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Abstract
Maximum a posteriori (MAP) inference over dis-
crete Markov random fields is a fundamental task
spanning a wide spectrum of real-world applica-
tions, which is known to be NP-hard for general
graphs. In this paper, we propose a novel semidef-
inite relaxation formulation (referred to as SDR)
to estimate the MAP assignment. Algorithmically,
we develop an accelerated variant of the alternat-
ing direction method of multipliers (referred to
as SDPAD-LR) that can effectively exploit the
special structure of the new relaxation. Encour-
agingly, the proposed procedure allows solving
SDR for large-scale problems, e.g., problems on
a grid graph comprising hundreds of thousands of
variables with multiple states per node. Compared
with prior SDP solvers, SDPAD-LR is capable of
attaining comparable accuracy while exhibiting
remarkably improved scalability, in contrast to
the commonly held belief that semidefinite relax-
ation can only been applied on small-scale MRF
problems. We have evaluated the performance
of SDR on various benchmark datasets including
OPENGM2 and PIC in terms of boththe quality of
the solutions and computation time. Experimental
results demonstrate that for a broad class of prob-
lems, SDPAD-LR outperforms state-of-the-art al-
gorithms in producing better MAP assignments
in an efficient manner.

1. Introduction
Computing the maximum a posteriori (MAP) assignment in
a graphical model is a central inference task spanning a wide
scope of scenarios (Wainwright & Jordan, 2008), ranging
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from traditional applications in graph matching, stereo re-
construction, object detection, error-correcting codes, gene
mapping, etc., to a more recent application in estimating
consistent object orientations from noisy pairwise measure-
ments (Crandall et al., 2011). For general graphs, this prob-
lem is well-known to be NP-hard (Shimony, 1994). How-
ever, due in part to its importance in practice, a large body
of algorithms have been proposed to approximate MAP es-
timates by solving various convex relaxation formulations.

Among those methods based on convex surrogates, semidefi-
nite relaxation usually strictly dominates other formulations
based on linear programming or quadratic programming in
terms of solution quality. Despite its superiority in obtain-
ing more accurate estimates, however, the most significant
challenge that limits the applicability of any semidefinite
relaxation paradigm on real problems is efficiency. So far
existing general-purpose SDP solvers can only handle prob-
lems with small dimensionality.

In this paper, we propose a novel semidefinite relaxation ap-
proach (referred to as SDR) for second-order MAP inference
in pairwise undirected graphical models. Our key observa-
tion is that the marginalization constraints in a typical linear
programming relaxation (c.f.(Kumar et al., 2009)) can be
subsumed by combing a semidefinite conic constraint with
a small set of linear constraints. As a result, SDR admits a
concise set of nicely decoupled constraints, which allows us
to develop an accelerated variant (referred as SDPAD-LR)
of the alternating direction method of multipliers method
(ADMM) that is scalable to very large-scale problems.

On a standard PC, we have successfully applied SDR on
dense problems of dimensions of (#states×#variables) up
to five thousand, and on grid-structured problems up to 105

variables each with dozens of states per node.

Practically, SDPAD-LR performs remarkably well on a va-
riety of problems. We have evaluated SDPAD-LR on two
collections of benchmark datasets: OPENGM2 (Kappes
et al., 2013a) and a probabilistic inference challenge (PIC,
2011). Each benchmark consists of multiple categories of
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problems derived from various MAP estimation tasks. Ex-
perimental results demonstrate that SDPAD-LR outperforms
the state-of-the-art algorithms in computational speed, while
often obtaining better MAP estimates.

1.1. Background

There is a vast literature concerning MAP estimation over
discrete undirected graphical models and it is beyond the
scope of this paper to discuss all existing algorithms. Inter-
ested readers are referred to (Wainwright & Jordan, 2008)
for an in-depth introduction to this topic. In the following,
we focus on methods that involve convex relaxation, which
are the most relevant to our approach.

Many prior convex relaxation techniques are derived from
the original graph structure underlying the MAP estima-
tion problem, among which linear programming relax-
ation (LPR) methods (Chekuri et al., 2004; Wainwright
et al., 2005) are the most popular. In addition to LPR, re-
searchers have considered alternative convex relaxations,
e.g., quadratic relaxation (QP-RL) (Ravikumar et al., 2010)
and second-order cone relaxation (SOCP-MS) (Kumar et al.,
2009). In the seminal work of (Kumar et al., 2009), the au-
thors evaluate various convex relaxation approaches, and
assert that LPR dominates QP-RL and SOCP-MS. However,
as will be shown later, LPR is further dominated by a stan-
dard SDP relaxation (Wainwright & Jordan, 2008), which
is one of the main foci of this paper.

A recent line of approaches have aimed at obtaining tighter
convex relaxations by incrementally adding higher-order in-
teractions to enforce proper marginalization over groups of
variables (Sontag et al., 2012; Komodakis & Paragios, 2008;
Batra et al., 2011). Despite the practical success of these
approaches, it remains an open problem to analyze their
behavior — for example, to decide whether a polynomial
number of clusters are sufficient.

There have been several attempts in applying semidefinite
relaxation to obtain MAP assignment (Torr, 2003; Olsson
et al., 2007; Wang et al., 2013; Peng et al., 2012). How-
ever, most of these methods are primarily designed for bi-
nary MAP estimation problems. In a recent work, (Peng
et al., 2012) considered a general MAP estimation prob-
lem, where each variable has multiple states. The key
difference between the proposed formulation and that of
(Peng et al., 2012) is that we utilize the semidefinite cone
constraint to prune redundant linear marginalization con-
straints. This leads to a concise set of loosely decoupled
constraints, which is important in developing effective opti-
mization paradigms.

1.2. Notation

Before proceeding, we introduce a few notations that will be
used throughout the paper. For any linear operatorA, we let
A? represent its conjugate operator. Denote by RN×M

+ the

set of N ×M matrices with nonnegative entries, and (·)+ :

RN×M → RN×M
+ the projection operator onto RN×M

+ . For
any symmetric matrix M , we use M�0 to represent the
projection of M onto the positive semidefinite cone. Finally,
we denote by ‖X‖F the Frobenius norm of a matrix X .

2. MAP Estimation and SDP Relaxation
We start with state configurations over n discrete random
variables X = {x1, · · · , xn}. Without loss of general-
ity, assume that each xi takes values in a discrete state
set {1, · · · ,m}. Consider a pairwise Markov random field
(MRF) G parameterized by the potentials (or sufficient statis-
tics) wi(xi) for all vertices and wij(xi, xj) for all edges
(i, j) ∈ G. The energy (or log-likelihood) associated with
this MRF is given by

f(X ) =
n∑

i=1

wi(xi) +
∑

(i,j)∈E

wij(xi, xj). (1)

The goal of MAP estimation is then to compute the con-
figuration of states that maximizes the energy – the most
probable state assignment XM .

2.1. Semidefinite Programming Relaxation (SDR)

MAP estimation over discrete sets is an NP-hard combina-
torial problem, and can be cast as an integer quadratic pro-
gram (IQP). Denote by xi = (xi,1, · · · , xi,m)> ∈ {0, 1}m
a binary vector such that xi,j = 1 if and only if xi = j.
Then MAP estimation is equivalent to the following integer
program.

(IQP): maximize
x∈{0,1}nm

n∑
i=1

〈wi,xi〉+
∑

(i,j)∈G

〈
W ij ,xix

>
j

〉
subject to 1>xi = 1, 1 ≤ i ≤ n, (2)

where wi and W ij encode the corresponding potentials.

The hardness of the above IQP arises in two aspects: (i)
x are binary-valued, and (ii) the objective function is a
quadratic function of these binary variables. These motivate
us to relax the constraints in some appropriate manner, lead-
ing to our semidefinite relaxation. In the sequel, we present
the proposed relaxation in a step-by-step fashion.

1) In the same spirit as existing convex formulations
(e.g., (Kumar et al., 2009; Peng et al., 2012)), we intro-
duce a binary block matrix X := xx> ∈ {0, 1}nm×nm
to accommodate quadratic objective terms:

X =


Diag(x1) X12 · · · X1n

X>12 Diag(x2)
...

...
... · · ·

. . .
...

X>1n · · · · · · Diag(xn)

 ,
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which apparently exhibits the following properties:

Xii = xix
>
i = Diag(xi), 1 ≤ i ≤ n. (3)

2) The non-convex constraint X = xx> is then relaxed
and replaced by X � xx>, which by Schur comple-
ment condition is equivalent to the following semidefi-
nite conic constraint :(

1 x>

x X

)
� 0. (4)

3) The binary constraints x ∈ {0, 1}nm and X ∈
{0, 1}nm×nm are replaced by weaker linear constraints

X ≥ 0.

Note that the constraints 0 ≤ x ≤ 1 and X ≤ 1 ·1> are
essentially subsumed by the constraints (2), (3), and (4)
taken together. For the sake of numerical efficiency, we
further relax the non-negative constraint X ≥ 0 to be

Xij ≥ 0, (i, j) ∈ G. (5)

As we will see later, this relaxation is crucial in acceler-
ating SDP solvers for large-scale problems.

Remark 1. The non-negativity constraints described in
(5) are necessary since otherwise SDR becomes loose for
submodular functions. Below is an example in the presence
of 2 variables each having 2 states:

w1 =

[
2
0

]
, w2 =

[
−3
0

]
, W 12 =

[
0 2
2 0

]
.

It is clear that W 12 satisfies the submodular property. How-
ever, the optimizer of SDR after dropping the constraint
Xij ≥ 0 is given by

x1 =
1

3

[
1
2

]
, x2 =

1

9

[
8
1

]
, X12 =

1

9

[
4 −1
4 2

]
,

which does not obey the non-negativity constraint on X .

The feasibility constraints (2),(3), (4) and (5) taken col-
lectively give rise to the following semidefinite relaxation
(SDR) formulation for MAP estimation:

(SDR): maximize
x,X

n∑
i=1

〈wi,xi〉+
∑

(i,j)∈G

〈W ij ,Xij〉

subject to
(

1 x>

x X

)
� 0, (6)

Xii = Diag(xi), 1 ≤ i ≤ n, (7)

1>xi = 1, 1 ≤ i ≤ n, (8)
Xij ≥ 0, (i, j) ∈ G. (9)

2.2. Comparison with Prior Relaxation Heuristics

2.2.1. Superiority over LP relaxations.

Careful readers will remark that there might exist other con-
vex constraints on X and x that we can enforce to tighten
the proposed semidefinite relaxation. One alternative is
the following marginalization constraints, which have been
widely invoked in LP relaxation for MAP estimation:

Xij1 = 1, X>ij1 = 1, 1 ≤ i < j ≤ n. (10)

Somewhat unexpectedly, these constraints turn out to be
redundant, as asserted in the following theorem.
Theorem 1. Any feasible solution X to SDR (i.e. any
X obeying the feasibility constraints of SDR) necessarily
satisfies

Xij1 = 1, X>ij1 = 1, 1 ≤ i < j ≤ n. (11)

Proof. See the supplemental material.

Intuitively, this property arises from the following features
of x and Xii:

x>i · 1 = 1, Xii1 = xi, X
>
ii1 = 1, 1 ≤ i ≤ n.

These intrinsic properties are then propagated to all off-
diagonal blocks by the semidefinite constraint.

2.2.2. Invariance under variable reparameterization.

Pioneered by the beautiful relaxation proposed for the MAX-
CUT problem (Goemans & Williamson, 1995), many SDP
approaches developed for combinatorial problems employ
the integer indicator y = 1

2 (1 + x) to parameterize bi-
nary variables (e.g., (Torr, 2003; Kumar et al., 2009)). If
one applies matrix lifting Y = yy> and follows a similar
relaxation procedure, the resulting semidefinite relaxation
(referred to as SDR2) can be derived as follows

maximize
y,Y

n∑
i=1

〈wi,yi〉+ 1
2

∑
(i,j)∈G

〈W ij ,Y ij〉

subject to

(
1 y>

y Y

)
� 0,

1>yi = 2−m, 1 ≤ i ≤ n,
Y ij + 1 · y>j + yi · 1> + 1 · 1> ≥ 0,

(i, j) ∈ G,
1·1>+yi·1

>+1·y>
i +Y ii

2
= Diag(1+ yi),

1 ≤ i ≤ n, (12)

where wi are defined as

wi = wi +
1

2

 ∑
j:(i,j)∈G

W ij1+
∑

j:(j,i)∈G

W>
ji1

 .
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In fact, SDR2 is identical to SDR, as formally stated below.

Theorem 2. (x?,X?) is the solution to SDR if and only if

y? := 2x? − 1,

Y ? := 4X? − 2
(
x? · 1> + 1 · x?>)+ 1 · 1>

is the solution to SDR2.

Proof. See the supplemental material.

Despite the theoretical equivalence between SDR2 and SDR,
from a numerical perspective, solving SDR2 is much harder
than solving SDR. The difficulty arises from the complicated
form of the linear constraints enforced by SDR2 (i.e., (12)).
Note that the advantage of SDR2 is that all diagonal entries
of Y are equal to 1 as follows

diag(Y ii) = 2(1+yi)−1−yi−yi = 1, ( 1 ≤ i ≤ n).

Nevertheless, none of prior SDP algorithms takes full ad-
vantage of this property in accelerating the algorithm.

3. Scalable Optimization Algorithm
The curse of dimensionality poses inevitable numerical chal-
lenges when applying general-purpose SDP solvers to solve
SDR. Despite their superior accuracy, primal-dual interior
point methods (IPM) like SDPT (Toh et al., 1999) are limited
to small-scale problems (e.g. nm < 150 on a regular PC).
More scalable solvers such as CSDP (Helmberg & Rendl,
2000) and DSDP (Benson & Ye, 2008) propose to solve the
dual problem. However, since the non-negativity constraints
Xij ≥ 0 produce numerous dual variables, these solvers
are still far too restrictive for our program — none of them
can solve SDR on a standard PC when nm exceeds 1000.

The limited scalability of interior point methods has in-
spired a flurry of activity in developing first-order methods,
among which the alternating direction method of multipliers
(ADMM) (Wen et al., 2010; Boyd et al., 2011) proves well
suited for large-scale problems. In this section, we propose
an efficient variant of ADMM – referred to as SDPAD-LR
(SDP Alternating Direction method for Low Rank structure),
which is tailored to the special structure of SDR (including
low rank and sparsity) and enables us to solve problems
with very large dimensionality.

3.1. Alternating Direction Augmented Lagrangian
Method (ADMM)

For convenience of presentation, we denote

X :=

(
1 x>

x X

)
,

and rewrite SDR in the operator form:

minimize
〈
C,X

〉
dual variables

subject to A
(
X
)
= b, y

P
(
X
)
≥ 0, z ≥ 0

X � 0, S � 0 (13)

where C encodes all wi and W ij , A(X) = b collects the
equality constraints, and P(X) gathers element-wise non-
negative constraints. We let variables y, z, and S represent
the corresponding dual variables for respective constraints.
In the sequel, we will start by reviewing SDPAD, i.e., the
original alternating direction method introduced in (Wen
et al., 2010), and then present the key modification underly-
ing the proposed efficient variant SDPAD-LR.

3.1.1. SDPAD: Procedures and Convergence

SDPAD considers the following augmented Lagrangian:

L(y,z,S,X) = 〈b,y〉+
〈
P?(z) + S −C −A?(y),X

〉
+ (2µ)−1 ‖P?(z) + S −C −A?(y)‖2F ,

where the penalty parameter µ controls the strength of the
quadratic term. As suggested by (Boyd et al., 2011), we
initialize µ with a small value, and gradually increase it
throughout the optimization process.

Let superscript (k) indicate the variable in the kth iteration.
Each iteration of the SDPAD consists of a dual optimization
step, followed by a primal update step given as follows

X
(k)

= X
(k−1)

+
P?(z(k)) + S(k) −C −A?(y(k))

µ
. (14)

Instead of jointly optimizing all dual variables, the key idea
of SDPAD is to decouple the dual optimization step into sev-
eral sub-problems or, more specifically, to optimize y, z,S
in order with other variables fixed. This leads to closed-form
solutions for each sub-problem as follows

y(k) = (AA∗)−1
(
A
(
S(k−1) −C + µX

(k−1))− µb),
z(k) = P

(
C − S(k−1) − µX(k−1)

)
+
,

S(k) =
(
C +A?(y(k))− P?(z(k))− µX(k−1)

)
�0
.

Similar to that considered in (Wen et al., 2010), our stop-
ping criterion involves measuring of both primal feasibility
‖A(X(k)

)− b‖ and dual feasibility µ(X
(k) −X

(k−1)
).

Convergence property. In general, convergence proper-
ties of SDPAD are known when only equality constraints
are present (Wen et al., 2010). However, the inequality
constraints of SDR are special in the following two aspects:

(i) They are element-wise non-negativity constraints;
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Algorithm 1 SDPAD for solving SDR
input: kmax = 1000, ε = 10−4, µmin = 10−3, ρ =
1.005.
initialize: X(0)

= X
(−1)

= 0, y(0) = 0, z(0) = 0

repeat
X

(k)
temp = 2X

(k−1) −X
(k−2)

t
(k)
temp = (AA?)−1(A(X(k)

temp)− b)

y(k) = y(k−1) + µt
(k)
temp

z(k) =
(
z(k−1) − µP(X(k)

temp)
)
+

X
(k)

=
(
X

(k−1) − C +A?(y(k))− P?(z(k))

µ

)
�0

(15)
k ← k + 1; µ = µρ

until min(µ‖X(k) − X
(k−1)‖F, ‖A(X

(k)
) − b‖) ≤ ε or

k > kmax

(ii) They are essentially decoupled from other linear con-
straints.

Property (ii) arises as all equality constraints are concerned
with diagonal blocks of X , while all linear inequality con-
straints are only enforced on its off-diagonal blocks. Such
special structure leads to theoretical convergence guarantees
for SDPAD, as stated in the following theorem.

Theorem 3. The SDPAD method presented above con-
verges to the optimizer of SDR.

Proof. See the supplemental material.

3.1.2. SDPAD-LR: Accelerated Method

Apparently, the most computationally expensive step of
SDPAD is the update of S, which involves the eigen-
decomposition of an nm×nm matrix. This limits the appli-
cability of SDPAD to large-scale problems (e.g. nm > 104).
To bypass this numerical bottleneck, we modify SDPAD
and present an efficient heuristic called SDPAD-LR, which
exploits the low-rank structure of X .

First, we observe that S can be alternatively expressed as

S(k) = C +A?(y(k))− P?(z(k))− µ
(
X

(k) −X
(k−1)

)
.

This allows us to present SDPAD without invoking S. The
detailed steps of SDPAD can now be summarized as in
Algorithm 1.

It is straightforward to see that the bottleneck of Algorithm 1
lies in how to compute and store the primary variable X .
To derive an efficient solver, we make the assumption that
the optimal solution X

?
is low-rank. This is motivated by

the empirical evidence that for a variety of problems (see
the experimental section for details), SDR is exact, meaning

Algorithm 2 SDPAD-LR for solving SDR
input: kmax = 5000, ε = 10−4, µmin = 10−3, ρ =
1.005, δ = 1e− 2, rmax = 32, r = 4.
initialize: X(0)

= X
(−1)

= 0, y(0) = 0, z(0) = 0

repeat
X

(k)
temp = 2X

(k−1) −X
(k−2)

t
(k)
temp = (AA?)−1(A(X(k)

temp)− b)

y(k) = y(k−1) + µt
(k)
temp

z(k) =
(
z(k−1) − µP(X(k)

temp)
)
+

Compute X
(k) according to (16)

k ← k + 1; µ = ρµ

if mod (k, 1000) = 0, λmin(X
(k)

) > δλmax(X
(k)

)
then
r = min(rmax, 2r); µ = µmin

end if
until k > kmax or λmin(X

(k)
) ≤ δλmax(X

(k)
) and

min(µ‖X(k) −X
(k−1)‖F, ‖A(X

(k)
)− b‖) ≤ ε

rank(X
?
) = 1. Moreover, in the general case, the rank of

X
?

is expected to be much small than its dimension (e.g.
(Burer & Monteiro, 2003)), i.e.,

rank
(
X

?
)(

rank(X
?
) + 1

)
≤ 2M,

where M is the number of constraints.1 of SDPR.

Based on this assumption, the key idea of SDPAD-LR is to
invoke a low-rank matrix Y ∈ R(nm+1)×r for some small
r and encode X = Y Y > throughout the iterative process.
This allows us to keep all the variables in memory even for
large-scale problems.

In this case, (15) is modified as Y (k) = U (k)Σ
1
2
+, where

Σ = Diag(σ1, · · · , σr) and U = (u1, · · · ,ur) represent
the top r eigenvalues and respective eigenvectors of

V (k) = Y (k−1)Y (k−1)> − C +A?(y(k))− P?(z(k))

µ
. (16)

Although V (k) is a dense matrix, its top eigenvectors can
be efficiently computed using the Lanczos process (Cullum
& Willoughby, 2002), whose efficiency is dictated by the
complexity of the matrix multiplication operator V (k) : u ∈
Rnm+1 → V (k)u ∈ Rnm+1. As SDR only involves the
constrains Xij ≥ 0, (i, j) ∈ E , the matrix C+A?(y(k))−
P?(z(k)) turns our to share the same sparsity pattern with
G. Thus, the complexity of computing V (k)u is at most
O(nmr2 +m2|E|).

Theoretically, it is extremely challenging to derive an upper
bound on r to ensure the exactness of the modified algorithm.
To address this issue, we thus design SDPAD-LR so that it
iteratively doubles the value of r and reapplies the modified

1Practically, many negativity constraints are redundant.
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algorithm until it returns the optimal solution. For most of
our experiments, we found that r = 8 is sufficient.

The pseudo-code of SDPAD-LR is summarized in Algo-
rithm 2.

3.2. Iterative Rounding

Similar to other ADMM methods (Boyd et al., 2011),
SDPAD-LR converges rapidly to moderate accuracy within
the first 400 iterations, and significantly slows down af-
terwards. Thus, rather than continuing until SDPAD-LR
converges, it would be more efficient to shrink the prob-
lem size by fixing those variables whose optimal states are
likely to have been revealed. Specifically, after each round
of SDPAD-LR, we fix the optimal state j of a variable
xi if xi,j > tmax (tmax = 0.99 for all the examples) or
xi,j = max1≤i≤n,1≤j≤m xi,j . We then reapply the itera-
tive procedures on the reduced problem. In practice, we find
that due to the tightness of SDR, the size of the reduced
problems are significantly smaller than the original problem,
and one iterative rounding procedure is usually sufficient.

4. Experimental Results
In this section, we evaluate SDPAD-LR on several bench-
mark data sets and compare its performance against existing
SDP solvers and state-of-the-art MAP inference algorithms.

4.1. Benchmark Datasets

categories G n m probs t
PIC-Object full 60 11-21 37 5m32s
PIC-Folding mixed 2K 2-503 21 21m42s
PIC-Align dense 30-400 20-93 19 37m63s
GM-Label sparse 1K 7 324 6m32s
GM-Char sparse 5K-18K 2 100 1h13m
GM-Montage grid 100K 5,7 3 9h32m
GM-Matching dense 19 19 4 2m21s
ORIENT sparse 1K 16 10 10m21s

Table 2. Statistics of the datasets evaluated in this paper. G: graph
structure of the MAP problem in each category; n: number of
variables; m: number of states; probs: number of instances; t:
average running time of SDPAD-LR.

We perform experimental evaluation on MAP estimation
problems from three popular benchmark data sets (See Ta-
ble 2), i.e., OPENGM2 (Kappes et al., 2013a), PIC (PIC,
2011), and a new data set ORIENT for the task of estimat-
ing consistent camera orientations (Crandall et al., 2011).
OPENGM2 comprises 19 categories of mostly sparse MAP
problems. We choose four representative categories for eval-
uation: Geometric Surface Labeling (GM-Label), Chinese
Characters (GM-Char), MRF Photomontage (GM-Montage)
and Matching (GM-Matching). The first three categories
GM-Label, GM-Character and GM-Montage are sparse
MAP estimation problems with increasing scales. GM-
Matching is a special category where our convex relax-

ation is not tight. PIC comprises 10 categories of MAP
inference problems of various structure. As we already in-
clude sparse MAP inference problems from OPENGM2,
we pick 3 representative dense categories from PIC: Object
Detection(PIC-Object), Image Alignment (PIC-Align) and
Folding (PIC-Folding).

4.2. SDP Solver Evaluation

Baseline algorithms. We evaluate the proposed SDPAD-
LR against the following existing large-scale SDP solvers.

• SDPAD — the original ADMM method presented
in (Wen et al., 2010).

• SDPNAL — the Newton-CG (conjugate gradient) aug-
mented method proposed in (Zhao et al., 2010).

• IPM-NC — the nonconvex interior point method which
attempts to solve a direct relaxation of the MAP infer-
ence problem (Burer & Monteiro, 2003):

minimize 〈C,xx>〉
subject to 1>xi = 1,xi ≥ 0, 1 ≤ i ≤ n

This method serves as an alternative low-rank heuristic
for the proposed SDPAD-LR. With losing generality,
we set the initial values of xi =

1
m1, 1 ≤ i ≤ n.

• MOSEK — the cutting-edge interior point method. To
apply it on large-scale SDRs, we add the nonnegativity
constraints in an incremental fashion, i.e., at each iter-
ation, we detect the 100 smallest negative entries and
add them to the constraint set.

• MUL-Update — an approximate on-line SDP solver
that is based on multivariate weight updates (Arora
et al., 2012).

Problem sets. For evaluation, we consider four categories,
on which most baseline algorithms are applicable: PIC-OBJ,
PIC-Align, PIC-Folding and GM2-Label. For simplicity, we
pick a representative problem from each category. The di-
mensions of these problem sets range from 600 to 5000, and
they contain both dense and sparse problems (See Table 1).

Evaluation protocol. Following the standard protocol for
assessing convex programs, we evaluate the duality gap and
the primal/dual infeasibility of each algorithm:

gap =
|〈b,y〉 − 〈C,X〉|

1 + |〈b,y〉|+ |〈C,X〉|
,

inf = max
{‖A(X)− b‖2 + ‖min(P(X), 0)‖2

1 + ‖b‖2
,

‖C +A∗(y)− P∗(z)− S‖F
1 + ‖C‖F

}
As IPM-NC solves a different optimization problem, we
report the gap between its optimal solutions with the ground-
truth optimal solutions.
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Table 1. Comparison of SDP Solvers on Representative Problems. N : dimension of the matrix. M : number of constraints.

Method
deer 0034.K10.F100 (dense) file 30markers (sparse) folding 2BE6 (dense) gm275 (sparse)
N = 661,M = 218791 N = 862,M = 218791 N = 3836,M = 218791 N = 5201,M = 218791
cpu gap inf cpu gap inf cpu gap inf cpu gap inf

SDPAD-LR 4:33 7.2e-4 1.3e-6 7:33 2.2e-4 5.3e-6 2:44:36 2.3e-4 5.3e-7 21:33 5.1e-4 1.3e-6
SDPAD 8:29 8.2e-5 4.3e-7 10:33 9.4e-5 1.3e-7 25:56:37 2.3e-4 3.7e-6 41:33:21 1.2e-4 3.1e-6

SDPNAL 10:55 8.1e-5 1.3e-6 9:42 6.2e-5 2.1e-6 18:33:11 5.2e-5 4.7e-7 21:34:35 9.7e-5 4.5e-7
IPM-NC 1:27 2.3e3 na 2:37 4.1e-7 na 10:23 4.5e2 na 21:56 3.5e-6 na
MOSEK 21:33:10 2.3e-6 1.3e-9 na na na

MUL-Update 6:13:56 8.1e-3 2.7e-5 na na na

Table 3. Results on benchmark datasets.
SDPAD-LR Ficolofo BRAOBB α-expand TRWS-LF2 ogm-TRBP MCBC A-star

ORIENT -7834.6 na -3059.2 -7695.4 -7592.4 -7553.8 na na100% 0% 0% 0% 0%

PIC-Object -19316.12 -19308.94 -19113.87 -10106.8 -19020.82 -18900.81 na na97.3% 91.9% 24.3% 0% 59.5% 32.2%

PIC-Folding -5963.68 -5963.68 -5927.01 -5652.76 -5905.01 -5907.24 na na100% 100% 42.9% 14.2% 38.1% 42.9%

PIC-Align 2285.23 2285.34 2285.34 2285.34 2286.64 2289.12 na na100% 90% 90% 90% 80% 70%

GM-Label -476.95 na na -476.95 -476.95 486.42 na na100% 100% 99.67% 40%

GM-Char -59550.67 na na na -49519.44 -49507.98 -49550.10 na86.1% 11% 6% 89.1%

GM-Montage 168298.00 na na 168220.00 735193.0 235611.00 na na66.3% 33.3% 0% 0%

GM-Matching 44.19 na 21.22 na 32.38 5.5e10 na 21.22
0% 100% 0% 0% 100%

Analysis of results. We run each algorithm until the duality
gap is below 1e− 4 or the maximum number of iterations
is reached. Table 1 shows the running time, duality gap
and maximum primal/dual infeasibility of each algorithm
on each problem. We can see that SDPAD-LR generates
results that are comparable to SDPAD and SDPNAL. How-
ever, SDPAD-LR turns out to be remarkably more efficient
than SDPAD and SDPNAL on large-scale or sparse datasets.
This is due to the fact that SDPAD-LR only requires com-
puting the top eigenvalues, which is both memory and com-
putationally efficient.

Both interior point methods (i.e., IPM-NC and MOSEK)
have provable guarantees to generate more accurate results
than other methods. However, MOSEK is not scalable to
large data sets, as reported in Table 1. IPM-NC is scal-
able to large-scale problems, as the number variables in-
volved is small. However, as IPM-NC solves a non-convex
optimization problem, it may easily get trapped into lo-
cal minimals (e.g., on deer 0034.K10.F100 30markers and
folding 2BE6).

Finally, the multivariate weight update method MUL-
Update turns out be inefficient on solving SDRs of MAP
inference problems. This is due to the fact that MUL-Update
is an approximate solver and it requires a lot of iterations to
obtain an accurate solution.

4.3. MAP Inference Evaluation

Experimental setup. We compare SDR with the top-
performing algorithms from OPENGM2 (Kappes et al.,
2013a). These algorithms include (i) BRAOBB (Otten &
Dechter, 2012), which is based on combinatorial search, (ii)
α-expansion (Szeliski et al., 2008)–a move making method,
(iii) MCBC (Kappes et al., 2013b), which is based on a
highly optimized max-cut solver, (iv) TRWS-LF2 (Kol-
mogorov, 2006)– Tree-reweighted message passing, (vi)
ogm-TRBP— Tree-reweighted belief propagation (Szeliski
et al., 2008) and (vii) ficolofo (Cooper et al., 2010)– the top
performing method on dense problems of PIC.

We use two measures to assess the performance of each
method. The first measure evaluates for each method the
mean objective values f of the resulting MAP assignments
on each category. For the consistency with (Kappes et al.,
2013a), we report −f , meaning that the smaller the value,
the better the algorithm. The second measure reports the per-
centage that each method achieves the best solution among
all existing methods (not necessarily the global optimal).
The higher the percentage, the better the algorithm.

Performance. Table 3 summarizes the performance of
SDPAD-LR v.s. state-of-the-art MAP inference algorithms
on each type of problems. In each block, the top element
(which is tilted) describes −f of each method on each cat-
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egory, and the bottom block describes the percentage of
obtaining the best solution. We can see that the overall per-
formance of SDPAD-LR is superior to each other individual
algorithm. Except on GM-Matching, SDPAD-LR is the top
performing on each other dataset. In contrast, each existing
method either does not apply or generates poor results on
one or several datasets. This shows the advantage of solving
a strong convex relaxation of the MAP inference problem.
Below we break down the performance on each benchmark.

• ORIENT. SDPAD-LR is the leading method on ORI-
ENT. The problems in ORIENT exhibit specific struc-
tures, i.e, the pair-wise potentials consist of approxi-
mately shifted permutation matrices. Experimentally,
we found that SDR is usually tight on these problems.
This explains the superior performance SDPAD-LR.
In contrast, linear programming relaxations are not
tight on ORIENT, and thus TRBP and TRWS only de-
liver moderate performance. Moreover, this structural
pattern leads to huge search spaces for combinatorial
algorithms (e.g., BRAOBB), and they can easily get
stuck in local optimums.

• Dense problems. SDPAD-LR also outperforms other
methods on three dense categories from PIC. It
achieves the best mean energy value as well as the
highest percentage of obtaining the best solution. This
again arises since SDR is tight on these problems.

• Sparse problems. SDR yields comparable results with
state-of-the-art algorithms on the three sparse cate-
gories from OPENGM2. GM-Label consists of prob-
lems where the standard LP relaxation is tight. On
GM-Char which consists of large-scale binary prob-
lems, SDR is comparable to MCBC in the sense that
SDR achieves a better mean energy value while MCBC
attains a higher percentage of being the best solution.
This arises because MCBC is a highly optimized solver
designed for binary quadratic problems. On the other
hand, SDPAD-LR is only an approximate SDP solver
which, in some cases, may not converge to the global
optimum due to numerical issues.

• GM-Matching. SDR only yields moderate results on
GM-Matching. This occurs because SDR is not tight
on GM-Matching. In contrast, as GM-Matching is a
small-scale problem, combinatorial optimization tech-
niques such as BRAOBB and A-star are capable of
finding globally optimal solutions.

Running Times. The running time of SDPAD-LR (includ-
ing the rounding procedure) is of the same scale as other
convex relation techniques. As shown in Table 2, our pre-
liminary Matlab implementation takes less than 10 mins
on small-scale problems (i.e. those in PIC-Object, GM-
Matching and PIC-Label). On medium size problems, i.e.,
those in PIC-Folding, PIC-Align, GM-Char and ORIENT,
the running time of SDPAD-LR ranges from 20 minutes to 1

hour. On large-scale problems from GM-Montage, SDPAD-
LR takes around 8 hours on each problem. However, there
is still huge room for improvement. One alternative is to
use the eigenvalues computed in the previous iteration to
accelerate the eigen-decomposition at the current iteration,
which is left for future work.

5. Conclusions
In this paper, we have presented a novel semidefinite re-
laxation for second-order MAP estimation and proposed
an efficient ADMM solver. We have extensively compared
the proposed SDP solver with various state-of-the-art SDP
solvers. Experimental results confirm that our SDP solver
is much more scalable than prior approaches when applied
to various MAP estimation problem, which enables us to
apply SDR on large-scale datasets. Owing to the power
of semidefinite relaxation, SDR proves superior to other
top-performing MAP inference algorithms on a variety of
benchmark datasets.

There are plenty of opportunities for future research. First,
we would like to extend SDR to higher-order MAP problems.
Moreover, it would be interesting to integrate SDR and com-
binatorial optimization techniques, which has the potential
to boost the power of both. From the theoretical side, theo-
retical support for exact estimation with SDR would be one
exciting direction for investigation. This would offer justi-
fication of the presented low-rank heuristic. On the other
hand, as many combinatorial optimization problems can be
formulated as MAP inference problems, such exact estima-
tion conditions can shed light on the original combinatorial
optimization problems.
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