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Abstract

This paper studies noisy low-rank matrix completion: given partial and corrupted entries of a large
low-rank matrix, the goal is to estimate the underlying matrix faithfully and efficiently. Arguably one
of the most popular paradigms to tackle this problem is convex relaxation, which achieves remarkable
efficacy in practice. However, the theoretical support of this approach is still far from optimal in the
noisy setting, falling short of explaining the empirical success.

We make progress towards demystifying the practical efficacy of convex relaxation vis-à-vis random
noise. When the rank of the unknown matrix is a constant, we demonstrate that the convex programming
approach achieves near-optimal estimation errors — in terms of the Euclidean loss, the entrywise loss,
and the spectral norm loss — for a wide range of noise levels. All of this is enabled by bridging convex
relaxation with the nonconvex Burer–Monteiro approach, a seemingly distinct algorithmic paradigm that
is provably robust against noise. More specifically, we show that an approximate critical point of the
nonconvex formulation serves as an extremely tight approximation of the convex solution, allowing us to
transfer the desired statistical guarantees of the nonconvex approach to its convex counterpart.

Keywords: matrix completion, minimaxity, stability, convex relaxation, nonconvex optimization, Burer–
Monteiro approach.
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1 Introduction

Suppose we are interested in a large low-rank data matrix, but only get to observe a highly incomplete
subset of its entries. Can we hope to estimate the underlying data matrix in a reliable manner? This
problem, often dubbed as low-rank matrix completion, spans a diverse array of science and engineering
applications (e.g. collaborative filtering [RS05], localization [SY07], system identification [LV09], magnetic
resonance parameter mapping [ZPL15], joint alignment [CC18a]), and has inspired a flurry of research ac-
tivities in the past decade. In the statistics literature, matrix completion also falls under the category of
factor models with a large amount of missing data, which finds numerous statistical applications such as
controlling false discovery rates for dependence data [Efr07,Efr10,FHG12,FKSZ19], factor-adjusted variable
selection [KS11,FKW18], principal component regression [Jol82,BN06,PBHT08,FXY17], and large covari-
ance matrix estimation [FLM13,FWZ19]. Recent years have witnessed the development of many tractable
algorithms that come with statistical guarantees, with convex relaxation being one of the most popular
paradigms [FHB04,CR09,CT10]. See [DR16,CC18b] for an overview of this topic.

This paper focuses on noisy low-rank matrix completion, assuming that the revealed entries are corrupted
by a certain amount of noise. Setting the stage, consider the task of estimating a rank-r data matrix
M?

= [M?
ij ]1i,jn 2 Rn⇥n,1 and suppose that this needs to be performed on the basis of a subset of noisy

entries
Mij = M?

ij + Eij , (i, j) 2 ⌦, (1)

where ⌦ ✓ {1, · · · , n} ⇥ {1, · · · , n} denotes a set of indices, and Eij stands for the additive noise at the
location (i, j). As we shall elaborate shortly, solving noisy matrix completion via convex relaxation, while

1It is straightforward to rephrase our discussions to a general rectangular matrix of size n1 ⇥ n2. The current paper sets
n = n1 = n2 throughout for simplicity of presentation.
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practically exhibiting excellent stability (in terms of the estimation errors against noise), is far less understood
theoretically compared to the noiseless setting.

1.1 Convex relaxation: limitations of prior results

Naturally, one would search for a low-rank solution that best fits the observed entries. One choice is the
regularized least-squares formulation given by

minimize
Z2Rn⇥n

1

2

X

(i,j)2⌦

�

Zij �Mij

�

2

+ � rank(Z), (2)

where � > 0 is some regularization parameter. In words, this approach optimizes certain trade-off between
the goodness of fit (through the squared loss expressed in the first term of (2)) and the low-rank structure
(through the rank function in the second term of (2)). Due to computational intractability of rank mini-
mization, we often resort to convex relaxation in order to obtain computationally feasible solutions. One
notable example is the following convex program:

minimize
Z2Rn⇥n

g(Z) , 1

2

X

(i,j)2⌦

�

Zij �Mij

�

2

+ � kZk⇤ , (3)

where kZk⇤ denotes the nuclear norm (i.e. the sum of singular values) of Z — a convex surrogate for the
rank function. A significant portion of existing theory supports the use of this paradigm in the noiseless
setting: when Eij vanishes for all (i, j) 2 ⌦, the solution to (3) is known to be faithful (i.e. the estimation
error becomes zero) even under near-minimal sample complexity [CR09,CP10,CT10,Gro11,Rec11,Che15].

By contrast, the performance of convex relaxation remains largely unclear when it comes to more prac-
tically relevant noisy scenarios. To begin with, the stability of an equivalent variant of (3) against noise
was first studied by Candès and Plan [CP10].2 The estimation error kZ

cvx

�M?k
F

derived therein, of the
solution Z

cvx

to (3), is significantly larger than the oracle lower bound. This does not explain well the
effectiveness of (3) in practice. In fact, the numerical experiments reported in [CP10] already indicated that
the performance of convex relaxation is far better than their theoretical bounds. In order to improve the
statistical guarantees, several variants of (3) have been put forward, most notably by Negahban and Wain-
wright [NW12] and Koltchinskii et al. [KLT11]; see Section 1.4 for more details. Nevertheless, the stability
analysis in [NW12,KLT11] could often be suboptimal when the magnitudes of the noise are not sufficiently
large; in fact, their estimation error bounds do not vanish as the size of the noise approaches zero.

All of these give rise to the following natural yet challenging questions: Where does the convex program (3)
stand in terms of its stability vis-à-vis additive noise? Can we establish a theoretical statistical guarantee
that matches its practical effectiveness? Is it capable of accommodating a wider (and more practical) range
of noise levels?

1.2 A detour: nonconvex optimization

While the focus of the current paper is convex relaxation, we take a moment to discuss a seemingly distinct
algorithmic paradigm: nonconvex optimization, which turns out to be remarkably helpful in understanding
convex relaxation. Inspired by the Burer–Monteiro approach [BM03], the nonconvex scheme starts by rep-
resenting the rank-r decision matrix (or parameters) Z as Z = XY > via low-rank factors X,Y 2 Rn⇥r,
and proceeds by solving the following nonconvex (regularized) least-squares problem directly [KMO10a]

minimize
X,Y 2Rn⇥r

1

2

X

(i,j)2⌦

⇥�

XY >�
ij
�Mij

⇤

2

+ reg(X,Y ). (4)

Here, reg(·, ·) denotes a certain regularization term that promotes additional structural properties.
2Technically, [CP10] deals with the constrained version of (3), which is equivalent to the Lagrangian form as in (3) with a

proper choice of the regularization parameter.
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To see its intimate connection [MHT10, SSS11] with the convex program (3), we make the following
observation: if the solution to (3) has rank r, then it must coincide with the solution to

minimize
X,Y 2Rn⇥r

1

2

X

(i,j)2⌦

⇥�

XY >�
ij
�Mij

⇤

2

+

�

2

kXk2
F

+

�

2

kY k2
F

| {z }

reg(X,Y )

. (5)

This can be easily verified by recognizing the elementary fact that

kZk⇤ = inf

X,Y 2Rn⇥r
:XY >

=Z

�

1

2

kXk2
F

+

1

2

kY k2
F

 

(6)

for any rank-r matrix Z [SS05,MHT10]. Note, however, that it is very challenging to predict when the key
assumption in establishing this connection — namely, the rank-r assumption of the solution to (3) — can
possibly hold.

Despite the nonconvexity of (4), simple first-order optimization methods — in conjunction with proper
initialization — are often effective in solving (4). Partial examples include gradient descent on mani-
fold [KMO10a,KMO10b,WCCL16], gradient descent [SL16,MWCC17], and projected gradient descent [CW15,
ZL16]. Apart from their practical efficiency, the nonconvex optimization approach is also appealing in theory.
To begin with, algorithms tailored to (4) often enable exact recovery in the noiseless setting. Perhaps more
importantly, for a wide range of noise settings, the nonconvex approach achieves appealing estimation accu-
racy [CW15,MWCC17], which could be significantly better than those bounds derived for convex relaxation
discussed earlier. See [CLC18,CC18b] for a summary of recent results. Such intriguing statistical guarantees
motivate us to take a closer inspection of the underlying connection between the two contrasting algorithmic
frameworks.

1.3 Empirical evidence: convex and nonconvex solutions are often close

In order to obtain a better sense of the relationships between convex and nonconvex approaches, we begin
by comparing the estimates returned by the two approaches via numerical experiments. Fix n = 1000 and
r = 5. We generate M?

= X?Y ?>, where X?,Y ? 2 Rn⇥r are random orthonormal matrices. Each entry
M?

ij of M? is observed with probability p = 0.2 independently, and then corrupted by an independent
Gaussian noise Eij ⇠ N (0,�2

). Throughout the experiments, we set � = 5�
p
np. The convex program (3) is

solved by the proximal gradient method [PB14], whereas we attempt solving the nonconvex formulation (5)
by gradient descent with spectral initialization (see [CLC18] for details). Let Z

cvx

(resp. Z
ncvx

= X
ncvx

Y >
ncvx

)
be the solution returned by the convex program (3) (resp. the nonconvex program (5)). Figure 1 displays
the relative estimation errors of both methods (kZ

cvx

�M?k
F

/kM?k
F

and kZ
ncvx

�M?k
F

/kM?k
F

) as well
as the relative distance kZ

cvx

� Z
ncvx

k
F

/kM?k
F

between the two estimates. The results are averaged over
20 independent trials.

Interestingly, the distance between the convex and the nonconvex solutions seems extremely small
(e.g. kZ

cvx

�Z
ncvx

k
F

/kM?k
F

is typically below 10

�7); in comparison, the relative estimation errors of both
Z

cvx

and Z
ncvx

are substantially larger. In other words, the estimate returned by the nonconvex approach
serves as a remarkably accurate approximation of the convex solution. Given that the nonconvex approach is
often guaranteed to achieve intriguing statistical guarantees vis-à-vis random noise [MWCC17], this suggests
that the convex program is equally stable — a phenomenon that was not captured by prior theory [CP10].
Can we leverage existing theory for the nonconvex scheme to improve the statistical analysis of the convex
relaxation approach?

1.4 Models and main results

The numerical experiments reported in Section 1.3 suggest an alternative route for analyzing convex relax-
ation for noisy matrix completion. If one can formally justify the proximity between the convex and the
nonconvex solutions, then it is possible to propagate the appealing stability guarantees from the nonconvex
scheme to the convex approach. As it turns out, this simple idea leads to significantly enhanced statistical
guarantees for the convex program (3), which we formally present in this subsection.

Before proceeding, we introduce a few model assumptions that play a crucial role in our theory.
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Figure 1: The relative estimation errors of both Z
cvx

(the estimate of the convex program (3)) and Z
ncvx

(the estimate returned by the nonconvex approach tailored to (5)) and the relative distance between them
vs. the standard deviation � of the noise. The results are reported for n = 1000, r = 5, p = 0.2, � = 5�

p
np

and are averaged over 20 independent trials.

Assumption 1.

(a) (Random sampling) Each index (i, j) belongs to the index set ⌦ independently with probability p.

(b) (Random noise) The noise matrix E = [Eij ]1i,jn is composed of i.i.d. sub-Gaussian random
variables with sub-Gaussian norm at most � > 0, i.e. kEijk 

2

 � (see [Ver12, Definition 5.7]).

In addition, let M?
= U?⌃?V ?> be the singular value decomposition (SVD) of M?, where U?,V ? 2 Rn⇥r

consist of orthonormal columns and ⌃?
= diag(�?

1

,�?
2

, · · · ,�?r ) 2 Rr⇥r is a diagonal matrix obeying �
max

,
�?
1

� �?
2

� · · · � �?r , �
min

. Denote by  , �
max

/�
min

the condition number of M?. We impose the following
incoherence condition on M?, which is known to be crucial for reliable recovery of M? [CR09,Che15].

Definition 1. A rank-r matrix M? 2 Rn⇥n with SVD M?
= U?⌃?V ?> is said to be µ-incoherent if

kU?k
2,1 

r

µ

n
kU?k

F

=

r

µr

n
and kV ?k

2,1 
r

µ

n
kV ?k

F

=

r

µr

n
.

Here, kUk
2,1 denotes the largest `

2

norm of all rows of a matrix U .

With these in place, we are ready to present our improved statistical guarantees for convex relaxation.

Theorem 1. Let M? be rank-r and µ-incoherent with a condition number . Suppose Assumption 1 holds
and take � = C��

p
np in (3) for some large enough constant C� > 0. Assume the sample size obeys

n2p � C4µ2r2n log

3 n for some sufficiently large constant C > 0, and the noise satisfies �
q

n
p  c �

minp
4µr logn

for some sufficiently small constant c > 0. Then with probability exceeding 1�O(n�3

),

1. Any minimizer Z
cvx

of (3) obeys

�

�Z
cvx

�M?
�

�

F

. 
�

�
min

r

n

p

�

�M?
�

�

F

, (7a)

�

�Z
cvx

�M?
�

�

1 .
p

3µr · �

�
min

s

n log n

p

�

�M?
�

�

1, (7b)

�

�Z
cvx

�M?
�

� . �

�
min

r

n

p

�

�M?
�

�

; (7c)
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2. Letting Z
cvx,r , argminZ:rank(Z)r kZ �Z

cvx

k
F

be the best rank-r approximation of Z
cvx

, we have

kZ
cvx,r �Z

cvx

k
F

 1

n3

· �

�
min

r

n

p

�

�M?
�

�, (8)

and the error bounds in (7) continue to hold if Z
cvx

is replaced by Z
cvx,r.

Remark 1. Here and throughout, f(n) . g(n) or f(n) = O(g(n)) means limn!1 |f(n)|/|g(n)|  C for some
constant C > 0; f(n) & g(n) means limn!1 |f(n)|/|g(n)| � C for some constant C > 0; and f(n) ⇣ g(n)
means C

1

 limn!1 |f(n)|/|g(n)|  C
2

for some constants C
1

, C
2

> 0. In addition, k · k1 denotes the
entrywise `1 norm, whereas k · k is the spectral norm.
Remark 2. The factor 1/n3 in (8) can be replaced by 1/nc for an arbitrarily large fixed constant c > 0.

Several implications of Theorem 1 follow immediately. The discussions below concentrate on the case
where r, µ and  are all O(1), under our random noise assumption.

• Improved stability guarantees. Our results reveal that the Euclidean error of any convex optimizer Z
cvx

of (3) obeys
�

�Z
cvx

�M?
�

�

F

. �
p

n/p, (9)

implying that the performance of convex relaxation degrades gracefully as the signal-to-noise ratio de-
creases. This result matches the minimax lower bound derived in [KLT11,NW12] for the range of noise
obeying � . kM?k1, which improves upon prior art in the following aspects:

– Candès and Plan [CP10] provided a stability guarantee in the presence of arbitrary bounded noise.
When applied to the random noise model assumed here, their results yield

�

�Z
cvx

� M?
�

�

F

. �n3/2,
which could be O(

p

n2p) times more conservative than our bound (9).
– Koltchinskii et al. [KLT11] proposed to replace

P

(i,j)2⌦

(Zij � Mij)
2 in (3) with

P

i,j(Zij � 1

pMij)
2,

where Mij is set to 0 for any unobserved entry (i.e. those with (i, j) /2 ⌦). This variant effectively
performs singular value thresholding on a rescaled zero-padded data matrix. Under our conditions,
their results read (up to some logarithmic factor)

�

� ˆZ �M?
�

�

F

. max {�, kM?k1}
p

n/p, (10)

where ˆZ is the estimate returned by their algorithm. This becomes suboptimal when � ⌧ kM?k1 —
a highly relevant regime covered by our analysis.

– Negahban and Wainwright [NW12] proposed to enforce an extra constraint kZk1  ↵ when solving (3),
in order to explicitly control the spikiness of the estimate. When applied to our model, their error bound
is the same as (10) (modulo some log factor), which also becomes increasingly looser as � decreases. In
addition, the choice of ↵ may add unwanted variations in practice.

• Nearly low-rank structure of the convex solution. In light of (8), the optimizer of the convex program
(3) is almost, if not exactly, rank-r. When the true rank r is known a priori, it is not uncommon for
practitioners to return the rank-r approximation of Z

cvx

. Our theorem formally justifies that there is no
loss of statistical accuracy — measured in terms of either k · k

F

, k · k, or k · k1 — when performing the
rank-r projection operation.

• Entrywise and spectral norm error control. Moving beyond the Euclidean loss, our theory uncovers that
the estimation errors of the convex optimizer are fairly spread out across all entries, thus implying near-
optimal entrywise error control. This is a stronger form of error bounds, as an optimal Euclidean estimation
accuracy alone does not preclude the possibility of the estimation errors being spiky and localized. Fur-
thermore, the spectral norm error of the convex optimizer is also well-controlled. Figure 2 displays the
relative estimation errors in both the `1 norm and the spectral norm, under the same setting as in Fig-
ure 1. As can be seen, both forms of estimation errors scale linearly with the noise level, corroborating
our theory.

6



10-6 10-5 10-4 10-310-4

10-3

10-2

10-1

100

Entrywise estimation error
Spectral norm estimation error

Figure 2: The relative estimation error of Z
cvx

measured by both k·k1 (i.e. kZ
cvx

�M?k1/kM?k1) and k·k
(i.e. kZ

cvx

�M?k/kM?k) vs. the standard deviation � of the noise. The results are reported for n = 1000,
r = 5, p = 0.2, � = 5�

p
np and are averaged over 20 independent trials.

• Implicit regularization. As a byproduct of the entrywise error control, this result indicates that the
additional constraint kZk1  ↵ suggested by [NW12] is automatically satisfied and is hence unnecessary.
In other words, the convex approach implicitly controls the spikiness of its entries, without resorting to
explicit regularization.

• Statistical guarantees for fast iterative optimization methods. Various iterative algorithms have been de-
veloped to solve the nuclear norm regularized least-squares problem (3) up to an arbitrarily prescribed
accuracy, examples including SVT (or proximal gradient methods) [CCS10], FPC [MGC11], SOFT–
IMPUTE [MHT10], FISTA [BT09,TY10], to name just a few. Our theory immediately provides statistical
guarantees for these algorithms. As we shall make precise in Section 2, any point Z with g(Z)  g(Z

cvx

)+"
(where g(·) is defined in (3)) enjoys the same error bounds as in (7) (with Z

cvx

replaced by Z in (7)),
provided that " > 0 is sufficiently small. In other words, when these convex optimization algorithms
converge w.r.t. the objective value, they are guaranteed to return a statistically reliable estimate.

Finally, we remark that our results are likely suboptimal when r and  are allowed to scaled with n. Interested
readers are referred to Section 4 for more detailed discussions.

2 Strategy and novelty

In this section, we introduce the strategy for proving our main theorem. Informally, the main technical
difficulty stems from the lack of closed-form expressions for the primal solution to (3), which in turn makes
it difficult to construct a dual certificate. This is in stark contrast to the noiseless setting, where one clearly
anticipates the ground truth M? to be the primal solution; in fact, this is precisely why the analysis for the
noisy case is significantly more challenging. Our strategy, as we shall detail below, mainly entails invoking
an iterative nonconvex algorithm to “approximate” such a primal solution.

Before continuing, we introduce a few more notations. Let P
⌦

(·) : Rn⇥n 7! Rn⇥n represent the projection
onto the subspace of matrices supported on ⌦, namely,

[P
⌦

(Z)]ij =

(

Zij , for (i, j) 2 ⌦

0, otherwise
(11)

for any matrix Z 2 Rn⇥n. For a rank-r matrix M with singular value decomposition U⌃V >, denote by T
its tangent space, i.e.

T =

�

UA>
+BV > | A,B 2 Rn⇥r

 

. (12)
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Correspondingly, let PT (·) be the orthogonal projection onto the subspace T , that is,

PT (Z) = UU>Z +ZV V > �UU>ZV V > (13)

for any matrix Z 2 Rn⇥n. In addition, let T? and PT?(·) denote the orthogonal complement of T and the
projection onto T?, respectively. With regards to the ground truth, we denote

X?
= U?

(⌃?
)

1/2 and Y ?
= V ?

(⌃?
)

1/2. (14)

The nonconvex problem (5) is equivalent to

minimize
X,Y 2Rn⇥r

f(X,Y ) , 1

2p

�

�P
⌦

�

XY > �M
�

�

�

2

F

+

�

2p
kXk2

F

+

�

2p
kY k2

F

, (15)

where we have inserted an extra factor 1/p (compared to (5)) to simplify the presentation of the analysis
later on.

2.1 Exact duality

In order to analyze the convex program (3), it is natural to start with the first-order optimality condition.
Specifically, suppose that Z 2 Rn⇥n is a (primal) solution to (3) with SVD Z = U⌃V >.3 As before, let T
be the tangent space of Z, and let T? be the orthogonal complement of T . Then the first-order optimality
condition for (3) reads: there exists a matrix W 2 T? (called a dual certificate) such that

1

�
P
⌦

�

M �Z
�

= UV >
+W ; (16a)

kW k  1. (16b)

This condition is not only necessary to certify the optimality of Z, but also “almost sufficient” in guaranteeing
the uniqueness of the solution Z; see Appendix B for in-depth discussions.

The challenge then boils down to identifying such a primal-dual pair (Z,W ) satisfying the optimality
condition (16). For the noise-free case, the primal solution is clearly Z = M? if exact recovery is to
be expected; the dual certificate can then be either constructed exactly by the least-squares solution to a
certain underdetermined linear system [CR09,CT10], or produced approximately via a clever golfing scheme
pioneered by Gross [Gro11]. For the noisy case, however, it is often difficult to hypothesize on the primal
solution Z, as it depends on the random noise in a complicated way. In fact, the lack of a suitable guess of
Z (and hence W ) was the major hurdle that prior works faced when carrying out the duality analysis.

2.2 A candidate primal solution via nonconvex optimization

Motivated by the numerical experiment in Section 1.3, we propose to examine whether the optimizer of the
nonconvex problem (5) stays close to the solution to the convex program (3). Towards this, suppose that
X,Y 2 Rn⇥r form a critical point of (5) with rank(X) = rank(Y ) = r.4 Then the first-order condition reads

1

�
P
⌦

�

M �XY >�Y = X; (17a)

1

�

⇥P
⌦

�

M �XY >�⇤> X = Y . (17b)

To develop some intuition about the connection between (16) and (17), let us take a look at the case with
r = 1. Denote X = x and Y = y and assume that the two rank-1 factors are “balanced”, namely, kxk

2

=

3Here and below, we use Z (rather than Z
cvx

) for notational simplicity, whenever it is clear from the context.
4Once again, we abuse the notation (X,Y ) (instead of using (X

ncvx

,Y
ncvx

)) for notational simplicity, whenever it is clear
from the context.
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kyk
2

6= 0. It then follows from (17) that ��1P
⌦

(M �xy>
) has a singular value 1, whose corresponding left

and right singular vectors are x/kxk
2

and y/kyk
2

, respectively. In other words, one can express

1

�
P
⌦

�

M � xy>�
=

1

kxk
2

kyk
2

xy>
+W , (18)

where W is orthogonal to the tangent space of xy>; this is precisely the condition (16a). It remains to argue
that (16b) is valid as well. Towards this end, the first-order condition (17) alone is insufficient, as there might
be non-global critical points (e.g. saddle points) that are unable to approximate the convex solution well.
Fortunately, as long as the candidate xy> is not far away from the ground truth M?, one can guarantee
kW k < 1 as required in (16b).

The above informal argument about the link between the convex and the nonconvex problems can be
rigorized. To begin with, we introduce the following conditions on the regularization parameter �.

Condition 1 (Regularization parameter). The regularization parameter � satisfies

(a) (Relative to noise) kP
⌦

(E) k < �/8.

(b) (Relative to nonconvex solution) kP
⌦

(XY > �M?
)� p(XY > �M?

)k < �/8.

Remark 3. Condition 1 requires that the regularization parameter � should dominate a certain norm of
the noise, as well as of the deviation of XY > �M? from its mean p(XY > �M?

); as will be seen shortly,
the latter condition can be met when (X,Y ) is sufficiently close to (X?,Y ?

).
With the above condition in place, the following result demonstrates that a critical point (X,Y ) of the

nonconvex problem (5) readily translates to the unique minimizer of the convex program (3). This lemma
is established in Appendix C.1.

Lemma 1 (Exact nonconvex vs. convex optimizers). Suppose that (X,Y ) is a critical point of (5)
satisfying rank(X) = rank(Y ) = r, and the sampling operator P

⌦

is injective when restricted to the elements
of the tangent space T of XY >, namely,

P
⌦

(H) = 0 () H = 0, for all H 2 T. (19)

Under Condition 1, the point Z , XY > is the unique minimizer of (3).

In order to apply Lemma 1, one needs to locate a critical point of (5) that is sufficiently close to the truth,
for which one natural candidate is the global optimizer of (5). The caveat, however, is the lack of theory
characterizing directly the properties of the optimizer of (5). Instead, what is available in prior theory is the
characterization of some iterative sequence (e.g. gradient descent iterates) aimed at solving (5). It is unclear
from prior theory whether the iterative algorithm under study (e.g. gradient descent) converges to the global
optimizer in the presence of noise. This leads to technical difficulty in justifying the proximity between the
nonconvex optimizer and the convex solution via Lemma 1.

2.3 Approximate nonconvex optimizers

Fortunately, perfect knowledge of the nonconvex optimizer is not pivotal. Instead, an approximate solution
to the nonconvex problem (5) (or equivalently (15)) suffices to serve as a reasonably tight approximation
of the convex solution. More precisely, we desire two factors (X,Y ) that result in nearly zero (rather than
exactly zero) gradients:

rXf(X,Y ) ⇡ 0 and rY f(X,Y ) ⇡ 0,

where f(·, ·) is the nonconvex objective function as defined in (15). This relaxes the condition discussed in
Lemma 1 (which only applies to critical points of (5) as opposed to approximate critical points). As it turns
out, such points can be found via gradient descent tailored to (5). The sufficiency of the near-zero gradient
condition is made possible by slightly strengthening the injectivity assumption (19), which is stated below.
Condition 2 (Injectivity). Let T be the tangent space of XY >. There is a quantity c

inj

> 0 such that

p�1 kP
⌦

(H)k2
F

� c
inj

kHk2
F

, for all H 2 T. (20)
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The following lemma states quantitatively how an approximate nonconvex optimizer serves as an excellent
proxy of the convex solution, which we establish in Appendix C.2.

Lemma 2 (Approximate nonconvex vs. convex optimizers). Suppose that (X,Y ) obeys

krf (X,Y )k
F

 c

p
c
inj

p


· �
p

p
�
min

(21)

for some sufficiently small constant c > 0. Further assume that any singular value of X and Y lies in
[

p

�
min

/2,
p
2�

max

]. Then under Conditions 1-2, any minimizer Z
cvx

of (3) satisfies

�

�XY > �Z
cvx

�

�

F

. 

c
inj

1p
�
min

krf (X,Y )k
F

. (22)

Remark 4. In fact, this lemma continues to hold if Z
cvx

is replaced by any Z obeying g(Z)  g(XY >
),

where g(·) is the objective function defined in (3) and X and Y are low-rank factors obeying conditions
of Lemma 2. This is important in providing statistical guarantees for iterative methods like SVT [CCS10],
FPC [MGC11], SOFT–IMPUTE [MHT10], FISTA [BT09], etc. To be more specific, suppose that (X,Y )

results in an approximate optimizer of (3), namely, g(XY >
) = g(Z

cvx

) + " for some sufficiently small " > 0.
Then for any Z obeying g(Z)  g(XY >

) = g(Z
cvx

) + ", one has

�

�XY > �Z
�

�

F

. 

c
inj

1p
�
min

krf (X,Y )k
F

. (23)

As a result, as long as the above-mentioned algorithms converge in terms of the objective value, they must
return a solution obeying (23), which is exceedingly close to XY > if krf(X,Y )k

F

is small.
It is clear from Lemma 2 that, as the size of the gradient rf(X,Y ) gets smaller, the nonconvex estimate

XY > becomes an increasingly tighter approximation of any convex optimizer of (3), which is consistent with
Lemma 1. In contrast to Lemma 1, due to the lack of strong convexity, a nonconvex estimate with a near-zero
gradient does not imply the uniqueness of the optimizer of the convex program (3); rather, it indicates that
any minimizer of (3) lies within a sufficiently small neighborhood surrounding XY > (cf. (22)).

2.4 Construction of an approximate nonconvex optimizer

So far, Lemmas 1-2 are both deterministic results based on Condition 1. As we will soon see, under Assump-
tion 1, we can derive simpler conditions that — with high probability — guarantee Condition 1. We start
with Condition 1(a).

Lemma 3. Suppose n2p � Cn log

2 n for some sufficiently large constant C > 0. Then with probability at
least 1�O(n�10

), one has kP
⌦

(E)k . �
p
np. As a result, Condition 1 holds (i.e. kP

⌦

(E)k < �/8) as long
as � = C��

p
np for some sufficiently large constant C� > 0.

Proof. This follows from [CW15, Lemma 11] with a slight and straightforward modification to accommodate
the asymmetric noise here. For brevity, we omit the proof.

Turning attention to Condition 1(b) and Condition 2, we have the following lemma, the proof of which
is deferred to Appendix C.3.

Lemma 4. Under the assumptions of Theorem 1, with probability exceeding 1�O(n�10

) we have

kP
⌦

(XY > �M?
)� p(XY > �M?

)k < �/8 (Condition 1(b))

1

p
kP

⌦

(H)k2
F

� 1

32
kHk2

F

, for all H 2 T (Condition 2 with c
inj

= (32)�1

)

hold simultaneously for all (X,Y ) obeying

max

n

kX �X?k
2,1 , kY � Y ?k

2,1
o
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 C1

 

�

�
min

s

n log n

p
+

�

p�
min

!

max

n

kX?k
2,1 , kY ?k

2,1
o

. (24)

Here, T denotes the tangent space of XY >, and C1 > 0 is some absolute constant.

This lemma is a uniform result, namely, the bounds hold irrespective of the statistical dependency between
(X,Y ) and ⌦. As a consequence, to demonstrate the proximity between the convex and the nonconvex
solutions (cf. (22)), it remains to identify a point (X,Y ) with vanishingly small gradient (cf. (21)) that is
sufficiently close to the truth (cf. (24)).

As we already alluded to previously, a simple gradient descent algorithm aimed at solving the nonconvex
problem (5) might help us produce an approximate nonconvex optimizer. This procedure is summarized in
Algorithm 1. Our hope is this: when initialized at the ground truth and run for sufficiently many iterations,
the GD trajectory produced by Algorithm 1 will contain at least one approximate stationary point of (5)
with the desired properties (21) and (24). We shall note that Algorithm 1 is not practical since it starts from
the ground truth (X?,Y ?

); this is an auxiliary step mainly to simplify the theoretical analysis. While we
can certainly make it practical by adopting spectral initialization as in [MWCC17,CLL19], it requires more
lengthy proofs without further improving our statistical guarantees.

Algorithm 1 Construction of an approximate primal solution.
Initialization: X0

= X?; Y 0

= Y ?.
Gradient updates: for t = 0, 1, . . . , t

0

� 1 do

Xt+1

=Xt � ⌘rXf(Xt,Y t
) = Xt � ⌘

p

⇣

P
⌦

�

XtY t> �M
�

Y t
+ �Xt

⌘

; (25a)

Y t+1

=Y t � ⌘rY f(Xt,Y t
) = Y t � ⌘

p

⇣

⇥P
⌦

�

XtY t> �M
�⇤>

Xt
+ �Y t

⌘

. (25b)

Here, ⌘ > 0 is the step size.

2.5 Properties of the nonconvex iterates

In this subsection, we will build upon the literature on nonconvex low-rank matrix completion to justify
that the estimates returned by Algorithm 1 satisfy the requirement stated in (24). Our theory will be
largely established upon the leave-one-out strategy introduced by Ma et al. [MWCC17], which is an effective
analysis technique to control the `

2,1 error of the estimates. This strategy has recently been extended by
Chen et al. [CLL19] to the more general rectangular case with an improved sample complexity bound.

Before continuing, we introduce several useful notations. Notice that the matrix product of X? and Y ?>

is invariant under global orthonormal transformation, namely, for any orthonormal matrix R 2 Rr⇥r one has
X?R(Y ?R)

>
= X?Y ?>. Viewed in this light, we shall consider distance metrics modulo global rotation.

In particular, the theory relies heavily on a specific global rotation matrix defined as follows

Ht , arg min

R2Or⇥r

�

�

�XtR�X?
�

�

2

F

+

�

�Y tR� Y ?
�

�

2

F

�

1/2
, (26)

where Or⇥r is the set of r ⇥ r orthonormal matrices.
We are now ready to present the performance guarantees for Algorithm 1.

Lemma 5 (Quality of the nonconvex estimates). Instate the notation and hypotheses of Theorem 1.
With probability at least 1�O

�

n�3

�

, the iterates {(Xt,Y t
)}

0tt
0

of Algorithm 1 satisfy

max

�

�

�XtHt �X?
�

�

F

,
�

�Y tHt � Y ?
�

�

F

  C
F

✓

�

�
min

r

n

p
+

�

p�
min

◆

kX?k
F

, (27a)

max

�

�

�XtHt �X?
�

� ,
�

�Y tHt � Y ?
�

�

  C
op

✓

�

�
min

r

n

p
+

�

p�
min

◆

kX?k , (27b)
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max

n

�

�XtHt �X?
�

�

2,1 ,
�

�Y tHt � Y ?
�

�

2,1
o

 C1

 

�

�
min

s

n log n

p
+

�

p�
min

!

max

n

kX?k
2,1 , kY ?k

2,1
o

, (27c)

min

0t<t
0

�

�rf
�

Xt,Y t
�

�

�

F

 1

n5

�

p

p
�
min

, (28)

where C
F

, C
op

, C1 > 0 are some absolute constants, provided that ⌘ ⇣ 1/(n3�
max

) and that t
0

= n18.

This lemma, which we establish in Appendix D, reveals that for a polynomially large number of iterations,
all iterates of the gradient descent sequence — when initialized at the ground truth — remain fairly close to
the true low-rank factors. This holds in terms of the estimation errors measured by the Frobenius norm, the
spectral norm, and the `

2,1 norm. In particular, the proximity in terms of the `
2,1 norm error plays a pivotal

role in implementing our analysis strategy (particularly Lemmas 2-4) described previously. In addition, this
lemma (cf. (28)) guarantees the existence of a small-gradient point within this sequence {(Xt,Y t

)}
0tt

0

,
a somewhat straightforward property of GD tailored to smooth problems [Nes12]. This in turn enables us
to invoke Lemma 2.

As immediate consequences of Lemma 5, with high probability we have
�

�XtY t> �M?
�

�

F

 3C
F

✓

�

�
min

r

n

p
+

�

p�
min

◆

kM?k
F

(29a)

�

�XtY t> �M?
�

�

1  3C1
p

3µr

 

�

�
min

s

n log n

p
+

�

p�
min

!

kM?k1 (29b)

�

�XtY t> �M?
�

�  3C
op

✓

�

�
min

r

n

p
+

�

p�
min

◆

kM?k (29c)

for all 0  t  t
0

. The proof is deferred to Appendix D.12.

2.6 Proof of Theorem 1

Let t⇤ , argmin

0t<t
0

krf (Xt,Y t
)k

F

, and take (X
ncvx

,Y
ncvx

) = (Xt⇤Ht⇤ ,Y t⇤Ht⇤
) (cf. (26)). It is

straightforward to verify that (X
ncvx

,Y
ncvx

) obeys (i) the small-gradient condition (21), and (ii) the proximity
condition (24). We are now positioned to invoke Lemma 2: for any optimizer Z

cvx

of (3), one has

�

�Z
cvx

�X
ncvx

Y >
ncvx

k
F

. 

c
inj

1p
�
min

krf(X
ncvx

,Y
ncvx

)k
F

. 2

n5

�

p

=



n5

�

p�
min

(�
min

) =



n5

�

p�
min

kM?k

. 1

n4

�

p�
min

kM?k. (30)

The last line arises since n �  — a consequence of the sample complexity condition np & 4µ2r2 log3 n
(and hence n � np & 4µ2r2 log3 n � 4). This taken collectively with the property (29) implies that

�

�Z
cvx

�M?k
F

 ��Z
cvx

�X
ncvx

Y >
ncvx

k
F

+

�

�X
ncvx

Y >
ncvx

�M?k
F

. 1

n4

�

p�
min

kM?k+ 

✓

�

�
min

r

n

p
+

�

p�
min

◆

kM?k
F

⇣ 

✓

�

�
min

r

n

p
+

�

p�
min

◆

kM?k
F

.

In other words, since X
ncvx

Y >
ncvx

and Z
ncvx

are exceedingly close, the error Z
cvx

�M? is mainly accredited
to X

ncvx

Y >
ncvx

�M?. Similar arguments lead to

�

�Z
cvx

�M?k .
✓

�

�
min

r

n

p
+

�

p�
min

◆

kM?k ,
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�

�Z
cvx

�M?k1 .
p

3µr

 

�

�
min

s

n log n

p
+

�

p�
min

!

kM?k1 .

We are left with proving the properties of Z
cvx,r. Since Z

cvx,r is defined to be the best rank-r approxi-
mation of Z

cvx

, one can invoke (30) to derive

�

�Z
cvx

�Z
ncvx,rkF  ��Z

cvx

�X
ncvx

Y >
ncvx

k
F

. 1

n4

�

p�
min

kM?k,

from which (8) follows. Repeating the above calculations implies that (7) holds if Z
cvx

is replaced by Z
cvx,r,

thus concluding the proof.

3 Prior art

Nuclear norm minimization, pioneered by the seminal works [RFP10,CR09,CT10,Faz02], has been a popular
and principled approach to low-rank matrix recovery. In the noiseless setting, i.e. E = 0, it amounts to solving
the following constrained convex program

minimizeZ2Rn⇥nkZk⇤ subject to P
⌦

(Z) = P
⌦

(M?
) , (31)

which enjoys great theoretical success. Informally, this approach enables exact recovery of a rank-r matrix
M? 2 Rn⇥n as soon as the sample size is about the order of nr — the intrinsic degrees of freedom of a
rank-r matrix [Gro11,Rec11,Che15]. In particular, Gross [Gro11] blazed a trail by developing an ingenious
golfing scheme for dual construction — an analysis technique that has found applications far beyond matrix
completion. When it comes to the noisy case, Candès and Plan [CP10] first studied the stability of convex
programming when the noise is bounded and possibly adversarial, followed by [NW12] and [KLT11] using two
modified convex programs. As we have already discussed, none of these papers provide optimal statistical
guarantees under our model when r = O(1). Other related papers such as [Klo14, CZ16] include similar
estimation error bounds and suffer from similar sub-optimality issues.

Turning to nonconvex optimization, we note that this approach has recently received much attention
for various low-rank matrix factorization problems, owing to its superior computational advantage com-
pared to convex programming (e.g. [KMO10a, JNS13, CLS15, CC17, TBS+16, ZZLC17]). The convergence
guarantees for matrix completion have been established for various algorithms such as gradient descent on
manifold [KMO10a,KMO10b], alternating minimization [JNS13,Har14], gradient descent [SL16,MWCC17,
WZG16,CLL19], and projected gradient descent [CW15], provided that a suitable initialization (like spec-
tral initialization) is available [KMO10a, JNS13, SL16, MWCC17, CCF18]. Our work is mostly related
to [MWCC17,CLL19], which studied (vanilla) gradient descent for nonconvex matrix completion. This al-
gorithm was first analyzed by [MWCC17] via a leave-one-out argument — a technique that proves useful in
analyzing various statistical algorithms [EK15,SCC17,ZB18,CFMW19,AFWZ17,LMCC18,DC18,CCFM19].
In the absence of noise and omitting logarithmic factors, [MWCC17] showed that O(nr3) samples are suf-
ficient for vanilla GD to yield " accuracy in O(log

1

" ) iterations (without the need of extra regularization
procedures); the sample complexity was further improved to O(nr2) by [CLL19]. Apart from gradient de-
scent, other nonconvex methods (e.g. [RS05,JMD10,WYZ12,JNS13,FRW11,Van13,LXY13,Har14,JKN16,
RT+11, WCCL16, DC18, GAGG13, CX16, ZWL15]) and landscape / geometry properties have been investi-
gated [GLM16,CL17,PKCS17,GJZ17,SXZ19]; these are, however, beyond the scope of the current paper.

Another line of works asserted that a large family of SDPs admits low-rank solutions [Bar95], which in
turn motivates the Burer-Monteiro approach [BM03,BVB16]. When applied to matrix completion, however,
the generic theoretical guarantees therein lead to conservative results. Take the noiseless case (31) for
instance: these results revealed the existence of a solution of rank at most O(

p

n2p), which however is often
much larger the true rank (e.g. when r ⇣ 1 and p ⇣ poly log(n)/n, one has

p

n2p � p
n � r). Moreover,

this line of works does not imply that all solutions to the SDP of interest are (approximately) low-rank.
Finally, the connection between convex and nonconvex optimization has also been explored in line spectral

estimation [LT18], although the context therein is drastically different from ours.
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4 Discussion

This paper provides an improved statistical analysis for the natural convex program (3), without the need of
enforcing additional spikiness constraint. Our theoretical analysis uncovers an intriguing connection between
convex relaxation and nonconvex optimization, which we believe is applicable to many other problems beyond
matrix completion. Having said that, our current theory leaves open a variety of important directions for
future exploration. Here we sample a few interesting ones.

• Improving dependency on r and . While our theory is optimal when r and  are both constants, it becomes
increasingly looser as either r or  grows. For instance, in the noiseless setting, it has been shown that the
sample complexity for convex relaxation scales as O(nr) — linear in r and independent of  — which is
better than the current results. It is worth noting that existing theory for nonconvex matrix factorization
typically falls short of providing optimal scaling in r and  [KMO10a, SL16, CW15, MWCC17, CLL19].
Thus, tightening the dependency of sample complexity on r and  might call for new analysis tools.

• Approximate low-rank structure. So far our theory is built upon the assumption that the ground-truth
matrix M? is exactly low-rank, which falls short of accommodating the more realistic scenario where
M? is only approximately low-rank. For the approximate low-rank case, it is not yet clear whether the
nonconvex factorization approach can still serve as a tight proxy. In addition, the landscape of nonconvex
optimization for the approximately low-rank case [CL17] might shed light on how to handle this case.

• Extension to deterministic noise. Our current theory — in particular, the leave-one-out analysis for the
nonconvex approach — relies heavily on the randomness assumption (i.e. i.i.d. sub-Gaussian) of the noise.
In order to justify the broad applicability of convex relaxation, it would be interesting to see whether one
can generalize the theory to cover deterministic noise with bounded magnitudes.

• Extension to structured matrix completion. Many applications involve low-rank matrices that exhibit
additional structures, enabling a further reduction of the sample complexity [FHB03,CC14,CWW19]. For
instance, if a matrix is Hankel and low-rank, then the sample complexity can be O(n) times smaller than
the generic low-rank case. The existing stability guarantee of Hankel matrix completion, however, is overly
pessimistic compared to practical performance [CC14]. The analysis framework herein might be amenable
to the study of Hankel matrix completion and help close the theory-practice gap.

• Extension to robust PCA and blind deconvolution. Moving beyond matrix completion, there are other
problems that are concerned with recovering low-rank matrices. Notable examples include robust principal
component analysis [CLMW11,CSPW11,CJSC13], blind deconvolution [ARR14,LS15] and blind demixing
[LS17]. The stability analyses of the convex relaxation approaches for these problems [ZLW+10,ARR14,
LS17] often adopt a similar approach as [CP10], and consequently are sub-optimal. The insights from the
present paper might promise tighter statistical guarantees for such problems.

Finally, we remark that the intimate link between convex and nonconvex optimization enables statistically
optimal inference and uncertainty quantification for noisy matrix completion (e.g. construction of optimal
confidence intervals for each missing entry). The interested readers are referred to our companion paper
[CFMY19] for in-depth discussions.
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A Preliminaries

In this section, we gather a few notations and preliminary facts that are used throughout the proofs.
To begin with, in view of the incoherence assumption (cf. Definition 1), one has

kX?k
2,1 

p

µr/n kX?k and kY ?k
2,1 

p

µr/n kY ?k . (32)

This follows from

kX?k
2,1 =

�

�U?
(⌃?

)

1/2 �
�

2,1  kU?k
2,1

�

�

(⌃?
)

1/2 �
� 

p

µr/n kX?k .

The bound for Y ? follows from the same argument.
Finally, for notational convenience, we shall often denote

Pdebias

⌦

(B) , P
⌦

(B)� pB, for all B 2 Rn⇥n. (33)

B Exact duality analysis

We show in this section that why the first-order optimality condition is almost sufficient in guaranteeing the
uniqueness of the optimizer. The argument is standard, see e.g. [CR09].

Lemma 6. Let Z = U⌃V > be the SVD of Z 2 Rn⇥n. Denote by T be the tangent space of Z and by T?

its orthogonal complement. Suppose that there exists W 2 T? such that

1

�
P
⌦

�

M �Z
�

= UV >
+W . (34)

Then Z is the unique minimizer of (3) if

1. kW k < 1;

2. The operator P
⌦

(·) restricted to elements in T is injective, i.e. P
⌦

(H) = 0 implies H = 0 for any H 2 T .

Proof of Lemma 6. To begin with, the assumption of this lemma implies that

UV >
+W 2 @kZk⇤,

where @kZk⇤ denotes the subdifferential of k · k⇤ at Z. This combined with (34) reveals that

1

�
P
⌦

(M �Z) 2 @ kZk⇤ , (35)

thus indicating that Z is a minimizer of the convex program (3).
Next, we justify the uniqueness of Z. Before continuing, we record a fact regarding the minimizers of (3).

Claim 1. Suppose that Z
1

and Z
2

are both minimizers of (3). Then one has P
⌦

(Z
1

) = P
⌦

(Z
2

).

With this claim at hand, every minimizer of (3) can be written as Z+H for some H obeying P
⌦

(H) = 0.
It then suffices to prove that for any H 6= 0, one has g (Z +H) > g (Z), where g(·) is the objective function
in (3). To this end, we note that

g (Z +H) =

1

2

kP
⌦

(Z +H �M)k2
F

+ � kZ +Hk⇤
=

1

2

kP
⌦

(Z �M)k2
F

+ � kZ +Hk⇤ , (36)

where the last relation follows from Claim 1 (i.e. P
⌦

(H) = 0). Let S be a subgradient of k · k⇤ at point Z
obeying

PT (S) = UV >, kPT? (S)k  1 and hPT? (S) ,PT? (H)i = kPT? (H)k⇤ . (37)

Using the convexity of k · k⇤, one can further lower bound (36) by

g (Z +H) � 1

2

kP
⌦

(Z �M)k2
F

+ � (kZk⇤ + hS,Hi)
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= g (Z) + � hS,Hi
= g (Z) + �

⌦

UV >
+W ,H

↵

+ �
⌦

S �UV > �W ,H
↵

(i)
= g (Z) + �

⌦

S �UV > �W ,H
↵

(ii)
= g (Z) + � hPT? (S)�W ,Hi .

Here, (i) follows from our assumption that UV >
+ W is supported on ⌦ (cf. (34)) and the fact that

P
⌦

(H) = 0, and (ii) holds since PT (S) = UV > (cf. (37)). We can now expand the above expression as

g (Z +H) � g (Z) + � hPT? (S) ,PT? (H)i � � hW ,PT? (H)i
� g (Z) + � (1� kW k) kPT? (H)k⇤ , (38)

where the last inequality holds by using the last property of (37) and invoking the elementary inequality

hW ,PT? (H)i  kW k kPT? (H)k⇤ .

Given that W is assumed to obey kW k < 1, one has g (Z +H) > g (Z) unless PT?(H) = 0. However, if
PT?(H) = 0 (and hence H 2 T ), then the injectivity assumption together with the fact that P

⌦

(H) = 0
forces H = 0. Consequently, any minimizer Z + H with H 6= 0 must satisfy g (Z +H) > g (Z), which
results in contradiction. This concludes the proof.

Proof of Claim 1. Consider any minimizers Z
1

6= Z
2

, and suppose instead that P
⌦

(Z
1

�Z
2

) 6= 0. For any
0 < ↵ < 1, define

Z↵ , ↵Z
1

+ (1� ↵)Z
2

.

Since k · k⇤ is convex, we have

g (Z↵) =
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k⇤ . (39)

Furthermore, by the strong convexity of k · k2
F

we have

g (Z↵) <
1

2

�

↵ kP
⌦

(Z
1

�M)k2
F

+ (1� ↵) kP
⌦

(Z
2

�M)k2
F

�

+ ↵� kZ
1

k⇤ + (1� ↵)� kZ
2

k⇤
= ↵g (Z

1

) + (1� ↵) g (Z
2
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1

).

This contradicts the fact that Z
1

is a minimizer of (3), thus completing the proof.

C Connections between convex and nonconvex solutions

C.1 Proof of Lemma 1

First of all, since (X,Y ) is a stationary point of (5), we have the first-order optimality conditions

P
⌦

�

M �XY >�Y = �X; (40a)
⇥P

⌦

�

M �XY >�⇤> X = �Y . (40b)

As an immediate consequence, one has

X>X = ��1X>P
⌦

�

M �XY >�Y = Y >Y . (41)

In words, any stationary point (X,Y ) has “balanced” scale.
Let U⌃V > be the singular value decomposition of XY > with U ,V 2 Rn⇥r orthonormal and ⌃ 2 Rr⇥r

diagonal. In view of the balanced scale of (X,Y ) (namely, (41)) and Lemma 20, we can write

X = U⌃1/2R and Y = V ⌃1/2R (42)
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for some orthonormal matrix R 2 Rr⇥r. Substitution into (40) results in

P
⌦

�

M �XY >�V = �U ; (43a)
⇥P

⌦

�

M �XY >�⇤> U = �V , (43b)

implying that the columns of U (resp. V ) are the left (resp. right) singular vectors of the matrix P
⌦

(M �
XY >

). We can therefore write
1

�
P
⌦

�

M �XY >�
= UV >

+W , (44)

where W 2 T?; recall that T is the tangent space of XY > and also UV >. In view of Lemma 6, it suffices
to show that kW k < 1, which is the content of the rest of the proof.

One can rewrite P
⌦
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) as
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= p
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Substitute this identity into (43) and rearrange terms to obtain
⇥

pM?
+ Pdebias

⌦

�

M? �XY >�
+ P

⌦

(E)

⇤

V = U (p⌃+ �Ir) ;
⇥

pM?
+ Pdebias

⌦

�

M? �XY >�
+ P

⌦

(E)

⇤>
U = V (p⌃+ �Ir) .

These tell us that the columns of U (resp. V ) are the left (resp. right) singular vectors of the matrix

pM?
+ Pdebias

⌦

�

M? �XY >�
+ P

⌦

(E) ,

which is equivalent to saying that5

pM?
+ Pdebias

⌦

�

M? �XY >�
+ P

⌦

(E) = U (p⌃+ �Ir)V
>
+ �W

2

, (45)

for some W
2

2 T?. One can then derive from (44) that

kW k (i)
=

1

�

�

�PT?
⇥P

⌦

�

M �XY >�⇤�
�

=

1

�

�

�PT?
⇥

pM? � pXY >
+ Pdebias

⌦

�

M? �XY >�
+ P

⌦

(E)

⇤

�

�

(ii)
=

1

�

�

�PT?
⇥

pM?
+ Pdebias

⌦

�

M? �XY >�
+ P

⌦

(E)

⇤

�

�

(iii)
=

1

�

�

�PT?
⇥

U (p⌃+ �Ir)V
>
+ �W

2

⇤

�

�

(iv)
= kW

2

k ,
where (i), (ii) and (iv) arise from the facts that UV > 2 T , XY > 2 T and U(p⌃+�Ir)V

> 2 T , respectively,
and (iii) relies on the identity (45).

It then suffices to control kW
2

k. To this end, apply Weyl’s inequality to (45) to obtain that: for
r + 1  i  n, the ith largest singular value of U(p⌃+ �Ir)V

>
+ �W

2

obeys

�i

�

U (p⌃+ �Ir)V
>
+ �W

2

�  p�i (M
?
) +

�

�Pdebias

⌦

�

M? �XY >�
+ P

⌦

(E)

�

�

 ��Pdebias

⌦

�

M? �XY >��
�

+ kP
⌦

(E)k
< �,

where the second inequality comes from the fact that M? has rank r (so that �i(M
?
) = 0 for r + 1 

i  n) as well as the triangle inequality, and the last inequality follows from the assumptions of the lemma.
Furthermore, it is seen that U(p⌃+ �Ir)V

> has rank r and all of its singular values are at least �. These
facts taken collectively demonstrate that

kW k = kW
2

k =

1

� max

r<in
�i

�

U (p⌃+ �Ir)V
>
+ �W

2

�

< 1.

This together with Lemma 6 completes the proof.
5Here, the pre-factor � is chosen to simplify the analysis later on.
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C.2 Proof of Lemma 2

We begin by collecting a few simple properties resulting from our assumptions. By definition, the gradient
of f(·, ·) in (15) is given by

rf (X,Y ) =

1

p

 P
⌦

�

XY > �M
�

Y + �X
⇥P

⌦

�

XY > �M
�⇤>

X + �Y

�

,

which together with the small-gradient assumption krf(X,Y )k
F

 c�
p

cinj p�min

/2/p implies that

�

�P
⌦

�

XY > �M
�

Y + �X
�

�

F

 p krf (X,Y )k
F

 c�
q

cinj p�min

/2

; (46a)
�

�

�P
⌦

(XY > �M)

�>
X + �Y

�

�

F

 p krf (X,Y )k
F

 c�
q

cinj p�min

/2. (46b)

Throughout the proof, we let the SVD of XY > be XY >
= U⌃V >, and denote by T the tangent space of

XY > and by T? its orthogonal complement. Additionally, our assumption regarding the singular values of
X and Y implies that

�
min

/2  �
min

(⌃)  �
max

(⌃)  2�
max

. (47)

This can be easily seen from the following two inequalities

�
max

(⌃) =

�

�XY >�
�  kXk kY k  2�

max

;

�
min

(⌃) = �
min

�

XY >� � �
min

(X)�
min

(Y ) � �
min

/2.

Before proceeding, we record a claim that will prove useful in the subsequent analysis.

Claim 2. Under the notations and assumptions of Lemma 2, one has

P
⌦

�

XY > �M
�

= ��UV >
+R, (48)

where R is some residual matrix satisfying

kPT (R)k
F

 72
pp
�
min

krf (X,Y )k
F

and kPT?(R)k < �/2. (49)

With Claim 2 in place, we are ready to prove Lemma 2. Let Z
cvx

be any minimizer of (3) and denote
� , Z

cvx

�XY >. The proof can be divided into the following steps.

• First, show that the difference � primarily lies in the tangent space of XY >; see (56).

• Next, utilize this property to connect kP
⌦

(�)k2
F

with the size of the gradient rf(X,Y ); see (58).

• In the end, obtain a lower bound on kP
⌦

(�)k2
F

in terms of k�k
F

using the injectivity property; see (59).

The desired upper bound on k�k
F

advertised in the lemma then follows by combining these results. In what
follows, we shall carry out these steps one by one.

1. The optimality of Z
cvx

= XY >
+� reveals that

1

2

�

�P
⌦

�

XY >
+��M

�

�

�

2

F

+ �
�

�XY >
+�

�

�

⇤  1

2

�

�P
⌦

�

XY > �M
�

�

�

2

F

+ �
�

�XY >�
�

⇤.

A little algebra allows us to rearrange terms as follows

1

2

kP
⌦

(�)k2
F

 � ⌦P
⌦

�

XY > �M
�

,�
↵

+ �
�

�XY >�
�

⇤ � �
�

�XY >
+�

�

�

⇤. (50)

In addition, it follows from the convexity of k · k⇤ that
�

�XY >
+�

�

�

⇤ � ��XY >�
�

⇤ +
⌦

UV >
+W ,�

↵

(51)
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for any W 2 T? obeying kW k  1, where UV >
+W serves as a subgradient of k · k⇤ at XY >. In what

follows, we shall pick W such that hW ,�i = kPT?(�)k⇤. Combining this with (50) and (51), we reach

1

2

kP
⌦

(�)k2
F

 � ⌦P
⌦

�

XY > �M
�

,�
↵� �

⌦

UV >,�
↵� � hW ,�i

= � ⌦P
⌦

�

XY > �M
�

,�
↵� �

⌦

UV >,�
↵� � kPT? (�)k⇤ .

(52)

This together with the decomposition (48) leads to

0  1

2

kP
⌦

(�)k2
F

 �hR,�i � � kPT? (�)k⇤
= �hPT (R),�i � hPT?(R),�i � � kPT? (�)k⇤ , (53)

and therefore

hPT (R),�i+ hPT?(R),�i+ � kPT? (�)k⇤  0. (54)

In addition, elementary inequalities give

� kPT (R)k
F

kPT (�)k
F

� kPT?(R)k kPT?(�)k⇤ + � kPT?(�)k⇤
 hPT (R),�i+ hPT?(R),�i+ � kPT? (�)k⇤  0.

From the condition (49) we have kPT?(R)k  �/2, and hence the above inequality gives

kPT (R)k
F

kPT (�)k
F

� �kPT?(R)k kPT?(�)k⇤ + � kPT?(�)k⇤ � �
2

kPT?(�)k⇤ , (55)

which together with the condition (49) on kPT (R)k
F

and the small gradient assumption (21) yields

kPT?(�)k⇤  144
p

�
p
�
min

krf (X,Y )k
F

kPT (�)k
F

 144c
p
cinjp kPT (�)k

F

. (56)

This essentially means that � lies primarily in the tangent space of XY > for c sufficiently small. As an
immediate consequence,

kPT?(�)k
F

 kPT?(�)k⇤  144c
p
cinjp kPT (�)k

F

 kPT (�)k
F

, (57)

as long as c is sufficiently small. Note that we also use the elementary fact that cinj  1/p (otherwise we
will have the contradictory inequality p�1kP

⌦

(H)k2
F

� cinjkHk2
F

> p�1kHk2
F

).

2. Continue the upper bound in (53) to obtain

1

2

kP
⌦

(�)k2
F

 �hPT (R),�i � hPT?(R),�i � � kPT? (�)k⇤
 kPT (R)k

F

kPT (�)k
F

� �
2

kPT?(�)k⇤ .

Here, the last line uses the fact that �hPT?(R),�i  kPT?(R)k · kPT?(�)k⇤  �
2

kPT?(�)k⇤, which
follows from (49). Therefore, using the condition (49) we reach

1

2

kP
⌦

(�)k2
F

 kPT (R)k
F

kPT (�)k
F

 72
pp
�
min

krf (X,Y )k
F

k�k
F

. (58)

3. We are left with lower bounding kP
⌦

(�)k2
F

. Using the decomposition � = PT (�) + PT?(�), we obtain

1p
p kP⌦

(�)k
F

=

1p
p kP⌦

PT (�) + P
⌦

PT?(�)k
F

� 1p
p kP⌦

PT (�)k
F

� 1p
p kP⌦

PT?(�)k
F

� p
c
inj

kPT (�)k
F

� 1p
p kPT?(�)k

F

,

where the last inequality follows from the injectivity assumption (20). In addition, (56) implies

1p
p kPT?(�)k

F

 1p
p kPT?(�)k⇤  1p

p144c
p
cinjp kPT (�)k

F


p
c
inj

2

kPT (�)k
F
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as long as c is sufficiently small. As a result,

1p
p kP⌦

(�)k
F

�
p
c
inj

2

kPT (�)k
F

.

In addition, by (57) we have

k�k
F

 kPT (�)k
F

+ kPT?(�)k
F

 2 kPT (�)k
F

,

and therefore
1p
p kP⌦

(�)k
F

�
p
c
inj

2

kPT (�)k
F

�
p
c
inj

4

k�k
F

. (59)

Taking (58) and (59) collectively yields

c
inj

32

k�k2
F

 1

2p kP⌦

(�)k2
F

 72 1p
�
min

krf (X,Y )k
F

k�k
F

,

thus indicating that
k�k

F

. 

c
inj

1p
�
min

krf (X,Y )k
F

.

C.2.1 Proof of Claim 2

Before proceeding to the proof of Claim 2, we state a useful fact; the proof is deferred to Appendix C.2.2.

Claim 3. Instate the notations and assumptions in Lemma 2. Let U⌃V > be the SVD of XY >. There
exists an invertible matrix Q 2 Rr⇥r such that X = U⌃1/2Q, Y = V ⌃1/2Q�> and

�

�⌃Q �⌃�1

Q

�

�

F

 8

p


p

�
p
�
min

krf (X,Y )k
F

 8c
q

c
inj

p/, (60)

where UQ⌃QV >
Q is the SVD of Q.

In light of the assumptions (46), one has

P
⌦

�

XY > �M
�

Y = ��X +B
1

and
⇥P

⌦

�

XY > �M
� ⇤>

X = ��Y +B
2

(61)

for some B
1

2 Rn⇥r and B
2

2 Rn⇥r, where max {kB
1

k
F

, kB
2

k
F

}  p krf (X,Y )k
F

. Recall that

P
⌦

�

XY > �M
�

= ��UV >
+R. (62)

In the sequel, we shall prove the upper bounds on both kPT (R)k
F

and kPT?(R)k separately.

1. From the definition of PT (·) (see (13)), we have

kPT (R)k
F

=

�

�UU>R(I � V V >
) +RV V >�

�

F

 ��U>R(I � V V >
)

�

�

F

+ kRV k
F

 ��U>R
�

�

F

+ kRV k
F

. (63)

In addition, invoke Claim 3 to obtain

X = U⌃1/2Q and Y = V ⌃1/2Q�> (64)

for some invertible matrix Q 2 Rr⇥r, whose SVD UQ⌃QV >
Q obeys (60). Combine (61) and (62) to see

��UV >Y +RY = ��X +B
1

,

which together with (64) yields

RV = �U⌃1/2
�

Ir �QQ>�⌃�1/2
+B

1

Q>⌃�1/2.
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Apply the triangle inequality to get

kRV k
F

 k�U⌃1/2
�

Ir �QQ>�⌃�1/2k
F

+ kB
1

Q>⌃�1/2k
F

 �
�

�⌃1/2
�

�

�

�⌃�1/2
�

�

�

�QQ> � Ir
�

�

F

+ kQk ��⌃�1/2
�

� kB
1

k
F

. (65)

In order to further upper bound (65), we first recognize that (47) implies
�

�⌃1/2
�

�  p
2�

max

, and
�

�⌃�1/2
�

�

= 1/
p

�
min

(⌃) 
p

2/�
min

.

Second, Claim 3 yields

�

�⌃Q �⌃�1

Q

�

�

F

 8

p


p

�
p
�
min

krf (X,Y )k
F

 8c
q

cinjp/ ⌧ 1,

with the proviso that c is sufficiently small. Here we have used the facts that cinj  1/p and that  � 1.
This in turn implies that kQk =

�

�⌃Q

�

�  2. Putting the above bounds together yields

kRV k
F

 �
p
2�

max

r

2

�
min

�

�⌃2

Q � Ir
�

�

F

+ 2

r

2

�
min

p krf (X,Y )k
F

 �
p
2�

max

r

2

�
min

k⌃Qk ��⌃Q �⌃�1

Q

�

�

F

+ 2

r

2

�
min

p krf (X,Y )k
F

 2�
p
2�

max

r

2

�
min

8

p


p

�
p
�
min

krf (X,Y )k
F

+ 2

r

2

�
min

p krf (X,Y )k
F

 36
pp
�
min

krf (X,Y )k
F

.

Similarly we can show that
�

�U>R
�

�

F

 36pkrf(X,Y )k
F

/
p
�
min

. These bounds together with (63)
result in

kPT (R)k
F

 72
pp
�
min

krf (X,Y )k
F

. (66)

2. We now move on to bounding kPT?(R)k. In view of the definition of Pdebias

⌦

(·) in (33), we can rearrange
(61) to derive

⇥

pM?
+ P

⌦

(E)� Pdebias

⌦

�

XY > �M?
�⇤

Y = pXY >Y + �X �B
1

,
⇥

pM?
+ P

⌦

(E)� Pdebias

⌦

�

XY > �M?
�⇤>

X = pY X>X + �Y �B
2

.

In view of the representation X = U⌃1/2Q and Y = V ⌃1/2Q�>, the above identities are equivalent to
⇥

pM?
+ P

⌦

(E)� Pdebias

⌦

�

XY > �M?
�⇤

V = pU⌃+ �U⌃1/2QQ>⌃�1/2 �B
1

Q>⌃�1/2,
⇥

pM?
+ P

⌦

(E)� Pdebias

⌦

�

XY > �M?
�⇤>

U = pV ⌃+ �V ⌃1/2Q�>Q�1⌃�1/2 �B
2

Q�1⌃�1/2.

Letting

pM?
+ P

⌦

(E)� Pdebias

⌦

�

XY > �M?
�

= pU⌃V >
+ �U⌃1/2QQ>⌃�1/2V >

+

˜R (67)

for some residual matrix ˜R 2 Rn⇥n, we have

kPT? (R)k (i)
=

�

�PT?
⇥P

⌦

�

XY > �M? �E
�⇤

�

�

(ii)
=

�

�PT?
⇥

p
�

XY > �M?
�

+ Pdebias

⌦

�

XY > �M?
�� P

⌦

(E)

⇤

�

�

(iii)
=

�

�PT?
⇥

pM?
+ P

⌦

(E)� Pdebias

⌦

�

XY > �M?
�⇤

�

�

(iv)
=

�

�PT?
�

˜R
�

�

�, (68)
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where (i) follows from the definition of R and the fact that UV > 2 T , (ii) uses the definition of Pdebias

⌦

(·),
(iii) relies on the fact that XY > 2 T , and (iv) applies (67) and the facts that U⌃V > 2 T and that
U⌃1/2QQ>⌃�1/2V > 2 T . Therefore, it suffices to bound kPT?( ˜R)k. Rewrite (67) as

pM?
+ P

⌦

(E)� Pdebias

⌦

�

XY > �M?
�� PT

�

˜R
�

= U(p⌃+ �⌃1/2QQ>⌃�1/2
)V >

+ PT?
�

˜R
�

. (69)

Suppose for the moment that
�

�PT

�

˜R
�

�

�  �/4. (70)

This together with the assumptions that kPdebias

⌦

�

XY > �M?
� k < �/8 and kP

⌦

(E)k < �/8 reveals that
�

�P
⌦

(E)� Pdebias

⌦

(XY > �M?
)� PT (

˜R)

�

� < �/2. (71)

By Weyl’s inequality and the relations (69) and (71), one has

�i

h

U
�

p⌃+ �⌃1/2QQ>⌃�1/2
�

V >
+ PT?

�

˜R
�

i

 �i (pM
?
) +

�

�P
⌦

(E)� Pdebias

⌦

(XY > �M?
)� PT (

˜R)

�

�

< p�i (M
?
) + �/2 = �/2 (72)

for any r + 1  i  n, where �i(A) denotes the ith largest singular value of a matrix A. Here, we have
used the fact that M? has rank r and hence �i(M

?
) = 0 for any i > r. In addition, it is seen that

�

�⌃1/2QQ>⌃�1/2 � Ir
�

�

=

�

�⌃1/2
(QQ> � Ir)⌃

�1/2
�

�

 ��⌃1/2
�

�

�

�⌃�1/2
�

�

�

�QQ> � Ir
�

�

F

.

Note that in (65), we have obtained

�

�⌃1/2
�

�

�

�⌃�1/2
�

�

�

�QQ> � Ir
�

�

F

 2

p
2�

max

p

2/�
min

8c
q

cinjp/  1/10

as long as c is sufficiently small, and hence
�

�⌃1/2QQ>⌃�1/2 � Ir
�

�  1/10. Therefore, for any 1  i  r
we know that

�i

h

U
�

p⌃+ �⌃1/2QQ>⌃�1/2
�

V >
i

� �r

h

U
�

p⌃+ �Ir + �
�

⌃1/2QQ>⌃�1/2 � Ir
��

V >
i

� �r (p⌃+ �Ir)� �
�

�⌃1/2QQ>⌃�1/2 � Ir
�

�

� �� �
�

�⌃1/2QQ>⌃�1/2 � Ir
�

�

� �� �/10 > �/2,

where the second inequality results from Weyl’s inequality. This combined with (68) and (72) yields

kPT?(R)k =

�

�PT?
�

˜R
�

�

� < �/2;

this happens because at least n� r singular values of U
�

p⌃+ �⌃1/2QQ>⌃�1/2
�

V >
+ PT?

�

˜R
�

are no
larger than �/2 and they cannot correspond to directions simultaneously in the column space spanned by
U and the row space spanned by V >.

The proof is then complete by verifying (70). To this end, observe that

˜RV = �B
1

Q>⌃�1/2, ˜R>U = �V ⌃1/2Q�>Q�1⌃�1/2 � �V ⌃�1/2QQ>⌃1/2 �B
2

Q�1⌃�1/2.

Then following similar technique used to bound kPT (R)k, we have
�

�PT (
˜R)

�

�  ��PT

�

˜R
�

�

�

F

 ��U>
˜R
�

�

F

+

�

� ˜RV
�

�

F

. c
p
cinjp� < �/4 (73)

as long as c is small enough.
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C.2.2 Proof of Claim 3

Let
P
⌦

�

XY > �M
�

Y + �X = B
1

and
⇥P

⌦

�

XY > �M
�⇤>

X + �Y = B
2

(74)

for some B
1

,B
2

2 Rn⇥r. Clearly, it is seen from the assumption (46) that

max{kB
1

k
F

, kB
2

k
F

}  pkrf(X,Y )k
F

. (75)

In addition, the identities (74) allow us to obtain
�

�X>X � Y >Y
�

�

F

=

1

�

�

�X>
(B

1

� P
⌦

�

XY > �M
�

Y )� �B
2

� ⇥P
⌦

�

XY > �M
�⇤>

X
�>

Y
�

�

F

=

1

�

�

�X>B
1

�B>
2

Y
�

�

F

 1

� kXk kB
1

k
F

+

1

� kB
2

k
F

kY k
 2

p
�

p
2�

max

krf (X,Y )k
F

. (76)

Here, the last line makes use of (75) and the assumption that kXk , kY k  p
2�

max

. In view of Lemma 20,
one can find an invertible Q such that X = U⌃1/2Q, Y = V ⌃1/2Q�> and

�

�⌃Q �⌃�1

Q

�

�

F

 1

�
min

(⌃)

�

�X>X � Y >Y
�

�

F

(i)
 2

�
min

· 2 p
�

p
2�

max

krf (X,Y )k
F

 8

p


p

�
p
�
min

krf (X,Y )k
F

(ii)
 8c

q

cinjp/,

where ⌃Q is a diagonal matrix consisting of all singular values of Q. Here, (i) follows from (47) as well as
the bound (76), and the last inequality (ii) uses the assumption (21). This completes the proof.

C.3 Proof of Lemma 4

Lemma 4 consists of two parts, which we restate into the following two lemmas, namely Lemmas 7-8.
First of all, Lemma 7 demonstrates that as long as (X,Y ) is sufficiently close to (X?,Y ?

), the operator
P
⌦

(·) restricted to the tangent space T of XY > is injective. The proof is deferred to Appendix C.3.1.

Lemma 7. Suppose that the sample complexity obeys n2p � Cµrn log n for some sufficiently large constant
C > 0. Then with probability exceeding 1�O(n�10

),

1

p
kP

⌦

(H)k2
F

� 1

32
kHk2

F

, 8H 2 T

holds simultaneously for all (X,Y ) obeying

max

� kX �X?k
2,1 , kY � Y ?k

2,1
  c


p
n
kX?k . (77)

Here, c > 0 is some sufficiently small constant, and T denotes the tangent space of XY >.

Remark 5. In the prior literature, the injectivity of P
⌦

(·) has been mostly studied when restricted to a
fixed tangent space independent of ⌦ (see [CR09,Gro11]). In comparison, this lemma demonstrates that the
injectivity property holds uniformly over a large set of tangent spaces. This allows one to handle tangent
spaces that are statistically dependent on ⌦.
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Remark 6. Note that the condition (77) on (X,Y ) is weaker than (24) under the assumptions of Lemma
4. To see this, if (24) holds, then one necessarily has

kX �X?k
2,1  C1

 

�

�
min

s

n log n

p
+

�

p�
min

!

max

n

kX?k
2,1 , kY ?k

2,1
o

(i)
. C1

�

�
min

s

n log n

p
max

n

kX?k
2,1 , kY ?k

2,1
o

(ii)
 C1

�

�
min

s

n log n

p

r

µr

n
kX?k

(iii)
 c


p
n
kX?k .

Here, (i) follows from the choice � ⇣ �
p
np; (ii) relies on the incoherence assumption (32); and (iii) holds

true under the noise condition �
�
min

q

n
p ⌧ 1p

4µr logn
. A similar bound holds for kY � Y ?k

2,1.

The next lemma shows that for all (X,Y ) close to (X?,Y ?
), P

⌦

(XY > �M?
) is uniformly close to its

expectation p(XY > �M?
). The proof can be found in Appendix C.3.2.

Lemma 8. Suppose that n2p � 4µ2r2n log

2 n and �
p

n(log n)/p ⌧ �
min

/. With probability exceeding
1�O(n�10

), one has
�

�P
⌦

�

XY > �M?
�� p

�

XY > �M?
�

�

� < �/8

simultaneously for any (X,Y ) obeying (24), provided that � = C��
p
np for some constant C� > 0.

C.3.1 Proof of Lemma 7

By definition, any H 2 T can be expressed as

H = XA>
+BY > (78)

for some A,B 2 Rn⇥r. Given that this is an underdetermined linear system of equations, there might be
numerous (A,B)’s compatible with (78). We take a specific choice as follows

(A,B) := arg min

(

˜A, ˜B)

0.5
�

� ˜A
�

�

2

F

+ 0.5
�

� ˜B
�

�

2

F

(79)

subject to H = X ˜A>
+

˜BY >.

which satisfies a property that plays an important role in the subsequent analysis:

X>B = A>Y . (80)

To see this, consider the Lagrangian

L( ˜A, ˜B,⇤) := 0.5
�

� ˜A
�

�

2

F

+ 0.5
�

� ˜B
�

�

2

F

+ h⇤,X ˜A>
+

˜BY > �Hi.

Taking the derivatives w.r.t. ˜A and ˜B and setting them to zero yield

A = �⇤>X and B = �⇤Y

for some Lagrangian multiplier matrix ⇤ 2 Rn⇥n. The claim (80) then follows immediately.
The remaining proof consists of two steps.

• First, we would like to show that

kHk2
F

 8�
max

� kAk2
F

+ kBk2
F

�

. (81)
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• Second, we prove that

1

2p
kP

⌦

(H)k2
F

=

1

2p

�

�P
⌦

�

XA>
+BY >��

�

2

F

� �
min

8

� kAk2
F

+ kBk2
F

�

. (82)

Taking (81) and (82) together immediately yields the claimed bounds in the lemma. In what follows, we
shall establish these two bounds separately.

1. Regarding the upper bound (81), it follows from elementary inequalities that

kHk2
F

=

�

�XA>
+BY >�

�

2

F

 2

�

�

�XA>�
�

2

F

+

�

�BY >�
�

2

F

�

 2

� kXk2 kAk2
F

+ kY k2 kBk2
F

�

 2max

n

kXk2 , kY k2
o

� kAk2
F

+ kBk2
F

�

. (83)

It then suffices to control max{kXk, kY k}. In view of the assumption (77), one has

kX �X?k  kX �X?k
F

 p
n kX �X?k

2,1  c


kX?k  kX?k , (84)

as long as c < 1. This together with the triangle inequality reveals that

kXk  kX?k+ kX �X?k  2 kX?k  2

p
�
max

.

Similarly, one has kY k  2

p
�
max

. Substitution into (83) yields the desired upper bound (81).

2. We now move on to the lower bound (82). To this end, one first decomposes

1

2p

�

�P
⌦

�

XA>
+BY >��

�

2

F

=

1

2p

�

�P
⌦

�

XA>
+BY >��

�

2

F

� 1

2

�

�XA>
+BY >�

�

2

F

| {z }

:=↵
1

+

1

2

�

�XA>
+BY >�

�

2

F

| {z }

:=↵
2

.

The basic idea is to demonstrate that (1) ↵
2

is bounded from below, and (2) ↵
1

is sufficiently small
compared to ↵

2

.

(a) We start by controlling ↵
2

, towards which we can expand

↵
2

=

1

2

⇣

�

�XA>�
�

2

F

+

�

�BY >�
�

2

F

⌘

+Tr

�

X>BY >A
�

.

The property X>B = A>Y (see (80)) implies that

Tr

�

X>BY >A
�

=

�

�X>B
�

�

2

F

� 0 =) ↵
2

� 1

2

⇣

�

�XA>�
�

2

F

+

�

�BY >�
�

2

F

⌘

.

Write �X = X �X? and �Y = Y � Y ?. We have
�

�XA>�
�

2

F

=

�

�

(X?
+�X)A>�

�

2

F

=

�

�X?A>�
�

2

F

+

�

��XA>�
�

2

F

+ 2

⌦
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� ��X?A>�
�

2

F
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�
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�

F

�

��XA>�
�

F

� ��X?A>�
�

2

F

� 2 kX?k k�Xk kAk2
F

,

where the second line arises from the Cauchy-Schwarz inequality. Recalling from (84) that k�Xk 
ckX?k/, we arrive at

�

�XA>�
�

2

F

� ��X?A>�
�

2

F

� 2c�
min

kAk2
F

� ��X?A>�
�

2

F

� �
min

kAk2
F

/100,

provided that c  1/200. A similar bound holds for kBY >k2
F

, thus leading to

↵
2

� 1

2

⇣

�

�X?A>�
�

2

F

+

�

�BY ?>�
�

2

F

⌘

� 1
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�
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⇣

kAk2
F

+ kBk2
F

⌘

.
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(b) Next, we control ↵
1

. First, it is seen that

XA>
+BY >

= (X?
+�X)A>

+B (Y ?
+�Y )

>

= X?A>
+BY ?>

+�XA>
+B�>

Y .

As a result, we can expand ↵
1

as

↵
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=

1

2p
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�
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�
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⌦
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.

i. Regarding �
1

, it follows from the bounds in [CR09, Section 4.2] that

|�
1

|  1

64

�

�X?A>
+BY ?>�

�

2

F

 1

32

⇣

�

�X?A>�
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2

F

+

�

�BY ?>�
�

2

F

⌘

,

as long as np � µr log n.
ii. Invoke Lemma 19 to show that

|�
2

|  3n

2

k�Xk2
2,1 kAk2

F

 3c2

2
�
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kAk2
F
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100

�
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,
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|  3n

2

k�Y k2
2,1 kBk2

F

 3c2

2
�
min

kBk2
F

 1

100

�
min

kBk2
F

,

as long as n2p � n log n and c > 0 is sufficiently small. Here we have utilized the assumption that
max{k�Xk

2,1, k�Y k
2,1}  ckX?k/(pn).

iii. The term �
4

can be controlled via Lemma 21:

|�
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| 
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1

p
P
⌦
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11>�� 11>
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�
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F

k�Y k
2,1 kBk
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,

where the second line uses the bound kp�1P
⌦

�

11>��11>k .
p

n/p guaranteed by [KMO10a, Lemma
3.2]. Continue the upper bound to get

|�
4

|
(i)
. n

c2

2n
�
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kAk
F

kBk
F
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 c2
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kAk2
F

+ kBk2
F

⌘

(iii)
 1

100

�
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kAk2
F

+ kBk2
F

⌘

.

Here the first relation (i) arises from the assumption that np � 1. The second inequality (ii) applies
the elementary inequality ab  (a2 + b2)/2 and the last one (iii) holds with the proviso that c > 0 is
small enough.
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iv. The last term �
5

can be further decomposed into the sum of four terms. For brevity, we take one out
as an example, namely the term

1

p

⌦P
⌦

�

X?A>� ,P
⌦

�

�XA>�↵� ⌦X?A>,�XA>↵ .

Apply the triangle inequality to obtain
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In light of [CR09, Section 4.2] and [ZL16, Lemma 9], we have
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Taking the above three bounds collectively yields
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Using the assumption that k�Xk
2,1  ckX?k/(pn), one has
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for c > 0 small enough. The same argument applies to the remaining three terms, resulting in
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v. Combining the previous bounds on �
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through �
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, we arrive at
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(c) Taking the preceding bounds on ↵
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and ↵
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collectively yields
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The proof is then complete.
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C.3.2 Proof of Lemma 8

To start with, we have
XY > �M?

= (X �X?
)Y >

+X?
(Y � Y ?

)

>
,

which together with the triangle inequality implies
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�
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⌦

⇥
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)
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�.

Apply [CL17, Lemma 4.5] to obtain
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. p
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where the second line is due to kPdebias

⌦

(11>
)k . p

np (cf. [KMO10a, Lemma 3.2]). Similarly,
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⌦

⇥
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)

> ⇤�
� . p
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In addition, the assumption (24) yields
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as long as �
�
min

q

n logn
p ⌧ 1/ (recall that � = C��

p
np for some constant C� > 0). As a consequence, one

obtains

�

�Pdebias

⌦

�

XY > �M?
�

�

� . p
np

 

�

�
min

s

n log n

p
+

�

p�
min

!

kX?k
2,1 kY ?k

2,1

 p
np

 

�

�
min

s

n log n

p
+

�

p�
min

!

µr�
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n
, (85)

where the last inequality follows from the upper bound max{kX?k
2,1, kY ?k

2,1}  pµr�
max

/n (cf. (32)).
Rearrange the right-hand side of (85) to reach

�

�Pdebias

⌦

�

XY > �M?
�

�

� . �
p
np ·

s

4µ2r2 log n

np
+ �

s

4µ2r2

np
< �/8,

where the last line holds because of the assumption n2p � 4µ2r2n log n as well as the choice of �.

D Analysis of the nonconvex gradient descent algorithm

Lemma 5 shares similar spirit as [MWCC17, Theorem 2] and [CLL19, Lemma 3.5] with one difference: the
nonconvex loss function (15) has an additional term kXk2

F

+ kY k2
F

to balance the scale of X and Y . To
simplify the presentation, we find it convenient to introduce a few notations. Denote

F t ,


Xt

Y t

�

2 R2n⇥r and F ? ,


X?

Y ?

�

2 R2n⇥r. (86)

It is easily seen from (26) that
Ht

= arg min

R2Or⇥r

�

�F tR� F ?
�

�

F

. (87)
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Algorithm 2 Construction of the lth leave-one-out sequence.

Initialization: X0,(l)
= X?; Y 0,(l)

= Y ?; Set F 0,(l) ,


X0,(l)

Y 0,(l)

�

.

Gradient updates: for t = 0, 1, . . . , t
0

� 1 do

F t+1,(l) ,


Xt+1,(l)

Y t+1,(l)

�

=



Xt,(l) � ⌘rXf (l)
(Xt,(l),Y t,(l)

)

Y t,(l) � ⌘rY f (l)
(Xt,(l),Y t,(l)

)

�

,

where ⌘ > 0 is the step size.

Similar to [MWCC17,CLL19], we resort to the leave-one-out sequences to control the `
2

/`1 error. Specif-
ically, for each 1  l  n (corresponding to row indices), we construct {F t,(l)}t�0

to be the gradient descent
iterates (see Algorithm 2) w.r.t. the following auxiliary loss function
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Here P
⌦�l,·(·) (resp. Pl,·(·)) denotes the orthogonal projection onto the space of matrices which are supported

on the index set ⌦�l,· = {(i, j) 2 ⌦|i 6= l} (resp. {(i, j)|i = l}). Mathematically, we have for any matrix
B 2 Rn⇥n
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Bij , if (i, j) 2 ⌦ and i 6= l,

0, otherwise
and [Pl,· (B)]ij =

(

Bij , if i = l,

0, otherwise.
(90)

Similarly, for each n+ 1  l  2n (with l � n corresponding to the column index), we define {F t,(l)}t�0

to
be the GD iterates (see Algorithm 2) operating on

f (l)
(X,Y ) =
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where P
⌦·,�(l�n)

(·) and P·,(l�n)(·) are defined as

⇥P
⌦·,�(l�n)
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Bij , if (i, j) 2 ⌦ and j 6= l � n,

0, otherwise
and

⇥P·,(l�n) (B)

⇤

ij
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(

Bij , if j = l � n,

0, otherwise,

for any matrix B 2 Rn⇥n. The key ideas are: (1) the iterates are not perturbed by much when one drops
a small number of samples (and hence F t and F t,(l) remain sufficiently close); (2) the auxiliary iterates
F t,(l) are independent of the samples directly related to the lth row of M , which in turn allows to exploit
certain statistical independence to control the lth row of F t,(l) (and hence F t). See [MWCC17, Section 5]
for a detailed explanation. Last but not least, the step size is set to be ⌘, and we take F 0,(l)

= F ? for all
1  l  2n (the same initialization as in Algorithm 1).

With the help of the leave-one-out sequences, we are ready to establish Lemma 5 in an inductive manner.
Concretely we aim at proving that
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hold for all 0  t  t
0

= n18 and for some constants C
F

, C
op

, C
3

, C
4

, C1, C
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> 0, provided that ⌘ ⇣
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). In addition, we also intend to establish that
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holds for all 1  t  t
0

= n18. Here, Ht,(l) and Rt,(l) are rotation matrices defined as
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. (93b)

Note that the induction hypotheses (91a), (91b) and (91e) readily imply the statements (27a), (27b) and (27c)
in Lemma 5, respectively, whereas the last bound on the size of the gradient (28) follows from (92). We
summarize the last connection in the following lemma, whose proof is in Appendix D.2.

Lemma 9 (Small gradient (28)). Set � = C��
p
np for some large constant C� > 0. Suppose that the

sample size obeys n2p � µrn log
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as long as ⌘ ⇣ 1/(n3�
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).

The rest of this section is devoted to proving the hypotheses (91) and (92) via induction. We start with
the base case, i.e. t = 0. All the induction hypotheses (91) are easily verified by noting that

F 0

= F 0,(l)
= F ?, for all 1  l  2n.

We now proceed to the induction step, which are demonstrated via the following lemmas. All the proofs are
in subsequent subsections.

Lemma 10 (Frobenius norm error (91a)). Set � = C��
p
np for some large constant C� > 0. Suppose

that the sample size obeys n2p � µrn log

2 n and the noise satisfies �
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4µr logn
. If the iterates

satisfy (91) at the tth iteration, then with probability at least 1�O(n�100
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holds as long as 0 < ⌘ ⌧ 1/(5/2�
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) and C
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> 0 is large enough.

Lemma 11 (Spectral norm error (91b)). Set � = C��
p
np for some large constant C� > 0. Suppose
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holds with the proviso that 0 < ⌘ ⌧ 1/(3�
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Lemma 12 (Leave-one-out perturbation (91c)). Set � = C��
p
np for some large constant C� > 0. Sup-

pose that the sample size satisfies n2p � 4µ2r2n log

3 n and that the noise satisfies �
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.

If the iterates satisfy (91) at the tth iteration, then with probability at least 1�O(n�99
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> 0 is some sufficiently large constant.

Lemma 13 (`
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/`1 norm error of leave-one-out sequences (91d)). Set � = C��
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Lemma 14 (`
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/`1 norm error (91e)). Set � = C��
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np for some large constant C� > 0. Suppose that
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Lemma 15 (Approximate balancedness (91f)). Set � = C��
p
np for some large constant C� > 0.

Suppose that the sample size satisfies n2p � 2µ2r2n log n and that the noise satisfies �
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.
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Lemma 16 (Decreasing of function values (92)). Set � = C��
p
np for some large constant C� > 0.

Suppose that the noise satisfies �
�
min

q

n
p ⌧ 1/

p
r. If the iterates satisfy (91) at the tth iteration, then with

probability at least 1�O(n�99
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D.1 Preliminaries and notations

Before proceeding to the proofs, we collect a few useful facts and notations. To begin with, for any matrix
A, we denote by Al,· (resp. A·,l) the lth row (reps. column) of A.

Define an augmented loss function f
aug

(X,Y ) to be
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. (94)

As the name suggests, this new function augments the original loss function (cf. (15)) with an additional term
kX>X�Y >Y k2

F

/8, which is commonly used in the literature of asymmetric low-rank matrix factorization to
balance the scale of X and Y [TBS+16,YPCC16,CLL19]. We emphasize that, in contrast to aforementioned
works, here our gradient descent algorithm (cf. Algorithm 1) operates on f(·, ·) instead of f

aug

(·, ·). The
introduction of f

aug

(·, ·) is mainly to simplify the proof.
It is easily seen that the gradients of f
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(·, ·) are given by
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Correspondingly, define the difference between gradients of rf(X,Y ) and rf
aug

(X,Y ) as follows

rXf
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(X,Y ) = �X
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/2; (96a)
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such that
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Regarding F ?, simple algebra reveals that
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where the last one follows from the incoherence assumption (32).
We start with a lemma that characterizes the local geometry of the nonconvex loss function, whose proof

is given in Appendix D.10.

Lemma 17. Set � = C��
p
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Last but not least, a few immediate consequences of (91) are gathered in the following lemma, whose
proof is given in Appendix D.11.
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Lemma 18. We have the following four sets of consequences of the induction hypotheses (27).

1. Suppose that the sample size obeys n � µr log n. If the tth iterates obey (91), then one has
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2. Suppose that the noise satisfies �
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�
min

q

n
p ⌧ 1p

2

logn
. If the tth iterates obey (91), then we have

�

�F tHt � F t,(l)Ht,(l)
�

�

F

 5
�

�F tHt � F t,(l)Rt,(l)
�

�

F

.

4. Suppose that n � µ and that �
�
min

q

n
p ⌧ 1p

2

logn
. If the tth iterates obey (91), then (100) also holds for

F t,(l)Ht,(l). In addition, one has

�
min

/2  �
min

⇣

(Y t,(l)Ht,(l)
)

>Y t,(l)Ht,(l)
⌘

 �
max

⇣

(Y t,(l)Ht,(l)
)

>Y t,(l)Ht,(l)
⌘

 2�
max

.

D.2 Proof of Lemma 9

Summing (92) from t = 1 to t = t
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leads to a telescopic sum
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where we have used the assumption that (X0,Y 0

) = (X?,Y ?
).

It remains to control f(X?,Y ?
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). Towards this end, we can use the fact that f(X,Y ) =

f(XR,Y R) for any R 2 Or⇥r to obtain

f
�

F t
0

�

= f
�

F t
0Ht

0

�

= f (F ?
)+

⌦rf (F ?
) ,F t

0Ht
0 � F ?

↵

+

1

2

vec
�

F t
0Ht

0 � F ?
�> r2f

�

˜F
�

vec
�

F t
0Ht

0 � F ?
�

,

where ˜F lies in the line segment connecting F t
0Ht

0 and F ?. Apply the triangle inequality to see

f (F ?
)� f

�

F t
0

�  krf (F ?
)k

F

�

�F t
0Ht

0 � F ?
�

�

F

� 1

2

vec
�

F t
0Ht

0 � F ?
�> r2f

�

˜F
�

vec
�

F t
0Ht

0 � F ?
�

 krf (F ?
)k

F

�

�F t
0Ht

0 � F ?
�

�

F

+ 5�
max

�

�F t
0Ht

0 � F ?
�

�

2

F

.

Here the second line follows from the fact that kr2f( ˜F )k  10�
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where the second line arises from the incoherence assumption (98b) and the last inequality holds as long as
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The above bounds together with the induction hypothesis (91a) for t = t
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where the last relation arises from �
p
np ⇣ �. Substitution into (101) results in

min

0t<t
0

�

�rf
�

Xt,Y t
�

�

�

F

.
s

1

⌘t
0

r2

✓

�

p

◆

2

 1

n5

�

p

p
�
min

,

provided that ⌘ ⇣ 1/(n3�
max

), t
0

= n18 and that n � , which is a consequence of our sample complexity
n � np � µr log2 n.

D.3 Proof of Lemma 10
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Here (i) uses the fact that rf(FR) = rf(F )R for all R 2 Or⇥r; the last relation (ii) uses the decomposi-
tion (97) and the triangle inequality. In the following, we bound ↵

1

,↵
2

and ↵
3

in the reverse order.

1. First, regarding ↵
3

, since X?>X?
= Y ?>Y ?, one has ⌘krf(F ?

)k
F

= ⌘krf
aug

(F ?
)k

F

. Repeating our
arguments for (103) and (104) gives

↵
3

= ⌘ krf (F ?
)k

F

 4⌘
�

p
kX?k

F

as long as � ⇣ �
p
np. Here the last inequality also relies on the fact that kX?k

F

= kY ?k
F

.

40



2. We now move on to ↵
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, for which one has
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3. In the end, for ↵
1
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where we denote F (⌧) , F ?
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Combine the above bounds on ↵
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and ↵
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to conclude that

�

�F t+1Ht+1 � F ?
�

�

F


⇣

1� �
min

20

⌘
⌘

�

�F tHt � F ?
�

�

F

+ 4⌘
�

p
kX?k

F

+ ⌘�
min

✓

�

�
min

r

n

p
+

�

p�
min

◆

kX?k
F


⇣

1� �
min

20

⌘
⌘

C
F

✓

�

�
min

r

n

p
+

�

p�
min

◆

kX?k
F

+ 4⌘�
min

�

p�
min

kX?k
F

+ ⌘�
min

✓

�

�
min

r

n

p
+

�

p�
min

◆

kX?k
F

 C
F

✓

�

�
min

r

n

p
+

�

p�
min

◆

kX?k
F

,

provided that C
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> 0 is large enough.

D.4 Proof of Lemma 11
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In what follows, we shall control ↵
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separately.
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The last line follows from the facts that kP
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for some sufficiently large constant ˜C > 0. Here the second inequality arises from the condition
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To see this, apply the induction hypotheses (91b) and (91e) to get
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Second, making use of the gradient update rules (25) and the decomposition (97), we obtain
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Combining [CLL19, Equation (4.13)] and [KMO10a, Lemma 3.2] yields

⇠
1

. ⌘

r

n

p

⇣

�

��t
X

�

�

2,1 kY ?k
2,1 +

�

��t
Y

�

�

2,1 kX?k
2,1 +

�

��t
X

�

�

2,1
�

��t
Y

�

�

2,1
⌘

�

��t
�

�

+ ⌘
⇣

�

��t
X

�

� kY ?k+ ���t
Y

�

� kX?k+ ���t
X

�

�

�

��t
Y

�

�

+ 2 kX?k ���t
X

�

�

+ 2 kY ?k ���t
Y

�

�

+

�

��t
X

�

�

2

+

�

��t
Y

�

�

2

⌘

k�tk

. ⌘

r

n

p

�

��t
�

�

2,1 kF ?k
2,1

�

��t
�

�

+ ⌘
�

��t
�

�

2 kX?k

 1

15

�
min

4

⌘
�

��t
�

� .

Here the penultimate inequality arises from the facts that max{k�t
Xk

2,1, k�t
Xk

2,1}  k�tk
2,1 

kF ?k
2,1 and similarly max{k�t

Xk, k�t
Xk}  k�tk  kX?k; see Lemma 18. In addition, the last line

holds because of the induction hypotheses (91b) and (91e), provided that

C1
�

�
min

r

n

p

s

µ2r2 log n

np
⌧ 1

2

and C
op

�

�
min

r

n

p
⌧ 1

2

.

Again, the first condition would be guaranteed by the sample size condition n2p � 4µ2r2n log n and the
noise condition �

�
min

q

n
p ⌧ 1/. Next, the term ⇠

2

can be easily controlled as follows

⇠
2

 ⌘

�

�

�

�



1

pP⌦

(E) (Y tHt � Y ?
)

1

pP⌦

(E)

>
(XtHt �X?

)

�

�

�

�

�

+ ⌘
�

p

�

�F tHt � F ?
�

�

 ˜C⌘

✓

�

r

n

p
+

�

p

◆

�

��t
�

� ,

where the last line follows from the same argument for bounding �
2

above. Taking the bounds on ✓
1

and
✓
2

collectively yields
�

�F t+1Ht � ˜F t+1

�

�  1

15

�
min

4

⌘
�

��t
�

�

+

˜C⌘

✓

�

r

n

p
+

�

p

◆

�

��t
�

�

+ 2C
B

⌘2
✓

�

�
min

r

n

p
+

�

p�
min

◆p
r�2

max

kX?k

44



 1

5

�
min

4

⌘
�

��t
�

�

+ 2C
B

⌘2
✓

�

�
min

r

n

p
+

�

p�
min

◆p
r�2

max

kX?k . (112)

The final inequality is true as long as � ⇣ �
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Armed with these two conditions, we can invoke Lemma 22 to obtain

↵
1

=

�

� ˜F t+1 � F t+1Ht+1

�

�  5
�

� ˜F t+1 � F t+1Ht
�

�

 1

4

�
min

⌘
�

��t
�

�

+ 10C
B

2⌘2
✓

�

�
min

r

n

p
+

�

p�
min

◆p
r�2

max

kX?k

 1

4

�
min

⌘
�

��t
�

�

+ ⌘

✓

�

r

n

p
+

�

p

◆

kX?k ,

provided that ⌘ ⌧ 1/(C
B

3�
max

p
r).

Combine the bounds on ↵
1

and ↵
2

to reach
�

�F t+1Ht+1 � F ?
�

�


⇣

1� ⌘

2

�
min

⌘

�

��t
�

�

+

⇣

˜C + 1

⌘

⌘

✓

�

r

n

p
+

�

p

◆

kX?k+ ˜C⌘

r

n

p

�

��t
�

�

2,1 kF ?k
2,1 kX?k+ �

min

4

⌘
�

��t
�

�


⇣

1� ⌘

4

�
min

⌘

C
op

✓

�

�
min

r

n

p
+

�

p�
min

◆

kX?k+
⇣

˜C + 1

⌘

⌘

✓

�

r

n

p
+

�

p

◆

kX?k

+

˜C⌘

r

n

p
C1

 

�

�
min

s

n log n

p
+

�

p�
min

!

kF ?k2
2,1 kX?k

 C
op

✓

�

�
min

r

n

p
+

�

p�
min

◆

kX?k ,

with the proviso that C
op

� 1 and n2p � 4µ2r2n log n. Here the last line follows from the same argument
as in bounding (111). This completes the proof.

Proof of Claim 4. In view of [MWCC17, Lemma 35], it suffices to show that F ?>
˜F t+1 is symmetric and

positive semidefinite. Recognizing that F ?>F tHt
= (X?>Xt

+ Y ?>Y t
)Ht is symmetric (see [MWCC17,

Lemma 35]), it is straightforward to verify that F ?>
˜F t+1 is also symmetric (which we omit here for brevity).
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where �
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(A) stands for the minimum eigenvalue of a matrix A. To conclude, F ?>
˜F t+1 is both symmetric

and positive semidefinite, thus establishing the claim.
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D.5 Proof of Lemma 12

Without loss of generality, we consider the case when 1  l  n; the case with n+1  l  2n can be derived
in a similar way. From the definition of Rt+1,(l) (cf. (93b)), we have
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where we have used the facts that rf(F )R = rf(FR) and rf (l)
(F )R = rf (l)

(FR) for any orthonormal
matrix R 2 Or⇥r.

In what follows, we shall bound A
1

,A
2

and A
3

sequentially.

1. The first term A
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in the proof of Lemma 10. Going through the same derivations therein,
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Applying Lemma 15 and going through the same derivation as in bounding ↵
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Combine the above three inequalities to obtain
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Here the second inequality arises from the elementary inequality kX?k  p
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2,1, whereas the last
one holds true because of kX?k
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3. We are now left with A
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. To this end, we first observe that
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The following claims allow one to bound B
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and C
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; the proofs are deferred to the end of this
subsection.
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With these claims in place, one can readily obtain that
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where the last line follows from the induction hypotheses (91c) and (91e).
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as claimed. Here, (i) invokes the induction hypothesis (91c), whereas (ii) holds as long as C
3

is large enough
and the sample size satisfies n2p � 4µ2r2n log n.

Proof of Claim 5. For notational simplicity, we denote
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Since the Frobenius norm is unitarily invariant, we have
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where �lj , 1{(l,j)2⌦}. Notice that conditional on Xt,(l) and Y t,(l), the right-hand side is composed of a
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Proof of Claim 6. Instate the notation in proof of Claim 5. By the unitary invariance of Frobenius norm
and the fact that all nonzero entries of the matrix W reside in its lth row, we have

p kB
2

k
F

=

�

�

�

pW>Xt,(l)
�

�

�

F

=

�

�

�

�

�

2

4

(�l1 � p)Cl1

...
(�ln � p)Cln

3

5

| {z }

:=b

X
t,(l)
l,·

�

�

�

�

�

F

= kbk
2

�

�X
t,(l)
l,·
�

�

2

.

We can write b as
b =

Xn

j=1

ej (�lj � p)Clj
| {z }

:=uj

=

Xn

j=1

uj .

Note that for all j, one has

L , max

1jn
kujk

2

 kCk1 ,

V ,
�

�

�

Xn

j=1

E
⇥

(�lj � p)
2

⇤

C2

lje
>
j ej

�

�

�

 pkCk21
�

�

�

Xn

j=1

e>j ej
�

�

�

= np kCk21 .

Then the matrix Bernstein inequality [Tro15, Theorem 6.1.1] reveals that

kbk
2

.
p

V log n+ L log n .
p

np log n kCk1 + kCk1 log n

.
p

np log n kCk1
.
p

np log n
�

�F t,(l)Rt,(l) � F ?
�

�

2,1 kF ?k
2,1

with probability exceeding 1� O
�

n�100

�

as long as np � log n. Here the last relation uses (120). Observe
that kXt,(l)k

2,1  2kF ?k
2,1 as long as �

�
min

q

n
p ⌧ 1p

2

logn
; see Lemma 18. Making use of the incoherence

condition (98a) to get

kB
2

k
F

.
s

n log n

p

�

�F t,(l)Rt,(l) � F ?
�

�

2,1 kF ?k2
2,1 .

s

µ2r2 log n

np

�

�F t,(l)Rt,(l) � F ?
�

�

2,1�
max

.

We can then conclude the proof.

Proof of Claim 7. By the unitary invariance of the Frobenius norm, one has
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where we denote �lj , 1
(l,j)2⌦

. Since Y t,(l) is independent of {�lj}1jn and {Elj}1jn, the vectors
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D.6 Proof of Lemma 13
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Note that here a
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Proof of Claim 8. To facilitate analysis, we introduce an auxiliary point ˜F t+1 ,
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We first claim that Ir is the best rotation matrix to align ˜F t+1,(l) and F ?; its proof is similar to that of
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where the last line uses Claim 9. Here sgn(A) = UV > for any matrix A with SVD U⌃V >. It then boils
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which concludes the proof.

D.7 Proof of Lemma 14
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where the second line follows from Lemma 13. Apply Lemma 18 to the (t+ 1)th iterates to see that
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Here the second line follows from Lemma 12. Combine (127) and (128) to reach
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D.8 Proof of Lemma 15

To simplify the notation hereafter, we denote
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as long as �⌘/p < 1 — a condition that is guaranteed by our assumptions on � and ⌘. It then boils down to
controlling kY t>Dt>DtY t �Xt>DtDt>Xtk
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, which is supplied in the following claim.
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Proof of Claim 10. The triangle inequality yields
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It is easy to see from Lemma 18 that
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It remains to bound kDtk. To this end, recall from (130) that
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which together with the induction hypothesis (91e) yields
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Putting together the previous three bounds, we arrive at
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since np � 2µ2r2 log n. Putting (133) back to (132) leads to the claimed upper bound.
The upper bound on the leave-one-out sequences can be derived similarly. For brevity, we omit it.

D.9 Proof of Lemma 16

In light of the facts that f(FR) = f(F ) and rf(FR) = rf(F )R for any R 2 Or⇥r, one has
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One can invoke Lemma 17 to obtain kr2f( ˜F )k  10�
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Here the equality uses again the facts that f(FR) = f(F ) and rf(FR) = rf(F )R for any R 2 Or⇥r and
the last inequality holds as long as ⌘  1

10�
max

. We are left with proving the aforementioned conditions (134).
The first condition has been established in the proof of Lemma 9 and hence we concentrate on the second
one, namely (134b). Apply the triangle inequality and the fundamental theorem of calculus [Lan93, Chapter
XIII, Theorem 4.2] to obtain
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Here the middle inequality uses the induction hypothesis (91b) and the last relation holds true provided
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). This proves the second condition and also the
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D.10 Proof of Lemma 17

We start by defining a new loss function
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It has been proven in [CLL19, Lemma 3.2] that under the assumptions stated in Lemma 17, one has
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where the last relation holds due to Lemma 3 and the elementary fact about the nuclear norm (6), i.e.
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Moving on to r2f(X,Y ), one has
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Combining all these bounds yields
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D.11 Proof of Lemma 18

The first set of consequences (99) follows straightforwardly from the triangle inequality. For instance, combine
the induction hypotheses (91c) and (91e) to obtain
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The last set of consequences can be derived following similar arguments to that for establishing the first
set. For brevity, we omit the proof.

D.12 Proof of the inequalities (29)
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 3C1
p

3µr

 

�

�
min

s

n log n

p
+

�

p�
min

!

kM?k1 ,
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where the last relation is kF ?k
2,1kF ?k

2,1  p
µrkM?k1. To see this, one has for any 1  i  n,

n kM?k21 �
n
X

j=1

(M?
ij)

2

= X?
i,·Y

?>Y ?X?>
i,· � ��X?

i,·
�

�

2

2

�
min

�

Y ?>Y ?
�

= �
min

�

�X?
i,·
�

�

2

2

.

Here �
min

(·) denotes the minimum eigenvalue. Since the inequality holds for all 1  i  n, we arrive at

kX?k
2,1 

r

n

�
min

kM?k1 .

Similarly one can obtain kY ?k
2,1 pn/�

min

kM?k1, which further implies kF ?k
2,1 = max{kX?k

2,1, kY ?k
2,1} 

p

n/�
min

kM?k1. As a result, we arrive at

kF ?k
2,1 kF ?k

2,1 
r

n

�
min

kM?k1 ·
r

µr

n

p
�
max

 p
µr kM?k1 .

Here we used the incoherence assumption (98a).

E Technical lemmas

Lemma 19. Suppose n2p � Cn log n for some sufficiently large constant C > 0. Then with probability
exceeding 1�O(n�10

),
�

�

�

p�1

�

�P
⌦

�

AB>��
�

2

F

� ��AB>�
�

2

F

�

�

�

 3nmin

n

kAk2
2,1 kBk2

F

, kBk2
2,1 kAk2

F

o

holds uniformly for all matrices A,B 2 Rn⇥r.

Proof. In view of [ZL16, Lemma 9], one has

p�1

�

�P
⌦

�

AB>��
�

2

F

 2nmin

n

kAk2
2,1 kBk2

F

, kBk2
2,1 kAk2

F

o

with high probability. In addition, simple algebra reveals that
�

�AB>�
�

2

F

 kAk2
F

kBk2
F

 n kAk2
2,1 kBk2

F

and, similarly, kAB>k2
F

 nkAk2
F

kBk2
2,1. Combining the previous bounds with the triangle inequality

establishes the claim.

Lemma 20. Let U⌃V > be the SVD of a rank-r matrix XY > with X,Y 2 Rn⇥r. Then there exists an
invertible matrix Q 2 Rr⇥r such that X = U⌃1/2Q and Y = V ⌃1/2Q�>. In addition, one has

�

�⌃Q �⌃�1

Q

�

�

F

 1

�
min

(⌃)

�

�X>X � Y >Y
�

�

F

, (138)

where UQ⌃QV >
Q is the SVD of Q. In particular, if X and Y have balanced scale, i.e. X>X � Y >Y = 0,

then Q must be a rotation matrix.

Proof. The existence of Q is trivial by setting

Q = ⌃�1/2U>X.

To see this, one has
U⌃1/2Q = U⌃1/2⌃�1/2U>X = UU>X = X,

where the last equality follows from the fact that the columns of U are the left singular vectors of X. The
relation Y = V ⌃1/2Q�> can also be verified by the identity

XY >
= U⌃1/2QY >

= U⌃V >.
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We now move on to proving the perturbation bound (138). In view of the SVD of Q, i.e. Q = UQ⌃QV >
Q ,

one can obtain

X>X � Y >Y = Q>⌃Q�Q�1⌃Q�>

= VQ⌃QU>
Q⌃UQ⌃QV >

Q � VQ⌃�1

Q U>
Q⌃UQ⌃�1

Q V >
Q .

Denote B := U>
Q⌃UQ � 0. Then we have

�

�X>X � Y >Y
�

�

2

F

=

�

�

�

VQ⌃QB⌃QV >
Q � VQ⌃�1

Q B⌃�1

Q V >
Q

�

�

�

2

F

=

�

�

�

⌃QB⌃Q �⌃�1

Q B⌃�1

Q

�

�

�

2

F

.

Let C = ⌃QB1/2 and D = ⌃�1

Q B1/2, and denote � = C �D. One then has

�

�X>X � Y >Y
�

�

2

F

=

�

�CC> �DD>�
�

2

F

=

�

�C�>
+�C> ���>�

�

2

F

= Tr

�

2C>C�>�+��>��>
+ 2C>�C>�� 4C>��>�

�

= Tr
h

�

�>��
p
2C>�

�

2

+ (4� 2

p
2)C>

(C ��)�>�+ (2

p
2� 1)C>C�>�

i

.

Note that C>D = B and that C>� = C>C � C>D = C>C � B is symmetric. One can continue the
bound as

�

�X>X � Y >Y
�

�

2

F

=

�

�

�

�>��
p
2C>�

�

�

�

2

F

+ (4� 2

p
2)Tr

�

B��>�
+ (2

p
2� 1)

�

�C�>�
�

2

F

� Tr

�

B��>� ,

where the inequality follows since 4� 2

p
2 � 1. Write B = B1/2 ·B1/2 to see

�

�X>X � Y >Y
�

�

2

F
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�

B1/2��>B1/2
�

=

�

�B1/2�
�

�

2
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=
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�
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Q

�
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2

F

� �2

min

(B)

�

�

�

⌃Q �⌃�1

Q

�

�

�

2

F

.

Recognizing that �
min

(B) = �
min

(⌃) finishes the proof of (138).
Combining X>X = Y >Y and (138) yields

�

�⌃Q � ⌃�1

Q

�

�

F

= 0, which implies ⌃Q = I. Under this
circumstance, Q = UQ⌃QV >

Q = UQV >
Q is a rotation matrix. The proof is then complete.

Lemma 21. For all A,B,C,D 2 Rn⇥r, one has
�

�

⌦P
⌦

�

AC>� ,P
⌦

�
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⌦
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.

Proof. This is a simple consequence of [CL17, Lemma 4.4], where they have shown
�

�
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⌦
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⌦
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⌦
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.

Recognize that
Xn

k=1

kAk,·k2
2

kBk,·k2
2

 kAk2
2,1

Xn

k=1

kBk,·k2
2

= kAk2
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F

and, similarly,
P

k kCk,·k2
2

kDk,·k2
2

 kCk2
2,1kDk2

F

. Putting these together concludes the proof.

Lemma 22. Suppose F
1

,F
2

,F
0

2 R2n⇥r are three matrices such that

kF
1

� F
0

k kF
0

k  �2

r (F0

) /2 and kF
1

� F
2

k kF
0

k  �2

r (F0

) /4,
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where �i(A) stands for the ith largest singular value of A. Denote

R
1

, arg min

R2Or⇥r
kF

1

R� F
0

k
F

and R
2

, arg min

R2Or⇥r
kF

2

R� F
0

k
F

.

Then the following two inequalities hold true:

kF
1

R
1

� F
2

R
2

k  5

�2

1

(F
0

)

�2

r (F0

)

kF
1

� F
2

k and kF
1

R
1

� F
2

R
2

k
F

 5

�2

1

(F
0

)

�2

r (F0

)

kF
1

� F
2

k
F

.

Proof. This is the same as [MWCC17, Lemma 37].

Lemma 23. Let S 2 Rr⇥r be a nonsingular matrix. Then for any matrix K 2 Rr⇥r with kKk  �
min

(S),
one has

ksgn(S +K)� sgn(S)k  2

�r�1

(S) + �r(S)
kKk,

where sgn(·) denotes the matrix sign function, i.e. sgn(A) = UV > for a matrix A with SVD U⌃V >.

Proof. This is the same as [MWCC17, Lemma 36].
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