imposing separation; (c) atomic norm approach with separation.

manner as Fig. 2. In the first case, the spikes are generated
randomly as Fig. 2 on a unit circle; in the second case, the
spikes are generated until a separation condition is satisfied
� := mini1 �=i2 | fi1 − fi2 | ≥ 1.5/n. Fig. 5 (a) and (b) illustrate
the phase transition of EMaC and the atomic norm approach
when the frequencies are randomly generated without impos-
ing the separation condition. The performance of the atomic
norm approach degenerates severely when the separation con-
dition is not met; on the other hand, the EMaC gives a sharp
phase transition similar to the 2D case. When the separation
condition is imposed, the phase transition of the atomic norm
approach greatly improves as shown in Fig. 5 (c), while the
phase transition of EMaC still gives similar performance as in
Fig. 5 (a) (We omit the actual phase transition in this case.)
However, it is worth mentioning that when the sparsity level is
relatively high, the required separation condition is in general
difficult to be satisfied in practice. In comparison, EMaC is
less sensitive to the separation requirement.

D. Robust Line Spectrum Estimation

Consider the problem of line spectrum estimation, where the
time domain measurements are contaminated by a constant
portion of outliers. We conducted a series of Monte Carlo
trials to illustrate the phase transition for perfect recovery
of the ground truth. The true data X is assumed to be a
125-dimensional vector, where the locations of the underlying
frequencies are randomly generated. The simulations were
carried out again using CVX with SDPT3.

Fig. 6. Robust line spectrum estimation where mode locations are randomly
generated: (a) Phase transition plots when n = 125, and 10% of the entries
are corrupted; the empirical success rate is calculated by averaging over
100 Monte Carlo trials. (b) Phase transition plots when n = 125, and all
the entries are observed; the empirical success rate is calculated by averaging
over 20 Monte Carlo trials.

Fig. 6(a) illustrates the phase transition for robust line
spectrum estimation when 10% of the entries are corrupted,
which showcases the tradeoff between the number m of mea-
surements and the recoverable spectral sparsity level r . One
can see from the plot that m is approximately linear in r on the
phase transition curve even when 10% of the measurements
are corrupted, which validates our finding in Theorem 3.
Fig. 6(b) illustrates the success rate of exact recovery when
we obtain samples for all entry locations. This plot illustrates
the tradeoff between the spectral sparsity level and the number
of outliers when all entries of the corrupted Xo are observed.
It can be seen that there is a large region where exact recovery
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Fig. 7. A synthetic super resolution example, where the observation (b) is taken from the low-frequency components of the ground truth in (a), and the
reconstruction (c) is done via inverse Fourier transform of the extrapolated high-frequency components.

can be guaranteed, demonstrating the power of our algorithms
in the presence of sparse outliers.

E. Synthetic Super Resolution

The proposed EMaC algorithm works beyond the random
observation model in Theorem 1. Fig. 7 considers a synthetic
super resolution example motivated by [24], where the ground
truth in Fig. 7(a) contains 6 point sources with constant
amplitude. The low-resolution observation in Fig. 7(b) is
obtained by measuring low-frequency components [− flo, flo]
of the ground truth. Due to the large width of the associated
point-spread function, both the locations and amplitudes of the
point sources are distorted in the low-resolution image.

We apply EMaC to extrapolate high-frequency components
up to [− fhi, fhi], where fhi/ flo = 2. The reconstruction in
Fig. 7(c) is obtained via applying directly inverse Fourier
transform of the spectrum to avoid parameter estimation such
as the number of modes. The resolution is greatly enhanced
from Fig. 7(b), suggesting that EMaC is a promising approach
for super resolution tasks. The theoretical performance is left
for future work.

F. Singular Value Thresholding for EMaC

The above Monte Carlo experiments were conducted using
the advanced SDP solver SDPT3. This solver and many
other popular ones (e.g. SeDuMi) are based on interior point
methods, which are typically inapplicable to large-scale data.
In fact, SDPT3 fails to handle an n × n data matrix when
n exceeds 19, which corresponds to a 100 × 100 enhanced
matrix.

One alternative for large-scale data is the first-order
algorithms tailored to matrix completion problems, e.g. the
singular value thresholding (SVT) algorithm [52]. We propose
a modified SVT algorithm in Algorithm 1 to exploit the Hankel
structure.

In particular, two operators are defined as follows:
• Dτt (·) in Algorithm 1 denotes the singular value shrink-

age operator. Specifically, if the SVD of X is given by
X = U�V ∗ with � = diag ({σi }), then

Dτt (X) := Udiag
({

(σi − τt )+
})

V∗,

where τt > 0 is the soft-thresholding level.

Algorithm 1 Singular Value Thresholding for EMaC

Input: The observed data matrix Xo on the location set �.
initialize: let Xo

e denote the enhanced form of P� (Xo);
set M0 = X0

e and t = 0.
repeat

1) Qt ← Dτt (M t )
2) M t ← HX0

(
Qt

)

3) t ← t + 1
until convergence
output X̂ as the data matrix with enhanced form M t .

• In the K -dimensional frequency model, HXo( Qt ) denotes
the projection of Qt onto the subspace of enhanced
matrices (i.e. K -fold Hankel matrices) that are consistent
with the observed entries.

Consequently, at each iteration, a pair
(

Qt , M t
)

is produced
by first performing singular value shrinkage and then project-
ing the outcome onto the space of K -fold Hankel matrices
that are consistent with observed entries.

The key parameter that one needs to tune is the threshold τt .
Unfortunately, there is no universal consensus regarding how
to tweak the threshold for SVT type of algorithms. One
suggested choice is τt = 0.1σmax (M t ) /

⌈ t
10

⌉
, which works

well based on our empirical experiments.
Fig. 8 illustrates the performance of Algorithm 1. We gener-

ated a true 101×101 data matrix X through a superposition of
30 random complex sinusoids, and revealed 5.8% of the total
entries (i.e. m = 600) uniformly at random. The noise was
i.i.d. Gaussian giving a signal-to-noise amplitude ratio of 10.
The reconstructed vectorized signal is superimposed on the
ground truth in Fig. 8. The normalized reconstruction error
was ‖X̂ − X‖F/ ‖X‖F = 0.1098, validating the stability of
our algorithm in the presence of noise.

VI. PROOF OF THEOREMS 1 AND 4

EMaC has similar spirit as the well-known matrix com-
pletion algorithms [28], [31], except that we impose Hankel
and multi-fold Hankel structures on the matrices. While [31]
has presented a general sufficient condition for exact recovery
(see [31, Th. 3]), the basis in our case does not exhibit
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Fig. 8. The performance of SVT for Noisy-EMaC for a 101 × 101
data matrix that contains 30 random frequency spikes. 5.8% of all entries
(m = 600) are observed with signal-to-noise amplitude ratio 10. Here,
τt = 0.1σmax (M t ) /

⌈ t
10

⌉
empirically. For concreteness, the reconstructed

data against the true data for the first 100 time instances (after vectorization)
are plotted.

desired coherence properties as required in [31], and hence
these results cannot deliver informative estimates when applied
to our problem. Nevertheless, the beautiful golfing scheme
introduced in [31] lays the foundation of our analysis in the
sequel. We also note that the analyses adopted in [28] and [31]
rely on a desired joint incoherence property on U V ∗, which
has been shown to be unnecessary [32].

For concreteness, the analyses in this paper focus on recov-
ering harmonically sparse signals as stated in Theorem 1, since
proving Theorem 1 is slightly more involved than proving
Theorem 4. We note, however, that our analysis already entails
all reasoning required for establishing Theorem 4.

A. Dual Certification

Denote by A(k,l) (M) the projection of M onto the subspace
spanned by A(k,l), and define the projection operator onto the
space spanned by all A(k,l) and its orthogonal complement as

A :=
∑

(k,l)∈[n1]×[n2]
A(k,l), and A⊥ = I −A. (28)

There are two common ways to describe the randomness
of �: one corresponds to sampling without replacement, and
another concerns sampling with replacement (i.e. � contains
m indices {ai ∈ [n1] × [n2] : 1 ≤ i ≤ m} that are i.i.d.
generated). As discussed in [31, Sec. II.A], while both situa-
tions result in the same order-wide bounds, the latter situation
admits simpler analysis due to independence. Therefore, we
will assume that � is a multi-set (possibly with repeated
elements) and ai ’s are independently and uniformly distributed
throughout the proofs of this paper, and define the associated
operators as

A� :=
m∑

i=1

Aai . (29)

We also define another projection operator A′� similar to (29),
but with the sum extending only over distinct samples. Its
complement operator is defined as A′

�⊥ := A − A′�. Note
that A� (M) = 0 is equivalent to A′�(M) = 0. With these
definitions, EMaC can be rewritten as the following general

matrix completion problem:

minimize
M

‖M‖∗
subject to A′� (M) = A′� (Xe),

A⊥ (M) = A⊥ (Xe) = 0. (30)

To prove exact recovery of convex optimization, it suffices
to produce an appropriate dual certificate, as stated in the
following lemma.

Lemma 1: Consider a multi-set � that contains m random
indices. Suppose that the sampling operator A� obeys

∥∥∥PTAPT − n1n2

m
PTA�PT

∥∥∥ ≤ 1

2
. (31)

If there exists a matrix W satisfying

A′
�⊥ (W) = 0, (32)

∥∥PT
(
W − U V∗

)∥∥
F ≤

1

2n2
1n2

2

, (33)

and
∥∥PT⊥ (W)

∥∥ ≤ 1

2
, (34)

then Xe is the unique solution to (30) or, equivalently, X is
the unique minimizer of EMaC.

Proof: See Appendix B. �
Condition (31) will be analyzed in Section VI-B, while

a dual certificate W will be constructed in Section VI-C.
The validity of W as a dual certificate will be established
in Sections VI-C–VI-E. These are the focus of the remaining
section.

B. Deviation of
∥∥PTAPT − n1n2

m PTA�PT
∥∥

Lemma 1 requires that A� be sufficiently incoherent with
respect to the tangent space T . The following lemma quantifies
the projection of each A(k,l) onto the subspace T .

Lemma 2: Under the hypothesis (23), one has
∥∥UU∗A(k,l)

∥∥2
F ≤

μ1csr

n1n2
,
∥∥A(k,l)V V ∗

∥∥2
F ≤

μ1csr

n1n2
, (35)

for all (k, l) ∈ [n1]×[n2]. For any a, b ∈ [n1]×[n2], one has

|〈Ab,PT Aa〉| ≤
√

ωb

ωa

3μ1csr

n1n2
. (36)

Proof: See Appendix C. �
Recognizing that (35) is the same as (27), the following

proof also establishes Theorem 4. Note that Lemma 2 imme-
diately leads to

∥∥PT
(

A(k,l)
)∥∥2

F ≤
∥∥PU

(
A(k,l)

)∥∥2
F +

∥∥PV
(

A(k,l)
)∥∥2

F

≤ 2μ1csr

n1n2
. (37)

As long as (37) holds, the fluctuation of PTA�PT can be
controlled reasonably well, as stated in the following lemma.
This justifies Condition (31) as required by Lemma 1.

Lemma 3: Suppose that (37) holds. Then for any small
constant 0 < ε ≤ 1

2 , one has
∥∥∥

n1n2

m
PTA�PT − PTAPT

∥∥∥ ≤ ε (38)
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with probability exceeding 1 − (n1n2)
−4, provided that

m > c1μ1csr log (n1n2) for some universal constant c1 > 0.
Proof: See Appendix D. �

C. Construction of Dual Certificates

Now we are in a position to construct the dual certificate,
for which we will employ the golfing scheme introduced
in [31]. Suppose that we generate j0 independent random
location multi-sets �i (1 ≤ i ≤ j0), each containing m

j0
i.i.d. samples. This way the distribution of � is the same as
�1 ∪ �2 ∪ . . . ∪ � j0 . Note that �i ’s correspond to sampling
with replacement. Let

ρ := m

n1n2
and q := ρ

j0
(39)

represent the undersampling factors of � and �i , respectively.
Consider a small constant ε < 1

e , and pick j0 :=
3 log 1

ε
n1n2. The construction of the dual matrix W then

proceeds as follows:

Construction of a dual certificate W via the golfing
scheme.

1. Set F0 = UV ∗, and j0 := 5 log 1
ε
(n1n2).

2. For all i (1 ≤ i ≤ j0), let
Fi = PT

(
A− 1

q A�i

)
PT (Fi−1) .

3. Set W :=∑ j0
j=1

(
1
q A�i +A⊥

)
(Fi−1).

We will establish that W is a valid dual certificate by
showing that W satisfies the conditions stated in Lemma 1,
which we now proceed step by step.

First, by construction, all summands
(

1

q
A�i +A⊥

)
(Fi−1)

lie within the subspace of matrices supported on � or the
subspace A⊥. This validates that A′

�⊥ (W) = 0, as required
in (32).

Secondly, the recursive construction procedure of Fi allows
us to write

−PT (W − F0)

= PT (F0)−
j0∑

j=1

PT

(
1

q
A�i +A⊥

)
(Fi−1)

= PT (F0)− PT

(
1

q
A�i +A⊥

)
PT (F0)

−
j0∑

j=2

PT

(
1

q
A�i +A⊥

)
(Fi−1)

= PT

(
A− 1

q
A�i

)
PT (F0)−

j0∑

j=2

PT

(
1

q
A�i +A⊥

)
Fi−1

= PT (F1)−
j0∑

j=2

PT

(
1

q
A�i +A⊥

)
(Fi−1)

= · · · = PT
(
F j0

)
. (40)

Lemma 3 asserts the following: if qn1n2 ≥ c1μ1csr log (n1n2)
or, equivalently, m ≥ c̃1μ1csr log2(n1n2) for some constant
c̃1 > 0, then with overwhelming probability one has
∥∥∥∥PT − PT

(
1

q
A�i +A⊥

)
PT

∥∥∥∥ =
∥∥∥∥PTAPT − 1

q
PTA�iPT

∥∥∥∥

≤ ε <
1

2
.

This allows us to bound ‖PT (Fi )‖F as

‖PT (Fi )‖F ≤ εi ‖PT (F0)‖F ≤ εi
∥∥U V∗

∥∥
F = εi√r ,

which together with (40) gives
∥∥PT

(
W − U V ∗

)∥∥
F = ‖PT (W − F0)‖F =

∥∥PT
(
F j0

)∥∥
F

≤ ε j0
√

r <
1

2n2
1n2

2

(41)

as required in Condition (33).
Finally, it remains to be shown that

∥∥PT⊥ (W)
∥∥ ≤ 1

2 ,
which we will establish in the next two subsections. In par-
ticular, we first introduce two key metrics and characterize
their relationships in Section VI-D. These metrics are cru-
cial in bounding

∥∥PT⊥ (W)
∥∥, which will be the focus of

Section VI-E.

D. Two Metrics and Key Lemmas

In this subsection, we introduce the following two norms

‖M‖A,∞ := max
(k,l)∈[n1]×[n2]

∣∣∣∣∣

〈
A(k,l), M

〉
√

ωk,l

∣∣∣∣∣ , (42)

‖M‖A,2 :=
√√√√ ∑

(k,l)∈[n1]×[n2]

∣∣〈A(k,l), M
〉∣∣2

ωk,l
. (43)

Based on these two metrics, we can derive several
technical lemmas which, taken collectively, allow us to
control

∥∥PT⊥ (W)
∥∥. Specifically, these lemmas character-

ize the mutual dependence of three norms ‖·‖, ‖·‖A,2
and ‖·‖A,∞.

Lemma 4: For any given matrix M, there exists some
numerical constant c2 > 0 such that
∥∥∥
(n1n2

m
A� −A

)
(M)

∥∥∥ ≤ c2

√
n1n2 log (n1n2)

m
‖M‖A,2

+ c2
n1n2 log (n1n2)

m
‖M‖A,∞ (44)

with probability at least 1− (n1n2)
−10.

Proof: See Appendix E. �
Lemma 5: Assume that there exists a quantity μ5 such that

ωα,β

∥∥PT
(

A(α,β)

)∥∥2
A,2 ≤

μ5r

n1n2
, (α, β) ∈ [n1]× [n2] . (45)

For any given matrix M, with probability exceeding
1− (n1n2)

−10,
∥∥∥
(n1n2

m
PTA� − PTA

)
(M)

∥∥∥
A,2
≤ c3

√
μ5r log (n1n2)

m

·
(
‖M‖A,2 +

√
n1n2 log (n1n2)

m
‖M‖A,∞

)
(46)

for some absolute constant c3 > 0.
Proof: See Appendix F. �
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Lemma 6: For any given matrix M ∈ T , there is some
absolute constant c4 > 0 such that
∥∥∥
(n1n2

m
PTA� − PTA

)
(M)

∥∥∥
A,∞

≤ c4

√
μ1csr log (n1n2)

m
·
√

μ1csr

n1n2
‖M‖A,2

+ c4
μ1csr log (n1n2)

m
‖M‖A,∞ (47)

with probability exceeding 1− (n1n2)
−10.

Proof: See Appendix G. �
Lemma 5 combined with Lemma 6 gives rise to the follow-

ing inequality. Consider any given matrix M ∈ T . Applying
the bounds (46) and (47), one can derive
∥∥∥
(n1n2

m
PTA� − PTA

)
(M)

∥∥∥
A,2

+
√

n1n2 log (n1n2)

m

∥∥∥
(n1n2

m
PTA� − PTA

)
(M)

∥∥∥
A,∞

(48)

≤ c3

√
μ5r log (n1n2)

m

(
‖M‖A,2 +

√
n1n2 log (n1n2)

m
‖M‖A,∞

)

+ c4

√
n1n2 log (n1n2)

m

(√
μ1csr log (n1n2)

m
·
√

μ1csr

n1n2
‖M‖A,2

+μ1csr log (n1n2)

m
‖M‖A,∞

)

≤ c5

(√
μ5r log (n1n2)

m
+ μ1csr log (n1n2)

m

)

·
{
‖M‖A,2 +

√
n1n2 log (n1n2)

m
‖M‖A,∞

}
, (49)

with probability exceeding 1 − (n1n2)
−10, where c5 =

max {c3, c4}. This holds under the hypothesis (45).

E. An Upper Bound on
∥∥PT⊥ (W)

∥∥

Now we are ready to show how we may combine the
above lemmas to develop an upper bound on

∥∥PT⊥ (W)
∥∥.

By construction, one has

∥∥PT⊥ (W)
∥∥ ≤

j0∑

l=1

∥∥∥∥PT⊥

(
1

q
A�l +A⊥

)
PT (Fl−1)

∥∥∥∥.

Each summand can be bounded above as follows∥∥∥∥PT⊥

(
1

q
A�l +A⊥

)
PT (Fl−1)

∥∥∥∥

=
∥∥∥∥PT⊥

(
1

q
A�l −A

)
PT (Fl−1)

∥∥∥∥

≤
∥∥∥∥

(
1

q
A�l −A

)
(Fl−1)

∥∥∥∥

≤ c2

(√
log (n1n2)

q
‖Fl−1‖A,2 +

log (n1n2)

q
‖Fl−1‖A,∞

)

(50)

≤ c2c5

(√
μ5r log (n1n2)

qn1n2
+ μ1csr log (n1n2)

qn1n2

)

·
{√

log (n1n2)

q

∥∥Fl−2
∥∥A,2 +

log (n1n2)

q

∥∥Fl−2
∥∥A,∞

}
(51)

≤
(

1

2

)l−1
(√

log (n1n2)

q
· ‖F0‖A,2 +

log (n1n2)

q
‖F0‖A,∞

)
,

(52)

where (50) follows from Lemma 4 together with the
fact that Fi ∈ T , and (51) is a consequence of (49).
The last inequality holds under the hypothesis that
qn1n2 � max {μ1cs, μ5} r log (n1n2) or, equivalently,
m � max {μ1cs, μ5} r log2 (n1n2).

Since F0 = U V ∗, it remains to control
∥∥U V ∗

∥∥A,∞ and∥∥U V∗
∥∥A,2. We have the following lemma.

Lemma 7: With the incoherence measure μ1, one can
bound

∥∥UV ∗
∥∥A,∞ ≤

μ1csr

n1n2
, (53)

∥∥U V ∗
∥∥2
A,2 ≤

μ1csr log2 (n1n2)

n1n2
, (54)

and for any (α, β) ∈ [n1]× [n2],

∥∥PT
(√

ωα,β A(α,β)

)∥∥2
A,2 ≤

c6μ1cs log2 (n1n2) r

n1n2
(55)

for some numerical constant c6 > 0.
Proof: See Appendix H. �

In particular, the bound (55) translates into

μ5 ≤ c6μ1cs log2 (n1n2) .

Substituting (53) and (54) into (52) gives
∥∥∥PT⊥

(n1n2

m
A�l +A⊥

)
PT (Fl−1)

∥∥∥

≤
(

1

2

)l−1
⎛

⎝
√

μ1csr log2 (n1n2)

qn1n2
+ μ1csr log (n1n2)

qn1n2

⎞

⎠

� 1

2
·
(

1

2

)l

,

as soon as m > c7 max
{
μ1cs log2 (n1n2), μ5 log2 (n1n2)

}
r or

m > c̃7μ1cs log4 (n1n2) for some sufficiently large constants
c7, c̃7 > 0, indicating that

∥∥PT⊥ (W)
∥∥ ≤

j0∑

l=1

∥∥∥∥PT⊥

(
1

q
A�l +A⊥

)
PT (Fl−1)

∥∥∥∥

≤ 1

2
·
∞∑

l=1

(
1

2

)l

≤ 1

2
(56)

as required. So far, we have successfully verified that
with high probability, W is a valid dual certificate, and
hence by Lemma 1 the solution to EMaC is exact and
unique.

VII. PROOF OF THEOREM 3

The algorithm Robust-EMaC is inspired by the well-known
robust principal component analysis [17], [33] that seeks a
decomposition of low-rank plus sparse matrices, except that
we impose multi-fold Hankel structures on both the low-rank
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and sparse matrices. Following similar spirit as to the proof
of Theorem 1, the proof here is based on duality analysis,
and relies on the golfing scheme [31] to construct a valid dual
certificate.

In this section, we prove the results for a slightly different
sampling model as follows.

• The location multi-set �clean of observed uncorrupted
entries is generated by sampling (1− τ ) ρn1n2 i.i.d.
entries uniformly at random.

• The location multi-set � of observed entries is generated
by sampling ρn1n2 i.i.d. entries uniformly at random,
with the first (1− τ ) ρn1n2 entries coming from �clean.

• The location set �dirty of observed corrupted entries is
given by �′\�clean′ , where �′ and �clean′ denote the sets
of distinct entry locations in � and �clean, respectively.

As mentioned in the proof of Theorem 1, this slightly dif-
ferent sampling model, while resulting in the same order-
wise bounds, significantly simplifies the analysis due to the
independence assumptions.

We will prove Theorem 3 under an additional random sign
condition, that is, the signs of all non-zero entries of S are
independent zero-mean random variables. Specifically, we will
prove the following theorem.

Theorem 5 (Random Sign): Suppose that X obeys the
incoherence condition with parameter μ1, and let λ =

1√
m log(n1n2)

. Assume that τ ≤ 0.2 is some small positive

constant, and that the signs of nonzero entries of S are
independently generated with zero mean. If

m > c0μ
2
1c2

s r2 log3 (n1n2),

then Robust-EMaC succeeds in recovering X with probability
exceeding 1− (n1n2)

−2.
In fact, a simple derandomization argument introduced in

[33, Sec. 2.2] immediately suggests that the performance of
Robust-EMaC under the fixed-sign pattern is no worse than
that under the random-sign pattern with sparsity parameter 2τ ,
i.e. the condition on the signs pattern of S is unnecessary and
Theorem 3 follows after we establish Theorem 5. As a result,
the section will focus on Theorem 3 with random sign patterns,
which are much easier to analyze.

A. Dual Certification

We adopt similar notations as in Section VI-A. That said, if
we generate ρn1n2 i.i.d. entry locations ai ’s uniformly at ran-
dom, and let the multi-sets � and �clean contain respectively
{ai |1 ≤ i ≤ ρn1n2} and {ai |1 ≤ i ≤ ρ(1− τ )n1n2}), then

A� :=
ρn1n2∑

i=1

Aai , and A�clean :=
ρ(1−τ )n1n2∑

i=1

Aai ,

corresponding to sampling with replacement. Besides,
A′� (resp. A′

�clean ) is defined similar to A� (resp.
A�clean ), but with the sum extending only over distinct
samples.

We will establish that exact recovery can be guaranteed, if
we can produce a valid dual certificate as follows.

Lemma 8: Suppose that τ is some small positive constant.
Suppose that the associated sampling operator A�clean obeys

∥∥∥∥PTAPT − 1

ρ (1− τ )
PTA�cleanPT

∥∥∥∥ ≤
1

2
, (57)

and
∥∥A�clean (M)

∥∥
F ≤ 10 log (n1n2)

∥∥A′
�clean (M)

∥∥
F
, (58)

for any matrix M. If there exist a regularization parameter λ
(0 < λ < 1) and a matrix W obeying

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∥∥PT
(
W + λsgn (Se)− UV ∗

)∥∥
F ≤ λ

n2
1n2

2
,

∥∥PT⊥ (W + λsgn (Se))
∥∥ ≤ 1

4 ,

A′
(�clean)⊥

(W) = 0,
∥∥∥A′

�clean (W)
∥∥∥∞ ≤

λ
4 ,

(59)

then Robust-EMaC is exact, i.e. the minimizer
(

M̂, Ŝ
)

satisfies

M̂ = X .
Proof: See Appendix I. �

We note that a reasonably tight bound on∥∥∥PTAPT − 1
ρ(1−τ )PTA�cleanPT

∥∥∥ has been developed
by Lemma 3. Specifically, there exists some constant c1 > 0
such that if ρ (1− τ ) n1n2 > c1μ1csr log (n1n2), then one
has

∥∥∥∥PTAPT − 1

ρ (1− τ )
PTA�cleanPT

∥∥∥∥ ≤
1

2

with probability exceeding 1 − (n1n2)
−4. Besides,

Chernoff bound [57] indicates that with probability exceeding
1 − (n1n2)

−3, none of the entries is sampled more than
10 log (n1n2) times. Equivalently,

P

(
∀M : ∥∥A�clean (M)

∥∥
F ≤ 10 log (n1n2)

∥∥A′
�clean (M)

∥∥
F

)

≥ 1− (n1n2)
−3.

Our objective in the remainder of this section is to produce a
dual matrix W satisfying Condition (59).

B. Construction of Dual Certificate

Suppose that we generate j0 independent random location
multi-sets �clean

j , where �clean
j contains qn1n2 i.i.d. samples

uniformly at random. Here, we set q := (1−τ )ρ
j0

and ε < 1
e .

This way the distribution of the multi-set � is the same as
�clean

1 ∪�clean
2 ∪ · · · ∪�clean

j0
.

We now propose constructing a dual certificate W as
follows:

Construction of a Dual Certificate W via the
Golfing Scheme

1. Set F0 = PT
(
UV ∗ − λsgn (Se)

)
, and

j0 := 5 log 1
ε

n1n2.

2. For every i (1 ≤ i ≤ j0), let
Fi := PT

(
A− 1

q A�clean
i

)
PT (Fi−1) .

3. Set W :=∑ j0
j=1

(
1
q A�clean

j
+A⊥

) (
F j−1

)
.
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Take λ = 1√
m log(n1n2)

. Note that the construction of W

proceeds with a similar procedure as in Section VI-C, except
that F0 and �i are replaced by PT

(
UV ∗ − λsgn (Se)

)
and

�clean
i , respectively.
We will justify that W is a valid dual certificate, by

examining the conditions in (59) step by step.
(1) The first condition requires the term ‖PT (W +

λsgn(Se) − U V ∗)‖F = ‖PT (W − F0)‖F to be reasonably
small. Lemma 3 asserts that there exist some constants
c1, c̃1 > 0 such that if m = ρn1n2 > c1μ1csr log2 (n1n2)
or, equivalently, qi n1n2 > c̃1μ1csr log2 (n1n2), then
∥∥PT

(
F j0

)∥∥
F ≤ ε

∥∥PT
(

F j0−1
)∥∥

F ≤ · · · ≤ ε j0 ‖PT (F0)‖F
≤ 1

n5
1n5

2

(∥∥U V ∗
∥∥

F + λ ‖sgn (Se)‖F
)

≤ 1

n5
1n5

2

(√
r + λn1n2

)
<

1

n5
1n5

2

(n1n2 + λn1n2)

≤ λ

n2
1n2

2

(60)

with probability exceeding 1 − (n1n2)
−3. Apply the same

argument as for (40) to derive

−PT (W − F0) = PT
(

F j0

)
.

Plugging this into (60) establishes that
∥∥PT

(
W + λsgn (Se)− U V ∗

)∥∥
F =

∥∥PT
(
F j0

)∥∥
F

≤ λ

n2
1n2

2

. (61)

(2) The second condition relies on an upper bound on∥∥PT⊥ (W + λsgn (Se))
∥∥. To this end, we proceed by control-

ling
∥∥PT⊥ (W)

∥∥ and
∥∥PT⊥ (λsgn (Se))

∥∥ separately. Applying
the same argument as for (52) suggests
∥∥∥∥PT⊥

(
1

q
A�l +A⊥

)
PT (Fl−1)

∥∥∥∥

≤
(

1

2

)l−1
(√

log (n1n2)

q
· ‖F0‖A,2 +

log (n1n2)

q
‖F0‖A,∞

)

≤
(

1

2

)l−1
(√

n1n2 log (n1n2)

q
+ log (n1n2)

q

)
· ‖F0‖A,∞

≤
(

1

2

)l−2 n1n2 log (n1n2)√
m

‖F0‖A,∞ , (62)

where the second inequality follows since ‖M‖A,2 ≤√
n1n2 ‖M‖A,∞, and the last inequality arises from the fact

that

log (n1n2)

q
≤
√

n1n2 log (n1n2)

q
= n1n2 log (n1n2)√

m

when m � log2 (n1n2). Note that F0 = U V ∗ −
λPT (sgn (Se)). Since we have established an upper bound
on
∥∥UV ∗

∥∥A,∞ in (53), what remains to be controlled is
‖PT (sgn (Se))‖A,∞. This is achieved by the following lemma.

Lemma 9: Suppose that s is a positive constant. then one
has

‖PT (sgn (Se))‖A,∞ ≤ c9
μ1csr

n1n2

√
mτ log (n1n2)

for some constant c9 > 0 with probability at least
1− (n1n2)

−4.
Proof: See Appendix J. �

From (53) and Lemma 9, we have

‖F0‖A,∞ ≤
∥∥U V∗

∥∥A,∞ + λ ‖PT (sgn (Se))‖A,∞

≤ μ1csr

n1n2
+ c9μ1csr

√
τ

n1n2
≤ c̃9μ1csr

n1n2
, (63)

and substitute (63) into (62) we have
∥∥∥∥PT⊥

(
1

q
A�l +A⊥

)
PT (Fl−1)

∥∥∥∥

≤
(

1

2

)l−2 c̃9μ1csr log (n1n2)√
m

.

In particular, if m > c8μ
2
1c2

s r2 log2 (n1n2) for some large
enough constant c8, then one has

∥∥∥∥PT⊥

(
1

q
A�l +A⊥

)
PT (Fl−1)

∥∥∥∥ ≤
(

1

2

)l+4

.

As a result, we can obtain

∥∥PT⊥ (W)
∥∥ ≤

j0∑

i=1

∥∥∥∥PT⊥

(
1

q
A�clean

i
+A⊥

)
PT (Fi−1)

∥∥∥∥

≤
j0∑

i=0

(
1

2

)i+4

<
1

8
(64)

with probability exceeding 1− (n1n2)
−4.

It remains to control the term
∥∥PT⊥ (λsgn (Se))

∥∥, which is
supplied in the following lemma.

Lemma 10: Suppose that τ is a small positive constant,
then one has

⎧
⎨

⎩
‖sgn (Se)‖ ≤

√
c10ρτn1n2 log

1
2 (n1n2),∥∥∥PT⊥

(
1
q A�l +A⊥

)
PT (Fl−1)

∥∥∥ ≤ 1
8 ,

(65)

with probability at least 1− (n1n2)
−5.

Proof: See Appendix K. �
Putting (64) and (65) together yields
∥∥PT⊥ (W + λsgn (Se))

∥∥ ≤ ∥∥PT⊥ (W)
∥∥+ ∥∥PT⊥ (λsgn (Se))

∥∥

≤ 1

4

with high probability.
(3) By construction, one has A′

(�clean)⊥
(W) = 0.

(4) The last step is to bound
∥∥∥A′

�clean (W)
∥∥∥∞, which is

apparently bounded above by
∥∥A�clean (W)

∥∥∞. The construc-
tion procedure together with Lemma 6 allows us to bound

‖Fi‖A,∞ ≤ c4

(√
μ1csr log (n1n2)

qn1n2
·
√

μ1csr

n1n2
‖Fi−1‖A,2

+ c4
μ1csr log (n1n2)

qn1n2
‖Fi−1‖A,∞

)

≤ c4

(√
μ1csr log (n1n2)

qn1n2

√
μ1csr + μ1csr log (n1n2)

qn1n2

)
∥∥Fi−1

∥∥A,∞
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≤ 2c4μ1csr

√
log (n1n2)

qn1n2
‖Fi−1‖A,∞ ,

where the second inequality arises since ‖Fi‖A,2 ≤√
n1n2 ‖Fi‖A,∞, and the last step follows since

√
log(n1n2)

qn1n2
≥

log(n1n2)
qn1n2

when m � log2 (n1n2). Then there exists some
constant c11 > 0 such that if m > c11μ

2
1c2

s r2 log2 (n1n2),
then

‖Fi‖A,∞ ≤ 1

4
‖Fi−1‖A,∞ ≤

1

4i
‖F0‖A,∞ ≤ c̃9μ1csr

4i n1n2
,

where the last inequality follows from (63). As a result, one
can deduce

∥∥A�clean (W)
∥∥∞ =

∥∥∥∥∥∥

j0∑

i=1

A�clean

(
1

q
A�clean

i
+A⊥

)
Fi−1

∥∥∥∥∥∥∞

=
∥∥∥∥∥∥

j0∑

i=1

1

q
A�clean

i
Fi−1

∥∥∥∥∥∥∞

≤
j0∑

i=1

1

q
max

(k,l)∈[n1]×[n2]

∣∣〈A(k,l), Fi−1
〉∣∣

√
ωk,l

=
j0∑

i=1

1

q
‖Fi−1‖A,∞

≤
j0∑

i=1

5 log (n1n2)

ρ

c̃9μ1csr

4i−1n1n2

≤ 20 log (n1n2) c̃9μ1csr

3m
≤ 1

4
√

m log (n1n2)
,

where the last inequality is obtained by setting
m > c12μ

2
1c2

s r2 log3 (n1n2) for some constant c12 > 0.
To sum up, we have verified that W satisfies the four

conditions required in (59), and is hence a valid dual cer-
tificate. This concludes the proof.

VIII. CONCLUDING REMARKS

We present an efficient algorithm to estimate a spectrally
sparse signal from its partial time-domain samples that does
not require prior knowledge on the model order, which poses
spectral compressed sensing as a low-rank Hankel structured
matrix completion problem. Under mild incoherence condi-
tions, our algorithm enables recovery of the multi-dimensional
unknown frequencies with infinite precision, which remedies
the basis mismatch issue that arises in conventional CS par-
adigms. We have shown both theoretically and numerically
that our algorithm is stable against bounded noise and a con-
stant proportion of arbitrary corruptions, and can be extended
numerically to tasks such as super resolution. To the best of
our knowledge, our result on Hankel matrix completion is also
the first theoretical guarantee that is close to the information-
theoretical limit (up to some logarithmic factor).

Our results are based on uniform random observation
models. In particular, this paper considers directly taking a
random subset of the time domain samples, it is also possible
to take a random set of linear mixtures of the time domain
samples, as in the renowned CS setting [14]. This again can
be translated into taking linear measurements of the low-rank
K -fold Hankel matrix, given as y = B(Xe). Unfortunately,

due to the Hankel structures, it is not clear whether B exhibits
approximate isometry property. Nonetheless, the technique
developed in this paper can be extended without difficulty to
analyze linear measurements, in a similar flavor of a golfing
scheme developed for CS in [21].

It remains to be seen whether it is possible to obtain
performance guarantees of the proposed EMaC algorithm
similar to that in [24] for super resolution. It is also of great
interest to develop efficient numerical methods to solve the
EMaC algorithm in order to accommodate large datasets.

APPENDIX A
BERNSTEIN INEQUALITY

Our analysis relies heavily on the Bernstein inequality.
To simplify presentation, we state below a user-friendly
version of Bernstein inequality, which is an immediate
consequence of [58, Th. 1.6].

Lemma 11: Consider m independent random matrices Ml

(1 ≤ l ≤ m) of dimension d1×d2, each satisfying E [M l] = 0
and ‖Ml‖ ≤ B. Define

σ 2 := max

{∥∥∥∥∥

m∑

l=1

E
[
M l M∗l

]
∥∥∥∥∥ ,

∥∥∥∥∥

m∑

l=1

E
[
M∗l Ml

]
∥∥∥∥∥

}
.

Then there exists a universal constant c0 > 0 such that for
any integer a ≥ 2,
∥∥∥∥∥

m∑

l=1

M l

∥∥∥∥∥ ≤ c0

(√
aσ 2 log (d1 + d2)+ a B log (d1 + d2)

)

(66)

with probability at least 1− (d1 + d2)
−a.

APPENDIX B
PROOF OF LEMMA 1

Consider any valid perturbation H obeying
P� (X + H) = P� (X), and denote by He the enhanced
form of H . We note that the constraint requires
A′� (He) = 0 (or A� (He) = 0) and A⊥ (He) = 0.
In addition, set Z0 = PT⊥ (B) for any B that satisfies〈
B,PT⊥ (He)

〉 = ∥∥PT⊥ (He)
∥∥∗ and ‖B‖ ≤ 1. Therefore,

Z0 ∈ T⊥ and ‖Z0‖ ≤ 1, and hence U V ∗ + Z0 is a
sub-gradient of the nuclear norm at Xe. We will establish
this lemma by considering two scenarios separately.

(1) Consider first the case in which He satisfies

‖PT (He)‖F ≤
n2

1n2
2

2

∥∥PT⊥ (He)
∥∥

F . (67)

Since UV ∗ + Z0 is a sub-gradient of the nuclear norm at
Xe, it follows that

‖Xe + He‖∗ ≥ ‖Xe‖∗ +
〈
UV ∗ + Z0, He

〉

= ‖Xe‖∗ + 〈W , He〉 + 〈Z0, He〉
− 〈W − U V ∗, He

〉

= ‖Xe‖∗ +
〈(
A′� +A⊥

)
(W), He

〉

+〈Z0, He〉 −
〈
W − UV ∗, He

〉
(68)

≥ ‖Xe‖∗ +
∥∥PT⊥ (He)

∥∥∗ −
〈
W − UV ∗, He

〉
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(69)

where (68) holds from (32), and (69) follows from the property
of Z0 and the fact that

(A′� +A⊥) (He) = 0. The last term
of (69) can be bounded as
〈
W − UV ∗, He

〉

= 〈PT
(
W − U V ∗

)
, He

〉+ 〈PT⊥
(
W − U V∗

)
, He

〉

≤ ∥∥PT
(
W − UV ∗

)∥∥
F ‖PT (He)‖F

+ ∥∥PT⊥ (W)
∥∥ ∥∥PT⊥ (He)

∥∥∗
≤ 1

2n2
1n2

2

‖PT (He)‖F +
1

2

∥∥PT⊥ (He)
∥∥∗ ,

where the last inequality follows from the assumptions (33)
and (34). Plugging this into (69) yields

‖Xe + He‖∗
≥ ‖Xe‖∗ − 1

2n2
1n2

2

‖PT (He)‖F + 1

2

∥∥PT⊥ (He)
∥∥∗ (70)

≥ ‖Xe‖∗ − 1

4

∥∥PT⊥ (He)
∥∥

F +
1

2

∥∥PT⊥ (He)
∥∥

F (71)

≥ ‖Xe‖∗ + 1

4

∥∥PT⊥ (He)
∥∥

F

where (71) follows from the inequality ‖M‖∗ ≥ ‖M‖F
and (67). Therefore, Xe is the minimizer of EMaC.

We still need to prove the uniqueness of the minimizer.
The inequality (71) implies that ‖Xe + He‖∗ = ‖Xe‖∗
holds only when

∥∥PT⊥ (He)
∥∥

F = 0. If
∥∥PT⊥ (He)

∥∥
F = 0,

then ‖PT (He)‖F ≤ n2
1n2

2
2

∥∥PT⊥ (He)
∥∥

F = 0, and hence
PT⊥ (He) = PT (He) = 0, which only occurs when He = 0.
Hence, Xe is the unique minimizer in this situation.

(2) On the other hand, consider the complement scenario
where the following holds

‖PT (He)‖F ≥
n2

1n2
2

2

∥∥PT⊥ (He)
∥∥

F . (72)

We would first like to bound
∥∥( n1n2

m A� +A⊥)PT (He)
∥∥

F and∥∥( n1n2
m A� +A⊥)PT⊥ (He)

∥∥
F. The former term can be lower

bounded by
∥∥∥
(n1n2

m
A� +A⊥

)
PT (He)

∥∥∥
2

F

=
〈(n1n2

m
A� +A⊥

)
PT (He),

(n1n2

m
A� +A⊥

)
PT (He)

〉

=
〈n1n2

m
A�PT (He),

n1n2

m
A�PT (He)

〉

+
〈
A⊥PT (He),A⊥PT (He)

〉

≥
〈
PT (He),

n1n2

m
A�PT (He)

〉
+
〈
PT (He),A⊥PT (He)

〉

=
〈
PT (He),PT

(n1n2

m
A� +A⊥

)
PT (He)

〉

= 〈PT (He),PT (He)〉
+
〈
PT (He),

(n1n2

m
PT A�PT − PTAPT

)
PT (He)

〉

≥ ‖PT (He)‖2F −
∥∥∥PT APT − n1n2

m
PT A�PT

∥∥∥ ‖PT (He)‖2F
≥
(

1−
∥∥∥PT APT − n1n2

m
PTA�PT

∥∥∥
)
‖PT (He)‖2F

≥ 1

2
‖PT (He)‖2F . (73)

On the other hand, since the operator norm of any projection
operator is bounded above by 1, one can verify that

∥∥∥
n1n2

m
A� +A⊥

∥∥∥ ≤ n1n2

m

(∥∥∥Aa1 +A⊥
∥∥∥+

m∑

i=2

∥∥Aai

∥∥
)

≤ n1n2,

where ai (1 ≤ i ≤ m) are m uniform random indices that
form �. This implies the following bound:
∥∥∥
(n1n2

m
A� +A⊥

)
PT⊥ (He)

∥∥∥
F
≤ n1n2

∥∥PT⊥ (He)
∥∥

F

≤ 2

n1n2
‖PT (He)‖F,

where the last inequality arises from our assumption.
Combining this with the above two bounds yields

0 =
∥∥∥
(n1n2

m
A� +A⊥

)
(He)

∥∥∥
F

≥
∥∥∥
(n1n2

m
A� +A⊥

)
PT (He)

∥∥∥
F

−
∥∥∥
(n1n2

m
A� +A⊥

)
PT⊥ (He)

∥∥∥
F

≥
√

1

2
‖PT (He)‖F − 2

n1n2
‖PT (He)‖F

≥ 1

2
‖PT (He)‖F ≥

n2
1n2

2

4

∥∥PT⊥ (He)
∥∥

F ≥ 0,

which immediately indicates PT⊥ (He) = 0 and PT (He) = 0.
Hence, (72) can only hold when He = 0.

APPENDIX C
PROOF OF LEMMA 2

Since U (resp. V ) and EL (resp. ER) determine the same
column (resp. row) space, we can write

UU∗ = EL
(

E∗L EL
)−1 E∗L,

V V ∗ = E∗R
(
ER E∗R

)−1 ER,

and thus
∥∥PU

(
A(k,l)

)∥∥2
F ≤

∥∥∥EL
(
E∗L EL

)−1 E∗L A(k,l)

∥∥∥
2

F

≤ 1

σmin
(
E∗L EL

)
∥∥E∗L A(k,l)

∥∥2
F ,

and
∥∥PV

(
A(k,l)

)∥∥2
F ≤

∥∥∥A(k,l) E∗R
(

ER E∗R
)−1 ER

∥∥∥
2

F

≤ 1

σmin
(
ER E∗R

)
∥∥A(k,l) E∗R

∥∥2
F .

Note that
√

ωk,l E∗L A(k,l) consists of ωk,l columns of E∗L (and
hence it contains rωk,l nonzero entries in total). Owing to the
fact that each entry of E∗L has magnitude 1√

k1k2
, one can derive

∥∥E∗L A(k,l)
∥∥2

F =
1

ωk,l
· rωk,l · 1

k1k2
= r

k1k2
≤ rcs

n1n2
.

A similar argument yields
∥∥A(k,l) E∗R

∥∥2
F ≤ csr

n1n2
. Combining

σmin
(

E∗L EL
) ≥ 1

μ1
and σmin

(
ER E∗R

) ≥ 1
μ1

, (35) follows by
plugging these facts into the above equations.
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To show (36), since |〈Ab,PT (Aa)〉| = |〈PT (Ab), Aa〉|, we
only need to examine the situation where ωb < ωa . Observe
that

|〈Ab,PT Aa〉| ≤
∣∣〈Ab, UU∗Aa

〉∣∣+ ∣∣〈Ab, Aa V V ∗
〉∣∣

+ ∣∣〈Ab, UU∗AaV V ∗
〉∣∣.

Owing to the multi-fold Hankel structure of Aa , the matrix
UU∗√ωa Aa consists of ωa columns of UU∗. Since there are
only ωb nonzero entries in Ab each of magnitude 1√

ωb
, we

can derive
∣∣〈Ab, UU∗Aa

〉∣∣ ≤ ‖Ab‖1
∥∥UU∗Aa

∥∥∞
= ωb · 1√

ωb
·max

α,β

∣∣∣
(
UU∗Aa

)
α,β

∣∣∣

≤
√

ωb

ωa
max
α,β

∣∣∣
(
UU∗

)
α,β

∣∣∣.

Each entry of UU∗ is bounded in magnitude by
∣∣∣
(
UU∗

)
k,l

∣∣∣ =
∣∣∣e�k EL

(
E∗L EL

)−1 E∗Lel

∣∣∣

≤
∥∥∥e�k EL

∥∥∥
F

∥∥∥
(

E∗L EL
)−1
∥∥∥
∥∥E∗Lel

∥∥
F

≤ r

k1k2

1

σmin
(

E∗L EL
) ≤ μ1csr

n1n2
, (74)

which immediately implies that
∣∣〈Ab, UU∗Aa

〉∣∣ ≤
√

ωb
ωa

μ1csr
n1n2

. (75)

Similarly, one can derive

∣∣〈Ab, AaV V ∗
〉∣∣ ≤

√
ωb

ωa

μ1csr

n1n2
. (76)

We still need to bound the magnitude of
〈
UU∗Aa V V∗, Ab

〉
.

One can observe that for the kth row of UU∗:
∥∥∥e�k UU∗

∥∥∥
F
≤
∥∥∥e�k EL

(
E∗L EL

)−1 E∗L
∥∥∥

F

≤
∥∥∥e�k EL

∥∥∥
F

∥∥∥
(

E∗L EL
)−1 E∗L

∥∥∥ ≤
√

μ1csr

n1n2
.

Similarly, for the lth column of V V ∗, one has ‖V V ∗el‖F ≤√
μ1csr
n1n2

. The magnitude of the entries of UU∗AaV V ∗ can
now be bounded by

∣∣∣
(
UU∗Aa V V ∗

)
k,l

∣∣∣ ≤ ‖Aa‖
∥∥∥e�k UU∗

∥∥∥
F

∥∥V V∗el
∥∥

F

≤ 1√
ωa

μ1csr

n1n2
,

where we used ‖Aa‖ = 1/
√

ωa . Since Ab has only ωb nonzero
entries each has magnitude 1√

ωb
, one can verify that

∣∣〈UU∗Aa V V ∗, Ab
〉∣∣ ≤

(
max

k,l

∣∣∣
(
UU∗AaV V ∗

)
k,l

∣∣∣
)
· ωb√

ωb

=
√

ωb

ωa

μ1csr

n1n2
. (77)

The above bounds (75), (76) and (77) taken together lead
to (36).

APPENDIX D
PROOF OF LEMMA 3

Define a family of operators

Z(k,l) := n1n2

m
PTA(k,l)PT − 1

m
PTAPT .

for any (k, l) ∈ [n1]×[n2]. For any matrix M, we can compute

PTA(k,l)PT (M) = PT
(〈

A(k,l),PT M
〉

A(k,l)
)

= PT
(

A(k,l)
) 〈PT

(
A(k,l)

)
, M
〉
, (78)

and hence
(PTA(k,l)PT

)2
(M)

= [PTA(k,l)PT
(

A(k,l)
)] 〈PT

(
A(k,l)

)
, M
〉

= 〈A(k,l),PT
(

A(k,l)
)〉PT

(
A(k,l)

) 〈PT
(

A(k,l)
)
, M
〉

= ∥∥PT
(

A(k,l)
)∥∥2

F PTA(k,l)PT (M)

≤ 2μ1csr

n1n2
PTA(k,l)PT (M),

where the last inequality follows from (37). This further gives

∥∥PTA(k,l)PT
∥∥ ≤ 2μ1csr

n1n2
. (79)

Let ai (1 ≤ i ≤ m) be m independent indices uniformly
drawn from [n1] × [n2], then we have E

[Zai

] = 0 and

∥∥Zai

∥∥ ≤ 2 max
(k,l)∈[n1]×[n2]

n1n2

m

∥∥PT A(k,l)PT
∥∥ ≤ 4μ1csr

m
.

following from (79). Further,

E

[
Z2

ai

]
= E

(n1n2

m
PTAaiPT

)2 −
(
E

[n1n2

m
PTAaiPT

])2

= n2
1n2

2

m2 E
(PTAaiPT

)2 − 1

m2 (PTAPT )2,

We can then bound the operator norm as

m∑

i=1

∥∥∥E
[
Z2

ai

]∥∥∥ ≤
m∑

i=1

n2
1n2

2

m2

∥∥∥E
(PTAaiPT

)2∥∥∥

+ 1

m

∥∥∥(PTAPT )2
∥∥∥

≤ n2
1n2

2

m

2μ1csr

n1n2

∥∥E
[PTAaiPT

]∥∥+ 1

m
(80)

= 2μ1csrn1n2

m

1

n1n2
‖PTAPT ‖ + 1

m2

≤ 4μ1csr

m
, (81)

where (80) uses (79). Applying Lemma 11 yields that there
exists some constant 0 < ε ≤ 1

2 such that
∥∥∥∥∥

m∑

i=1

Zai

∥∥∥∥∥ ≤ ε

with probability exceeding 1 − (n1n2)
−4, provided that m >

c1μ1csr log (n1n2) for some universal constant c1 > 0.
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APPENDIX E
PROOF OF LEMMA 4

Suppose that A� = ∑m
i=1 Aai , where ai , 1 ≤ i ≤ m,

are m independent indices drawn uniformly at random from
[n1] × [n2]. Define

S(k,l) := n1n2

m
A(k,l) (M)− 1

m
A (M), (k, l) ∈ [n1]× [n2],

which obeys E
[
Sai

] = 0 and

(n1n2

m
A� −A

)
(M) :=

m∑

i=1

Sai .

In order to apply Lemma 11, one needs to bound
‖E[∑m

i=1 Sai S∗ai
]‖ and ‖Sai‖, which we tackle separately in

the sequel. Observe that

0 � S(k,l) S∗(k,l) =
(

n1n2

m
A(k,l) (M)− 1

m
A (M)

)

·
(

n1n2

m
A(k,l) (M)− 1

m
A (M)

)∗

�
(n1n2

m

)2 A(k,l) (M)
(A(k,l) (M)

)∗

=
(n1n2

m

)2 ∣∣〈A(k,l), M
〉∣∣2 A(k,l) · A�(k,l)

�
(n1n2

m

)2
∣∣〈A(k,l), M

〉∣∣2

ωk,l
I ,

where the first inequality follows since 1
m

∑
k,l A(k,l) (M) =

1
mA (M), and the last inequality arises from the fact that all
non-zero entries of A(k,l) · A�(k,l) lie on its diagonal and are
bounded in magnitude by 1

ωk,l
. This immediately suggests

∥∥∥∥∥E
[

m∑

i=1

Sai S∗ai

]∥∥∥∥∥ =
m

n1n2

∥∥∥∥∥∥

∑

(k,l)∈[n1]×[n2]
S(k,l) S∗(k,l)

∥∥∥∥∥∥

≤ m

n1n2

∥∥∥∥∥∥

(n1n2

m

)2

⎛

⎝
∑

(k,l)∈[n1]×[n2]

∣∣〈A(k,l), M
〉∣∣2

ωk,l

⎞

⎠ I

∥∥∥∥∥∥

= n1n2

m
‖M‖2A,2 , (82)

where the last equality follows from the definition of ‖M‖A,2.
Following the same argument, one can derive the same bound
for
∥∥E
[∑m

i=1 S∗ai
Sai

]∥∥ as well.
On the other hand, the operator norm of each S(k,l) can be

bounded as follows
∥∥S(k,l)

∥∥ ≤
∥∥∥

n1n2

m
A(k,l) (M)

∥∥∥+
∥∥∥∥

1

m
A (M)

∥∥∥∥

≤ 2 max
(k,l)∈[n1]×[n2]

∥∥∥
n1n2

m
A(k,l) (M)

∥∥∥

= 2n1n2

m
max

(k,l)∈[n1]×[n2]

∥∥〈A(k,l), M
〉

A(k,l)
∥∥

= 2n1n2

m
max

(k,l)∈[n1]×[n2]

∣∣∣∣∣

〈
A(k,l), M

〉
√

ωk,l

∣∣∣∣∣

= 2n1n2

m
‖M‖A,∞ , (83)

where (83) holds since
∥∥A(k,l)

∥∥ = 1√
ωk,l

and the last equality
follows by applying the definition of ‖·‖A,∞.

Finally, we combine the above two bounds together with
Bernstein inequality (Lemma 11) to obtain

∥∥∥
(n1n2

m
A� −A

)
(M)

∥∥∥ ≤ c2

√
n1n2 log (n1n2)

m
‖M‖A,2

+ c2
2n1n2 log (n1n2)

m
‖M‖A,∞

with high probability, where c2 > 0 is some absolute constant.

APPENDIX F
PROOF OF LEMMA 5

Write A� = ∑m
i=1 Aai , where ai (1 ≤ i ≤ m) are m

independent indices uniformly drawn from [n1]×[n2]. By the
definition of ‖M‖A,2, we need to examine the components

1√
ωk,l

〈
A(k,l),

(n1n2

m
PTA� − PTA

)
(M)

〉

for all (k, l) ∈ [n1] × [n2].
Define a set of variables z(α,β)’s to be

z(k,l)
(α,β) :=

1√
ωk,l

〈
A(k,l),

n1n2

m
PT A(α,β) (M)− 1

m
PT A (M)

〉
,

(84)

thus resulting in

1√
ωk,l

〈
A(k,l),

(n1n2

m
PTA� − PTA

)
(M)

〉
:=

m∑

i=1

z(k,l)
ai

.

The definition of ‖M‖A,2 allows us to express

∥∥∥
(n1n2

m
PTA� − PTA

)
(M)

∥∥∥
A,2
=
∥∥∥∥∥

m∑

i=1

zai

∥∥∥∥∥
2

, (85)

where z(α,β)’s are defined to be n1n2-dimensional vectors

z(α,β) :=
[
z(k,l)
(α,β)

]

(k,l)∈[n1]×[n2]
, (α, β) ∈ [n1]× [n2] .

For any random vector v ∈ V , one can easily bound
‖v − Ev‖2 ≤ 2 supṽ∈V ‖ṽ‖2. Observing that E

[
z(α,β)

] = 0,
we can bound

∥∥z(α,β)

∥∥
2 ≤ 2

√√√√
∑

k,l

1

ωk,l

∣∣∣∣

〈
A(k,l),

2n1n2

m
PTA(α,β) (M)

〉∣∣∣∣
2

= 2n1n2

m

√√√√
∑

k,l

1

ωk,l

∣∣〈A(k,l),PT
(

A(α,β)

) 〈
A(α,β), M

〉〉∣∣2

= 2n1n2

m

∣∣〈A(α,β), M
〉∣∣

√
ωα,β

√√√√∑

k,l

ωα,β

∣∣〈A(k,l),PT
(

A(α,β)

)〉∣∣2

ωk,l

≤ 2n1n2

m

∣∣〈A(α,β), M
〉∣∣

√
ωα,β

√
μ5r

n1n2

= 2

√
n1n2

m
· μ5r

m

∣∣〈A(α,β), M
〉∣∣

√
ωα,β

, (86)
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where (86) follows from the definition of μ5 in (45). Now it
follows that

∥∥zai

∥∥
2 ≤ max

α,β

∥∥z(α,β)

∥∥
2

≤ max
α,β

2

√
n1n2

m
· μ5r

m

∣∣〈A(α,β), M
〉∣∣

√
ωα,β

≤ 2

√
n1n2

m
· μ5r

m
‖M‖A,∞ , (87)

where (87) follows from (42). On the other hand,
∣∣∣∣∣E
[

m∑

i=1

z∗ai
zai

]∣∣∣∣∣ =
m

n1n2

∑

α,β

‖z(α,β)‖22

≤ m

n1n2

∑

α,β

4
n1n2

m
· μ5r

m

∣∣〈A(α,β), M
〉∣∣2

ωα,β

= 4μ5r

m
‖M‖2A,2 ,

which again follows from (43). Since zai ’s are vectors, we
immediately obtain

∥∥E
[∑m

i=1 zai z∗ai

]∥∥ = ∣∣E [∑m
i=1 z∗ai

zai

]∣∣.
Applying Lemma 11 then suggests that
∥∥∥
(n1n2

m
PTA� − PTA

)
(M)

∥∥∥
A,2

≤ c3

√
μ5r log (n1n2)

m
‖M‖A,2

+ c3

√
n1n2

m
· μ5r

m
log (n1n2) ‖M‖A,∞

with high probability for some numerical constant c3 > 0,
which completes the proof.

APPENDIX G
PROOF OF LEMMA 6

From Appendix F, it is straightforward that

∥∥∥
(n1n2

m
PTA� − PTA

)
(M)

∥∥∥
A,∞
= max

k,l

∣∣∣∣∣

m∑

i=1

z(k,l)
ai

∣∣∣∣∣ , (88)

where z(k,l)
ai ’s are defined as (84). Using similar techniques

as (86), we can obtain
∣∣∣z(k,l)

(α,β)

∣∣∣ ≤ 2 max
k,l

∣∣〈A(k,l),
n1n2

m PT
(

A(α,β)

) 〈
A(α,β), M

〉〉∣∣
√

ωk,l

≤ 2 max
k,l

(
1√
ωk,l

√
ωk,l

ωα,β

3μ1csr

n1n2

)
n1n2

m

∣∣〈A(α,β), M
〉∣∣

= 6μ1csr

m

1√
ωα,β

∣∣〈A(α,β), M
〉∣∣ ,

where we have made use of the fact (36). As a result, one has
∣∣∣z(k,l)

(α,β)

∣∣∣ ≤ 6μ1csr

m
‖M‖A,∞

and

E

[
m∑

i=1

|z(k,l)
ai
|2
]
= m

n1n2

∑

α,β

∣∣∣z(k,l)
(α,β)

∣∣∣
2

≤ m

n1n2

(
6μ1csr

m

)2∑

α,β

1

ωα,β

∣∣〈A(α,β), M
〉∣∣2

= 36μ2
1c2

s r2

mn1n2
‖M‖2A,2.

The Bernstein inequality in Lemma 11 taken collectively
with the union bound yields that
∥∥∥
(n1n2

m
PTA� − PTA

)
(M)

∥∥∥
A,∞

≤ c4

√
μ1csr log (n1n2)

m
·
√

μ1csr

n1n2
‖M‖A,2

+ c4
μ1csr log (n1n2)

m
‖M‖A,∞

with high probability for some constant c4 > 0, completing
the proof.

APPENDIX H
PROOF OF LEMMA 7

To bound
∥∥U V∗

∥∥A,∞, observe that there exists a unitary
matrix B such that

U V∗ = EL
(
E∗L EL

)− 1
2 B

(
ER E∗R

)− 1
2 ER.

For any (k, l) ∈ [n1] × [n2], we can then bound
∣∣∣
(
UV ∗

)
k,l

∣∣∣ =
∣∣∣∣e
�
k EL

(
E∗L EL

)− 1
2 B

(
ER E∗R

)− 1
2 ERel

∣∣∣∣

≤
∥∥∥e�k EL

∥∥∥
F

∥∥∥∥
(

E∗L EL
)− 1

2

∥∥∥∥ ‖B‖
∥∥∥∥
(
E∗R ER

)− 1
2

∥∥∥∥ ‖ERel‖F
≤
√

r

k1k2
μ1

√
r

(n1 − k1 + 1) (n2 − k2 + 1)
≤ μ1csr

n1n2
.

Since A(k,l) has only ωk,l nonzero entries each of magnitude
1√
ωk,l

, this leads to

∥∥UV ∗
∥∥A,∞ =

1

ωk,l

∣∣∣∣∣∣

∑

(α,β)∈�e(k,l)

(
U V∗

)
α,β

∣∣∣∣∣∣

≤ maxk,l

∣∣∣
(
U V ∗

)
k,l

∣∣∣ ≤ μ1csr

n1n2
.

The rest is to bound
∥∥U V ∗

∥∥A,2 and
∥∥PT

(√
ωk,l A(k,l)

)∥∥A,2.
Observe that the i th row of UV ∗ obeys

∥∥∥e�i U V ∗
∥∥∥

2

F
=
∥∥∥e�i U

∥∥∥
2

F
=
∥∥∥∥e�i EL

(
E∗L EL

)− 1
2

∥∥∥∥
2

F

≤
∥∥∥e�i EL

∥∥∥
2

F

∥∥∥
(

E∗L EL
)−1
∥∥∥

≤ μ1

∥∥∥e�i EL

∥∥∥
2

F
≤ μ1csr

n1n2
. (89)

That said, the total energy allocated to any row of UV ∗ cannot
exceed μ1csr

n1n2
.

Moreover, the matrix PT
(√

ωα,β A(α,β)

)
enjoys similar

properties as well, which we briefly reason as follows. First,
the matrix UU∗

(√
ωα,β A(α,β)

)
obeys

∥∥∥e�i UU∗
(√

ωα,β A(α,β)

)∥∥∥
2

F
≤
∥∥∥e�i U

∥∥∥
2

F

∥∥U∗
∥∥2 ∥∥√ωα,β A(α,β)

∥∥2

≤ μ1csr

n1n2
,
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since the operator norm of U and
√

ωα,β A(α,β)

are both bounded by 1. The same bound for√
ωα,β A(α,β)V V ∗ can be demonstrated via the same

argument as for UU∗(√ωα,β A(α,β)). Additionally, for
UU∗(√ωα,β A(α,β))V V ∗ one has

∥∥∥e�i UU∗
(√

ωα,β A(α,β)

)
V V ∗

∥∥∥
2

F

≤
∥∥∥e�i U

∥∥∥
2

F

∥∥U∗
∥∥2 ∥∥V V ∗

∥∥2 ∥∥√ωα,β A(α,β)

∥∥2

≤ μ1csr

n1n2
.

By definition of PT ,

∥∥∥e�i PT
(√

ωα,β A(α,β)

)∥∥∥
2

F
≤ 3

∥∥∥e�i UU∗
(√

ωα,β A(α,β)

)∥∥∥
2

F

+ 3
∥∥∥e�i

(√
ωα,β A(α,β)

)
V V ∗

∥∥∥
2

F

+ 3
∥∥∥e�i UU∗

(√
ωα,β A(α,β)

)
V V ∗

∥∥∥
2

F
≤ 9μ1csr

n1n2
.

Now our task boils down to bounding ‖M‖A,2 for some
matrix M satisfying some energy constraints per row, which
subsumes

∥∥U V ∗
∥∥A,2 and

∥∥PT
(√

ωk,l A(k,l)
)∥∥A,2 as special

cases. We can then conclude the proof by applying the
following lemma.

Lemma 12: Denote by the set M of feasible matrices
satisfying

max
i

∥∥∥e�i M
∥∥∥

2

F
≤ 9μ1csr

n1n2
. (90)

Then there exists some universal constant c3 > 0 such that

max
M∈M

‖M‖2A,2 ≤ c3
μ1csr

n1n2
log2 (n1n2) . (91)

Proof: For ease of presentation, we split any matrix M
into 4 parts, which are defined as follows

• M (1): the matrix containing all upper triangular
components of all upper triangular blocks of M;

• M (2): the matrix containing all lower triangular
components of all upper triangular blocks of M;

• M (3): the matrix containing all upper triangular
components of all lower triangular blocks of M;

• M (4): the matrix containing all lower triangular
components of all lower triangular blocks of M.

Here, we use the term “upper triangular” and “lower trian-
gular” in short for “left upper triangular” and “right lower
triangular”, which are more natural for Hankel matrices.
Instead of maximizing ‖M‖A,2 directly, we will handle
maxM∈M ‖M (l)‖2A,2 for each 1 ≤ l ≤ 4 separately, owing
to the fact that

max
M∈M

‖M‖2A,2 ≤ 4 max
M: M(l)∈M

∥∥∥M (l)
∥∥∥

2

A,2
. (92)

In the sequel, we only demonstrate how to control ‖M (1)‖A,2.
Similar bounds can be derived for ‖M(l)‖A,2 (2 ≤ l ≤ 4) via
very similar argument.

To facilitate analysis, we divide the entire index set into
several subsets Wi, j such that for all 1 ≤ i ≤ �log (n1)� and
1 ≤ j ≤ �log (n2)�,
Wi, j :=

⋃{
�e(k, l) | (k, l) ∈

[
2i−1, 2i

]
×
[
2 j−1, 2 j

]}
.

(93)

Consequently, for each �e (k, l) ⊆Wi, j , one has

2i−1 · 2 j−1 ≤ ωk,l ≤ 2i+ j .

This allows us to derive for each Wi, j that
∑

(k,l)∈Wi, j

1

ω2
k,l

∣∣∣
∑

(α,β)∈�e(k,l)
M(1)

α,β

∣∣∣
2

≤
∑

(k,l)∈Wi, j

1

ωk,l

∑
(α,β)∈�e(k,l)

∣∣∣M (1)
α,β

∣∣∣
2

(94)

≤ 1

2i+ j−2

∑

(k,l)∈Wi, j

∑
(α,β)∈�e(k,l)

∣∣∣M(1)
α,β

∣∣∣
2
, (95)

where (94) follows from the RMS-AM (root-mean square v.s.
arithmetic mean) inequality.

Observe that the indices contained in Wi, j reside within no
more than 2i · 2 j rows. By assumption (90), the total energy
allocated to Wi, j must be bounded above by

∑

(k,l)∈Wi, j

∑
(α,β)∈�e(k,l)

∣∣∣M(1)
α,β

∣∣∣
2 ≤ 2i · 2 j max

i

∥∥∥e�i M
∥∥∥

2

F

≤ 2i+ j · 9μ1csr

n1n2
.

Substituting it into (95) immediately leads to
∑

(k,l)∈Wi, j

1

ω2
k,l

∣∣∣
∑

(α,β)∈�e(k,l)
M(1)

α,β

∣∣∣
2 ≤ 36μ1csr

n1n2
. (96)

By definition,

‖M‖2A,2 =
∑

1 ≤ i ≤ �log n1�
1 ≤ j ≤ �log n2�

∑

(k,l)∈Wi, j

∣∣∣
∑

(α,β)∈�e(k,l) Mα,β

∣∣∣
2

ω2
k,l

.

Combining the above bounds over all Wi, j then gives
∥∥∥M(1)

∥∥∥
2

A,2
≤ 36μ1csr �log (n1)� · �log (n2)�

n1n2

as claimed. �

APPENDIX I
PROOF OF LEMMA 8

Suppose there is a non-zero perturbation (H, T ) such that
(X + H, S + T) is the optimizer of Robust-EMaC. One
can easily verify that P�⊥ (S + T) = 0, otherwise we can
always set S + T as P� (S + T) to yield a better estimate.
This together with the fact that P�⊥ (S) = 0 implies that
P� (T) = T . Observe that the constraints of Robust-EMaC
indicate

P� (X + S) = P� (X + H + S + T),

⇒ P� (H + T) = 0,
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which is equivalent to requiring A′� (He) = −A′� (T e) =
−T e and A⊥ (He) = 0.

Recall that He and Se are the enhanced forms of H and S,
respectively. Set W0 ∈ T⊥ to be a matrix satisfying〈
W0,PT⊥ (He)

〉 = ∥∥PT⊥ (He)
∥∥∗ and ‖W0‖ ≤ 1, then

U V∗ +W0 is a sub-gradient of the nuclear norm at Xe. This
gives

‖Xe + He‖∗ ≥ ‖Xe‖∗ +
〈
U V ∗ +W0, He

〉

= ‖Xe‖∗ +
〈
U V ∗, He

〉+ ∥∥PT⊥ (He)
∥∥∗. (97)

Owing to the fact that support (S) ⊆ �dirty, one has Se =
A′

�dirty(Se). Combining this and the fact that support(Se +
T e) ⊆ � yields

‖Se + Te‖1 =
∥∥A′

�clean(T e)
∥∥

1 +
∥∥Se +A′

�dirty (T e)
∥∥

1 ,

which further gives

‖Se + T e‖1 − ‖Se‖1
= ∥∥A′

�clean (T e)
∥∥

1 +
∥∥Se +A′

�dirty (T e)
∥∥

1 − ‖Se‖1
≥ ∥∥A′

�clean (T e)
∥∥

1
+ 〈sgn (Se),A′�dirty (T e)

〉
(98)

= ∥∥A′
�clean (T e)

∥∥
1
− 〈sgn (Se),A′�dirty (He)

〉
(99)

= ∥∥A′
�clean (T e)

∥∥
1 −

〈A′
�dirty (sgn (Se)), He

〉

= ∥∥A′
�clean (He)

∥∥
1 − 〈sgn (Se), He〉 . (100)

Here, (98) follows from the fact that sgn(Se) is the sub-
gradient of ‖·‖1 at Se, and (99) arises from the identity
P�dirty (H + T) = 0 and hence A′

�dirty (He) = −A′�dirty (T e).
The inequalities (97) and (100) taken collectively lead to

‖Xe + He‖∗ + λ ‖Se + T e‖1 − (‖Xe‖∗ + λ ‖Se‖1)
≥ 〈U V∗, He

〉+ ∥∥PT⊥ (He)
∥∥∗ + λ

∥∥A′
�clean (He)

∥∥
1

− λ 〈sgn (Se), He〉
≥ − 〈λsgn (Se)− U V∗, He

〉+ ∥∥PT⊥ (He)
∥∥∗

+ λ
∥∥A′

�clean (He)
∥∥

1
. (101)

It remains to show that the right-hand side of (101) cannot
be negative. For a dual matrix W satisfying Conditions (59),
one can derive
〈
λsgn (Se)− UV ∗, He

〉

= 〈W + λsgn (Se)− UV ∗, He
〉− 〈W, He〉

= 〈PT
(
W + λsgn (Se)− U V∗

)
,PT (He)

〉

+ 〈PT⊥
(
W + λsgn (Se)− UV ∗

)
,PT⊥ (He)

〉

− 〈A′
�clean (W),A′

�clean (He)
〉

−
〈
A′

(�clean)⊥
(W),A′

(�clean)⊥
(He)

〉

≤ λ

n2
1n2

2

‖PT (He)‖F +
1

4

∥∥PT⊥ (He)
∥∥∗+

λ

4

∥∥A′
�clean(He)

∥∥
1
,

(102)

where the last inequality follows from the four properties of W
in (59). Since (X + H, S + T) is assumed to be the optimizer,
substituting (102) into (101) then yields

0 ≥ ‖Xe + He‖∗ + λ ‖Se + T e‖1 − (‖Xe‖∗ + λ ‖Se‖1)
(103)

≥ 3

4

∥∥PT⊥ (He)
∥∥∗ +

3

4
λ
∥∥∥A′

�clean (He)
∥∥∥

1

− λ

n2
1n2

2

‖PT (He)‖F

≥ 3

4

∥∥PT⊥ (He)
∥∥∗ +

3

4
λ
∥∥∥A′

�clean (He)
∥∥∥

F

− λ

n2
1n2

2

‖PT (He)‖F , (104)

where (104) arises due to the inequality ‖M‖F ≤ ‖M‖1.
The invertibility condition (57) on PTA�cleanPT is equiva-

lent to∥∥∥∥PT − PT

(
1

ρ (1− τ )
A�clean +A⊥

)
PT

∥∥∥∥ ≤
1

2
,

indicating that

1

2
‖PT (He)‖F ≤

∥∥∥∥PT

(
1

ρ (1− τ )
A�clean +A⊥

)
PT (He)

∥∥∥∥
F

≤ 3

2
‖PT (He)‖F .

One can, therefore, bound ‖PT (He)‖F as follows

‖PT (He)‖F ≤ 2

∥∥∥∥PT

(
1

ρ (1− τ )
A�clean +A⊥

)
PT (He)

∥∥∥∥
F

≤ 2

ρ (1− τ )

∥∥PTA�cleanPT (He)
∥∥

F + 2
∥∥∥PTA⊥PT (He)

∥∥∥
F

≤ 2

ρ (1− τ )

(∥∥PTA�clean (He)
∥∥

F +
∥∥PTA�cleanPT⊥ (He)

∥∥
F

)

+2
∥∥∥PTA⊥ (He)

∥∥∥
F
+ 2

∥∥∥PTA⊥PT⊥ (He)
∥∥∥

F

≤ 2

ρ (1− τ )

(∥∥A�clean (He)
∥∥

F +
∥∥A�cleanPT⊥ (He)

∥∥
F

)

+ 2
∥∥PT⊥ (He)

∥∥
F , (105)

where the last inequality exploit the facts that A⊥ (He) = 0
and ‖PT (M)‖F ≤ ‖M‖F.

Recall that A�clean corresponds to sampling with replace-
ment. Condition (58) together with (105) leads to

‖PT (He)‖F
≤ 20 log (n1n2)

ρ (1− τ )

(∥∥A′
�clean (He)

∥∥
F
+ ∥∥A′

�cleanPT⊥ (He)
∥∥

F

)

+ 2
∥∥PT⊥ (He)

∥∥
F

≤ 20 log (n1n2)

ρ (1− τ )

∥∥A′
�clean (He)

∥∥
F

+
(

20 log (n1n2)

ρ (1− τ )
+ 2

)∥∥PT⊥ (He)
∥∥

F

≤ 20 log (n1n2)

ρ (1− τ )

∥∥A′
�clean (He)

∥∥
F

+
(

20 log (n1n2)

ρ (1− τ )
+ 2

)∥∥PT⊥ (He)
∥∥∗ , (106)

where the last inequality follows from the fact that
‖M‖F ≤ ‖M‖∗. Substituting (106) into (104) yields
(

3

4
− λ

n2
1n2

2

(
20 log (n1n2)

ρ (1− τ )
+ 2

))∥∥PT⊥ (He)
∥∥∗

+ λ

(
3

4
− 20 log (n1n2)

ρ (1− τ ) n2
1n2

2

)
∥∥A′

�clean (He)
∥∥

F
≤ 0. (107)
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Since λ < 1 and ρn2
1n2

2 � log (n1n2), both terms on the left-
hand side of (107) are positive. This can only occur when

PT⊥ (He) = 0 and A′
�clean (He) = 0. (108)

(1) Consider first the situation where

‖PT (He)‖F ≤
n2

1n2
2

2

∥∥PT⊥ (He)
∥∥

F . (109)

One can immediately see that

‖PT (He)‖F ≤
n2

1n2
2

2

∥∥PT⊥ (He)
∥∥

F = 0

which implies PT (He) = PT⊥ (He) = 0, and therefore
He = 0. That said, Robust-EMaC succeeds in finding Xe
under Condition (109).

(2) Consider instead the complement situation where

‖PT (He)‖F >
n2

1n2
2

2

∥∥PT⊥ (He)
∥∥

F .

Note that A′
�clean(He) = A⊥(He) = 0 and ‖PTAPT −

1
ρ(1−τ )PTA�cleanPT ‖ ≤ 1

2 . Using the same argument as in
the proof of Lemma 1 (see the second part of Appendix B)
with � replaced by �clean, we can conclude He = 0.

APPENDIX J
PROOF OF LEMMA 9

We first state the following useful inequality in the proof.
For any b ∈ [n1] × [n2], one has

∑

a∈[n1]×[n2]

∣∣〈PT Ab, Aa
〉∣∣2 ωa ≤

∑

a∈[n1]×[n2]

(√
ωb
ωa

3μ1csr

n1n2

)2
ωa (110)

= ωb
∑

a∈[n1]×[n2]

(
3μ1csr

n1n2

)2
= ωb

9μ2
1c2

s r2

n1n2
, (111)

where (110) follows from (36).
By definition, �dirty is the set of distinct locations

that appear in � but not in �clean. To simplify the
analysis, we introduce an auxiliary multi-set �̃dirty that
contains ρsn1n2 i.i.d. entries. Specifically, suppose that
� = {ai | 1 ≤ i ≤ ρn1n2}, �clean = {ai | 1 ≤ i ≤
ρ(1− τ )n1n2} and �̃dirty = {ai | ρ(1− τ )n1n2 < i ≤ ρn1n2},
where ai ’s are independently and uniformly selected from
[n1] × [n2].

In addition, we consider an equivalent model for sgn (S) as
follows

• Define K = (Kα,β

)
1≤α≤n1,1≤β≤n2

to be a random n1×n2
matrix such that all of its entries are independent and
have amplitude 1 (i.e. in the real case, all entries are
either 1 or −1, and in the complex case, all entries
have amplitude 1 and arbitrary phase on the unit circle).
We assume that E [K ] = 0.

• Set sgn (S) such that sgn
(
Sα,β

) = Kα,β1{(α,β)∈�dirty}, and
hence

sgn (Se) =
∑

(α,β)∈�dirty

Kα,β
√

ωα,β Aα,β .

Recall that support (S) ⊆ �dirty. Rather than directly studying
sgn (Se), we will first examine an auxiliary matrix

S̃e :=
ρn1n2∑

i=ρ(1−s)n1n2+1

Kai

√
ωai Aai ,

and then bound the difference between S̃e and sgn (Se).
For any given pair (k, l) ∈ [n1] × [n2], define a random

variable

Zα,β : =
√

ωα,β

ωk,l

〈PT A(k,l), Kα,β Aα,β

〉
.

Thus, conditioned on K , Zai ’s are conditionally
independent and 1√

ωk,l
〈A(k,l),PT (S̃e)〉 is equivalent to

∑ρn1n2
i=ρ(1−s)n1n2+1 Zai in distribution. The conditional mean

and variance of Zai are given as

E
[Zai |K

] = 1

n1n2

1√
ωk,l

〈PT A(k,l), K e
〉
,

where K e is the enhanced matrix of K , and

Var
[Zai |K

] ≤ E
[ZaiZ∗ai

|K]

= 1

n1n2

1

ωk,l

∑

b∈[n1]×[n2]
ωb
∣∣〈PT A(k,l), Ab

〉∣∣2

≤ 9μ2
1c2

s r2

n2
1n2

2

,

where the last inequality follows from (111). Besides,
from (36), the magnitude of Zα,β can be bounded as
follows

∣∣Zα,β

∣∣ ≤ 3μ1csr

n1n2
. (112)

Applying Lemma 11 then yields that with probability
exceeding 1− (n1n2)

−4,

1√
ωk,l

∣∣∣
〈
A(k,l),PT

(
S̃e

)〉
− ρτ

〈PT A(k,l), K e
〉∣∣∣

≤ c13μ1csr

(√
ρτ log (n1n2)

n1n2
+ log (n1n2)

n1n2

)

≤ 2c13μ1csr

√
ρτ log (n1n2)

n1n2
(113)

for some constant c13 > 0 provided ρτn1n2 � log (n1n2).
The next step is to bound ρτ√

ωk,l

〈PT A(k,l), K e
〉
. For conve-

nience of analysis, we represent K e as

K e =
∑

a∈[n1]×[n2]
za
√

ωa Aa, (114)

where za’s are independent (not necessarily i.i.d.) zero-mean
random variables satisfying |za| = 1. Let

Ya := 1√
ωk,l

〈PT A(k,l), za
√

ωa Aa
〉
,

then E [Ya] = 0, (36) and (111) allow us to bound

|Ya| = 1√
ωk,l

∣∣〈PT A(k,l),
√

ωa Aa
〉∣∣ ≤ 3μ1csr

n1n2
,
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and
∑

a∈[n1]×[n2]
E
[YaY∗a

] = 1

ωk,l

∑

a∈[n1]×[n2]

∣∣〈PT A(k,l),
√

ωa Aa
〉∣∣2

≤ 9μ2
1c2

s r2

n1n2
.

Applying Lemma 11 suggests that there exists a constant
c14 > 0 such that

1√
ωk,l

∣∣〈PT A(k,l), K e
〉∣∣ =

∣∣∣∣∣∣

∑

a∈[n1]×[n2]
Ya

∣∣∣∣∣∣

≤ c14μ1csr

√
log (n1n2)

n1n2

with high probability provided n1n2 � log(n1n2). This
together with (113) suggests that

1√
ωk,l

∣∣∣
〈
A(k,l),PT

(
S̃e

)〉∣∣∣

≤ 1√
ωk,l

∣∣∣
〈
A(k,l),PT

(
S̃e

)〉
− ρτ

〈PT A(k,l), K e
〉∣∣∣

+ ρτ√
ωk,l

∣∣〈PT A(k,l), K e
〉∣∣ ≤ c15μ1csr

√
ρτ log (n1n2)

n1n2

(115)

for some constant c15 > 0 with high probability.
We still need to bound the deviation of S̃e from sgn (Se).

Observe that the difference between them arise from sam-
pling with replacement, i.e. there are a few entries in
{ai | ρ (1− τ ) n1n2 < i ≤ ρn1n2} that either fall within �clean

or have appeared more than once. A simple Chernoff bound
argument (see [57]) indicates the number of aforementioned
conflicts is upper bounded by 10 log (n1n2) with high proba-
bility. That said, one can find a collection of entry locations
{b1, · · · , bN } such that

S̃e − sgn (Se) =
N∑

i=1

Kbi

√
ωbi Abi , (116)

where N ≤ 10 log (n1n2) with high probability. Therefore, we
can bound

1√
ωk,l

∣∣∣
〈
A(k,l),PT

(
S̃e − sgn (Se)

)〉∣∣∣

≤
N∑

i=1

1√
ωk,l

∣∣〈A(k,l),PT
(√

ωbi Abi

)〉∣∣

≤ N
3μ1csr

n1n2
≤ 30μ1csr log(n1n2)

n1n2
.

following (36). Putting the above inequality and (115) together
yields that for every (k, l) ∈ [n1]× [n2],

1√
ωk,l

∣∣〈A(k,l),PT (sgn (Se))
〉∣∣

≤ 1√
ωk,l

∣∣∣
〈
A(k,l),PT

(
S̃e − sgn (Se)

)〉∣∣∣

+ 1√
ωk,l

∣∣∣
〈
A(k,l),PT

(
S̃e

)〉∣∣∣

≤ c15μ1csr

√
ρτ log (n1n2)

n1n2
+ 30μ1csr log(n1n2)

n1n2

≤ c9μ1csr

√
ρτ log (n1n2)

n1n2

for some constant c9 > 0 provided ρτn1n2 > log (n1n2). This
completes the proof.

APPENDIX K
PROOF OF LEMMA 10

Consider the model of sgn(S), K and S̃e as introduced in the
proof of Lemma 9 in Appendix J. For any (α, β) ∈ [n1]×[n2],
define

Z̃α,β := Aα,β (K e) = √ωα,β Kα,β Aα,β .

With this notation, we can see that Z̃ai ’s are conditionally
independent given K , and satisfy

E

[
Z̃ai |K

]
= 1

n1n2

∑

(α,β)∈[n1]×[n2]

√
ωα,β Aα,β Kα,β = 1

n1n2
K e,

∥∥∥Z̃α,β

∥∥∥ = ∥∥√ωα,β Aα,β

∥∥ = 1,

and
∥∥∥E
[
Z̃ai Z̃∗ai

|K
]∥∥∥ ≤ 1

n1n2

∑

(α,β)∈[n1]×[n2]

∥∥∥ωα,β Aα,β A∗α,β

∥∥∥ = 1.

Since S̃e = ∑ρn1n2
i=(1−τ )ρn1n2+1 Z̃ai , applying Lemma 11

implies that conditioned on K , there exists a constant c16 > 0
such that

∥∥∥S̃e − ρτ K e

∥∥∥ <
√

c16ρτn1n2 log (n1n2) (117)

with probability at least than 1− n−5
1 n−5

2 .
The next step is to bound the operator norm of ρτ K e. Recall

the decomposition form of K e in (114). Let Ya := za
√

ωa Aa,
then we have E [Ya] = 0, ‖Ya‖ = 1, and

∥∥∥∥∥∥

∑

a∈[n1]×[n2]
EYaY∗a

∥∥∥∥∥∥
=
∥∥∥∥∥∥

∑

a∈[n1]×[n2]
ωa Aa A∗a

∥∥∥∥∥∥
≤ n1n2

Therefore, applying Lemma 11 yields that there exists a
constant c17 > 0 such that

‖K e‖ ≤
√

c17n1n2 log (n1n2)

with high probability. This and (117), taken collectively, yield

‖S̃e‖ ≤ ‖S̃e − ρτ K e‖ + ρτ‖K e‖ < 2
√

c18ρτn1n2 log(n1n2)

with high probability, where c18 = max{c16, c17}. On the other
hand, (116) implies that,

∥∥∥S̃e − sgn (Se)
∥∥∥ ≤

N∑

i=1

∥∥√ωbi Abi

∥∥ = N ≤ 10 log (n1n2)

≤ √c18ρτn1n2 log (n1n2)

with high probability, provided ρτn1n2 > 100 log (n1n2) /c18.
Consequently, for a sufficiently small constant τ ,

∥∥PT⊥ (λsgn (Se))
∥∥ ≤ λ ‖sgn (Se)‖
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≤ λ
∥∥∥S̃e − sgn (Se)

∥∥∥+ λ
∥∥∥S̃e

∥∥∥

≤ 3λ
√

c18ρτn1n2 log (n1n2)

= 3
√

c18τ ≤ 1

8

with probability exceeding 1− n−5
1 n−5

2 .

APPENDIX L
PROOF OF THEOREM 2

We prove this theorem under the conditions of Lemma 1,
i.e. (31)–(34). Note that these conditions are satisfied with high
probability, as we have shown in the proof of Theorem 1.

Denote by X̂e = Xe+ He the solution to Noisy-EMaC. By
writing He = A� (He)+A�⊥ (He), one can obtain

‖Xe‖∗ ≥ ‖X̂e‖∗ = ‖Xe + He‖∗
≥ ‖Xe +A�⊥(He)‖∗ − ‖A�(He)‖∗. (118)

The term ‖A� (He)‖F can be bounded using the triangle
inequality as

‖A� (He)‖F ≤
∥∥∥A�

(
X̂e − Xo

e

)∥∥∥
F
+ ∥∥A�

(
Xe − Xo

e

)∥∥
F .

(119)

Since the constraint of Noisy-EMaC requires
‖P�(X̂ − Xo)‖F ≤ δ and ‖P�(X − Xo)‖F ≤ δ, the
Hankel structure of the enhanced form allows us to bound
‖A�(X̂e−Xo

e)‖F ≤
√

n1n2δ and ‖A�(Xe−Xo
e)‖F ≤

√
n1n2δ,

leading to
‖A� (He)‖F ≤ 2

√
n1n2δ.

i) Suppose first that He satisfies

∥∥PTA�⊥ (He)
∥∥

F ≤
n2

1n2
2

2

∥∥PT⊥A�⊥ (He)
∥∥

F . (120)

Applying the same analysis as for (71) allows us to bound the
perturbation A�⊥(He) as follows
∥∥Xe +A�⊥(He)

∥∥∗ ≥ ‖Xe‖∗ + 1
4

∥∥PT⊥A�⊥(He)
∥∥

F .

Combining this with (118), we have
∥∥PT⊥A�⊥(He)

∥∥
F ≤ 4‖A�(He)‖∗
≤ 4
√

n1n2‖A�(He)‖F ≤ 8n1n2δ.

Furthermore, the inequality (120) indicates that
∥∥PTA�⊥ (He)

∥∥
F ≤ 4n3

1n3
2

∥∥PT⊥A�⊥ (He)
∥∥

F . (121)

Therefore, combining all the above results give

‖He‖F ≤ ‖A�(He)‖F +
∥∥PTA�⊥ (He)

∥∥
F

+ ∥∥PT⊥A�⊥ (He)
∥∥

F

≤
{

2
√

n1n2 + 8n1n2 + 4n3
1n3

2

}
δ ≤ 5n3

1n3
2δ

for sufficiently large n1 and n2.
ii) On the other hand, consider the situation where

∥∥PTA�⊥ (He)
∥∥

F >
n2

1n2
2

2

∥∥PT⊥A�⊥ (He)
∥∥

F . (122)

Employing similar argument as in Part (2) of Appendix B
yields that (122) can only arise when A�⊥ (He) = 0. In this
case, one has

‖He‖F ≤ ‖A�(He)‖F +
∥∥A�⊥ (He)

∥∥
F

= ‖A�(He)‖F ≤ 2
√

n1n2δ.

concluding the proof.
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