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Abstract
Joint object matching aims at aggregating in-
formation from a large collection of similar in-
stances (e.g. images, graphs, shapes) to improve
the correspondences computed between pairs of
objects, typically by exploiting global map com-
patibility. Despite some practical advances on
this problem, from the theoretical point of view,
the error-correction ability of existing algorithms
are limited by a constant barrier — none of them
can provably recover the correct solution when
more than a constant fraction of input corre-
spondences are corrupted. Moreover, prior ap-
proaches focus mostly on fully similar objects,
while it is practically more demanding and re-
alistic to match instances that are only partially
similar to each other.

In this paper, we propose an algorithm to jointly
match multiple objects that exhibit only partial
similarities, where the provided pairwise fea-
ture correspondences can be densely corrupted.
By encoding a consistent partial map collection
into a 0-1 semidefinite matrix, we attempt re-
covery via a two-step procedure, that is, a spec-
tral technique followed by a parameter-free con-
vex program called MatchLift. Under a natu-
ral randomized model, MatchLift exhibits near-
optimal error-correction ability, i.e. it guarantees
the recovery of the ground-truth maps even when
a dominant fraction of the inputs are randomly
corrupted. We evaluate the proposed algorithm
on various benchmark data sets including syn-
thetic examples and real-world examples, all of
which confirm the practical applicability of the
proposed algorithm.
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1. Introduction
Finding consistent relations across multiple objects is a
fundamental scientific problem spanning many fields. A
partial list includes jigsaw puzzle solving (Cho et al.,
2010), structure from motion (Zach et al., 2010), and re-
assembly of fragmented objects and documents (Huang
et al., 2006), to name just a few. Compared with the rich
literature in pairwise matching (e.g., of graphs, images or
shapes), joint matching of multiple objects has not been
well explored. A naive approach for joint object matching
is to pick a base object and perform pairwise matching with
each of the remaining objects, effectively using the base ob-
ject as a reference when comparing any two objects. How-
ever, as pairwise methods typically generate noisy results
due to unavoidable matching ambiguities and other errors,
the performance of such approaches is often far from satis-
factory in practice. This gives rise to the question as to how
to aggregate and exploit information from multiple maps
that one might compute across several object pairs, in or-
der to improve the consistency and quality of global object
matching, ideally to recover the ground-truth maps.

In this paper, we represent each object as a set of points
or elements, and investigate the problem of joint match-
ing over n different sets reflecting the same universe, for
which the input / observation is a collection of pairwise
maps computed in isolation. A natural and popular cri-
terion for examining the global matching compatibility is
called cycle-consistency or path invariance, namely, com-
position of maps between two objects should be indepen-
dent of the connecting path chosen. Such a criterion has
recently been invoked in many algorithms (Roberts et al.,
2011; Zach et al., 2010; Nguyen et al., 2011; Huang et al.,
2012; Kim et al., 2012) to detect outliers among the noisy
input maps. These works have demonstrated experimen-
tally that one can use inconsistent cycles to prune corrupted
maps, provided that the corruption rate is sufficiently small.

Despite these empirical advances, little is known on the
theoretical side — the conditions under which the ground-
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truth maps can be reliably recovered from the noisy in-
puts. Recent work by (Huang & Guibas, 2013) presented
the first theoretical guarantee for robust joint matching, and
(Pachauri et al., 2013) studied the performance of spectral
methods for joint matching. However, there are several fun-
damental and practical challenges that remain unaddressed.

• Dense Input Errors. The state-of-the-art results do
not provide theoretical guarantees when more than 50% of
the inputs are corrupted. This gives rise to a natural ques-
tion regarding their applicability in the presence of highly
noisy sources, in which case the majority of the input maps
might be corrupted. Observe that, as the number n of ob-
jects to be matched increases, the number of pairwise maps
one can obtain grows quadratically with n. As a result,
dense error correction becomes information theoretically
possible when a large collection of objects are present, as
long as the global map consistency can be appropriately
exploited. However, the challenge remains as to whether
there exist computationally feasible methods that can prov-
ably detect and remove dense outliers.

• Partial Similarity. To the best of our knowledge, all
prior approaches deal only with a restricted scenario, where
the ground-truth maps are given by full isomorphisms (i.e.
one-to-one correspondences between any two sets). In re-
ality, a collection of objects typically exhibit only partial
similarity, as in the case of images of the same scene but
from different camera positions, where different occlusions
are usually present in the images. These practical scenar-
ios require consistent matching of multiple objects that are
only partially similar to each other.

• Incomplete Input Maps. Computing pairwise maps
between all object pairs is often expensive, sometimes in-
feasible, and in fact unnecessary. Depending on the charac-
teristics of the input sources, one might be able to infer un-
observed maps from a small set of noisy pairwise matches.
While (Huang & Guibas, 2013) considered incomplete in-
puts, the tradeoff between the undersampling factor and the
error-correction ability remains unexplored.

All in all, practical applications require matching partially
similar objects from a small fraction of densely corrupted
pairwise maps — a goal this paper aims to achieve.

1.1. Contributions

1) Algorithms: Inspired by the recent evidence on
the power of convex relaxation, we propose to solve the
joint matching problem via a semidefinite program called
MatchLift. The algorithm relaxes the binary-value con-
straints, and attempts to maximize the compatibility be-
tween the input and the recovered maps. The program is
based on a semidefinite conic constraint that depends on the
total number m of distinct elements to be matched. To this
end, we propose to pre-estimate m via a spectral method.
Our methodology is essentially parameter free, and can be
solved by scalable optimization algorithms.

2) Theory: We derive performance guarantees for ex-
act matching. Somewhat surprisingly, MatchLift admits
perfect map recovery even in the presence of dense in-
put corruption. Our findings reveal the near-optimal error-
correction ability of MatchLift, i.e. as n grows, the algo-
rithm is guaranteed to work even when almost all inputs
behave as random outliers. Besides, while the presence
of partial similarity inevitably incurs more severe types of
input errors, MatchLift exhibits a strong recovery ability
nearly equivalent to that in the full-similarity scenario. Fi-
nally, in many situations, MatchLift succeeds even with
minimal input complexity, in the sense that it can reliably
fill in all unobserved maps based on very few noisy par-
tial inputs, as soon as the provided maps form a connected
graph. This is information theoretically optimal.

3) Applicability: We have evaluated the performance of
MatchLift on several benchmark datasets. These datasets
include several synthetic examples as well as real exam-
ples from several popular benchmarks. Experimental re-
sults on synthetic examples justify our theoretical perfor-
mance guarantees. On real datasets, the quality of the maps
generated by MatchLift outperforms the state-of-the-art ob-
ject matching and graph clustering algorithms.

1.2. Related Work

Object Matching. Early work on object matching fo-
cused primarily on matching pairs of objects in isolation
(e.g. (Cour et al., 2007)). Due to the limited informa-
tion and ambiguities present in an isolated object pair, pair-
wise matching techniques can easily, sometimes unavoid-
ably, generate false correspondences. The last few years
have witnessed a flurry of activity in joint object match-
ing, e.g. (Kim et al., 2012; Huang et al., 2012; Huang &
Guibas, 2013), which exploited the cycle-consistency cri-
terion to prune outliers. Our fundamental understanding
has recently been advanced by (Huang & Guibas, 2013).
However, none of the prior works have provided recovery
guarantees when the majority of input correspondences are
outliers, nor were they able to accommodate practical sce-
narios where objects only exhibit partial similarity. In a
recent work (Pachauri et al., 2013), the authors developed
a spectral-based approach in the full similarity case. Al-
though this method provides theoretical analyses, the errors
considered therein are modeled as Gaussian-Wigner noise,
which is not realistic in our setting.

Graph Clustering and Synchronization. The joint
matching problem can be treated as a structured graph clus-
tering (GC) problem, where graph nodes represent points
on objects and the edge set encodes all correspondences. In
this regard, each GC algorithm (Bansal et al., 2004; Jalali
et al., 2011; Chen et al., 2012; Jalali & Srebro, 2012) pro-
vides a heuristic for graph matching. Nevertheless, there
are several intrinsic structural properties in our setting that
are not explored by generic GC approaches. First, our in-
put takes a block-matrix form, where each block is highly
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structured (i.e. doubly-substochastic), sparse, and inter-
dependent. Second, the points belonging to the same ob-
ject are mutually exclusive with each other. As a result, the
findings for generic GC methods do not deliver encourag-
ing guarantees when applied to our setting. Finally, we note
that our joint matching problem is very relevant to various
synchronization problems (Wang & Singer, 2013; Chaud-
hury et al., 2013; Bandeira et al., 2013; Abbe et al., 2014)
and the insightful approaches adopted therein.

2. Problem Formulation and Preliminaries
2.1. Terminology

Set. We represent the objects to be matched as discrete
sets. For example, these sets encode feature points when
matching images or shapes.

Partial Map. Given two discrete sets S and S ′, a subset
φ ⊂ S × S ′ is termed a partial map if each element of S
(resp. S ′) is paired with at most one element of S ′ (resp.
S) — in particular, not all elements need to be paired.

Map Graph. A graph G = (V, E) is called a map graph
w.r.t. n sets S1, · · · ,Sn if (i) V := {S1, · · · ,Sn}, and (ii)
(Si,Sj) ∈ E implies that pairwise estimates on the partial
maps φij and φji between Si and Sj are available.

2.2. Input and Output

The input and expected output for the joint object matching
problem are described as follows.

Input (Noisy Pairwise Maps). Given n sets S1, · · · ,Sn
with respective cardinality m1, · · · ,mn and a (possibly
sparse) map graph G, the input to the recovery algorithm
consists of partial maps φin

ij ((i, j) ∈ G) between Si and
Sj estimated in isolation, using any off-the-shelf pairwise
matching method. Note that the input maps φin

ij one obtain
might not agree, partially or totally, with the ground truth.

Output (Consistent Global Matching). The main objec-
tive of this paper is to detect and prune incorrect pairwise
input maps in an efficient and reliable manner. Specifically,
we aim at proposing a tractable algorithm that returns a
full collection of partial maps {φij | 1 ≤ i, j ≤ n} that are
provably the ground-truth maps under mild conditions.

As will be detailed later, the key idea of our approach is to
explore global consistency across all pairwise maps. We
will introduce a novel convex relaxation tailored to the
structure of the input maps (Section 3) and investigate its
theoretical performance (Section 4).

2.3. Joint Matching in Matrix Form

In the same spirit as most convex relaxation and spec-
tral techniques (e.g., (Huang & Guibas, 2013; Pachauri
et al., 2013)), we use 0-1 matrices to encode point-to-point
maps across objects. Specifically, we encode a partial map

φij : Si 7→ Sj as a binary matrix Xij ∈ {0, 1}|Si|×|Sj |
such that Xij(s, s

′) = 1 iff (s, s′) ∈ φij . As each map as-
sociates each vertex with at most one corresponding vertex,
the map matrices Xij shall satisfy the following doubly
sub-stochastic constraints:

0 ≤Xij1 ≤ 1, 0 ≤X>ij1 ≤ 1. (1)

We then use an n × n block matrix X ∈ {0, 1}N×N
to encode the entire collection of partial maps
{φij | 1 ≤ i, j ≤ n} over {S1, · · · ,Sn}:

X =


Im1 X12 · · · X1n

X21 Im2 · · · X2n

...
...

. . .
...

Xn1 · · · · · · Imn

 , (2)

where mi := |Si| and N :=
∑n

i=1mi. Note that diagonal
blocks are identity matrices, representing self maps.

For notational simplicity, we will use the binary map ma-
trices X in

ij ∈ {0, 1}
mi×mj throughout to denote the collec-

tion of pairwise input maps

3. Methodology
3.1. MatchLift: A Novel Two-Step Algorithm

We start by discussing the consistency constraint on the un-
derlying ground-truth maps. Assume that there exists a uni-
verse S = {1, · · · ,m} of m elements such that i) each ob-
ject Si is a (partial) image of S; ii) each element in S is
contained in at least one object Si. Then the ground-truth
correspondences shall connect those points across objects
that represent the same element.

Formally speaking, let the binary matrices Y i ∈
{0, 1}mi×m encode the underlying correspondence be-
tween object i and the universe, i.e. Y i(si, s) = 1 iff
si ∈ Si represents s ∈ S. This way we can express
X = Y Y > with Y = (Y >1 , · · · ,Y

>
n )>, which makes

clear that rank(X) = m. This corresponds to the graph
partitioning setting with m cliques. Consequently, a natu-
ral candidate is to seek a low-rank and positive semidefinite
(PSD) matrix to approximate the input. However, this prop-
erty itself is not effective enough in exploiting the structure
underlying the map collection.

A more powerful formulation arises from the observation
that even under dense input corruption, we are often able
to obtain reliable estimates on m – the universe size, us-
ing spectral techniques. This motivates us to incorporate
the information of m into the formulation so as to develop
tighter relaxation. Specifically, we lift X with one more
dimension and consider[

m 1>

1 X

]
=

[
1>

Y

] [
1 Y >

]
� 0. (3)

By Schur complement condition, this is equivalent to X −
1
m11> � 0, which is strictly tighter than X � 0. Intu-
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itively, the formulation (3) entitles us one extra degree of
freedom to assist in outlier pruning. More precisely, this
degree of freedom is approximately along the direction of
11>, which is crucial in globally “debiasing” the errors.
We now present our two-step procedure as follows.

Step I: Estimating m. We estimate m by tracking the
spectrum of the input X in. According to common wis-
dom (e.g. (Keshavan et al., 2010)), the input matrix X in

needs to be pre-trimmed in order to remove the undesired
bias effect caused by over-represented rows / columns. One
candidate trimming procedure is provided as follows.

• Trimming Procedure. Set dmin to be the smallest ver-
tex degree of G, and we say the ith (1 ≤ i ≤ n) ver-
tex is over-represented if the degree of i in G exceeds
2dmin. Then for each overrepresented vertex i, ran-
domly sample 2dmin edges incident to it and set to zero
all blocks X in

ij associated with the remaining edges.

With this pre-trimming procedure, our algorithm for esti-
mating m proceeds as described in Algorithm 1.

Algorithm 1 Estimating the size m of the universe S

1) trim X in, and let X̃
in

be the output.
2) perform eigen-decomposition of X̃

in
; denote by λi

the ith largest eigenvalue.
3) output: m̂ := arg maxM≤i<N |λi − λi+1|, where
M = max{2,max1≤i≤nmi}.

In short, Algorithm 1 returns an estimate of m via spectral
methods, which outputs the number of dominant principal
components of X in.

Step II: Map Recovery. Now that we have obtained an es-
timate on m, we are in position to present our optimization
heuristic that exploits the property (3). In order to guar-
antee that the recovery is close to the provided maps φin

ij ,
one alternative is to maximize correspondence agreement
(i.e. the number of compatible non-zero entries) between
the input and output. This results in an objective function:∑

(i,j)∈G〈X
in
ij ,Xij〉. Additionally, since a non-negative

map matrix X is inherently sparse, it is natural to add an
elementwise `1 regularization term to encourage sparsity,
which in our case reduces to ‖X‖1 = 〈1 · 1>,X〉.

Since searching over all 0-1 map matrices is intractable, we
propose to relax the binary constraints. This leads to the
following semidefinite program referred to as MatchLift:

(MatchLift) maximize
X∈RN×N

∑
(i,j)∈G

〈X in
ij ,Xij〉 − λ〈1 · 1>,X〉

subject to Xii = Imi
, 1 ≤ i ≤ n,

X ≥ 0,[
m 1>

1 X

]
� 0.

Remark. Here, λ represents the regularization parameter
that balances the agreement to input correspondences and
the sparsity structure. As we will show, MatchLift is not
sensitive to the choice of λ. By default, one can set λ =√
|E|/(2n), which results in a parameter-free formulation.

This algorithm, all at once, attempts to disentangle the
ground truth and outliers as well as predict unobserved
maps via convex relaxation, inspired by recent success in
sparse and low-rank matrix decomposition (Candès et al.,
2011). Since the ground truth matrix is simultaneously low-
rank and sparse; existing methodologies, which focus on
dense low-rank matrices, typically yield loose, uninforma-
tive bounds in our setting.

3.2. Alternating Direction Methods of Multipliers
(ADMM)

Most advanced off-the-shelf SDP solvers like SeDuMi or
MOSEK are typically based on interior point methods, and
such second-order methods are unable to handle problems
with large dimensionality. For practical applicability, we
propose a scalable first-order optimization algorithm for
approximately solving MatchLift, which is a variant of
the ADMM method for semidefinite programs presented
in (Wen et al., 2010). Theoretically it is guaranteed to con-
verge. Empirically, it is often the case that ADMM con-
verges to modest accuracy within a reasonable amount of
time, and produces desired results with the assistance of ap-
propriate rounding procedures. This feature makes ADMM
practically appealing in our case since the ground-truth ma-
trix is known to be a 0-1 matrix, for which moderate entry-
wise precision is sufficient to ensure good rounding accu-
racy. The algorithm is detailed in (Chen et al., 2014) and
the supplemental materials.

3.3. Rounding Strategy

As Matchlift solves a relaxed program of the original con-
vex problem, it may return fractional solutions. In this case,
we propose a greedy rounding method to generate valid
partial maps. Given the solution X̂ to MatchLift, the pro-
posed strategy proceeds as in Algorithm 2. One can verify
that this simple deterministic rounding strategy returns a
matrix that encodes a consistent collection of partial maps.
Note that v>i denotes the ith row of a matrix V .

4. Theoretical Guarantees: Exact Recovery
Our heuristic algorithm MatchLift recovers, under a natural
randomized setting, the ground-truth maps even when only
a vanishing portion of the input correspondences are cor-
rect. Furthermore, MatchLift succeeds with minimal input
complexity, namely, the algorithm is guaranteed to work
as soon as those input maps that coincide with the ground
truth maps form a connected map graph.
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Algorithm 2 Rounding Strategy
initialize compute the top r eigenvalues Σ =
diag(σ1, · · · , σr) and eigenvectors U = (u1, · · · ,ur)

of X̂ , where r is an estimate of the total number distinc-
tive points to be recovered. Form V = UΣ

1
2 .

repeat
1) Let O be a unitary matrix that obeys Ov1 = e1,
and set V ← V O>.
2) For each of the remaining rows vi belonging to
each set Sj (i ∈ Sj), perform

vi ← e1, if 〈vi,v1〉 > 0.5. and i = arg max
l∈Sj
〈vl,v1〉

3) All indices i obeying vi = e1 are declared to be
matched with each other, and are then removed. Re-
peat 1) for the next row that has not been fixed.

until all the rows of V have been fixed.

4.1. Randomized Model

In the following, we present a natural noisy model, under
which the capability of MatchLift is easiest to interpret.

Randomized Model. Consider a universe [m] :=
{1, 2, · · · ,m}. The randomized setting consider herein is
generated through the following procedure.

• For each set Si (1 ≤ i ≤ n), each point s ∈ [m] is
included in Si independently with probability pset.

• Each X in
ij is observed / computed independently with

probability pobs.

• Each observed X in
ij coincides with the ground truth

independently with probability ptrue = 1− pfalse.

• Each observed but incorrect X in
ij is independently

drawn from a set of partial map matrices satisfying1

EX in
ij = 1 · 1>/m, if X in

ij is observed and corrupted.

4.2. Main Theorem: Near-Optimal Matching

We are now in position to state our main results, which pro-
vide theoretical performance guarantees for our algorithms.
All proofs of the main results are deferred to (Chen et al.,
2014) and the supplemental materials.
Theorem 1 (Accurate Estimation of m). Consider the
above randomized model. There exists an absolute constant
c1 > 0 such that with probability exceeding 1− 1

m5n5 , the
estimate on m returned by Algorithm 1 is exact as long as

ptrue ≥ c1log2 (mn)
/√

npobspset. (4)

1This holds, for example, when the augmented block (i.e. that
obtained by enhancing Si and Sj to have allm elements) is drawn
from the set of permutation matrices uniformly at random. Note,
however, that this assumption can be significantly relaxed without
degrading the matching performance.

Theorem 1 ensures that one can obtain perfect estimate on
the universe size or, equivalently, the rank of the ground
truth map matrix via spectral methods. With accurate in-
formation on m, MatchLift allows perfect matching from
densely corrupted inputs, as revealed below.

Theorem 2 (Exact and Robust Matching). Consider the
randomized model described above. There exist universal
constants c0, c1, c2 > 0 such that for any

c1

(
pobs
m

+

√
pobs log(mn)

np3set

)
≤ λ ≤ c2

√
pobs log(mn),

if the non-corruption rate obeys

ptrue > c0log2 (mn)
/√

npobsp
2
set, (5)

then the solution to MatchLift is exact and unique with
probability exceeding 1− (mn)

−3.

Note that the performance is not sensitive to λ as it can be
arbitrarily chosen within a large range. The implications of
Theorem 2 are summarized as follows.

a) Near-Optimal Recovery under Dense Errors. Un-
der the randomized model, MatchLift succeeds in prun-
ing all outliers and recovering the ground truth with
high probability. Somewhat surprisingly, this is guar-
anteed to work even when the non-corrupted pairwise
maps account for only a vanishing fraction of the in-
puts. As a result, MatchLift achieves near-optimal re-
covery ability in the sense that, as the number n of ob-
jects grows, the outlier-tolerance rate it can achieve can
be arbitrarily close to 1. Equivalently speaking, in the
high-dimensional regime, almost all input maps can be
badly corrupted by random errors without degrading the
matching accuracy. This in turn highlights the signifi-
cance of joint object matching: no matter how noisy the
input sources are, perfect matching can be obtained as
long as sufficiently many instances are available.

To the best of our knowledge, none of the prior results
can support perfect recovery with more than 50% cor-
ruptions, regardless of how large n can be. The only
comparative performance is reported for the robust PCA
setting, where semidefinite relaxation enables dense er-
ror correction (Chen et al., 2013). However, their condi-
tions do not apply in our case. Experimentally, applying
RPCA on joint matching is unable to tolerate dense er-
rors, as reported in Section 5.

b) Exact Matching of Partially Similar Objects. The
challenge for matching partially similar objects arises
in that the overlapping ratio between each pair of ob-
jects is in the order of p2set while the size of each object
is in the order of pset. As correct correspondences only
come from overlapping regions, it is expected that with
a fixed pfalse, the matching ability degrades when pset



Near-Optimal Joint Object Matching via Convex Relaxation

decreases, which is reflected by (5). Note that the order
of the fault-tolerance rate with n is independent of pset
as long as pset is bounded away from 0.

c) Minimal Input Complexity. Suppose that pset and
pfalse are both constants bounded away from 0 and 1,
and thatm = nO(poly log(n)). Condition (5) asserts that:
the algorithm is able to separate outliers and fill in all
missing maps reliably with no errors, as soon as the in-
put complexity (i.e. the number of pairwise maps pro-
vided) is about the order of npoly log(n). Recall that
the connectivity threshold for an Erdős–Renyi graph
G(n, pobs) is pobs > log n/n. This implies that Match-
Lift allows exact recovery nearly as soon as the input
complexity exceeds the connectivity threshold.

Finally, if the universe size m does not scale with n,
then it has been shown (Chen & Goldsmith, 2014) that no
method whatsoever can recover the ground truth if ptrue <
O(1/

√
npobs). That said, MatchLift achieves the informa-

tion theoretically optimal error-correction ability except for
some logarithmic factor under our randomized model.

4.3. Comparison with Prior Approaches

Our exact recovery condition significantly outperforms
the best-known performance guarantees, including various
SDP heuristics for matching problems, as well as generic
graph clustering approaches when applied to object match-
ing, detailed below.

Semidefinite Programming: The SDP formulation pro-
posed for synchronization problems (Wang & Singer,
2013) asymptotically admits exact recovery in the full-
similarity setting when ptrue > c1 for some absolute con-
stant c1 ≈ 50% (except for the binary case (Abbe et al.,
2014)). One might also attempt recovery via robust PCA
(Candès et al., 2011). In order to enable dense error correc-
tion, robust PCA requires the sparse components (which is
X in − Xgt here with Xgt denoting the ground truth) to
exhibit random signs (Chen et al., 2013). This cannot be
satisfied here since the sign of X in−Xgt is highly biased.

Graph Clustering: Various graph clustering approaches
have been proposed with theoretical guarantees under dif-
ferent randomized settings (Jalali et al., 2011; Jalali & Sre-
bro, 2012). These results typically operate under the as-
sumption that in-cluster and inter-cluster correspondences
are independently corrupted, which does not apply in our
model. Due to the block structure input model, these two
types of corruptions are highly correlated and usually ex-
hibit order-of-magnitude difference in corruption rate. To
facilitate the comparison, we evaluate the most recent de-
terministic guarantees obtained by Jalali et al (Jalali & Sre-
bro, 2012). Simple calculation reveals that the guarantee
in (Jalali & Srebro, 2012) requires ptrue > m

m+1 , which
does not deliver encouraging guarantees compared with
ptrue > Θ(1/

√
n) achieved by MatchLift.
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Figure 1. Phase Transition Diagrams of MatchLift, (Jalali & Sre-
bro, 2012), and RPCA (Candès et al., 2011; Jalali et al., 2011).
We can see that MatchLift can recover the ground-truth maps even
when the majority of the input correspondences are wrong, while
both (Jalali & Srebro, 2012) and RPCA require the input corrup-
tion rate to be less than 50%. (a-c) pset = 0.6. (d-f) n = 100.

5. Experimental Evaluation
In this section, we evaluate the performance of MatchLift
and compare it against (Candès et al., 2011; Jalali et al.,
2011; Jalali & Srebro, 2012) and two other graph match-
ing methods. We consider both synthetic examples, which
are used to verify the exact recovery conditions described
above, as well as popular benchmark datasets for evaluat-
ing the practicability on real-world images.

5.1. Synthetic Examples

We follow the randomized model described in Section 4
to generate synthetic examples. For simplicity, we only
consider the full observation mode, which establishes input
maps between all pairs of objects. In all examples, we fix
the universe size such that it consists ofm = 16 points. We
then vary the remaining parameters, i.e., n, pset and pfalse,
to assess the performance of an algorithm. We evaluate
31 × 36 sets of parameters for each scenario, where each
parameter configuration is simulated by 10 Monte Carlo
trials. The empirical success probability is reflected by the
color of each cell. Blue denotesperfect recovery in all ex-
periments, and red denotes failure for all trials.

Figure 1(a) illustrates the phase transition for pset = 0.6,
when the number of objects n and pfalse vary. We can see
that MatchLift is exact even when the majority of the input
correspondences are incorrect (e.g., 75% when n = 150).
This is consistent with the theoretical result that the lower
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Figure 2. A small benchmark created for matching multiple im-
ages with partial similarity. Manually labeled feature points are
highlighted. (Top) Building dataset (Bottom) Chair dataset.

bound on ptrue for exact recovery is O(1/
√
n).

Figure 1(d) shows the phase transition, when pset and pfalse
vary. We can see that MatchLift tolerates more noise when
pset is large. This is also consistent with the result that the
error-correction ability of Matchlift improves with pset.

Figures 1(b-c) and Figures 1(e-f) show the transition dia-
grams of (Jalali et al., 2011; Jalali & Srebro, 2012). One
can see that MatchLift is empirically superior, as both
(Jalali et al., 2011) and (Jalali & Srebro, 2012) do not allow
dense error correction with respect to the particular noise
model considered in this paper.

5.2. Real-World Examples

We have applied our algorithm on six benchmark datasets,
i.e., CMU-House, CMU-Hotel, two datasets (Graf and
Bikes) from (Mikolajczyk & Schmid, 2005) and two new
datasets (referred as Chair and Building, respectively) de-
signed for evaluating joint partial object matching. As
shown in Figure 2, the first data set contains 16 images of a
chair model from different viewpoints, and second data set
contains 16 images taken around a building (Crandall et al.,
2011). In the following, we first discuss the procedure for
generating the input to our algorithm, i.e., the input sets and
the initial maps. We then present the evaluation setup and
analyze the results.

Feature points and initial maps. To make fair compar-
isons with previous techniques on CMU-House and CMU-
Hotel, we use the features points provided in (Caetano
et al., 2009) and apply the spectral matching algorithm de-

scribed in (Leordeanu & Hebert, 2005) to establish initial
maps between features points. To assess the performance
of the proposed algorithm with sparse input maps, we only
match each image with 10 random neighboring images.

To handle raw images in Chair, Building, Graf and Bikes,
we apply a different strategy to build feature points and ini-
tial maps. We first detect dense SIFT feature points (Lowe,
2004) on each image. We then apply RANSAC (Fischler
& Bolles, 1981) to obtain correspondences between each
pair of images. As SIFT feature points are over-complete,
many of them do not appear in the resulting feature corre-
spondences between pairs of views. Thus, we remove all
feature points that have less than 2 appearances in all pair-
wise maps. We further apply farthest point sampling on the
feature points until the sampling density is above 0.05w,
where w is the width of the input images. The remaining
feature points turn out to be much more distinct and thus
are suitable for joint matching (See Figure 3). For the ex-
periments we have tested, we obtain about 60−100 features
points per image.

Evaluation protocol. On CMU-House and CMU-Hotel,
we count the percentage of correct feature correspondences
produced by each algorithm. On Chair, Building, Graf and
Bikes, we apply the metric described in (HaCohen et al.,
2011), which evaluates the deviations of manual feature
correspondences. As the feature points computed on each
image do not necessarily align with the manual features,
we apply (Ahmed et al., 2008) to interpolate feature level
correspondences into pixel-wise correspondences for eval-
uation.

Input MatchLift RPCA LearnI LearnII
House 68.2% 100% 92.2% 99.8% 96%
Hotel 64.1% 100% 90.1% 94.8% 90%

Table 1. Matching performance on the CMU-Hotel and CMU-
House datasets. We compare the proposed MatchLift algorithm
with RPCA and two learning based graph matching methods:
LearnI (Leordeanu et al., 2012) and LearnII (Caetano et al., 2009).

Results. Table 1 shows the results of various algorithms
on CMU-House and CMU-Hotel. We can see that even
with moderate initial maps, MatchLift recovers all ground-
truth correspondences. In contrast, the method of (Jalali
et al., 2011) can only recover 92.2% and 90.1% ground-

Figure 3. A map between dense SIFT feature points (Left) is con-
verted into a map between sampled feature points (Right).
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Figure 4. Comparisons between the input maps and the output of MatchLift on six benchmark datasets: (a) CMU Hotel, (b) CMU
House, (c) Chair, (d) Building, (e) Graf, and (f) Bikes. The optimized maps not correct incorrect correspondences as well as fill in
missing correspondences (generated by paths through intermediate shapes). One representative pair from each dataset is shown here.

truth correspondences on CMU-House and CMU-Hotel,
respectively. Note that, MatchLift also outperforms state-
of-the-art learning based graph matching algorithms (Cae-
tano et al., 2009; Leordeanu et al., 2012). This shows the
the advantage of the proposed approach.
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Figure 5. Percentages of ground-truth correspondences, whose
distances to a map collection are below a varying threshold ε.

Figure 4 and Figure 5 show the results of MatchLift on
Chair, Building, Graf and Bikes. As these images con-
tain noisy background information, the quality of the in-
put maps is lower than those on House and Hotel. En-
couragingly, MatchLift still recovers almost all manual cor-
respondences. Moreover, MatchLift significantly outper-
forms (Jalali et al., 2011), as the fault-tolerance rate of

(Jalali et al., 2011) is limited by a small constant barrier.

Another interesting observation is that the improvements
on Graf and Bikes (each has 6 images) are lower than
those on Chair and Building (each has 16 images). This
is consistent with the common knowledge of data-driven
effect, where large object collections possess stronger self-
correction power than small object collections.

6. Conclusions
This paper delivers some encouraging news: given a few
noisy object matches computed in isolation, a collection
of partially similar objects can be accurately matched via
semidefinite relaxation — an approach which provably
works under dense errors. The proposed algorithm is essen-
tially parameter-free, and can be solved by ADMM while
achieving remarkable efficiency and accuracy, with the as-
sistance of a greedy rounding strategy.

The proposed algorithm achieves near-optimal error-
correction ability, as it is guaranteed to work even when
a dominant fraction of inputs are corrupted. This in turn
underscores the importance of joint object matching: how-
ever low the quality of input sources is, perfect matching is
achievable as long as we obtain sufficiently many instances.
In a broader sense, our findings suggest that a large class of
combinatorial and integer programming problems might be
solved exactly and efficiently via semidefinite relaxation.
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