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Information Recovery From Pairwise Measurements
Yuxin Chen, Changho Suh, and Andrea J. Goldsmith

Abstract— This paper is concerned with jointly recovering
n node variables {xi }1≤i≤n from a collection of pairwise dif-
ference measurements. Imagine we acquire a few observations
taking the form of xi −x j ; the observation pattern is represented
by a measurement graph G with an edge set E , such that xi −x j is
observed if and only if (i, j) ∈ E . To account for noisy measure-
ments in a general manner, we model the data acquisition process
by a set of channels with given input/output transition measures.
Employing information-theoretic tools applied to channel decod-
ing problems, we develop a unified framework to characterize
the fundamental recovery criterion, which accommodates general
graph structures, alphabet sizes, and channel transition measures.
In particular, our results isolate a family of minimum channel
divergence measures to characterize the degree of measurement
corruption, which together with the size of the minimum cut of G
dictates the feasibility of exact information recovery. For various
homogeneous graphs, the recovery condition depends almost only
on the edge sparsity of the measurement graph irrespective of
other graphical metrics; alternatively, the minimum sample com-
plexity required for these graphs scales like (n log n)/(Helmin

1/2 ) for

certain information metric Helmin
1/2 defined in the main text, as

long as the alphabet size is not super-polynomial in n. We apply
our general theory to three concrete applications, including the
stochastic block model, the random corruption model, and the
haplotype assembly problem. Our theory leads to orderwise tight
recovery conditions for all these scenarios.

Index Terms— Pairwise difference, information divergence,
random graphs, geometric graphs, homogeneous graphs.

I. INTRODUCTION

IN VARIOUS data processing scenarios, one wishes to
acquire information about a large collection of objects, but

it is infeasible or difficult to directly measure each individual
object in isolation. Instead, only certain pairwise relations
over a few object pairs can be measured. Partial examples
of pairwise relations include cluster agreements, relative rota-
tion and translation, pairwise matches, and paired sequencing
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Fig. 1. Measurement graph and equivalent channel model. For each edge
(i, j) in the measurement graph, xi − x j is independently passed through a
channel with output yi j and transition probability p

(
yi j | xi − x j

)
.

reads, as will be discussed in details later. Taken collectively,
these pairwise observations often carry a substantial amount
of information across all objects of interest. As a consequence,
reliable joint information recovery becomes feasible as soon
as a sufficiently large number of pairwise measurements are
obtained.

This paper explores a large family of pairwise measure-
ments, which we term pairwise difference measurements.
Consider n variables x1, · · · , xn , and imagine we obtain inde-
pendent measurements of the differences1 xi − x j over a few
pairs (i, j ). This pairwise difference functional is represented
by a measurement graph G with an edge set E such that xi−x j

is observed if and only if (i, j) ∈ E . To accommodate the noisy
nature of data acquisition in a general manner, we model the
observations

{
yi j
}

as the output of the following channel:

xi − x j
p(yi j |xi−x j)−−−−−−−→ yi j , ∀(i, j) ∈ E, (1)

as illustrated in Fig. 1. Here, the output distribution is spec-
ified solely by the associated channel input xi − x j , with
p (· | ·) representing the channel transition probability. The
goal is to recover x = {x1, · · · , xn} based on these channel
outputs

{
yi j
}
. Note that for any connected graph G, the ground

truth x is uniquely determined by the pairwise difference
functional

{
xi − x j | (i, j) ∈ E}, up to some global offset.

Therefore, the problem can alternatively be posed as decoding
the input of the channel (1) based on

{
yi j
}
.

Problems of this kind have received considerable attention
across various fields like social networks, computer science,
and computational biology. A small sample of them are listed
as follows.

1Here, “−” represents some algebraic subtraction operation (broadly
defined), as we detail in Section II.
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• Community detection and graph partitioning. Various
real-world networks exhibit community structures [3],
and the nodes are grouped into a few clusters based
on shared features. The aim is to uncover the hid-
den community structure by observing the similarities
between members. For instance, in the simplest two-
community model, the vertex-variables represent the
community assignment, and the edge variables encode
whether two vertices belong to the same community. This
two-community recovery problem, sometimes referred to
as graph partitioning (e.g. [4], [5]), is a special instance
of the aforementioned pairwise difference model.

• Alignment, registration and synchronization. Consider
n views of a single scene from different angles and
positions2 [6]. One is allowed to estimate the relative
translation / rotation across several pairs of views. The
problem aims at simultaneously aligning all views based
on these noisy pairwise estimates. This arises in many
applications including structure from motion in computer
vision [7], [8], spectroscopy imaging and structural biol-
ogy [9], [10], and multi-reference alignment [11].

• Joint matching. Given n images / shapes representing the
same physical object, one wishes to identify common
features across them. The input to a cutting-edge joint
matching paradigm is typically a set of noisy pairwise
matches computed between several pairs of images in
isolation [8], [12]–[15], which falls under the category of
pairwise difference measurements. The goal is to recover
globally consistent maps across the features of all images,
by refining these noisy pairwise inputs. This problem
arises in numerous applications in computer vision and
graphics, solving jigsaw puzzles, etc.

• Genome assembly. The genomes of two unrelated peo-
ple mostly differ at specific nucleotide positions called
single nucleotide polymorphisms (SNPs). A haplotype
is a collection of associated SNPs on a chromatid,
which is important in understanding genetic causes of
various diseases and developing personalized medicine.
Among various sequencing methods, haplotype assem-
bly is particularly effective from paired sequencing
reads [16]–[18], which amounts to reconstructing the
haplotype based on disagreement between pairs of single
reads [19]–[21] — a special instance of pairwise differ-
ence measurement with binary alphabet.

Many of these practical applications have witnessed a flurry
of recent activity in algorithm development, which are primar-
ily motivated by computational considerations. For instance,
inspired by recent success in spectral methods [22], [23] and
convex relaxation [24]–[26] (particularly those developed for
low-rank matrix recovery problems), many provably efficient
algorithms have been proposed for graph clustering [4], joint
matching [12], [14], synchronization [10], and so on. While
these algorithms have been shown to enjoy intriguing recovery
guarantees under simple randomized models, the choices of

2In a variety of applications including structure from motion and cryo-EM,
these views (e.g. photos of some architectures, or projected images of 3D
molecules) are given to us without revealing their absolute camera poses /
angles with respect to the 3D structure of interest.

performance metrics have mainly been studied in a model-
specific manner. On the fundamental-limit side, there have
been several results in place for a few applications, e.g. sto-
chastic block models [27], [28], synchronization [1], and
haplotype assembly [19]–[21]. Despite their intrinsic connec-
tions, these results were developed primarily on a case-by-case
basis instead of accounting for the most general observation
models.

In the present paper, we emphasize the similarities and
connections among all these motivating applications, by view-
ing them as a graph-based functional fed into a collection of
general channels. We wish to explore the following questions
from an information-theoretic perspective:

1) Are there any distance metrics of the channel transition
measures and graphical properties that dictate the success
of exact information recovery from pairwise difference
measurements?

2) If so, can we characterize the interplay between these
channel separation metrics and graphical constraints and
provide insights into the feasibility of simultaneous
recovery?

All in all, the aim of this work is to gain a unified under-
standing about the performance limits that underlie various
applications falling in the realm of pairwise-measurement
based recovery. In turn, these fundamental criteria will pro-
vide a general benchmark for algorithm evaluation and
comparison.

A. Main Contributions

The main contribution of this paper is towards a unified
characterization of the fundamental information recovery cri-
terion, using both information-theoretic and graph-theoretic
tools. In particular, we single out and emphasize a family
of minimum channel separation measures (i.e. the minimum
Kullback–Leibler (KL), Hellinger, and Rényi divergence), as
well as two graphical metrics (i.e. the minimum cut size
and the cut-homogeneity exponent defined in Section IV-A),
that play central roles in determining the feasibility of exact
recovery. Equipped with these metrics, we develop a sufficient
and a necessary condition for information recovery, which
apply to general graphs, any type of input alphabets, and
general channel transition measures. Encouragingly, as long
as the alphabet size is not super-polynomial in n, these two
conditions coincide (modulo some explicit universal constant)
for the broad class of homogeneous graphs, subsuming as
special cases Erdős–Rényi models, homogeneous geometric
graphs (e.g. generalized rings and grids), and many other
expander graphs.

In a nutshell, the fundamental recovery criterion is specified
by the product of the minimum channel divergence measures
and the size of the minimum cut. Intuitively, this product
characterizes the amount of information one has available
to differentiate two minimally separated input hypotheses.
Somewhat surprisingly, for a variety of homogeneous graphs,
the recovery criterion relies only on the edge sparsity of
the measurement graph. Equivalently, the minimum sample
complexity required for exact recovery in these homogeneous
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graphs scales as

minimum sample complexity � n log n

Helmin
1/2

for some information metric Helmin
1/2 to be specified later,

provided that the alphabet size is polynomial in n. This result
holds irrespective of other second-order graphical metrics like
the spectral gap.

The unified framework we develop is non-asymptotic, in
the sense that it accommodates the most general settings
without fixing either the alphabet size or channel transition
probabilities. This allows full characterization of the high-
dimensional regime where all parameters are allowed to scale
(possibly with different rates) — a setting that has received
increasing attention compared to the classical asymptotics
where only n is tending to infinity.

Finally, to illustrate the effectiveness of our general the-
ory, we develop concrete consequences for three canonical
applications that have been investigated in prior literature,
including the stochastic block model, the random corruption
model, and the haplotype assembly problem. In each case, our
theory recovers order-wise correct recovery guarantees, and
even strengthens existing results in certain regimes.

B. Related Work

On the information-theoretic side, most prior works
focused on binary input and output alphabets. Among them,
Abbe et al. [29] characterized the orderwise information-
theoretic limits under the Erdős–Rényi model, uncovering the
intriguing observation that a decoding method based on convex
relaxation achieves nearly-optimal recover guarantees under
sparsely connected graphs. In addition, Si et al. [20] and
Kamath et al. [21] determined the information-theoretic limits
for a similar setup motivated from genome sequencing, which
correspond to random graphs and (generalized) ring graphs,
respectively. A sufficient recovery condition for general graphs
has also been derived in [29], although it was not guaranteed
to be order optimal. Our preliminary work [1] explored the
fundamental recovery limits under general alphabets and graph
structures, but was restricted to the simplistic random corrup-
tion model (or random corruption model) rather than general
channel distributions. In contrast, the framework developed
in the current work allows orderwise tight characterization
of the recovery criterion for general alphabets and channel
characteristics.

The pairwise measurement models considered in this paper
and the aforementioned works [1], [20], [21], [29] can all be
treated as a special type of “graphical channel” as coined by
Abbe and Montanari [30], [31], which refers to a general
family of channels whose transition probabilities factorize
over a set of hyper-edges. This previous work on graphical
channels centered on the metric of conditional entropy that
quantifies the residual input uncertainty given the channel
output, and uncovered the stability and concentration of this
metric under random sparse graphs. In comparison, the present
paper primarily aims to investigate how the channel transition
measures affect the recovery limits in the absence of channel

coding (or equivalently, the limits under a specific code that is
often suboptimal), which was previously out of reach. Specif-
ically, the information limit under optimal channel coding is
determined by the mutual information metric; in contrast, the
information limit without channel coding is often dictated by
certain minimum divergence metrics, which could sometimes
be much smaller than the mutual information. This arises
because optimal encoding enables us to code against the chan-
nel variation by maximizing the output separation between
distinct input hypotheses, while in the non-coding applications
one has to deal with the minimally separated input hypotheses
determined by the practical applications. In addition, we focus
on full recovery in this work, but in some applications this
might be too stringent. Recent interesting work [32], [33]
explored the notion of partial recovery under binary alphabets,
which highlighted the two-dimensional grids and supplied a
two-step polynomial-time recovery algorithm. A more general
theory regarding partial or approximate recovery is left for
future work.

Finally, the input variables {xi } can be viewed as discrete
signals on the graph G. Recent years have seen much activity
regarding discrete signal processing on graphs [34], [35]. For
instance, it has been studied in [36] how to optimally sub-
sample band-limited graphs signals, subject to a sampling rate
constraint, while enabling perfect signal recovery. Our model
differs from this line of work in that the samples we take are
highly constrained—that is, we only allow pairwise difference
samples taken over the edges—and hence the resulting sample
complexity significantly exceeds the sampling rate limit.

C. Terminology and Notation

1) Graph Terminology: Let deg (v) represent the degree of
a vertex v. For any two vertex sets S1 and S2, denote by
E(S1,S2) (resp. e(S1,S2)) the set (resp. the number) of edges
with exactly one endpoint in S1 and another in S2. A complete
graph of n vertices, denoted by Kn , is a graph in which every
pair of vertices is connected by an edge. Below we introduce
several widely used (random) graph models; see [37], [38] and
the references therein for in-depth discussion.

1) Erdős–Rényi graph. An Erdős–Rényi graph of n vertices,
denoted by Gn,p , is constructed in such a way that each
pair of vertices is independently connected by an edge
with probability p.

2) Random geometric graph. A random geometric graph,
denoted by Gn,r , is generated via a 2-step procedure:
(i) place n vertices uniformly and independently on the
surface of a unit sphere3; (ii) connect two vertices by
an edge if the Euclidean distance between them is at
most r .

3) Expander graph. A graph G is said to be an expander
graph with edge expansion hG if e (S,Sc) ≥ hG |S| for
all vertex set S satisfying |S| ≤ n/2.

2) Divergence Measures: Our results are established upon
a family of divergence measures. Formally, for any two
probability measures P and Q, if P is absolutely continuous

3We consider Gn,r, on a unit sphere instead of [0, 1]2 to eliminate edge
effects.
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with respect to Q, then the KL divergence of Q from P is
defined as

KL (P ‖ Q) :=
ˆ

dP log

(
dP

dQ

)
, (2)

whereas the Hellinger divergence of order α ∈ (0, 1) of Q
from P is defined to be [39], [40]

Helα (P ‖ Q) := 1

1 − α
[

1 −
ˆ
(dP)α (dQ)1−α

]
. (3)

When α = 1/2, this reduces to the so-called squared Hellinger
distance4

Hel 1
2
(P ‖ Q) = 2 − 2

ˆ √
dP
√

dQ =
ˆ (√

dP −√dQ
)2
.

(4)

The χ2 divergence is defined as

χ2 (P ‖ Q) =
ˆ (

dP

dQ
− 1

)2

dQ. (5)

In particular, when P = Bernoulli (p) and Q = Bernoulli (q),
we abuse the notation and let

KL (p ‖ q) = KL (P ‖ Q) , Helα (p ‖ q) = Helα (P ‖ Q)

and

χ2 (p ‖ q) = χ2 (P ‖ Q). (6)

More generally, the f -divergence of Q from P is defined as

D f (P ‖ Q) :=
ˆ

f

(
dP

dQ

)
dQ (7)

for any convex function f (·) such that f (1) = 0 [39], [40].
Note that the Hellinger divergence of order α, the KL diver-
gence, and the χ2 divergence are special cases of f -divergence
generated by f (x) = 1

1−α (1 − xα), f (x) = x log x (or
f (x) = x log x − x + 1), and f (x) = (x − 1)2, respectively.
These divergence measures can often be efficiently estimated
even under large alphabets; see, e.g., [42] and their subsequent
work.

Finally, we introduce the Rényi divergence of positive
order α, where α 
= 1, of a distribution P from another
distribution Q as [43], [44]

Dα (P ‖ Q) : = − 1

1 − α log

(ˆ
(dP)α (dQ)1−α

)
(8)

= − 1

1 − α log (1 − (1 − α)Helα) . (9)

It follows from the elementary inequality 1 − x ≤ e−x

that Dα (P ‖ Q) ≥ Helα (P ‖ Q). This together with the
monotonicity of Dα [44, Th. 3] gives

Helα (P ‖ Q) ≤ Dα (P ‖ Q) ≤ KL (P ‖ Q) , 0 < α < 1.

(10)

4Several other sources introduce a prefactor of 1/2 in order to normalize
the squared Hellinger distance, resulting in the definition

´ 1
2 (
√

dP−√
dQ)2.

Here, we adopt the unnormalized version as given in [41, Sec. 2.4].

3) Other Notation: Let 1 and 0 be the all-one and all-zero
vectors, respectively. We denote by supp (x) (resp. ‖x‖0) the
support (resp. the support size) of x. The standard notion
f (n) = o (g(n)) means lim

n→∞ f (n)/g(n) = 0; f (n) = ω (g(n))

means lim
n→∞g(n)/ f (n) = 0; f (n) = � (g(n)) or f (n) � g(n)

mean there exists a constant c such that f (n) ≥ cg(n);
f (n) = O (g(n)) or f (n) � g(n) mean there exists a
constant c such that f (n) ≤ cg(n); f (n) = �(g(n)) or
f (n) � g(n) mean there exist constants c1 and c2 such
that c1g(n) ≤ f (n) ≤ c2g(n). Throughout this paper, log (·)
represents the natural logarithm.

D. Organization

The remainder of the paper is organized as follows.
In Section II, we describe the formal problem setup and
introduce the key channel distance measures. We develop non-
asymptotic sufficient and necessary recovery conditions for the
special Erdős–Rényi model in Section III, along with some
intuitive interpretation of the results. Section IV presents the
recovery conditions in full generality, which accommodate
general alphabets, graph structures, and channel characteris-
tics, with particular emphasis on the family of homogeneous
graphs. To illustrate the effectiveness of our framework, we
apply our general theory to a few concrete examples in
Section V. Section VI concludes the paper with a summary of
our findings and a discussion of future directions. The proofs
of the main results and auxiliary lemmas are deferred to the
appendices.

II. PROBLEM FORMULATION AND KEY METRICS

A. Models

Imagine a collection of n vertices V = {1, · · · , n}, each
represented by a vertex-variable xi over the input alphabet
X := {0, 1, · · · ,M − 1}, where M represents the alphabet
size.

• Object representation and pairwise difference. Con-
sider an additive group formed over X together with
an associative addition operation “+” (broadly defined).
For any xi , x j ∈ X , the pairwise difference operation is
defined as

xi − x j := xi + (−x j ), (11)

where −x stands for the unique additive inverse of x .
We assume throughout that “+” satisfies the following
bijective property:

∀xi ∈ X :
{

xi + x j 
= xi + xl , ∀xl 
= x j ;
xi + x j 
= xl + x j , ∀xl 
= xi .

(12)

A partial list of examples includes:

1) Modular arithmetic: if we define “+” to be the modular
addition over integers {0, 1, · · · ,M − 1}, then xi − x j

(mod M) is a valid example of (11).
2) Relative rotation: set xi = Ri for some rotation matrix

Ri and let “+” denote matrix multiplication. Then
xi −x j stands for Ri R−1

j , which represents the relative
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Fig. 2. The probability measure Pl (·) is defined to be the distribution of yi j
given xi − x j = l.

rotation between i and j , and hence is a special case
of (11).

3) Pairwise map: if we set xi to be some permuta-
tion matrix �i and let “+” be matrix multiplication,
then the pairwise map between two isomorphic sets—
captured by �i�

�
j —also belongs to the pairwise dif-

ference model.

• Measurement graph and channel model. The measure-
ment pattern is represented by a measurement graph G
that comprises an undirected edge set E , so that xi −x j is
measured if and only if (i, j) ∈ E . As illustrated in Fig. 1,
for each (i, j) ∈ E (i > j ), the pairwise difference xi−x j

is independently passed through a channel, whose output
yi j follows the conditional distribution

p
(

yi j

∣
∣
∣xi − x j = l

)
= Pl

(
yi j
)
, 0 ≤ l < M. (13)

Here, Pl (·) denotes the transition measure that maps a
given input l to the output alphabet Y; see Fig. 2 for
an illustration. With a slight abuse of notation, we let
Pi = Pi mod M for any i /∈ {0, 1, · · · ,M − 1}. We assume
throughout that the observations are symmetric5 in the
sense that there exists a one-to-one mapping between yi j

and y j i for any (i, j) ∈ E ; that said, all information
are contained in the upper triangular part

{
yi j
}

1≤i< j≤n.

The output alphabet Y can be either continuous or dis-
crete, finite or infinite, which allows general modeling
of distortion, corruption, etc. As opposed to conventional
information theory settings, no coding is employed across
channel uses.

This paper centers on exact information recovery, that is,
to reconstruct all input variables x = {x1, · · · , xn} precisely,
except for some global offset. This is all one can hope for
since there is absolutely no basis to distinguish x from its
shifted version x + l · 1 = {x1 + l, · · · , xn + l} given only the
output y := {yi j | (i, j) ∈ E}. In light of this, we introduce
the zero-one distance modulo a global offset factor as follows

dist (w, x) := 1 − max
0≤l<M

I {w = x + l · 1}, (14)

where I is the indicator function. Apparently, dist (w, x) = 0
holds for all w that differ from x only by a global offset.

5We assume the observation model is symmetric because this is the case
in all motivating applications listed in Section I. We note, however, that
all results and analyses immediately extend to the non-asymmetric case,
provided that Pl (·) is defined with respect to (yi j , y j i ), that is, Pl(yi j , y j i ) :=
p(yi j , y j i

∣∣
∣xi − x j = l).

With this metric in place, we define, for any recovery proce-
dure ψ : Y |E | → X n , the probability of error as

Pe (ψ) := max
x∈X n

P

{
dist (ψ (y) , x) 
= 0

∣
∣
∣ x
}
. (15)

The aim is to characterize the regime where the minimax
probability of error infψ Pe (ψ) is vanishing.

B. Key Separation Metrics on Channel Transition Measures

Before proceeding to the main results, we introduce a few
channel separation measures that capture the resolutions of the
measurements, which will be critical in subsequent develop-
ment of our theory. Specifically, we isolate the minimum KL,
Hellinger, and Rényi divergence with respect to the channel
transition measures as follows6

KLmin := min
l 
=k

KL (Pl ‖Pk) ; (16)

Helmin
α := min

l 
=k
Helα (Pl ‖Pk) ; (17)

Dmin
α := min

l 
=k
Dα (Pl ‖Pk) (18)

= − 1

1 − α
log
(

1 − (1 − α)Helmin
α

)
. (19)

These minimum divergence measures essentially reflect the
distinguishability of channel outputs given minimally sepa-
rated inputs.7 As will be seen later, the minimum Hellinger
and Rényi divergence are crucial in developing sufficient
recovery conditions, while the minimum KL divergence plays
an important role in deriving minimax lower bounds. It is well
known (see [39]–[41], [46] for various inequalities connecting
them) that these measures are almost equivalent (modulo some
small constant) when any two probability measures under
study are close to each other—a regime where two measures
are the hardest to differentiate. In particular, we underscore
one fact that links the KL divergence and the squared Hellinger
distance, which we shall use several times in the rest of the
paper; see [47, Proposition 2] for an alternative version.

Fact 1: Suppose that P and Q are two probability measures
such that

dP

dQ
≤ R and

dQ

dP
≤ R

hold uniformly over the probability space. Then one has

KL (P ‖ Q) ≥ max {2 − 0.5 log R, 1} · Hel 1
2
(P ‖ Q);

KL (P ‖ Q) ≤ (2 + log R) · Hel 1
2
(P ‖ Q). (20)

Furthermore, if R ≤ 4.5, then one has

KL (P ‖ Q) ≥ (2 − 0.4 log R) · Hel 1
2
(P ‖ Q);

KL (P ‖ Q) ≤ (2 + 0.4 log R) · Hel 1
2
(P ‖ Q) . (21)

6Here and throughout, we assume that Pl is absolutely continuous with
respect to Pk for any l and k.

7One natural question arises as to how to estimate such divergence metrics
from measured data, which has become an active research topic. When both
the input and output alphabet sizes are small, one can first estimate the entire
probability measures via low-rank matrix recovery schemes, and then plug
them in to calculate the divergence metrics. When the alphabet size is large
or when the output is continuous-valued, one might resort to more careful
functional estimation algorithms (e.g. [42], [45]).
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Fig. 3. The pairwise inputs [xi − x j ]1≤i, j≤n under a realization of Gn,pobs with n = 8 and pobs = 0.3 as shown in (a). The input patterns are shown

for (b) the ground truth x = 0, (c) the hypothesis x̃ = [1, 0, · · · , 0], and (d) the hypothesis x̃ = [0, · · · , 0, 1]. The blue parts represent the entries being
measured, and the orange region constitutes the parts of pairwise inputs that disagree with the ground truth.

Proof: See Appendix H. �
We conclude this part with another quantity that will often

prove useful in tightening our results. Specifically, for any
ζ > 0, we define

mkl (ζ ) := max
l

∣
∣
∣
{

i
∣
∣ i 
= l, KL (Pi ‖Pl) ≤ (1 + ζ )KLmin

}∣∣
∣.

(22)

It is self-evident that 1 ≤ mkl (ζ ) < M holds regard-
less of ζ . This quantity determines the number of distinct
input pairs under study that result in nearly-minimal output
separation.

III. MAIN RESULTS: ERDŐS–RÉNYI GRAPHS

At an intuitive level, faithful decoding is feasible only when
(i) the measurement graph G is sufficiently connected so that
we have enough measurements involving each vertex variable,
and (ii) the channel output distributions given any two distinct
inputs are sufficiently separated and hence distinguishable.
To develop a more quantitative understanding about these two
factors, we start with the Erdős–Rényi model, a tractable yet
the most widely adopted random graph model for numerous
applications. Specifically, we suppose that the measurement
graph G is drawn from Gn,pobs for some edge probability
pobs � log n/n. As will be shown in Section IV, many
properties and intuitions that we develop for this specific graph
model hold in greater generality.

A. Maximum Likelihood Decoding

To begin with, we analyze the performance guarantees of
the maximum likelihood (ML) decoder

ψml (y) := arg max
x∈X n

P {y | x}. (23)

It is well-known that the ML rule minimizes the Bayesian
probability of error under uniform input priors. We develop a
sufficient recovery condition in terms of the edge probability
and the minimum information divergence, which characterizes
the tradeoff between the degree of graph connectivity and the
resolution of channel outputs.

Theorem 1: Fix δ > 0, and suppose that G ∼ Gn,pobs . Then
there exist some universal constants C, c1 > 0 such that if

sup
0<α<1

{
(1 − α)Helmin

α

}
· (pobsn)

≥ (1 + δ) log (2n)+ 2 log (M − 1) , (24)

then the ML decoder ψml obeys

Pe (ψml) ≤ 1

(2n)
max

{
3
4 δ− 1

4 δ
2, δ−1

2

}

− 1

+ 3

n10 − 1
+ Cn−c1δn.

Proof: See Appendix A. �
Remark 1: By definition (3), one has (1 − α)Helmin

α ≤ 1
for any 0 < α < 1. As a consequence, the condition (24)
implies

pobs >
log n

n
,

thus ensuring the connectivity of Gn,pobs with probability
approaching one.

Theorem 1 essentially implies that the ML rule is guaranteed
to work with high probability as long as

sup
α

{
(1 − α)Helmin

α

}
≥ (1 + o (1))

log n + 2 log M

pobsn
.

Our result is non-asymptotic in the sense that it holds for all
parameters (n,M,Helmin

α ) instead of limiting to the asymp-
totic regime with n tending to infinity. Recognizing that
pobsn is exactly the average vertex degree davg, our recovery
condition reads

sup
α

{
(1 − α)Helmin

α

}
· davg � log n, (25)

provided that M � O (poly (n)) and α ∈ (0, 1) is some fixed
constant independent of n.

We pause to develop some intuitive understanding about
the condition (25). In contrast to classical information the-
ory settings, the channel decoding model considered herein
concerns “uncoded” channel input. Consequently, the recovery
bottleneck for the ML rule is presented by the minimum output
distance given two distinct hypotheses, rather than the mutual
information that plays a crucial rule in coded transmission.
To be more precise, two hypotheses x and x̃ are the least
separated when they differ only by one component, say, v.
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As a concrete example, one can take x = [0, · · · , 0] and x̃ =
[1, 0, · · · , 0] as illustrated in Fig. 3. The resulting pairwise
outputs

{
yi j | (i, j) ∈ E} thus contain about deg (v) pieces of

information for distinguishing x and x̃; see, e.g., the orange
shaded region highlighted in Fig. 3. Since the information
contained in each measurement can be quantified by certain
divergence metrics, namely, Helmin

α (or KLmin as adopted
in Section III-B), the total amount of information one has
available to distinguish two minimally separated hypotheses
is captured by

Helmin
α · davg or KLmin · davg. (26)

Furthermore, there are at least n distinct hypotheses that
are all minimally apart from the ground truth x (e.g. x̃ =
[1, 0, · · · , 0], x̃ = [0, 1, · · · , 0], · · · , x̃ = [0, · · · , 0, 1]).
Representation of these hypotheses calls for at least log n bits,
and hence the information that one can exploit to distinguish
x from them—i.e. (26)—needs to exceed log n. This offers an
intuitive interpretation of the recovery condition (25).

Careful readers will note that Theorem 1 is presented in
terms of the Hellinger divergence rather than the KL diver-
gence. We remark on these this technical matter as follows.

Remark 2: In general, we are unable to develop the recov-
ery conditions in terms of the KL divergence. This arises
partly because the KL divergence cannot be well controlled
for all measures, especially when

∥
∥
∥ dPl

dP j

∥
∥
∥∞ (l 
= j ) grows. In

contrast, the Hellinger divergence is generally stable and more
convenient to analyze in this case.

We conclude this part with an extension. Examining our
analysis reveals that all arguments continue to hold even if the
output distributions are location-dependent. Formally, suppose
that the distribution of yi j is parametrized by

p
(

yi j

∣
∣
∣xi − x j = l

)
= P

i j
l

(
yi j
)
, 0 ≤ l < M, (i, j) ∈ E .

(27)

This leads to a modified version of the minimum divergence
metric as follows

Hel
min
α

:= min
{

Helα(P
i j
l ‖P

i j
k )
∣
∣
∣ l 
= k, 0 ≤ l, k < M, (i, j) ∈ E

}
.

(28)

With these modified metrics in place, the preceding sufficient
recovery condition immediately extends to this generalized
model.

Theorem 2: The recovery condition of Theorem 1 continues
to hold under the transition probabilities (27), if Helmin

α is

replaced by Hel
min
α as defined in (28).

B. Minimax Lower Bound

In order to assess the tightness of our recovery guarantee
for the ML rule, we develop two necessary conditions that
apply to any recovery procedure. Here and below, H (x) :=
−x log x − (1 − x) log (1 − x) stands for the binary entropy
function.

Theorem 3: Suppose that G ∼ Gn,pobs . Fix any ζ ≥ 0 and
ε > 0, and assume that pobs >

c log n
n for some sufficiently

large constant c > 0.
(a) If

KLmin · pobsn ≤
(1 − ε)

(
log n + log mkl (ζ )

)
− H (ε)

(1 + ε) (1 + ζ ) ,

(29)

then infψ Pe (ψ) ≥ ε − n−10.
(b) Suppose that α ≤ 1

1+ε and pobsn > 2εα log n. If

(1 − α)Helmin
α · pobsn <

εα log n

1 + ζ
− rε (30)

for some residual8 rε , then infψ Pe (ψ) ≥ n−ε − n−10.
Proof: See Appendices B and C. �

We remark that the two necessary recovery conditions in
Theorem 3 concern two regimes of separate interest. Specif-
ically, Condition (29) based on the KL divergence is most
useful when investigating first-order convergence, namely, the
situation where we only require the minimax probability
of error to be asymptotically vanishing without specifying
convergence rates. In comparison, Condition (30) based on
the Hellinger distance is more convenient when we further
demand exact recovery to occur with polynomially high prob-
ability (e.g. 1 − 1

n ). In various “big-data” applications, the
term “with high probability” might only refer to the case
where the error probability decays at least at a polynomial
rate.

On the other hand, while Condition (29) is not directly
presented in terms of M , we can often capture the effect
of the alphabet size through the surrogate mkl, provided that
log mkl � log M . In fact, this arises in many scenarios of
interest. As an example, see the random corruption model to
be discussed in Section V-B, where mkl = M − 1.

C. Tightness of Theorems 1 and 3 and
Minimal Sample Complexity

Encouragingly, the recovery conditions derived in
Theorems 1 and 3 are often tight up to some small
multiplicative constant. In the sequel, we will assume that
pobs � log n/n, and will pay special attention to two of the
most popular divergence metrics: the KL divergence and the
squared Hellinger distance.

1) Consider the first-order convergence, that is, the regime
where infψ Pe (ψ) → 0 (n → ∞). Combining
Theorems 1 and 3(a) gives

inf
ψ

Pe (ψ)
n→∞−→ 0

if Helmin
1
2

· pobsn > (1 + o (1)) (2 log n + 4 log M) ,

inf
ψ

Pe (ψ)
n→∞
−→ 0

if KLmin · pobsn < (1 − o (1))
(

log n + log mkl
)
.

8More precisely, rε := log 2 + 2[εα log n−log 2]2

npobs
.



5888 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 10, OCTOBER 2016

When applied to the most challenging case where dPl
dP j

=
1 + o (1) for all l 
= j , these conditions read (with the
assistance of Fact 1)

inf
ψ

Pe (ψ)
n→∞−→ 0

if Helmin
1
2

· pobsn > (1 + o (1)) (2 log n + 4 log M) ,

(31)

inf
ψ

Pe (ψ)
n→∞
−→ 0

if Helmin
1
2

· pobsn < (1 − o (1))
log n + log mkl

2
.

(32)

which are matching conditions modulo some multiplica-
tive factor not exceeding

(1 + o (1))
4 log n + 8 log M

log n + log mkl
. (33)

2) We now move on to more stringent convergence by con-
sidering the regime where limn→∞ infψ Pe (ψ) � 1/n.
Putting Theorem 1 (with δ = 3) and Theorem 3(b) (with
α = 1/2 and ε = 1) together implies that

inf
ψ

Pe (ψ)
n→∞−→ 0

if Helmin
1
2

· pobsn > (1 + o (1)) (8 log n + 4 log M) ,

(34)

inf
ψ

Pe (ψ)
n→∞
−→ 0

if Helmin
1
2

· pobsn < (1 − o (1)) log n, (35)

which holds regardless of dPl
dP j

. These conditions do not

impose constraints on the alphabet size, and are tight up
to a multiplicative gap of

(1 + o (1))

(
8 + 4 log M

log n

)
. (36)

Remark 3: The multiplicative factor (33) is small when
either the alphabet size M = O (poly log(n)) (in which case
this factor is 4) or when M � mkl (in which case this factor
is at most 8). Similarly, the multiplicative factor (36) is the
smallest when the alphabet size is O (poly log(n)). However,
both results might become loose when log M and log M

log mkl grow.
For many practical applications, the alphabet size is typically
much smaller than n, in which case our results are tight within
a reasonable constant factor.

In summary, we have characterized the fundamental
recovery condition under the Erdős–Rényi model, which
reads

Helmin
1
2

· davg � log n (37)

as long as the alphabet size M is not super-polynomial9 in n.
Put another way, in order to allow exact recovery, the sample

9When the alphabet size is super-polynomial in n, our upper and lower
bounds are within a factor of O

(
log M
log n

)
from optimal. We note, however,

that in all our motivating applications, the alphabet size M is typically much
smaller than exp (� (n)) and hence the regime with super-polynomial alphabet
size is of little practical relevance.

complexity—i.e. the total number of edges of G (which is
around ndavg/2)—necessarily obeys

minimum sample complexity � n log n

Helmin
1
2

. (38)

Interestingly, these simple characterizations as well as the
underlying intuitions carry over to many more homogeneous
graphs, as will be seen in the next section.

Before concluding this section, we remark on the possibility
of improving the preconstant. There are a few cases where the
tight preconstants have been settled, including the stochastic
block model [27], [48] and the censor block model [19], [48],
provided that the alphabet size (or the number of communities)
is M = 2. Asymptotically, the necessary and sufficient
recovery condition reads

sup
0<α<1

{
(1 − α)Helmin

α

}
>

log n

pobsn
or

minimum sample complexity>
n log n

2 sup0<α<1

{
(1−α)Helmin

α

} ,

thus justifying the tightness of the sufficient recovery condition
we derive. In fact, when the alphabet size is a constant, the
fundamental divergence measure that dictates the informa-
tion limits is often some variant of the minimum Chernoff
information10 or the Hellinger divergence (when optimized
over α). Nevertheless, it is not clear whether such findings
extend to the large alphabet settings. Part of the reason is
that the minimum Chernoff information or Hellinger diver-
gence do not necessarily capture the precise error exponent
when testing many hypotheses. We leave to future work
the investigation of tight preconstants in the large alphabet
scenarios.

IV. MAIN RESULTS: GENERAL GRAPHS

We now broaden our scope by exploring general measure-
ment graphs beyond the simple Erdős–Rényi model, with
emphasis on the family of homogeneous graphs.

A. Preliminaries: Key Graphical Metrics

Our theory relies on several widely encountered graphical
metrics including the minimum vertex degree, the average
vertex degree, the maximum vertex degree, and the size of
the minimum cut, which we denote by dmin, davg, dmax,
and mincut, respectively. This subsection introduces a few
other not-so-common graphical quantities that prove crucial
in presenting our results.

For any integer m, define

N (m) := {S ⊂ V | e
(S,Sc) ≤ m

}
, (39)

which comprises all cuts of size at most m. We are particularly
interested in the peak growth rate of the cardinality of N as
defined below

τ cut
k := 1

k
log
∣
∣
∣N (k · mincut)

∣
∣
∣ and τ cut := max

k>0
τ cut

k . (40)

10Note that the Chernoff information is defined to be
− log

{
1 − sup0<α<1(1 − α)Helα

}
.
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In the sequel, we will term τ cut the cut-homogeneity
exponent. In fact, if we rewrite

τ cut
k := mincut ·

{
1

k · mincut
log
∣
∣
∣N (k · mincut)

∣
∣
∣
}
, (41)

then we see that τ cut relies on two factors: (i) the cut-set
distribution exponents

{ 1
k log |N (k)|}k>0 and (2) the size of

the minimum cut, both of which are important in capturing
the degree of homogeneity of the cut-set distribution. This
metric is best illustrated through the following two extreme
examples:

• Complete graph Kn on n vertices. This homoge-
neous graph obeys e (S,Sc) = |S| (n − |S|) and
mincut = n−1. A simple combinatorial argument yields
|N (m) | � ( n

m/n

) � nm/n , revealing that

τ cut = max
k

1

k
log
∣
∣N (k · mincut)

∣
∣

� max
k

1

k

k · mincut
n

log n � log n.

• Two complete subgraphs Kn/2 connected by a single
bridge. In this graph, the min-cut size is mincut = 1 due
to the existence of a bridge, but we still have |N (m) | �
nm/n when m ≥ n. A little algebra gives

τ cut = max
k

1

k
log
∣
∣N (k · mincut)

∣
∣

� max
k

1

k

k · mincut
n

log n � log n

n
.

Interestingly, for various homogeneous graphs of interest,
τ cut can be bounded above in a tight and simple manner,
namely, τ cut � log n. This is formally stated in the following
lemma, which accounts for homogeneous geometric graphs
and expander graphs. In words, a graph is said to be a
homogeneous geometric graph if it satisfies two properties:
(i) each connected pair of vertices shares sufficiently many
neighbors; (ii) when two vertices are geometrically close, they
share a large fraction of neighbors. Here and throughout, we
shall use V (u) to denote the set of neighbors of a vertex u.

Lemma 1:
(1) Homogeneous Geometric Graphs: Suppose that G is

connected and is embedded in some Euclidean space. Assume
that there exist two numerical constants ρ > 0 and 0 < κ < 1

2
such that

(a) for each (u, v) ∈ E ,

|V (u) ∩ V (v)| ≥ ρ · mincut; (42)

(b) for each (u, v) ∈ E , denoting by w(i) the i th closest
vertex to v among the vertices in V (u) ∩ V (v) , one has
∣
∣
∣V (v) \ V(w(i))

∣
∣
∣ ≤ 1

2
ρ · mincut, 1 ≤ i ≤ κρ · mincut.

(43)

Under the above two conditions, one has

τ cut ≤ 8

κρ
log (2n) . (44)

(2) Expander Graphs: If G is an expander graph with edge
expansion hG , then

τ cut ≤ mincut
hG

log n + log 2. (45)

Proof: See Appendix E. �
We highlight a few concrete examples covered by this

lemma.
• The following instances of homogeneous geometric

graphs are worth mentioning. The first is a random
geometric graph Gn,r , provided that r2 > c log n for some
sufficiently large c > 0. The second is a generalized
ring in which two vertices are connected as long as
they are at most a few vertices apart. For both cases, κ
and ρ are constants bounded away from zero, indicating
that

τ cut � log n.

• Another situation concerns those expander graphs with
good expansion properties, including but not limited to
Erdős–Rényi graphs, random regular graphs, and small
world graphs. Since the expansion properties of these
graphs obey hG/mincut = �(1), we conclude from
Lemma 1 that

τ cut � log n.

As a final remark, we are not aware of a graph for which τ cut

exceeds the order of log n. In all aforementioned examples,
one always has τ cut � log n. In-depth study about the upper
limit on τ cut might lead to further simplification of our results,
which we leave for future work.

B. ML Decoding and Minimax Lower Bounds

This section presents recovery conditions based on the min-
imum information divergence and certain graphical metrics,
which accommodate general graph structures, channel charac-
teristics, and input alphabets. We defer detailed discussion of
our results to Section IV-C.

To begin with, the following theorem—whose proof can be
found in Appendix D—characterizes a regime where the ML
decoder is guaranteed to work.

Theorem 4: Consider any connected graph G. For any
δ > 0 and any 0 < α < 1, the ML rule ψml achieves

Pe (ψml) ≤ 1

(2n)δ − 1
,

provided that

sup
0<α<1

{
(1 − α)Helmin

α

}
· mincut

≥ 8τ cut + (δ + 8) log (2n)+ 4 log M. (46)
Remark 4: Theorem 4 continues to hold if Helmin

α is
replaced by Dmin

α .
The sufficient recovery condition given in Theorem 4 is

universal and holds for all graphs, and depends only on the
min-cut size and the cut-homogeneity exponent irrespective
of other graphical metrics. Similarly, the above sufficient
condition extends to the scenario with location-dependent
output distributions, as stated below.
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Theorem 5: The recovery condition of Theorem 4 continues
to hold under the transition probabilities (27), if Helmin

α and

Dmin
α are replaced by Hel

min
α and D

min
α , respectively, where

D
min
α := − 1

1−α log
(
1 − (1 − α)Hel

min
α

)
.

Next, we present a fundamental lower limit on KLmin

that admits perfect information recovery, based on the
same graphical metrics in addition to the maximum vertex
degree.

Theorem 6 (KL Version): Fix ζ ≥ 0 and 0 < ε ≤ 1/2. For
any graph G, if the KL divergence satisfies

KLmin · mincut

≤ max

{

(1 − ε) τ cut − H (ε),
(1 − ε) log mkl (ζ )− H (ε)

1 + ζ

}

(47)

or

KLmin · dmax ≤ (1 − ε) (log n + log mkl (ζ )
)− H (ε)

1 + ζ
, (48)

then the minimax probability of error exceeds
infψ Pe (ψ) ≥ ε.

Proof: See Appendix B. �
Notably, the conditions (47) and (48) do not imply each

other. The first condition (47)—which characterizes the effects
of cut-set distributions and alphabet size—is dominant for
inhomogeneous graphs where mincut � dmax (e.g. the graph
formed by connecting two Kn/2 with a single bridge as
described in Section IV-A). In comparison, the other condi-
tion (48) becomes tighter as mincut

dmax
grows, which is particularly

useful when accounting for the family of homogeneous graphs
where dmax � mincut.

Finally, we complement the above KL version by another
lower bound developed directly based on the Hellinger diver-
gence, although it becomes loose for those inhomogeneous
graphs obeying mincut � dmax. This is particularly useful
when investigating the scenario that demands high-probability
recovery (e.g. with success probability at least 1 − n−1). The
proof can be found in Appendix C.

Theorem 7 (Hellinger Version): Consider any graph G, any
ε > 0, and α ≤ 1

1+ε . Suppose that dmax ≥ 2εα log n. If

(1 − α)Helmin
α · dmax ≤ εα log n − rε (49)

for some residual11 rε , then infψ Pe (ψ) ≥ n−ε .
Remark 5: For any fixed ε > 0, one can optimize (49) over

all 0 < α ≤ 1
1+ε to derive a tighter condition.

C. Interpretation and Discussion

We now discuss the messages conveyed by the afore-
mentioned results, for which we emphasize a broad family
of homogeneous graphs before turning to the most general
graphs. In what follows, our discussion assumes dPl

dP j
= O(1)

for all 0 ≤ l, j < M , in which case one has (by invoking
Fact 1)

KLmin � Helmin
1
2
. (50)

11More precisely, rε := log 2 + 2[εα log n−log 2]2

dmax
.

Operating upon such assumptions enables us to significantly
simplify the presentation, while still capturing the regime
that is statistically the most challenging (compared to its
complement regime where dPl

dP j
� 1).

1) Homogeneous Graphs: Our recovery conditions are most
useful when applied to homogeneous graphs. Formally speak-
ing, we term G a homogeneous graph if it satisfies

mincut � davg � dmax, (51)

which subsumes as special cases the widely adopted
Erdős–Rényi graphs, random geometric graphs, small world
graphs, rings, grids, and many other expander graphs. A few
implications are in order.

1) For all homogeneous graphs, one has

inf
ψ

Pe (ψ)
n→∞−→ 0

if Helmin
1
2

· davg � τ cut + log n + log M, (52)

inf
ψ

Pe (ψ)
n→∞
−→ 0

if Helmin
1
2

· davg � τ cut + log n + log mkl. (53)

In general, these results are within a multiplicative gap

gap � τ cut + log n + log M

τ cut + log n + log mkl

from optimal, which are orderwise tight when either M �
poly (n) or log mkl � log M . In particular, as long as the
alphabet size is not super-polynomial in n, we arrive at the
fundamental recovery condition for this class of graphs:

Helmin
1
2

· davg � log n + τ cut. (54)

2) In comparison to the recovery guarantee developed for the
Erdős–Rényi model, the condition (54) includes one extra
correction term τ cut concerning the cut-set distribution.
To provide some intuition about τ cut, suppose that the
ground truth is x = 0 and consider an alternative
hypothesis x̃ whose non-zero entries are all identical.
If we denote by S the vertex set corresponding to the
support of x̃, then it is straightforward to see that all
measurements that can help distinguish x and x̃ reside
in the cut set E(S,Sc). By definition, τ cut

k determines
the total number of distinct cuts whose size is within
some fixed range. Since τ cut

k is defined in a logarithmic
and normalized manner, this in turn specifies how many
bits are needed to represent all these cuts and, hence, all
hypotheses associated with them. As a consequence, τ cut

presents another information-theoretic requirement.
3) While our results fall short of a general upper bound on
τ cut, we note that τ cut � log n holds for a broad class of
interesting models studied in the literature (and in fact all
models that we are aware of), including but not limited
to various homogeneous geometric graphs and expander
graphs (cf. Lemma 1). As a consequence, the recovery
condition (54) for these graphs further simplifies to

Helmin
1
2

· davg � log n, (55)
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TABLE I

SUMMARY OF KEY RESULTS FOR ALL GRAPH MODELS (M � poly (n))

.

which coincides with the one under the special
Erdős–Rényi model. Following the intuition given
in Section III-A, one must rely on around davg
measurements to distinguish two minimally sepa-
rated hypotheses—i.e. those that differ by a single
component—and hence the information bottleneck con-
stitutes around Helmin

1
2

· davg bits, which needs to be at

least log n bits in order to encode n minimally apart
hypotheses.

4) The condition (55) in turn leads to an interesting
observation: for a variety of homogeneous graphs,
the information-theoretic limits for graph-based decod-
ing are determined solely by the edge sparsity, as
opposed to the performance guarantees for many tractable
algorithms (e.g. spectral methods or semidefinite pro-
gramming) whose success typically rely on strong
second-order expansion properties.

Finally, by combining Theorem 4 and Theorem 7 (with ε = 1),
we arrive at the following criterion concerning “high-
probability” recovery: for various homogeneous graphs that
obey τ cut � log n, the probability of error Pe (ψ) ≤ n−1 is
possible if and only if

Helmin
1
2

· davg � log n. (56)

In contrast to the preceding discussion, this statement holds
regardless of how dPl

dP j
scales.

2) General Graphs: We now move on to discussing the
results in their full generality. One distinguishing feature
from the family of homogeneous graphs is that the recovery
boundary is dictated by the size of the minimum cut rather than
the graph edge sparsity. For the convenience of the reader, we
summarize all key results in Table I.

1) Tightness under general graphs. The recovery condi-
tions presented in Theorems 4 and 6 can be summarized
as follows

inf
ψ

Pe (ψ)
n→∞−→ 0

if Helmin
1
2

· mincut � τ cut + log M + log n,

(57)

inf
ψ

Pe (ψ)
n→∞
−→ 0

if Helmin
1
2

· mincut � τ cut + log mkl + mincut
dmax

log n.

(58)

These are within a multiplicative gap from optimal,

satisfying that

gap � τ cut + log M + log n

τ cut + log mkl + mincut
dmax

log n
.

Recognizing that τ cut � 1, we see that the derived
bounds are orderwise optimal when log mkl � log M �
log n (e.g. in the random corruption model pre-
sented in Section V-B under large alphabet). Even
for the loosest case, the gap is at most logarithmic
(i.e. O (log n + log M)).

2) Information bottleneck. In contrast to (54) and (55), the
amount of information one has available to differentiate
two minimally separated hypotheses is approximately
given by Helmin

1
2

· mincut instead of Helmin
1
2

· davg. This

makes sense since the two hypotheses that are most
difficult to differentiate are no longer those that differ by
one component. Instead, the most challenging task lies
in linking the variables across the minimum cut, which
can convey at most Helmin

1
2

· mincut bits of information,

forming the most fragile component for simultaneous
recovery.

3) A unified non-asymptotic framework. Our framework
can accommodate a variety of practical scenarios that
respect the high-dimensional regime: the alphabet size
might be growing with n while the channel divergence
metrics might be decaying. Furthermore, our problem
falls under the category of multi-hypothesis testing in the
presence of exponentially many hypotheses, where each
hypothesis is not necessarily formed by i.i.d. sequences.
Under such a setting, the conventional Sanov bound [49]
based on the Chernoff information measure [50]
becomes unwieldy. In contrast, our results build upon
alternative probability divergence measures (particularly
the Hellinger / Rényi divergence). This results in a
simple unified framework that enables non-asymptotic
characterization of the minimax limits (modulo
some constant factor) simultaneously for most
settings.

In general, the current approach is unable to close the worst-
case gap O (log n + log M), which could be large when either
n or M are exceedingly large. In order to improve the recovery
conditions, one alternative is to derive a tighter lower bound
on the graphical metric τ cut. For instance, our bounds become
orderwise tight whenever τ cut � log n, which arise in various
graphs beyond the family of homogeneous graphs. We leave
this for future investigation. In addition, our general lower
bounds are developed based on Fano’s inequality, since Fano’s
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inequality allows us to accommodate a set of input hypotheses
that have significant overlaps. Unfortunately, Fano’s inequality
typically relies on the KL divergence between input hypothe-
ses, which is in general not capable of capturing the right
error exponent for hypothesis testing. It would be interesting
to develop a variant of the Fano-type inequality based directly
on the Chernoff information measures.

V. CONSEQUENCES FOR SPECIFIC APPLICATIONS

In this section, we apply our general theory to a few
concrete examples that have been studied in prior literature.
As will be seen, our general theorems lead to order-wise tight
characterization for all these canonical examples.

A. Stochastic Block Model

We start by analyzing the stochastic block model (SBM),
which is a generative way to model community structure.
In the standard SBM, nodes are partitioned into two disjoint
clusters (so one can assign labels xi ∈ {0, 1} for each node).
Each pair of nodes is connected with probability α log n

n or
β log n

n depending on whether they fall within the same cluster
or not. The goal is to infer the underlying clusters that produce
the network. Of particular interest is exact recovery of the
entire clusters, which has received considerable attention;
see [4], [27], [28], [48], and [51]–[58] for a highly incomplete
list of references.

We focus on the regime where α, β = o (n/ log n)
and α > β, which subsumes all but the densest com-
munity structures. Treating the SBM as a graphical chan-
nel over a complete measurement graph (i.e. pobs = 1)
with outputs being either 0 or 1—which encodes whether
two nodes belong to the same cluster or not, we see that
(cf. Definition 13)

P0 = Bern
(
α log n

n

)
, and P1 = Bern

(
β log n

n

)
.

This allows us to compute

Helmin
1
2

=
(√

α log n

n
−
√
β log n

n

)2

+
(√

1 − α log n

n
−
√

1 − β log n

n

)2

= (1 + o (1)) (
√
α −√β)2 log n

n
.

In addition, it follows from the relation between KL divergence
and χ2 divergence (e.g. [44, eq. (7)]) that

KLmin ≤ KL
(
β log n

n
‖ α log n

n

)
≤ χ2

(
β log n

n
‖ α log n

n

)

(a)=
(
β log n

n − α log n
n

)2

α log n
n

(
1 − α log n

n

) = (1 + o(1)) (α − β)2
α

log n

n
,

(59)

where (a) follows from the identity χ2 (p ‖ q) = (p−q)2

q +
(p−q)2

1−q = (p−q)2

q(1−q) . With these two estimates in place,

Theorem 1 and Corollary 3 immediately give

inf
ψ

Pe (ψ)
n→∞−→ 0 if (

√
α −√β)2 ≥ 2 (1 + o (1)) ,

inf
ψ

Pe (ψ)
n→∞
−→ 0 if (α − β)2 ≤ (1 − o (1)) α. (60)

In fact, precise phase transition for exact cluster recovery
has only been determined last year [27], [28]. There results
assert that

inf
ψ

Pe (ψ)
n→∞−→ 0 if (

√
α −√β)2 > 2, (61)

inf
ψ

Pe (ψ)
n→∞
−→ 0 if (

√
α −√β)2 < 2, (62)

justifying that the sufficient condition we develop is precise.
When it comes to the necessary condition, one can verify
that the condition (62) is more stringent than12 (α − β)2 <
4 (α + β). In comparison, the boundary of our condition (60)
is sandwiched between the curves (α − β)2 ≤ 1

2 (α + β) and
(α − β)2 ≤ α + β. These taken collectively indicate that our
theory is tight up to a small constant factor.

Several remarks are in order. To begin with, our results
accommodate all values of α, β up to o (n/ log n), which is
broader than [27] that concentrates on the sparsest possible
regime (i.e. α, β � 1). Leaving out this technical matter, a
more interesting observation is that the achievability bound
we develop for the ML rule matches the fundamental recovery
limit in a precise manner, which seems to imply that the
squared Hellinger distance is the right metric that dictates the
recovery limits for the SBMs.

When finishing up this paper, we became aware of a very
recent work [59] that characterizes the fundamental limits for
the generalized SBM, that is, the model where n nodes are
partitioned into multiple clusters. Extending our framework
so as to accommodate the SBM in its full generality is a topic
of future work.

B. Random Corruption Model

We now turn to another model called the random corruption
model, which subsumes as special cases several applica-
tions including alignment, synchronization, and joint matching
(e.g. [6], [10], [12], [14]).

Suppose that the measurements yi j ’s are independently
corrupted following a distribution

yi j =
{

xi − x j , with probability ptrue,

UnifM , else,
(63)

where UnifM is the uniform distribution over {0, · · · ,M − 1},
ptrue stands for the non-corruption rate, and “−” is some
general subtraction operation defined in Section II. In words, a
fraction 1− ptrue of measurements act as random outliers and

12To see this, observe that
(√
α −√

β
)2
< 2 is identical to (α − β)2 <

2
(√
α +√

β
)2, which is more stringent than (α − β)2 < 4 (α + β) due to

the elementary inequality (a + b)2 ≤ 2
(

a2 + b2
)

.
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contain no useful information. Note that under this random
corruption model, one has

mkl (ε) ≡ M − 1, ∀ε ≥ 0.

The following corollary—an immediate consequence of
Theorem 1 and Corollary 3—presents concrete recovery limits
for the random corruption model. For ease of presentation, we
restrict our discussion to the Erdős–Rényi model, but remark
that all results extend to homogeneous geometric graphs
and other expander graphs (up to some constant factors) if one
replaces pobsn with the average vertex degree.

Corollary 1: Fix ε > 0. Consider the random corruption
model (63), and assume G ∼ Gn,pobs with pobs >

c1 log n
n for

some sufficiently large c1 > 0. Then, one has

inf
ψ

Pe (ψ)
n→∞−→ 0

if
1

M

(√
1 − ptrue + Mptrue −

√
1 − ptrue

)2

≥ (1 + ε) log n + 2 log M

pobsn
, (64)

inf
ψ

Pe (ψ)
n→∞
−→ 0

if ptrue ≤ max

⎧
⎨

⎩
(1 − ε) (log n + log M)

pobsn log
(

1 + ptrue M
1−ptrue

) ,

M

M − 1

(
log n

pobsn
− 1

M

)
. (65)

To establish this corollary, we start by considering the
graph Gtrue that comprises all edges where yi j = xi − x j .
It is self-evident that Gtrue ∼ G

n,
(

ptrue+ 1−ptrue
M

)
pobs

, and thus
((

1 − 1
M

)
ptrue + 1

M

)
pobs >

log n
n is necessary to ensure con-

nectivity (otherwise there will be no basis to link the node
variables across disconnected components). Apart from this,
everything boils down to calculating KLmin and Helmin, which
we gather in the following lemma.

Lemma 2: Consider the random corruption model (63). For
any 0 ≤ ptrue < 1, one has

KLmin = ptrue log

(
1 + ptrueM

1 − ptrue

)
;

Helmin
1
2

= 2

M

(√
1 − ptrue + Mptrue −

√
1 − ptrue

)2
. (66)

More simply, these metrics can be bounded as

KLmin ≤ p2
trueM

1 − ptrue
and Helmin

1
2

≥ p2
trueM

2 (1 − ptrue + Mptrue)
.

(67)
Proof: See Appendix F. �

To illustrate these guarantees numerically, we depict
in Fig. 4 an example of the preceding recovery conditions.
In the sequel, we will discuss the tightness and implications
of the above result for specific regimes, ranging from small
alphabet to large alphabet. For convenience of theoretical com-
parison, we supply an alternative form obtained by applying

the general theory but using the bounds (67):

inf
ψ

Pe (ψ)
n→∞−→ 0

if ptrue ≥ 2 (1 + ε) · (68)√
(1 − ptrue + Mptrue)(log n + 2 log M)

pobsnM
, (69)

inf
ψ

Pe (ψ)
n→∞
−→ 0

if ptrue ≤ max

{

(1 − ε)
√
(1 − ptrue)(log n + log M)

pobsnM
,

log n

pobsn

}
. (70)

1) Tightness Under Binary Alphabet: We start with the case
where M = 2, which was also studied by [29]. When pobs �
log n

n , our results (69) and (70) assert that

inf
ψ

Pe (ψ)
n→∞−→ 0 if ptrue ≥ (1 + o (1))

√
2 log n

pobsn
, (71)

inf
ψ

Pe (ψ)
n→∞
−→ 0 if ptrue ≤ (1 − o (1))

√
log n

2 pobsn
. (72)

As a result, our bounds are within a factor 2 + o(1) from
optimal, which holds for all possible values of (pobs, ptrue).
This constant gap is illustrated in Fig. 4(a) as well.

In contrast, the bounds presented in [29] fall short of a uni-
form constant factor gap accommodating different parameter
configurations. Adopting our notation, [29, Th. 4.1 and 4.2]
reduce to13:

inf
ψ

Pe (ψ)
n→∞−→ 0 if ptrue >

√
2 log n

pobsn
,

inf
ψ

Pe (ψ)
n→∞
−→ 0 if ptrue <

√
2 (1 − 3τ/2) log n

pobsn
,

where 0 < τ < 2
3 is some numerical value so that

pobs ≤ 2nτ−1. Hence, their bounds are tight up to a
factor

g (τ ) = 1 + o(1)√
1 − 3τ/2

,

which approaches 1 in the sparse graph regime as τ → 0
(e.g. pobs � log n

n ). On the other hand, it does not deliver

meaningful conditions for the case where τ ≥ 2
3 (i.e. 2n− 1

3 ≤
pobs ≤ 1). In comparison, our bounds are looser for sparse
graphs (τ < 1

2 or pobs <
2√
n

) where g (τ ) ≤ 2, but tighter for

dense graphs (τ ≥ 1
2 or pobs ≥ 2√

n
) where g(τ ) ≥ 2.

Notably, when pobs � log n
n , the fundamental limit

approaches
√

2 log n
pobsn in an accurate manner [29]. This again

corroborates the tightness of our achievability bound, implying
that the squared Hellinger distance is the right quantity to
control in the sparsest possible regime.

13Note that ptrue = 1− 2ε and d = npobs for the notation ε and d defined
in [29], respectively.
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Fig. 4. The sufficient and the necessary conditions given in Corollary 1 when n = 105. The results are shown for: (a) M = 2; (b) pobs = 0.05.

2) From Small Alphabet to Large Alphabet: The recovery
conditions given in Corollary 1 can be further divided into and
simplified for two respective regimes, depending on whether
Mptrue � 1 or Mptrue � 1. By substituting each of these
two hypotheses into (69), deriving the corresponding minimum
ptrue for the respective case, and then checking the compatibil-
ity of ptrueM with the hypotheses, one immediately deduces:

1) When M = o
(

pobsn
log n

)
, one has

inf
ψ

Pe (ψ)
n→∞−→ 0

if ptrue ≥ 2 (1 + o (1))

√
log n + 2 log M

pobsnM
, (73)

inf
ψ

Pe (ψ)
n→∞
−→ 0

if ptrue ≤ (1 − o (1))

√
log n + log M

pobsnM
; (74)

2) When M = ω
(

pobsn
log n

)
, one has

inf
ψ

Pe (ψ)
n→∞−→ 0

if ptrue ≥ 4 (1 + o (1)) (log n + 2 log M)

pobsn
, (75)

inf
ψ

Pe (ψ)
n→∞
−→ 0 if ptrue ≤ log n

pobsn
. (76)

That being said, the recovery boundary presented in terms of
ptrue exhibits contrasting features in two separate regimes, as
illustrated in Fig. 4(b). Some interpretations are in order.

1) Information-limited regime (M = o
(

dmin
log n

)
). The

amount of information that can be conveyed through each
pairwise measurement is captured by the divergence mea-
sure. In this small-alphabet regime, a little algebra gives
KLmin ≈ p2

trueM (see Lemma 2), which is increasing
in M . As a result, the alphabet size limits the amount
of information that we can harvest, and the fundamental
recovery boundary improves with M . For Erdős–Rényi

graphs, the recovery conditions are tight up to a factor of
2 in the presence of a constant alphabet size, and up to

a factor of 2
√

3
2 for all M � dmin/ log n.

2) Connectivity-limited regime (M = ω
(

dmin
log n

)
). When M

further increases and enters this regime, the information
carried by each measurement saturates and no longer
scales as p2

trueM . In this regime, the measurement graph G
presents a fundamental connectivity bottleneck. In fact, if
ptrue = o

(
log n
dmin

)
, then there will be at least one vertex

that is not connected with a single useful measurement,
and hence there will be absolutely no basis to infer the
value of this isolated vertex. Our bounds in this regime
are order-wise optimal as long as the alphabet size is not
super-polynomial in n.

C. Haplotype Assembly
The pairwise measurement model can also be applied

to analyze the haplotype assembly problem discussed in
Section I. As formulated in [20] and [21], consider n SNPs
on a chromosome, represented by a sequence {x1, · · · , xn} ∈
{0, 1}n such that a major (resp. minor) allele is denoted by 0
(resp. 1). Employing certain sequencing technologies, one
obtains a collection of independent paired reads such that for
any (i, j) ∈ E ,

y(k)i j =
{

xi ⊕ x j , w.p. 1 − θ,
xi ⊕ x j ⊕ 1, w.p. θ.

(77)

Here, y(k)i j stands for the kth noisy read of the parity between
the i th and the j th SNPs, and 0 < θ < 1/2 denotes the read
error rate. We assume that the reads taken on each edge are
independent.

A realistic measurement graph that respects current
sequencing technologies is the one in which measurements are
obtained only when the i th and the j th SNPs are geometrically
close, i.e., |i − j | ≤ w for some constant14 w > 0. This

14As discussed in [21], the separation between two DNA reads (called the
insert size) is typically bounded within a small range, with the median insert
size not exceeding a few times the separation between adjacent SNPs.
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is captured by a generalized ring graph, denoted by Gring =(V, Ering
)
, such that

(i, j) ∈ Ering iff |i − j | ≤ w. (78)

The number Li, j of reads taken between i and j is assumed
to be dependent on their separation, i.e.15

Li, j = Lp|i− j | (79)

for some parameters L and {pl | 1 ≤ l ≤ w}.
Additionally, a random and geometry-free measurement

model has been investigated in [20] as well. The fundamental
limit under this model is orderwise equivalent to that under
an Erdős–Rényi graph with Li, j ≡ L for all (i, j) ∈ E . For
the sake of completeness, we derive consequences for both
models as follows.

Corollary 2: Consider the model (77), and assume that θ
and pl are bounded away from 0.

(1) Suppose that G ∼ Gring. There exist some universal
constants c1 > c2 > 0 such that

inf
ψ

Pe (ψ)
n→∞−→ 0 if (1 − 2θ)2 > c1

log n

L
, (80)

inf
ψ

Pe (ψ)
n→∞
−→ 0 if (1 − 2θ)2 < c2

log n

L
. (81)

(2) Suppose that G ∼ Gn,pobs and pobs >
c3 log n

n for some
sufficiently large constant c3 > 0. Then there exist some
universal constants c4, c5 > 0 such that

inf
ψ

Pe (ψ)
n→∞−→ 0 if (1 − 2θ)2 >

c4 log n

Lnpobs
, (82)

inf
ψ

Pe (ψ)
n→∞
−→ 0 if (1 − 2θ)2 <

c5 log n

Lnpobs
. (83)

Proof: For the sufficient condition, we only need to calcu-
late the Rényi divergence. For each (i, j) ∈ E , letting Di, j

1/2 be
the Rényi divergence of order 1/2 between the distributions
of {y(k)i j }1≤k≤Li, j given two distinct inputs (i.e. 0 and 1), one
obtains

−Di, j
1/2

(i)= Li, j

{
−2 log

(
1 − 1

2
Hel (θ ‖ 1 − θ)

)}

(ii)≥ Li, j Hel (θ ‖ 1 − θ) , (84)

where (i) follows from additivity of Rényi divergence
[44, Th. 2.8], and (ii) follows since 1− x ≤ e−x . Furthermore,

1

2
Hel (θ ‖ 1 − θ) =

(√
θ −√

1 − θ
)2

= (1 − 2θ)2

(
√
θ +√

1 − θ)2 � (1 − 2θ)2 . (85)

Recall that Li, j = Lp|i− j | � L when G ∼ Gring, whereas
Li, j = L when G ∼ Gn,pobs . These taken together with
Theorem 5 and Lemma 1 (resp. Theorem 2) establish the
sufficient condition for Gring (resp. Gn,pobs ).

15Careful readers will note that this assumption is different from the model
adopted in [20] and [21], where the total number of reads is fixed with
the reads independently generated. Nevertheless, the model considered here
(which significantly simplifies presentation) is sufficient to capture the right
scaling of the performance limits, since these two models are orderwise
equivalent due to measure concentration.

For the necessary condition, by replacing all pl with maxl pl

in (79), we obtain a new model such that any sufficient
recovery condition for the original model holds for this new
model as well. We then move on to compute the KL divergence
for the new model:

KLmin ≤ LKL (θ ‖ 1 − θ) (a)≤ Lχ2 (θ ‖ 1 − θ)
= L

(1 − 2θ)2

θ (1 − θ) � L (1 − 2θ)2 , (86)

where (a) follows from [44, eq. (7)]. Substitution into
Theorem 6 finishes the proof. �

We now compare our results with prior results. The funda-
mental limits given in [20] and [21] were based on coverage
(or sample complexity) as a metric, that is, the total number
of reads required for perfect haplotype assembly. Recognizing
that nLw (resp.

(n
2

)
pobsL) captures the order of the total

number of paired reads for Gring (resp. Gn,pobs ), we see that
the minimal sample complexity obeys

nLw � n log n

(1 − 2θ)2
, when G ∼ Gring; (87)

(
n

2

)
Lpobs � n log n

(1 − 2θ)2
, when G ∼ Gn,pobs . (88)

Consequently, for the generalized ring graph, our results match
the sample complexity limits characterized in [21] in an
orderwise sense, which is proportional to

n log n

1 − e−KL(0.5||θ) �
n log n

KL(0.5 ‖ θ) =
n log n

( 1
2 + o(1)

)
(1 − 2θ)2

.

On the other hand, for the Erdős–Rényi graphs, the minimum
sample complexity scales as n log n

(1−2θ)2
, which coincides with the

orderwise limits �(n log n) derived in [20].
Notably, our results are not restricted to the classical large-

sample asymptotics where θ is fixed while n grows to infinity.
This strengthens [20], [21] by accommodating the regime
where θ−1/2 = o(1), which characterizes the non-asymptotic
tradeoff between n and the read quality. As a final remark,
while our results are tight in capturing the right scaling
w.r.t. the read error rate as well as the number of SNPs, our
derivation is not tight in characterizing the behavior w.r.t. pl

(or the notation W given in [21]).

VI. CONCLUDING REMARKS

This paper investigates simultaneous recovery of multiple
node variables based on noisy graph-based measurements,
under the pairwise difference model. The problem formula-
tion spans numerous applications including image registra-
tion, graph matching, community detection, and computational
biology. We develop a unified framework in understanding
all problems of this kind based on representing the available
pairwise measurements as a graph, and then representing the
noise on the measurements using a general channel with a
given input/output transition measure. This framework accom-
modates large alphabets, general channel transition probabili-
ties, and general graph structures in a non-asymptotic manner.
Our results underscore the interplay between the minimum
channel divergence measures and the minimum cut size of
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the measurement graph. Moreover, for various homogeneous
graphs, the recovery criterion relies almost only on the first-
order graphical metrics independent of other second-order
metrics like the spectral gap. We expect that such fundamen-
tal recovery criterion will provide a general benchmark for
evaluating the performance of practical algorithms over many
applications.

For concreteness, we restrict our attention to the pairwise
difference model in this paper, but we remark that the analysis
framework is somewhat generic and applies to a broader
family of pairwise measurements. For instance, consider a
more general invertible pairwise relation, denoted by xi � x j ,
that satisfies

{
x1 � x2 
= x1 � x3, ∀x2 
= x3;
x1 � x2 
= x4 � x2, ∀x1 
= x4.

(89)

As an example, the addition operator defined as xi � x j :=
axi + bx j (mod M) falls within this class as long as both
(a,M) and (b,M) are coprime. Interestingly, most of the
analyses carry over to such models and reappear suitably gen-
eralized. Details concerning full generalization of our results
are left for future work.

While our paper centers on the minimax recovery involving
all possible input configurations, there exists another family
of applications where the inputs fall within a more restricted
class (e.g. the class of inputs whose components are spread out
over the entire alphabet). In addition, it would be interesting to
establish how the fundamental limits can be improved under
the partial recovery setting, namely, the situation where one
only demands reconstruction of a (large) fraction of input
variables. Even in the exact recovery situation, it remains to be
seen whether the universal pre-constants can be further tight-
ened. Moving away from the statistical guarantees, another
important issue is the computational feasibility of information
recovery. It has recently been demonstrated by [19] that the
information and computation limits meet for many homoge-
neous graphs (e.g. rings, lines, small-world graphs, grids). It
would be of great interest to see whether there exists any
computational gap away from the statistical limits for a more
general family of graphs.

APPENDIX A
PROOF OF THEOREM 1

Suppose that both the ground truth and the null hypothesis
are x = x∗. Consider the class of alternative hypotheses
parametrized by k (1 ≤ k ≤ n) as follows

Hk := {x | ∥∥x − x∗
∥
∥

0 = n − k
}
, (90)

which comprises at most
(n

k

)
(M − 1)n−k distinct hypotheses.

For notational convenience, denote by Pw (·) (resp. P0 (·))
the probability measure of y conditional on the alternative
hypothesis x = w (resp. the null hypothesis x = x∗).
We let Pe,Hk represent the probability of error when restricted
to the class Hk of alternative hypotheses. For simplicity of
presentation, we will assume x∗ = 0 in what follows, but all
steps apply to other choices of x∗.

For any w ∈ Hk , denote by Si (0 ≤ i < M) the set of
vertices v obeying wv = i , and let ni = |Si |. Apparently,

there are 1
2

∑M−1
i=1 e(Si ,Sc

i ) distinct locations (l, j) satisfying
l > j and wl − w j 
= 0, where e(S,Sc) denotes the number
of cut edges as defined in Section I-C. With this in mind, it
follows from the Chernoff bound that

P0

{
log

dPw (y)
dP0 (y)

> 0

∣
∣
∣
∣E
}

= P0

⎧
⎨

⎩

∑

(l, j )∈E, l> j

α log
dPw

(
yl j
)

dP0
(
yl j
) > 0

∣
∣
∣
∣
∣∣
E
⎫
⎬

⎭

≤
∏

(l, j )∈E, l> j

E0

⎡

⎣e
α log

dPw(yl j)
dP0(yl j )

⎤

⎦

=
∏

(l, j )∈E, l> j

[
1 − (1 − α)Helα

(
Pw

(
yl j
) ‖P0

(
yl j
)) ]

(91)

= exp

⎛

⎝− (1 − α)
∑

(l, j )∈E, l> j

Dα
(
Pw

(
yl j
) ‖P0

(
yl j
))
⎞

⎠

(92)

≤ exp

(

− (1 − α)

∑M−1
i=0 e

(Si ,Sc
i

)

2
Dmin
α

)

, (93)

where (91) follows from the definition of the Hellinger diver-
gence, (92) comes from the definition (9), and (93) arises since
Dα
(
Pw

(
yl j
) ‖P0

(
yl j
)) 
= 0 if and only if wl −w j 
= 0.

Additionally, define the quantity

Nw := 1

2

∣
∣∪i
{
(l, j) ∈ (Si ,Sc

i

)}∣∣ = 1

2

M−1∑

i=0

|Si | (n − |Si |),

then it follows from the definition of Gn,pobs that
∑M−1

i=0 e
(Si ,Sc

i

)

2
∼ Binomial (Nw, pobs).

Unconditioning on E in the inequality (93) gives

P0

{
log

dPw (y)
dP0 (y)

> 0

}

≤ E

[

exp

(

− (1 − α)
∑M−1

i=0 e
(Si ,Sc

i

)

2
Dmin
α

)]

=
Nw∑

l=0

(
Nw

l

)
pl

obs (1 − pobs)
Nw−l exp

{
−l · (1 − α) Dmin

α

}

= (1 − pobs)
Nw

Nw∑

l=0

(
Nw

l

)(
pobs

1 − pobs

)l

· exp
{
−l · (1 − α) Dmin

α

}
(94)

(a)= (1 − pobs)
Nw

(
1 + pobs

1 − pobs
exp

{
− (1 − α) Dmin

α

})Nw

=
(

1 − pobs + pobs exp
{
− (1 − α) Dmin

α

})Nw

(b)≤ exp
{
−Nw pobs

(
1 − exp

(
− (1 − α) Dmin

α

))}
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(c)= exp
{
−Nw pobs (1 − α)Helmin

α

}

= exp

{

−pobs (1 − α)Helmin
α

1

2

(

n2 −
M−1∑

i=0

n2
i

)}

, (95)

where (a) follows from the binomial theorem, (b) relies on
the elementary inequality 1 − x ≤ e−x , (c) comes from the
definition (18), and the last line follows since

Nw = 1

2

M−1∑

i=0

|Si | (n − |Si |) = 1

2

M−1∑

i=0

ni (n − ni )

= 1

2

(

n2 −
M−1∑

i=0

n2
i

)

.

It remains to control
∑M−1

i=0 n2
i . Recognize that the input

is unique only up to global offset, that is, for any l, the
inputs w and w − l · 1 result in the same pairwise inputs[
wi −w j

]
1≤i, j≤n . Therefore, we assume without loss of gen-

erality that16

k = n0 ≥ max {n1, n2, · · · , nM−1}. (96)

Letting ρ := ⌊ n
k

⌋
, we claim that

∑M−1
i=0 n2

i under the constraint
ni ≤ k is maximized by the configuration

⎧
⎪⎨

⎪⎩

n0 = n1 = · · · = nρ−1 = k,

nρ = n − kρ,

nρ+1 = · · · = nM−1 = 0,

which we will prove by contradiction. Without loss of gen-
erality, suppose that the maximizing solution is n0 ≥ n1 ≥
· · · ≥ nM−1, and denote by ρ̃ the smallest index such that
nρ̃ ≤ k − 1. If ρ̃ ≤ ρ − 1, then by replacing

(
nρ̃ , nρ̃+1

)

with
(
nρ̃ + 1, nρ̃+1 − 1

)
, we obtain a strictly better feasible

solution since
(
nρ̃ + 1

)2 + (nρ̃+1 − 1
)2 = n2

ρ̃ + n2
ρ̃+1 + 2

(
nρ̃ − nρ̃+1

)+ 2

> n2
ρ̃ + n2

ρ̃+1.

This results in contradiction, and hence ρ̃ = ρ. Similarly,
we cannot have nρ < n − kρ, since replacing

(
nρ, nρ+1

)

with
(
nρ + 1, nρ+1 − 1

)
leads to a strictly better solution.

Consequently, for all {ni : 0 ≤ i < M} satisfying (96), one has

M−1∑

i=0

n2
i ≤

⌊n

k

⌋
· k2 +

(
n − k

⌊n

k

⌋)2
, (97)

leaving us two cases below to deal with.
Case 1: Suppose that k ≤ n/2. The inequality n−k

⌊n
k

⌋ ≤ k
leads to

M−1∑

i=0

n2
i ≤

⌊n

k

⌋
· k2 +

(
n − k

⌊n

k

⌋)
k = nk.

16Otherwise, if ni = max
{
n1, n2, · · · , nM−1

}
instead, we can always

enforce a global shift i on w to yield w− i1 in order to satisfy this condition
without affecting the output distribution.

This combined with (95) yields

P0

{
log

dPw (y)
dP0 (y)

> 0

}

≤ exp

(

− pobs
(
n2 − nk

)

2
(1 − α)Helmin

α

)

.

Employing the union bound over Hk we obtain

Pe,Hk ≤
(

n

k

)
(M − 1)n−k

· exp

(

− pobs
(
n2 − nk

)

2
(1 − α)Helmin

α

)

= exp

(
log

(
n

k

)
+ (n − k) log (M − 1)

− pobs
(
n2 − nk

)

2
(1 − α)Helmin

α

)

Under the assumption (24), one has

(1 − α)Helmin
α · pobsn ≥ log n + 2 log (M − 1)

for some 0 < α < 1, which further gives

pobs
(
n2 − nk

)

2
(1 − α)Helmin

α

≥ (n − k) log n

2
+ (n − k) log (M − 1) .

Putting the above computation together yields

Pe,Hk ≤ exp

(
log

(
n

k

)
− (n − k) log n

2

)

(i)≤ 2n · n−
1
2 (n−k) (ii)≤ 2n · n−

1
4 n (98)

≤ C1n−c1n (99)

for some universal constants C1, c1 > 0, where (i) uses the
fact that

(n
k

) ≤ 2n , (ii) holds since k ≤ n/2, and the last
inequality follows since 2n � n−�(n). This approaches zero
(super)-exponentially fast.

Case 2: We now move on to the case where k > n/2. In
this regime one has

⌊ n
k

⌋ = 1, and thus (97) gives
∑

M−1
i=0 n2

i ≤ k2 + (n − k)2 = n2 − 2k (n − k) ,

This taken collectively with (95) implies that

P0

{
log

dPw (y)
dP0 (y)

>0

}
≤ exp

(
−pobs (1−α) k (n−k)Helmin

α

)
.

Apply the union bound over Hk to deduce that

Pe,Hk ≤
(

n

k

)
(M − 1)n−k

· exp
(
−pobs (1 − α) k (n − k)Helmin

α

)

= exp

(
log

(
n

k

)
+ (n − k) log (M − 1) (100)

− pobs (1 − α) k (n − k)Helmin
α

)
. (101)
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For any constant δ > 0, if the minimum Hellinger divergence
obeys

(1 − α)Helmin
α · pobsn ≥ (1 + δ) log (2n)+ 2 log (M − 1)

for some 0 < α < 1, then in the regime where k > n/2 one
has

pobsk (n − k) (1 − α)Helmin
α ≥ (1 + δ) k (n − k) log (2n)

n
+ (n − k) log (M − 1) .

Substitution into (100) gives

Pe,Hk ≤ exp

(
log

(
n

k

)
− (1 + δ) k (n − k)

n
log (2n)

)
,

which can be further divided into two cases.
(i) If k/n > 1 − δ/4 and k/n > 1/2, then the error

probability is bounded by

Pe,Hk ≤ exp ((n − k) log (2n)

− (1 + δ) k

n
(n − k) log(2n)

)

= exp ((n − k) log (2n) · (1 − (1 + δ) k/n))

≤ exp ((n − k) log (2n))

·
(

1 − (1 + δ)max

{
1 − δ

4
,

1

2

})

≤ exp
(
−δ̃ (n − k) log (2n)

)
,

where δ̃ := max
{ 3

4δ − 1
4δ

2, δ−1
2

}
.

(ii) If k
n = 1 − τ for some δ

4 ≤ τ ≤ 1
2 , then

Pe,Hk ≤ exp (nH (τ )− (1 + δ) n (1 − τ ) τ log (2n))

(102)

≤ exp (−n ((1 − τ ) τ log (2n)− H (τ )))

≤ C2 exp (−c2δn log n) . (103)

for some universal constants c2,C2 > 0, where
(102) makes use of the fact [60, Example 11.1.3] that
1
n log

(n
k

) ≤ H (k/n) = H (τ ), with H (τ ) denoting the
binary entropy function.

Putting the above inequalities together and applying the
union bound reveal that

Pe ≤
n/2∑

k=� n
M �

Pe,Hk +

(
1− δ

4

)
n

∑

k=n/2+1

Pe,Hk +
n−1∑

k=
(

1− δ
4

)
n

Pe,Hk

≤ n

2
· C1n−c1n + n

2
· C2 exp (−c2δn log n)

+
n−1∑

k=
(

1− δ
4

)
n

exp
(
−δ̃ (n − k) log (2n)

)

≤ n

2
· C1n−c1n + n

2
· C2 exp (−c2δn log n)

+ 1

(2n)δ̃
1

1 − (2n)−δ̃

≤ C0e−c0δn log n + 1

(2n)δ̃ − 1
.

with c0,C0 > 0 denoting some universal constants.

APPENDIX B
PROOF OF THEOREMS 3(a) AND 6

This section is mainly devoted to proving Theorem 6, which
subsumes Theorem 3(a) as a special case. Without loss of
generality, assume that the minimum KL divergence can be
approached by the following pairs of indices

KL (P1 ‖P0) = KLmin,

KL (Pl ‖P0) ≤ (1 + ζ )KLmin, 2 ≤ l ≤ mkl (ζ ) ,

and suppose that both the ground truth and the null hypoth-
esis are x = x∗ = 0. We would like to ensure that
the observation y conditional on x = 0 is distinguishable
from the observation y under any alternative hypothesis
x 
= 0.

(1) To begin with, recall the definition

N (k · mincut) := {S ⊆ V : e
(S,Sc) ≤ k · mincut

}
.

For each vertex set S ∈ N (k · mincut), we generate one
representative hypothesis w such that

wi =
{

1, if i ∈ S,
0, otherwise.

This produces a collection of |N (k · mincut) | distinct alter-
native hypotheses, denoted by Bk . For each w ∈ Bk , the
distributions Pw and P0 disagree only over those locations
residing in the associated cut set, which amounts to at most
k ·mincut components. It then follows from the independence
assumption of yi j that

KL (Pw ‖P0) = e
(S,Sc)KLmin ≤ k · mincut · KLmin.

(104)

Suppose that k0 := arg maxk≥1 τ
cut
k and fix 0 < ε ≤ 1

2 .
Applying the Fano-type inequality [41, eq. (2.70)] suggests
that if

1
∣
∣Bk0

∣
∣
∑

w∈Bk0

KL (Pw ‖P0) ≤ (1 − ε) log
∣
∣
∣N (k0 · mincut)

∣
∣
∣− H (ε),

(105)

then one necessarily has infψ Pe (ψ) ≥ ε. With (104) and
the definition (40) in mind, we see that (105) would follow
from

KLmin · k0mincut ≤ (1 − ε) k0τ
cut − H (ε),

which can further be ensured if

KLmin · mincut ≤ (1 − ε) τ cut − H (ε).

(2) Next, suppose that the minimum cut is attained
by

(Smc,Sc
mc
)
. Consider another class C of hypotheses

consisting of mkl hypotheses. The lth candidate w(l) is
given by

∀1 ≤ l ≤ mkl : w
(l)
i =

{
l, if i ∈ Smc,

0, otherwise,

all of which obey

KL
(
w(l)‖0

)
≤ (1 + ζ )mincut · KLmin. (106)
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Applying the Fano inequality once again, we get
infψ Pe (ψ) ≥ ε as long as

1

mkl

mkl∑

l=1

KL
(
w(l)‖0

)
≤ (1 − ε) log mkl − H (ε) . (107)

Observe from (106) that (107) can be ensured under the
condition

KLmin · (1 + ζ )mincut ≤ (1 − ε) log mkl − H (ε).

(3) Finally, consider the set of configurations with binary
alphabet having support size 1, i.e. the following M−1 classes
of hypotheses

Hl :=
{

x | ‖x‖0 = 1, x ∈ {0, l}n}, 1 ≤ l < M, (108)

where each class Hl is composed of n distinct alternative
hypotheses. This guarantees that for any w ∈ Hl , the dis-
tribution of

{
yi j
} | x = 0 differ from that of

{
yi j
} | x = w in

at most dmax locations.
For any hypothesis class H and any 0 < ε < 1

2 , the Fano-
type inequality [41, eq. (2.70)] suggests that infψ Pe (ψ) ≥ ε
occurs as long as

1

|H|
∑

w∈H
KL (Pw ‖P0) ≤ |H| + 1

|H| {(1 − ε) log |H| − H (ε)}.

(109)

By picking H to be H = ⋃mkl

l=1 Hl—which obeys |H| =
mkln—we can see from definition of mkl that

1

|H|
∑

w∈H
KL (Pw ‖P0) ≤ (1 + ζ ) dmaxKLmin

and hence (109) would hold under the condition

KLmin · (1 + ζ ) dmax ≤ (1 − ε)
(

log n + log mkl
)
− H (ε).

(110)

Putting the above results together establishes Theorem 6.
We now specialize to Theorem 3(a), which follows imme-

diately from (110). Specifically, for an Erdős–Rényi graph
G ∼ Gn,pobs , the Chernoff-type inequality [61, Th. 4.4 and 4.5]
indicates that for any ε > 0,

dmax ≤ (1 + ε) npobs (111)

holds with probability exceeding 1 − n−10, provided that
pobs >

c log n
n for some sufficiently large constant c > 0.

Substitution into (110) immediately leads to Theorem 3(a).

APPENDIX C
PROOF OF THEOREMS 3(b) AND 7

We start with the proof of Theorem 7, which accounts for a
much broader context than Theorem 3(b). In similar spirit of
Theorem 6, assume that the minimum Hellinger divergence is
achieved by the following pair of indices

Helα (P1 ‖P0) = Helmin
α ,

and let the ground truth and the null hypothesis be
x = x∗ = 0.

For any class H of alternative hypotheses, the minimax
lower bound [62, Th. II.1] suggests that every f -divergence
D f (·) obeys

∑

w∈H
D f (Pw ‖P0) ≥ f (|H| (1 − Pe))

+ (|H| − 1) f

( |H| Pe

|H| − 1

)
,

where Pw is the probability measure of
[
yi j
]
(i, j )∈E conditional

on x = w. When specialized to the Hellinger divergence of
order α (which corresponds to f (x) = 1

1−α (1 − xα)), the
above inequality leads to

(1 − α)
∑

w∈H
Helα (Pw ‖P0)

≥ 1 − |H|α (1 − Pe)
α + (|H| − 1)

{
1 −

( |H| Pe

|H| − 1

)α}

= |H| − |H|α (1 − Pe)
α − (|H| − 1)1−α |H|α Pαe

≥ |H| − |H|α − |H| Pαe .

Put another way,

Pαe ≥ 1 − (1 − α)∑w∈H Helα (Pw ‖P0)

|H| − 1

|H|1−α . (112)

Notably, for any product measures Pn = P × P × · · · × P
and Qn = Q× Q×· · ·× Q, the Hellinger divergence satisfies
the decoupling equality

1 − (1 − α)Helα
(
Pn ‖ Qn) =

ˆ (
dPn)α (dQn)1−α

=
(ˆ

(dP)α (dQ)1−α
)n

(113)

= (1 − (1 − α)Helα (P ‖ Q))n . (114)

If all hypotheses w ∈ H satisfy ‖w − x∗‖0 ≤ k, then Pw

and P0 are different over at most kdmax locations. Thus, if
the divergence measure at each of these locations is identical
and equal to some given value hα , then it follows from the
independence assumption of yi j that

1 − (1 − α)Helα (Pw ‖P0) ≥
(

1 − (1 − α) hα
)kdmax

.

This together with (112) suggests that: as long as
(1 − α) hα ≤ 1

2 , one necessarily has

Pαe ≥
(

1 − (1 − α) hα
)kdmax − |H|−(1−α)

≥ e−
(
(1−α)hα+(1−α)2h2

α

)
kdmax − |H|−(1−α) ,

which results from the inequality that log (1 − x) ≥ −x − x2

for any 0 ≤ x ≤ 1/2.
As a consequence, if the following condition holds

e−
(
(1−α)hα+(1−α)2h2

α

)
kdmax − |H|−(1−α) ≥ ξα

or, equivalently,

(1 − α) hα [1 + (1 − α) hα] ≤ − log
(
ξα + |H|−(1−α))

kdmax
,

(115)
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then the minimax probability of error must exceed
infψ Pe ≥ ξ . Solving the quadratic inequality (115) and
utilizing the fact

√
1 + 4x − 1 ≥ 2x − 4x2 (x ≥ 0), we see

that (115) would follow as long as

(1 − α) hα ≤ − log
(
ξα + |H|−(1−α))

kdmax

−2 log2
(
ξα + |H|−(1−α))

(kdmax)
2 . (116)

Finally, setting ξ = n−ε and H = H1 (cf. Definition (108)),
one has |H| = n, k = 1 and hα = Helmin

α . In the regime where

ε ≤ 1 − α
α

⇐⇒ α ≤ 1

1 + ε ,
we have

ξα = n−εα ≥ n−(1−α) = |H|−(1−α) .
The condition (116) is then guaranteed to hold if

(1 − α)Helmin
α ≤ − log (2ξα)

dmax
− 2 log2 (2ξα)

d2
max

, (117)

which would follow if

(1 − α)Helmin
α ≤ εα log n − log 2

dmax
− 2

[
εα log n − log 2

]2

d2
max

,

(118)

where we have used ξα = n−εα . Besides, the condition
(1 − α) hα ≤ 1

2 becomes (1 − α)Helmin
α ≤ 1

2 , which can be
ensured under (118) together with the condition

εα log n

dmax
≤ 1

2

as claimed.
Finally, recall that when G ∼ Gn,pobs , one has

dmax ≤ (1 + ε)pobsn as long as npobs/ log n is sufficiently
large. Plugging this into the preceding bound completes the
proof of Theorem 3(b).

APPENDIX D
PROOF OF THEOREM 4

Note that ψml distinguishes the null hypothesis x = x∗ ={
x∗i
}

1≤i≤n from the alternative hypothesis x = w = {wi }1≤i≤n
only based on those components (i, j ) where

x∗i − x∗j 
= wi −w j ,

and its recovery capability depends only on the distinction of
output distributions over these locations. For ease of presen-
tation, we will suppose in the rest of the proof that both the
ground truth and the null hypothesis are x = 0, but note that
the proof carries over to all other ground truth values.

Let’s divide the set of all alternative hypotheses into several
classes Ak so that for each k ≥ 1,

Ak := {w 
= 0 : |E ∩ supp (w � w)| < k · mincut}, (119)

where we employ the notation

E ∩ supp (w � w) := {(i, j) ∈ E | wi − w j 
= 0, i > j
}
.

Apparently, any cut set cannot contain more than n2 edges,
and hence Ak = ∅ for any k ≥ n2/mincut. For any w ∈ Ak ,
if we let Sl represent the set of vertices taking the value l,
then by definition of Ak one has

M−1∑

l=0

e
(Sl ,Sc

l

) = 2 |E ∩ supp (w � w)| < 2k · mincut.

(120)

On the other hand, consider the case where k = 1. All
w ∈ A1 are equivalent to 0 up to some global offset.
This is because for any non-trivial cut (Sl ,Sc

l ), one must have
|E ∩ supp (w � w)| ≥ e

(Sl ,Sc
l

) ≥ mincut, which violates
the feasibility constraint |E ∩ supp (w �w)| < mincut. In the
following lemma, we link the cardinality of each hypothesis
class Ak with the cut-homogeneity exponent τ cut defined
in (40).

Lemma 3: For any k ≤ n2/mincut, the hypothesis class Ak

defined in (119) satisfies

log |Ak |
k

< 2 log M + 2 log (2k · mincut)+ 4τ cut

≤ 2 log M + 4 log (2n)+ 4τ cut. (121)
Proof: See Appendix G. �

We are now in position to characterize the recovery ability
of ψml. Let Pw (·) denote the measure given x = w. For any
0 < α < 1, it follows from (93) that

P0

{
log

dPw (y)
dP0 (y)

> 0

}

≤ exp

(

− (1 − α)
∑M−1

i=0 e
(Si ,Sc

i

)

2
Dmin
α

)

, (122)

When restricted to the hypotheses in Ak\Ak−1 for any 2 ≤
k ≤ n2/mincut, we know from the definition of Ak that

(k − 1)mincut ≤ |E ∩ supp (w � w)| =
∑M−1

i=0 e
(Si ,Sc

i

)

2
< kmincut.

It then follows from the union bound that

P0

{
∃w ∈ Ak\Ak−1 : log

dPw (y)
dP0 (y)

> 0

}

≤ |Ak | exp

(

− (1 − α)

∑M−1
i=0 e

(Si ,Sc
i

)

2
Dmin
α

)

(123)

≤ exp

(
− (k−1)

(
(1 − α) Dmin

α mincut − k

k − 1

log |Ak |
k

))

≤ exp

(
− (k − 1)

(
(1 − α) Dmin

α mincut − 2 log |Ak |
k

))

(124)

≤ exp
{
− (k − 1)

(
(1 − α) Dmin

α · mincut

− (4 log M + 8 log (2n)+ 8τ cut))} , (125)

where (125) results from Lemma 3. This suggests that if there
is some 0 < α < 1 obeying

(1 − α) Dmin
α · mincut ≥ (δ + 8) log (2n)+ 8τ cut + 4 log M,
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Fig. 5. An example of the cut (S,Sc) in a geometric graph. Here, S consists
of all black vertices, while Sc contains all white vertices. The blue solid edges
represent the cut edges.

then one achieves

Pe (ψml) ≤
n2

mincut∑

k=2

P0

{
∃w ∈ Ak\Ak−1 : log

dPw (y)
dP0 (y)

> 0

}

≤
∑

k≥2

exp
{
− (k − 1)

(
(1 − α) Dmin

α · mincut

− (4 log M + 8 log (2n)+ 8τ cut))}

≤
∑

k≥1

exp (−k · δ log (2n))

≤ 1

(2n)δ
· 1

1 − (2n)−δ
= 1

(2n)δ − 1
.

To finish up, recognizing that Dmin
α ≥ Helmin

α immediately
establishes the recovery condition in terms of Helmin

α .

APPENDIX E
PROOF OF LEMMA 1

(1) Define the cut-edge degree of a vertex v to be the number
of edges in E (S,Sc) that v is incident to. Consider any cut
(S,Sc) with size

e
(S,Sc) ≤ k · mincut. (126)

We shall separate all vertices into two types as follows:

• Type-1 vertex: any vertex whose cut-edge degree is at
least 1

2κρ · mincut;
• Type-2 vertex: any vertex whose cut-edge degree is less

than 1
2κρ · mincut.

For ease of presentation, we will color all vertices in S black
and all vertices in Sc white; each feasible coloring scheme
thus corresponds to one valid cut (S,Sc) in N (k · mincut).

To develop some intuitive understanding of the above
notions, we depict in Fig. 5 an example of a cut (S,Sc) in
a geometric graph, where Sc consists of all vertices residing
within the shaded area, and the blue solid edges indicate the
cut edges. Typically, type-1 vertices, which are incident to

many cut edges, are lying on or close to the boundary of the
cut. In Fig. 5, these correspond to those vertices lying around
the boundary of the shaded area in addition to those singleton
white vertices. In contrast, type-2 vertices often refer to those
staying away from the cut boundary (e.g. those white nodes
in the center of the shaded area). It may be useful to keep this
figure in mind when reading about the subsequent proof.

To prove Lemma 1, we start by examining how many
combinations of type-1 vertices are feasible and how many
ways there are to color them. By definition, for any cut
obeying (126), the number V1 of type-1 vertices satisfies

V1 ≤ 2e(S,Sc)
1
2 κρmincut

≤ 4k
κρ (note that each edge is incident to two

vertices and might be counted twice). Simple combinatorial
arguments thus suggest that there are at most n4k/κρ distinct
ways to pick these type-1 vertices, and then no more than
2V1 ≤ 24k/κρ ways to color all these type-1 vertices, and finally

at most
(2e(S,Sc)

V1

) ≤ (2k · mincut)V1 ≤ (2k · mincut)4k/κρ

different combinations of cut-edge degrees among them. Taken
together these counting arguments imply that there exist no
more than17

n4k/κρ (2k · mincut)4k/κρ 24k/κρ < (2n)8k/κρ

distinct ways to select the set of type-1 vertices as well as
assign colors and cut-edge degrees for each of them, if one is
required to satisfy the cut size constraint (126).

We claim that for any cut (S,Sc) obeying (126), once the
following three pieces of information are gathered:

(i) which vertices are type-1 vertices,
(ii) the cut-edge degrees of these type-1 vertices,

(iii) the colors of these type-1 vertices (i.e. whether they
belong to S or Sc),

then the colors of all remaining vertices (and hence all infor-
mation about this cut) can be uniquely determined. Following
the preceding pictorial interpretation, the whole point of this
claim is to demonstrate that as long as some appropriate condi-
tions regarding the cut boundary is known, then one can figure
out all remaining cut information. To establish this claim, we
shall consider the following two cases separately. Without loss
of generality, the following discussion concentrates only on
black type-1 vertices.

• Case 1. Consider any vertex v whose color has been
revealed to be black, and whose cut-edge degree does
not exceed

(
1 − 1

2
κ

)
ρ · mincut, (127)

namely, v is connected with no more than
(
1 − 1

2κ
)
ρ ·

mincut white vertices. For any of its neighbors u
(i.e. (u, v) ∈ E), if the color of u has not been revealed,
then we claim that it must be black. To see this, suppose
instead that u is white, then from the above connectivity
assumption (127) of v, the number of black vertices that

17Here, we use the fact that 2k · mincut ≤ n2, and hence
(2k · mincut)4k/κρ ≤ n8k/κρ .



5902 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 10, OCTOBER 2016

u is linked with is at least

|V (u) ∩ V (v)| −
(

1 − 1

2
κ

)
ρ · mincut

≥ ρmincut −
(

1 − 1

2
κ

)
ρ · mincut = 1

2
κρmincut,

where the inequality follows from Assumption (42). This
means that u must be a type-1 vertex (cf. definition of
type-1 vertices) and its color must have been revealed,
thus resulting in contradiction. In summary, all neighbors
of v with unknown colors are necessarily black.

• Case 2. Consider any vertex v whose color has been
revealed to be black, and whose cut-edge degree is known
to be larger than

(
1 − 1

2κ
)
ρ · mincut. Again, consider

any of its neighbors u whose color remains unknown,
which must be incident to fewer than 1

2κρ · mincut
cut edges since by construction it is a type-2 vertex.
This already suggests the following fact: if there are at
least 1

2κρ ·mincut vertices falling in V (u)∩V (v) known
to be white (resp. black), then the color of u must be
white (resp. black), since by definition a type-2 vertex
cannot be connected to 1

2κρ ·mincut vertices of opposite
color. As a result, we can uniquely determine the color
of u unless

– (P1) the colors of fewer than κρ · mincut vertices18

in V (u) ∩ V (v) have been revealed.

This remaining situation is the subject of the discussion
below.

Suppose that the true color of u is black. Recall that
u is a type-2 vertex and hence it is connected to fewer
than 1

2κρ white vertices. From Assumption (42) and the
condition κ < 1

2 , any white neighbor w of u must be
connected with at least

|V (u) ∩ V (w)| − 1

2
κρ · mincut ≥

(
1 − 1

2
κ

)
ρmincut

≥ 1

2
κρ · mincut

black vertices falling within V (u) ∩ V (w), and hence w
must be a type-1 vertex and its color has necessarily been
identified. Similarly, if u is white, then the colors of all
black vertices surrounding u must have been revealed. As
a result, all vertices in V(u) with unknown colors must be
of the same color as u. That being said, as long as one can
identify the color of one extra vertex in V (u)∩V (v), then
the color of u and all remaining vertices in V (u)∩V (v)
can be uniquely determined.

Now let w be the uncolored vertex in V (u) ∩ V (v)
that is the nearest to v, which by (P1) must be within the
(κρmincut) closest vertices to v in V (u) ∩ V (v). From
Assumption (43), we see that w must be connected to all
but 1

2ρ ·mincut neighbors surrounding v and, as a result,

18Otherwise there are either 1
2κρmincut white vertices or 1

2κρmincut black
colors in E (u) ∩ E (v) with their colors revealed.

be connected to at least

cut-degree(v) − |V (v) \V (w)|
≥
(

1 − 1

2
κ

)
ρ · mincut − 1

2
ρ · mincut

= 1

2
(1 − κ) ρ · mincut ≥ 1

2
κρ · mincut

white vertices since κ < 1
2 , where cut-degree(v) repre-

sents the cut-edge degree of v. Therefore, if w is black,
then it has to be a type-1 vertex, which is contradictory,
and we have determined it to be white.

Putting the above two cases together indicates that all
vertices that are connected to the set of type-1 vertices can
be uniquely colored, and we shall use Vnew to denote them.
If there still exist uncolored vertices, a nonempty subset of
them must be connected to Vnew. Since all vertices in Vnew are
type-2 vertices and have cut-degrees not exceeding
1
2κρmincut ≤ (

1 − 1
2κ
)
ρmincut, repeating the arguments

in Case 1 allows us to determine the color of all vertices
surrounding Vnew. This step further shrinks the size of the
uncolored set. Repeating this argument until all vertices are
colored, we establish the claim. All in all, we have thus
demonstrated that the number of feasible coloring schemes is
bounded above by (2n)8k/κρ , which in turn justifies

τ cut
k ≤ 8 log (2n)

κρ
, ∀k ≥ 1.

(2) If G is an expander graph with edge expansion hG , then
for any vertex set S with |S| ≤ n

2 , one has

|S| ≤ e
(S,Sc) /hG (128)

from the definition of hG . For any d > 0, if one requires that

e
(S,Sc) ≤ kd, (129)

then the above inequality leads to

|S| ≤ kd/hG,

indicating that there are at most 2
( n⌊

kd
hG

⌋) ≤ 2nkd/hG feasible

cuts (S,Sc) satisfying (129). Setting d = mincut immediately
leads to

|N (k · mincut)| ≤ 2nkmincut/hG ,

⇒ τ cut
k = 1

k
log |N (k · mincut)| ≤ mincut log n

hG
+ log 2

k

for all k ≥ 1, as claimed.

APPENDIX F
PROOF OF LEMMA 2

We begin with explicit expressions of the divergence mea-
sures. For any k 
= l and p ∈ [0, 1], one has

KL (pδk + (1 − p)UnifM ‖ pδl + (1 − p)UnifM )

=
(

p + 1 − p

M

)
log

(
p + 1−p

M
1−p

M

)

+ 1 − p

M
log

(
1−p

M

p + 1−p
M

)

(130)

= p log

(
(M − 1) p + 1

1 − p

)
, (131)



CHEN et al.: INFORMATION RECOVERY FROM PAIRWISE MEASUREMENTS 5903

where δk denotes the Dirac measure on the point k, and (130)
follows since the two distributions under study differ only
at two points x = k and x = l. Similarly, one obtains
(cf. Definition (4))

Hel 1
2
(pδk + (1 − p)UnifM ‖ pδl + (1 − p)UnifM )

= 2

(√

p + 1 − p

M
−
√

1 − p

M

)2

(132)

= 2

M

(√
(M − 1) p + 1 −√1 − p

)2
. (133)

When applied to the random corruption model, these suggest

KLmin = ptrue log

(
1 + ptrueM

1 − ptrue

)
≤ p2

trueM

1 − ptrue
, (134)

and

Helmin
1
2

= 2

M

(√
1 − ptrue + Mptrue −

√
1 − ptrue

)2
. (135)

It remains to control the Hellinger divergence. To this end,

the elementary identity a − b = a2−b2

a+b gives
(√

1 − ptrue + Mptrue −
√

1 − ptrue

)2

=
(

ptrueM√
1 − ptrue + Mptrue +√

1 − ptrue

)2

≥
(

ptrueM

2
√

1 − ptrue + Mptrue

)2

= p2
trueM2

4 (1 − ptrue + Mptrue)
,

indicating that Helmin
1
2

≥ p2
true M

2(1−ptrue+Mptrue)
as claimed.

APPENDIX G
PROOF OF LEMMA 3

Consider any hypothesis x = w ∈ Ak , which obeys
|E ∩ supp (w �w)| < k · mincut. Denote by Sl the set of
vertices that take the value l (0 ≤ l < M), and let I¬∅ :=
{l | Sl 
= ∅} represent the indices of those non-empty ones.
Our proof proceeds by evaluating the following quantities:

1) How many distinct choices of I¬∅ are admissible?
2) For each given I¬∅, how many combinations of cut-set

sizes
{
e
(Sl ,Sc

l

) | l ∈ I¬∅
}

are feasible?
3) For each given cut-set size Nl , how many cuts

(Sl ,Sc
l

)

are compatible with the constraint e
(Sl ,Sc

l

) ≤ Nl ?

Clearly, multiplying all these quantities together gives rise to
an upper bound on |Ak |.

We now compute the above quantities separately.

• To begin with, our assumption on the min-cut size ensures
that

e
(Sl ,Sc

l

) ≥ mincut (136)

for each non-empty Sl . This together with the feasibility
constraint

2 |E ∩ supp (w � w)| =
M−1∑

l=0

e
(Sl ,Sc

l

) ≤ 2k · mincut

(137)

guarantees that the number of non-empty Sl ’s cannot
exceed 2k. Consequently, there exist at most M2k possible
combinations of I¬∅.

• Secondly, from (137), the total cut-set size is bounded
above by 2k ·mincut. Therefore, for any given I¬∅, there
are no more than

(
2kmincut
|I¬∅|

)
≤ (2k · mincut)2k

feasible ways to assign cut-set sizes e
(Sl ,Sc

l

)
for all l ∈

I¬∅.
• Thirdly, suppose that for each l ∈ I¬∅,

e
(Sl ,Sc

l

) = cl · mincut (138)

for some numerical values cl ≥ 1. From the defini-
tion (40), the number of feasible choices of

(Sl ,Sc
l

)

compatible with (138) is bounded above by

|N (cl · mincut)| ≤ |N (�cl�mincut)| ≤ exp
(�cl� τ cut)

≤ exp
(
2clτ

cut) .

Recognize that the constraint (137) requires
∑

l

cl < 2k.

As a result, when the cut sizes e
(Sl ,Sc

l

)
are given, the

total number of valid partitions {Sl | 0 ≤ l < M} cannot
exceed

M−1∏

l=0

exp
(
2clτ

cut) < exp
(
4kτ cut) . (139)

Putting the above combinatorial bounds together implies that

|Ak | < M2k (2k · mincut)2k exp
(
4kτ cut).

Using the inequality kmincut ≤ n2 we conclude the proof.

APPENDIX H
PROOF OF FACT 1

Recall that KL divergence and Hellinger divergence are
both f -divergence associated with the non-negative convex
functions f1 (x) = x log x − x + 1 and f2 (x) =

(√
x − 1

)2,
respectively. That said, one can write

KL (P ‖ Q) = EQ

[
f1

(
dP

dQ

)]

and

Hel 1
2
(P ‖ Q) = EQ

[
f2

(
dP

dQ

)]
.

One can verify that the function f1 can be uniformly bounded
above using f2 in the following way:

(2 − 0.5 |log x |) f2 (x) ≤ f1 (x) ≤ (2 + |log x |) f2 (x) ,

∀x > 0.
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This immediately establish that

KL (P ‖ Q) = EQ

[
f1

(
dP

dQ

)]

≤ (2 + log R)EQ

[
f2

(
dP

dQ

)]

= (2 + log R)Hel 1
2
(P ‖ Q)

and

KL (P ‖ Q) = EQ

[
f1

(
dP

dQ

)]

≥ (2 − 0.5 log R)EQ

[
f2

(
dP

dQ

)]

= (2 − 0.5 log R)Hel 1
2
(P ‖ Q) .

These together with the well known inequality
[41, Lemma 2.4]

KL (P ‖ Q) ≥ Hel 1
2
(P ‖ Q)

establish (20).
Similarly, from the inequality

(2 − 0.4 |log x |) f2 (x) ≤ f1 (x) ≤ (2 + 0.4 |log x |) f2 (x)

for all x ∈ (0, 4.5], one can show that

KL (P ‖ Q) ≤ max {2 − 0.4 log R, 1} · Hel 1
2
(P ‖ Q)

and

KL (P ‖ Q) ≤ (2 + 0.4 log R) · Hel 1
2
(P ‖ Q)

as long as R ≤ 4.5, as claimed.
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