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Abstract
Multi-distribution learning (MDL), which seeks to learn a shared model that minimizes the worst-

case risk across k distinct data distributions, has emerged as a unified framework in response to the
evolving demand for robustness, fairness, multi-group collaboration, etc. Achieving data-efficient MDL
necessitates adaptive sampling, also called on-demand sampling, throughout the learning process. How-
ever, there exist substantial gaps between the state-of-the-art upper and lower bounds on the optimal
sample complexity. Focusing on a hypothesis class of Vapnik–Chervonenkis (VC) dimension d, we
propose a novel algorithm that yields an ε-optimal randomized hypothesis with a sample complexity
on the order of d`k

ε2 (modulo some logarithmic factor), matching the best-known lower bound. Our
algorithmic ideas and theory are further extended to accommodate Rademacher classes. The proposed
algorithms are oracle-efficient, which access the hypothesis class solely through an empirical risk mini-
mization oracle. Additionally, we establish the necessity of randomization, revealing a large sample size
barrier when only deterministic hypotheses are permitted. These findings resolve three open problems
presented in COLT 2023 (i.e., Awasthi et al. (2023, Problems 1, 3 and 4)).

Keywords: multi-distribution learning; on-demand sampling; game dynamics; VC classes; Rademacher
classes; oracle efficiency
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1 Introduction

Driven by the growing need of robustness, fairness and multi-group collaboration in machine learning practice,
the multi-distribution learning (MDL) framework has emerged as a unified solution in response to these
evolving demands (Blum et al., 2017; Haghtalab et al., 2022; Mohri et al., 2019; Awasthi et al., 2023). Setting
the stage, imagine that we are interested in a collection of k unknown data distributions D “ tDiu

k
i“1

supported on X ˆ Y, where X (resp. Y) stands for the instance (resp. label) space. Given a hypothesis class
H and a prescribed loss function1 ` : Hˆ X ˆ Y Ñ r´1, 1s, we are asked to identify a (possibly randomized)

1For example, for each hypothesis h P H and each datapoint px, yq P X ˆ Y, we employ `ph, px, yqq to measure the risk of
using hypothesis h to predict y based on x.
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hypothesis ph achieving near-optimal worst-case loss across these data distributions, namely,2

max
1ďiďk

E
px,yq„Di,ph

“

`
`

ph, px, yq
˘‰

ď min
hPH

max
1ďiďk

E
px,yq„Di

“

`
`

h, px, yq
˘‰

` ε (1)

with ε P p0, 1s a target accuracy level. In light of the unknown nature of these data distributions, the learning
process is often coupled with data collection, allowing the learner to sample from tDiu

k
i“1. The performance

of a learning algorithm is then gauged by its sample complexity — the number of samples required to fulfil
(1). Our objective is to design a learning paradigm that achieves the optimal sample complexity.

The MDL framework described above, which can viewed as an extension of agnostic learning (Valiant,
1984; Blumer et al., 1989) tailored to multiple data distributions, has found a wealth of applications across
multiple domains. Here, we highlight a few representative examples, and refer the interested reader to
Haghtalab et al. (2022) and the references therein for more extensive discussions.

• Collaborative and agnostic federated learning. In the realm of collaborative and agnostic federated
learning (Blum et al., 2017; Nguyen and Zakynthinou, 2018; Chen et al., 2018; Mohri et al., 2019;
Blum et al., 2021a; Du et al., 2021; Deng et al., 2020; Blum et al., 2021b), a group of k agents, each
having access to distinct data sources as characterized by different data distributions tDiu

k
i“1, aim

to learn a shared prediction model that ideally would achieve low risk for each of their respective
data sources. A sample-efficient MDL paradigm would help unleash the potential of collaboration and
information sharing in jointly learning a complicated task.

• Min-max fairness in learning. The MDL framework is well-suited to scenarios requiring fairness across
multiple groups (Dwork et al., 2021; Rothblum and Yona, 2021; Du et al., 2021). For instance, in
situations where multiple subpopulations with distinct data distributions exist, a prevailing objective is
to ensure that the learned model does not adversely impact any of these subpopulations. One criterion
designed to meet this objective, known as “min-max fairness” in the literature (Mohri et al., 2019;
Abernethy et al., 2022), plays a pivotal role in mitigating the worst disadvantage experienced by any
particular subpopulation.

• Distributionally robust optimization/learning. Another context where MDL naturally finds applications
is group distributionally robust optimization and learning (DRO/DRL). Group DRO and DRL aim
to develop algorithms that offer robust performance guarantees across a finite number of possible
distributional models (Sagawa et al., 2019, 2020; Hashimoto et al., 2018; Hu et al., 2018; Xiong et al.,
2023; Zhang et al., 2020; Wang et al., 2023; Deng et al., 2020), and have garnered substantial attention
recently due to the pervasive need for robustness in modern decision-making (Carmon and Hausler,
2022; Asi et al., 2021; Haghtalab et al., 2022; Kar et al., 2019). When applying MDL to the context of
group DRO/DRL, the resultant sample complexity reflects the price that needs to be paid for learning
a robust solution.

The MDL framework is also closely related to other topics like multi-source domain adaptation, maximum
aggregation, to name just a few (Mansour et al., 2008; Zhao et al., 2020; Bühlmann and Meinshausen, 2015;
Guo, 2023).

In stark contrast to single-distribution learning, achieving data-efficient MDL necessitates adaptive
sampling throughout the learning process, also known as on-demand sampling (Haghtalab et al., 2022).
More specifically, pre-determining a sample-size budget for each distribution beforehand and sampling non-
adaptively could result in a loss of sample efficiency, as we lack knowledge about the complexity of learning
each distribution before the learning process begins. The question then comes down to how to optimally
adapt the online sampling strategy to effectively tackle diverse data distributions.

Inadequacy of prior results. The sample complexity of MDL has been explored in a strand of recent
works under various settings. Consider first the case where the hypothesis class H comprises a finite number

2Here, the expectation on the left-hand side of (1) is taken over the randomness of both the datapoints px, yq and the
(randomized) hypothesis ph.
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of hypotheses. If we sample non-adaptively and draw the same number of samples from each individual
distribution Di, then this results in a total sample size exceeding the order of k logp|H|q

ε2 (given that learning
each distribution requires a sample size at least on the order of logp|H|q

ε2 ). Fortunately, this sample size budget
can be significantly reduced with the aid of adaptive sampling. In particular, the state-of-the-art approach,
proposed by Haghtalab et al. (2022), accomplishes the objective (1) with probability at least 1 ´ δ using
O
` logp|H|q`k logpk{δq

ε2

˘

samples. In comparison to agnostic learning on a single distribution, it only incurs
an extra additive cost of k logpk{δq{ε2 as opposed to a multiplicative factor in k, thus underscoring the
importance of adaptive sampling.

A more challenging scenario arises when H has a finite Vapnik–Chervonenkis (VC) dimension d. The
sample complexity for VC classes has only been settled for the reliazable case (Blum et al., 2017; Chen
et al., 2018; Nguyen and Zakynthinou, 2018), a special scenario where the loss function takes the form of
`
`

h, px, yq
˘

“ 1thpxq ‰ yu and it is feasible to achieve zero mean loss. For the general non-realizable case,
the best-known lower bound for such VC classes is (Haghtalab et al., 2022)3

rΩ
ˆ

d` k

ε2

˙

, (2)

which serves as a theoretical benchmark. By first collecting rO
`

dk
ε

˘

samples to help construct a cover of H
with reasonable resolution, Haghtalab et al. (2022) established a sample complexity upper bound of

(Haghtalab et al., 2022) rO

ˆ

d` k

ε2 `
dk

ε

˙

. (3a)

Nevertheless, the term dk{ε in (3a) fails to match the lower bound (2); put another way, this term might
result in a potentially large burn-in cost, as the optimality of this approach is only guaranteed (up to log
factors) when the total sample size already exceeds an enormous threshold on the order of d2k2

d`k . In an effort
to alleviate this dk{ε factor, Awasthi et al. (2023) put forward an alternative algorithm — which utilizes an
oracle to learn on a single distribution and obliviates the need for computing an epsilon-net of H — yielding
a sample complexity of

(Awasthi et al., 2023) rO

ˆ

d

ε4 `
k

ε2

˙

. (3b)

However, this result (3b) might fall short of optimality as well, given that the scaling d{ε4 is off by a factor of
1{ε2 compared with the lower bound (2). A more comprehensive list of past results can be found in Table 1.

Given the apparent gap between the state-of-the-art lower bound (2) and achievability bounds (3), a
natural question arises:

Question: Is it plausible to design a multi-distribution learning algorithm with a sample
complexity of rO

`

d`k
ε2

˘

for VC classes, thereby matching the established lower bound (2)?

Notably, this question has been posed as an open problem during the Annual Conference on Learning Theory
(COLT) 2023; see Awasthi et al. (2023, Problem 1).

A glimpse of our main contributions. The present paper delivers some encouraging news: we come up
with a new MDL algorithm that successfully resolves the aforementioned open problem in the affirmative.
Specifically, focusing on a hypothesis class with VC dimension d and a collection of k data distributions, our
main findings can be summarized as follows.

Theorem 1. There exists an algorithm (see Algorithm 1 for details) such that: with probability exceeding
1´ δ, the randomized hypothesis hfinal returned by this algorithm achieves

max
1ďiďk

E
px,yq„Di,hfinal

“

`
`

hfinal, px, yq
˘‰

ď min
hPH

max
1ďiďk

E
px,yq„Di

“

`
`

h, px, yq
˘‰

` ε,

3Here and throughout, rOp¨q and rΩp¨q hide all logarithimic factors in
`

k, d, 1
ε
, 1
δ

˘

.
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Paper Sample complexity bound

Haghtalab et al. (2022) logp|H|q`k
ε2

Haghtalab et al. (2022) d`k
ε2 ` dk

ε

Awasthi et al. (2023) d
ε4 `

k
ε2

Peng (2023) d`k
ε2

`

k
ε

˘op1q

our work (Theorem 1) d`k
ε2

lower bound: Haghtalab et al. (2022) d`k
ε2

Table 1: Sample complexity bounds of MDL with k data distributions and a hypothesis class of VC dimension
d. Here, we only report the polynomial depedency and hide all logarithmic dependency on

`

k, d, 1
ε ,

1
δ

˘

.

provided that the total sample size exceeds
d` k

ε2 poly log
´

k, d,
1
ε
,

1
δ

¯

. (4)

The polylog factor in (4) will be specified momentarily. In a nutshell, we develop the first algorithm that
provably achieves a sample complexity matching the lower bound (2) modulo logarithmic factors. Following the
game dynamics template adopted in previous methods — namely, viewing MDL as a game between the learner
(who selects the best hypothesis) and the adversary (who chooses the most challenging mixture of distributions)
— our algorithm is built upon a novel and meticulously designed sampling scheme that deviates significantly
from previous methods. Further, we extend our algorithm and theory to accommodate Rademacher classes,
establishing a similar sample complexity bound when the weighted Rademacher complexity of the hypothesis
class on n points is upper bounded by O

`

b

d logpnq
n

˘

.
Additionally, we solve two other open problems posed by Awasthi et al. (2023):

• Oracle-efficient solutions. An algorithm is said to be oracle-efficient if it only accesses H through
an empirical risk minimization (ERM) oracle (Dudík et al., 2020). Awasthi et al. (2023, Problem
4) then asked what the sample complexity of MDL is when confined to oracle-efficient paradigms.
Encouragingly, our algorithm (i.e., Algorithm 1) adheres to the oracle-efficient criterion, thus uncovering
that the sample complexity of MDL remains unchanged when restricted to oracle-efficient algorithms.

• Necessity of randomization. Both our algorithm and the most sample-efficient methods preceding
our work produce randomized hypotheses. As discussed around Awasthi et al. (2023, Problem 3), a
natural question concerns characterization of the sample complexity when restricting the final output to
deterministic hypotheses from H. Our result (see Theorem 2) delivers a negative message: under mild
conditions, for any MDL algorithm, there exists a hard problem instance such that it requires at least
Ωpdk{ε2q samples to find a deterministic hypothesis h P H that attains ε-accuracy. This constitutes
an enormous sample complexity gap between what is achievable under randomized hypotheses and
what is achievable using deterministic hypotheses.

Concurrent work. We shall mention that a concurrent work Peng (2023), posted around the same time as
our work, also studied the MDL problem and significantly improved upon the prior results. More specifically,
Peng (2023) established a sample complexity of O

´

pd`kq logpd{δq
ε2

`

k
ε

˘op1q
¯

, which is optimal up to some
sub-polynomial factor in k{ε; in comparison, our sample complexity is optimal up to polylogarithmic factor.
Additionally, it is worth noting that the algorithm therein relies upon a certain recursive structure to eliminate
the non-optimal hypothesis, thus incurring exponential computational cost even when an ERM oracle is
available.

Notation. Throughout this paper, we denote rN s :“ t1, . . . , Nu for any positive integer N . Let convpAq
represent the convex hull of a set A, and denote by ∆pnq the n-dimensional simplex for any positive integer
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n. For two vectors v “ rvis1ďiďn and v1 “ rv1is1ďiďn with the same dimension, we overload the notation
by using maxtv, v1u “

“

maxtvi, v1iu
‰

1ďiďn to denote the coordinate-wise maximum of v and v1. Also we
say v ď v1 iff vi ď v1i for all i P rns. For any random variable X, we use VrXs to denote its variance, i.e.,
VrXs “ E

“

pX ´ ErXsq2
‰

. For any two distributions P and Q supported on X , the Kullback-Leibler (KL)
divergence from Q to P is defined and denoted by

KLpP }Qq :“ EQ
„

dP
dQ log dP

dQ



. (5)

2 Problem formulation

This section formulates the multi-distribution learning problem. We assume throughout that each datapoint
takes the form of px, yq P X ˆ Y, with X (resp. Y) the instance space (resp. label space).

Learning from multiple distributions. The problem setting encompasses several elements below.

• Hypothesis class. Suppose we are interested in a hypothesis class H, comprising a set of candidate
functions from the instance space X to the label space Y. Overloading the notation, we use hπ to
represent a randomized hypothesis associated with a probability distribution π P ∆pHq, meaning that a
hypothesis h from H is randomly selected according to distribution π. Additionally, the VC dimension
(Vapnik et al., 1994) of H is assumed to be

VC-dimpHq “ d. (6)

• Loss function. Suppose we are given a loss function ` : H ˆ X ˆ Y Ñ r´1, 1s, so that `ph, px, yqq
quantifies the risk of using hypothesis h P H to make prediction on a datapoint px, yq P X ˆ Y (i.e.,
predicting y based on x). One example is the 0-1 loss function `ph, px, yqq “ 1thpxq ‰ yu, which is
often used to measure the misclassification error.

• (Multiple) data distributions. Suppose that there are k data distributions of interest supported on
X ˆ Y, denoted by D “ tD1,D2, . . . ,Dku. We are permitted to draw independent samples from each
of these data distributions.

Given a target accuracy level ε P p0, 1q, our objective is to identify a (randomized) hypothesis, represented by
hπ with π P ∆pHq, such that

max
1ďiďk

E
px,yq„Di,hπ„π

“

`
`

hπ, px, yq
˘‰

ď min
hPH

max
1ďiďk

E
px,yq„Di

“

`
`

h, px, yq
˘‰

` ε. (7)

Sampling and learning processes. In order to achieve the aforementioned goal (7), we need to draw
samples from the available data distributions in D, and the current paper focuses on sampling in an online
fashion. More precisely, the learning process proceeds as follows: in each step τ ,

• the learner selects iτ P rks based on the previous samples;

• the learner draws an independent sample pxτ , yτ q from the data distribution Diτ .

The sample complexity of a learning algorithm thus refers to the total number of samples drawn from D
throughout the learning process. A desirable learning algorithm would yield an ε-optimal (randomized)
hypothesis (i.e., a hypothesis that achieves (7)) using as few samples as possible.
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3 Algorithm

In this section, we present our proposed algorithm. Before proceeding, we find it convenient to introduce some
notation concerning the loss under mixed distributions. Specifically, for any distribution w “ rwis1ďiďk P ∆pkq
and any hypothesis h P H, the risk over the mixture

ř

iPrks wiDi of data distributions is denoted by:

Lph,wq :“
k
ÿ

i“1
wi E
px,yq„Di

“

`
`

h, px, yq
˘‰

; (8a)

similarly, the risk of a randomized hypothesis hπ (associated with π P ∆pHq) over
ř

iPrks wiDi is given by

Lphπ, wq :“
k
ÿ

i“1
wi E
px,yq„Di,h„π

“

`
`

hπ, px, yq
˘‰

“ E
h„π

“

Lph,wq
‰

. (8b)

Algorithm 1: Hedge for Multi-distribution Learning (MDL´ Hedge)
1 input: k data distributions tD1,D2, . . . ,Dku, hypothesis class H, target accuracy level ε, target success

rate 1´ δ.
2 hyper-parameters: stepsize η “ 1

100ε, number of rounds T “ 20000 logp kδ q
ε2 , auxiliary accuracy level

ε1 “
1

100ε, auxiliary sub-sample-size T1 :“ 4000pk logpk{ε1q`d logpkd{ε1q`logp1{δqq
ε2

1
.

3 initialization: for all i P rks, set W 1
i “ 1, pw0

i “ 0 and n0
i “ 0; S “ H.

4 for t “ 1, 2, . . . , T do
5 set wt “ rwtis1ďiďk and pwt “ r pwtis1ďiďk, with wti Ð

W t
i

ř

j W
t
j

and pwti Ð pwt´1
i for all i P rks.

/* recompute pwt & draw new samples for S only if wt changes sufficiently. */
6 if there exists j P rks such that wtj ě 2 pwt´1

j then
7 pwti Ð maxtwti , pwt´1

i u for all i P rks;
8 for i “ 1, . . . , k do
9 nti Ð

P

T1 pw
t
i

T

;
10 draw nti ´ n

t´1
i independent samples from Di, and add these samples to S.

/* estimate the near-optimal hypothesis for weighted data distributions. */
11 compute ht Ð arg minhPH pLtph,wtq, where

pLtph,wtq :“
k
ÿ

i“1

wti
nti
¨

nti
ÿ

j“1

`
`

h, pxi,j , yi,jq
˘

(9)

with pxi,j , yi,jq being the j-th datapoint from Di in S.
/* estimate the loss vector and execute weighted updates. */

12 wti Ð max1ďτďt w
τ
i for all i P rks.

13 for i “ 1, . . . , k do
14 draw rkwtis independent samples — denoted by

 

pxti,j , y
t
i,jq

(rkwtis

j“1 — from Di, and set

prti “
1

rkwtis

rkwtis
ÿ

j“1

`
`

ht, pxti,j , y
t
i,jq

˘

;

15 update the weight as W t`1
i “W t

i exppηprtiq. // Hedge updates.

16 output: a randomized hypothesis hfinal uniformly distributed over thtuTt“1.

Following the game dynamics proposed in previous works (Awasthi et al., 2023; Haghtalab et al., 2022),
our algorithm alternates between computing the most favorable hypothesis (performed by the learner) and
estimating the most challenging mixture of data distributions (performed by the adversary), with the aid of
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no-regret learning algorithms (Roughgarden, 2016; Shalev-Shwartz, 2012). More specifically, in each round t,
our algorithm performs the following two steps:

(a) Given a mixture of data distributions Dptq “
ř

iPrks w
t
iDi (with wt “ rwtisiPrks P ∆pkq), we construct a

dataset to compute a hypothesis ht that nearly minimizes the loss under Dptq, namely,

ht « arg min
hPH

Lph,wtq. (10)

This is accomplished by calling an empirical risk minimization oracle.

(b) Given hypothesis ht, we compute an updated weight vector wt`1 P ∆pkq — and hence an updated
mixed distribution Dpt`1q “

ř

iPrks w
t`1
i Di. The weight updates are carried out using the celebrated

Hedge algorithm (Freund and Schapire, 1997) designed for online adversarial learning,4 in an attempt
to achieve low regret even when the loss vectors are adversarially chosen. More precisely, we run

wt`1
i 9 wti exp

`

ηprti
˘

, i P rks, (11)

where the loss vector prt “ rprtisiPrks contains the empirical loss of ht under each data distribution, i.e.,

prti « E
px,yq„Di

“

`
`

ht, px, yq
˘‰

, i P rks,

computed over another set of data samples.

At the end of the algorithm, we output a randomized hypothesis hfinal that is uniformly distributed over the
hypothesis iterates thtu1ďtďT over all T rounds, following common practice in online adversarial learning.

While the above paradigm has been adopted in past works (Awasthi et al., 2023; Haghtalab et al., 2022),
the resulting sample complexity depends heavily upon how data samples are collected and utilized throughout
the learning process. For instance, Awasthi et al. (2023, Algorithm 1) draws fresh data at each step of every
round, in order to ensure reliable estimation of the loss function of interest through elementary concentration
inequalities. This strategy, however, becomes wasteful over time, constituting the main source of its sample
sub-optimality.

In order to make the best use of data, we propose the following key strategies.

• Sample reuse in Step (a). In stark contrast to Awasthi et al. (2023, Algorithm 1) that draws new
samples for estimating each ht, we propose to reuse all samples collected in Step (a) up to the t-th
round to assist in computing ht. As will be made precise in lines 6-11 of Algorithm 1, we shall maintain
a growing dataset S for conducting Step (a) throughout, ensuring that there are nti samples drawn
from distribution Di in the t-th round. These datapoints are employed to construct an empirical loss
estimator pLtph,wtq for each h P H in each round t, with the aim of achieving uniform convergence
|pLtph,wtq ´ Lph,wtq| ď Opεq over all h P H. More detailed explanations are provided in Section 4.1.

• Weighted sampling for Step (b). As shown in line 14 of Algorithm 1, in each round t, we sample
each Di a couple of times to compute the empirical estimator for Epx,yqPDi

“

`pht, px, yqq
‰

, where the
number of samples depends upon the running weights twτi u. More precisely, we collect

P

kwti
T

fresh
samples from each Di, where wti :“ max1ďτďt w

τ
i is the maximum weight assigned to Di up to now.

Informally speaking, this strategy ensures reduced variance of the estimators and ultimately allows
for an improved bound for

řk
i“1 max1ďtďT w

t
i . The interested reader is referred to Section 4.2 and

Lemma 17 for more detailed explanations.

The whole procedure can be found in Algorithm 1.
4Note that the Hedge algorithm is closely related to Exponentiated Gradient Descent, Multiplicative Weights Update, Online

Mirror Descent, etc (Arora et al., 2012; Shalev-Shwartz, 2012; Hazan, 2022).
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4 A glimpse of key technical novelty

In this section, we highlight two technical novelty that empowers our analysis: (i) uniform convergence of
the weighted sampling estimator that allows for sample reuse (see Section 4.1), and (ii) tight control of
certain `1{`8 norm of the iterates twtu1ďtďT that dictates the sample efficiency (see Section 4.2). Given that
Haghtalab et al. (2022) already established near-optimal upper bounds when k “ Op1{εq (cf. the 2nd row in
Table 1), our analysis should focus on the regime where k ě 100{ε.

4.1 Towards sample reuse: uniform concentration and a key quantity

Recall that in Algorithm 1, we invoke the empirical risk estimator pLtph,wtq as an estimate of the true risk
of hypothesis h over the weighted distribution specified by wt (cf. (9)). In order to facilitate sample reuse
when constructing such risk estimators across all iterations, it is desirable to establish uniform concentration
results to control the errors of such risk estimators throughout the execution of the algorithm. Towards this
end, our analysis strategy proceeds as follows.

Step 1: concentration for any fixed set of parameters. Consider any given set of integers n “ tniuki“1
and any given vector w P ∆pkq. Suppose, for each i P rks, we have ni i.i.d. samples drawn from Di — denoted
by tpxi,j , yi,jqunij“1 — and let us look at the empirical risk estimator,

pLnph,wq :“
ÿk

i“1
wi ¨

1
ni

ÿni

j“1
`
`

h, pxi,j , yi,jq
˘

, (12)

which is a sum of independent random variables. Evidently, for a given hypothesis h, the variance of pLnph,wq
is upper bounded by

Var
`

pLnph,wq
˘

ď
ÿk

i“1

w2
i

ni
ď

´

ÿk

i“1
wi

¯ 1
mini ni{wi

“
1

mini ni{wi
.

Assuming that the central limit theorem is applicable, one can derive

P
!

ˇ

ˇpLnph,wq ´ Lph,wq
ˇ

ˇ ě ε
)

À exp
ˆ

´
ε2

2Var
`

pLnph,wq
˘

˙

À exp
ˆ

´
ε2

2 min
i

ni
wi

˙

.

Armed with this result, we can extend it to accommodate all h P H through the union bound. For a VC class
with VC-dimpHq “ d, the celebrated Sauer–Shelah lemma (Wainwright, 2019, Proposition 4.18) tells us that
the set of hypotheses can be effectively compressed into a subset with cardinality no larger than exp

`

rOpdq
˘

.
Taking the union bound then yields

P
ˆ

max
hPH

ˇ

ˇpLnph,wq ´ Lph,wq
ˇ

ˇ ě ε

˙

À exp
ˆ

rOpdq ´
ε2

2 min
i

ni
wi

˙

Step 2: uniform concentration. Next, we would like to extend the above result to establish uniform
concentration over all n and w of interest. Towards this, we shall invoke the union bound as well as the
standard epsilon-net arguments. Let the set X Ď ∆pkq be a proper discretization of ∆pkq, with cardinality
exp

`

rOpkq
˘

. In addition, given the trivial upper bound ni ď T1 for all i P rks, we know that there exist at
most T k1 “ exp

`

rOpkq
˘

possible combinations of tniuiPrks. We can then apply the union bound to show that

P
!

Dw P X and feasible n s.t.
ˇ

ˇpLnph,wq ´ Lph,wq
ˇ

ˇ ě ε
)

À exp
ˆ

rOpkq ` rOpdq ´
ε2

2 min
i

ni
wi

˙

. (13)

When the discretized set X is chosen to have sufficient resolution, we can straightforwardly employ the
standard covering argument to extend the above inequality to accommodate all w P ∆pkq.
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Key takeaways. The above arguments reveal the following high-probability property: whenever we collect
n “ tniu

k
i“1 samples in the learning process, we could obtain ε-approximation pLnph,wq (see (12)) of Lph,wq

for all h P H and all w P ∆pkq with high probability, provided that

min
i

ni
wi
Á rO

ˆ

k ` d

ε2

˙

. (14)

This makes apparent the pivotal role of the quantity mini ni{wi. In our algorithm, we design the update rule
(cf. line 9 of Algorithm 1), so as to guaranteed that

min
i

nti
wti
Á T1 ě rΩ

ˆ

k ` d

ε2

˙

(15)

for all 1 ď t ď T . In fact, this explains our choice of T1 in Algorithm 1. Crucially, the aforementioned uniform
concentration result allows us to reuse samples throughout the learning process instead of drawing fresh
samples to estimate Lph,wtq in each round t (the latter approach clearly loses data efficiency). To conclude,
to guarantee ε-uniform convergence for all rounds, it suffices to choose T1 “ rΩ

`

k`d
ε2

˘

.
Finally, recall that nti Á T1w

t
i for each i P rks and t ď T , with wti :“ max1ďτďt w

τ
i ; taking nti — T1w

t
i (as

opposed to nti — T1w
t
i) ensures that the sample size nti is monotonically non-decreasing in t. With (15) in

mind, the total number of samples collected within T rounds in Algorithm 1 obeys
1
T1

ÿk

i“1
nTi —

ÿk

i“1
wTi “: }wT }1. (16)

This threshold }wT }1 — or equivalently, the `1{`8 norm of twtu1ďtďT — is a critical quantity that we
wish to control; in particular, in the desirable scenario where }wT }1 ď rOp1q, the total sample size obeys
řk
i“1 n

T
i — T1}w

T }1 “ rO
`

k`d
ε2

˘

.

4.2 Bounding the key quantity }wT }1 by controlling the Hedge trajectory

Perhaps the most innovative (and most challenging) part of our analysis lies in controlling the `1{`8 norm of
twtiu1ďtďT , whose critical importance has been pointed out in Section 4.1.

Towards this end, the key lies in carefully tracking the dynamics of the Hedge algorithm. To elucidate
the high-level idea, we first consider the following minimax optimization problem w.r.t. the set of loss vectors
in the convex hull of a set Y:

min
yPconvpYq

max
wP∆pkq

wJy por equivalently, max
wP∆pkq

min
yPconvpYq

wJyq, (17)

where the equivalence arises from von Neumann’s minimax theorem (v. Neumann, 1928). Let us look at the
following algorithm (cf. Algorithm 2) tailored to this minimax problem, assuming perfect knowledge about
the loss vector.5

Algorithm 2: The Hedge algorithm for bilinear games.
1 Input: Y Ď r´1, 1sk, target accuracy level ε P p0, 1q.
2 Initialization: T “ 100 logpkq

ε2 , η “ 1
10ε, and W

1
i “ 1 for all 1 ď i ď k.

3 for t “ 1, 2, . . . , T do
4 compute wti Ð

W t
i

ř

j W
t
j

for every 1 ď i ď k.

5 compute yt Ð arg minyPY xwt, yy.
6 update W t`1

i ÐW t
i exppηytiq for every 1 ď i ď k.

This algorithm is often referred to as the Hedge algorithm, which is known to yield an ε-minimax solution
within O

` logpkq
ε2

˘

iterations. A challenging question relevant to our analysis is:
5Note that in Algorithm 1, we can only estimate the loss vector using the collected samples. Additional efforts are needed

to reduce the variability (see line 14 in Algorithm 1 and Lemma 17).
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Question: can we bound }wT }1 “
řk
i“1 max1ďtďT w

t
i by poly-logarithmic terms?

As it turns out, we can answer this question affirmatively (see Lemma 3), and the key ideas will be elucidated
in the remainder of this section.

To streamline presentation of our techniques, we assume without loss of generality that

min
yPconvpYq

max
wP∆pkq

wJy “ max
wP∆pkq

min
yPconvpYq

wJy “ 0.

Under this assumption, it is easily seen that [YXC: TODO]
@

wt, yt
D

“ minyPY
@

wt, y
D

ď 0, @t P rT s and T´1
ÿT

t“1

@

wt, yt
D

ě ´Opεq. (18)

Let us also assume for the moment that ´xwt, yty “ Opεq for any t P rT s.6

4.2.1 Doubling wj needs rΩp1{ε2q steps

[YXC: Need more edits.]
Instead of bounding }wT }1 directly, our first attempt is to show that:

• there exist at most rOp1q coordinates i P rks obeying max1ďtďT w
t
i ě 1{4 (or some other universal

constant).

In other words, we would like to show that the cardinality of the following set is small:

W :“
 

i P rks | max1ďtďT w
t
i ě 1{4

(

. (19)

To do so, note that for small stepsize η, one can find, for each i P W, a time interval rsi, eis Ď r0, T s
obeying

1{16 ď wsii ď 1{8, weii ě 1{4 and wti ě 1{8, @t P psi, eis. (20)

In words, wti at least doubles from t “ si to t “ ei. We claim for the moment that

ei ´ si ě Ωp1{ε2q @i P W. (21)

Additionally, observe that for any t, there exist at most 8 coordinates i P W such that si ď t ď ei (since
wti ě 1{8 for t P rsi, eis). This reveals that

8T ě
ÿ

iPW
pei ´ siq ě |W| ¨ Ω

`

1{ε2˘ ,

which combined with our choice of T “ Oplogpk{δq{ε2q (cf. line 2 of Algorithm 1) yields

|W| ď OpTε2q “ O
`

logpk{δq
˘

.

Proof strategy for (21). In this proof, we shall exploit properties of a bilinear game where the opponent plays
the best response. From (18) and the fact that yt is the best response for wt in each t, one sees that

@

wt, yt
D

ď 0,
@

wt, yτ
D

ě
@

wt, yt
D

, @1 ď t ď τ ď T. (22)

Armed with (22), we claim that

KL
`

wt1 }wt2
˘

ď O
`

η2pt2 ´ t1q
˘

, 1 ď t1 ď t2 ď T.

6While this assumption is not valid in most cases, one can divide rT s into rOp1q disjoint subsets and then tackle each subset.
As a trade-off, this strategy leads to some additional logarithmic factors (see Lemma 17).
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To show this, our calculation proceeds as follows:

KL
`

wt1 }wt2
˘

“

k
ÿ

i“1
wt1i log

ˆ

wt1i
wt2i

˙

“

k
ÿ

i“1
wt1i log

˜

řk
j“1W

t2
j

řk
j“1W

t1
j

¸

`

k
ÿ

i“1
wt1i log

ˆ

W t1
i

W t2
i

˙

“ log
˜

řk
i“1W

t2
i

řk
i“1W

t1
i

¸

´ η
t2´1
ÿ

τ“t1

k
ÿ

i“1
wt1i y

τ
i ď log

˜

řk
i“1W

t2
i

řk
i“1W

t1
i

¸

´ ηpt2 ´ t1q
@

wt1 , yt1
D

,

where the second identity holds since wti “
W t
i

ř

jW
t
j
, the third identity is valid sinceW t2

i “W t1
i exp

`

η
řt2´1
τ“t1

yτi
˘

,
and the last relation results from (22). In light of the properties

η “ Θpεq, ´pwt1qJyt1 “ Opεq, log
˜

řk
i“1W

t2
i

řk
i“1W

t1
i

¸

ď O
`

pt2 ´ t1qη
2˘, (23)

we can further obtain KL
`

wt1 }wt2
˘

“ Opε2pt2 ´ t1qq and hence

t2 ´ t1 ě Ω
`

ε´2KL
`

wt1 }wt2
˘˘

. (24)

By taking t1 “ si and t2 “ ei, we can combine (24) and Pinsker’s inequality to obtain

ei ´ si ě Ω
`

ε´2KL
`

wsi }wei
˘˘

ě Ω
´

ε´2`TV
`

wsi , wei
˘˘2

¯

ě Ω
´

ε´2`wsii ´ w
ei
i

˘2
¯

“ Ω
`

1{ε2˘ .

4.2.2 Coping with the segments

Naturally, one would hope to generalize the arguments in Section 4.2.1 to bound the size of the set:

Wppq :“
 

i P rks | max1ďtďT w
t
i P r2p, 4ps

(

(25)

for any p P r0, 1s. Nevertheless, the arguments above fall short of delivering a desirable bound on |Wppq|
when p is small. To be more specific, for each i P Wppq, let rsi, eis represent a time interval such that

p{2 ď wsii ď p, weii ě 2p and wti ě p for any si ă t ď ei. (26)

While we can derive ei ´ si ě Ωpp{ε2q via the arguments in (24), this bound does not readily allow one to
bound |Wppq| by rOp1{pq, since the intervals rsi, eis for different i’s might have lots of overlaps.

To address this issue, we make the following key observation: if there exist some coordinates i P Wppq
sharing similar rsi, eis, we can obtain an improved bound. For example, suppose that for each i P Wppq Ď Wppq,
one has si “ s and ei “ e, then one can derive e´ s ě Ω

`

|Wppq|p{ε2˘ , which strengthens the original bound
Ω
`

p{ε2˘ if |Wppq| is large. As such, it is helpful to merge those coordinates with similar rsi, eis. To facilitate
analysis, we introduce the notion of “segments.”

Definition 1 (Segment). For any p, x ą 0 and i P rks, we say that pt1, t2q is a pp, q, xq-segment if there
exists a subset I Ď rks such that

piq
ř

iPI w
t1
i P rp{2, ps,

piiq
ř

iPI w
t2
i ě p exppxq,

piiiq
ř

iPI w
t
i ě q for any t1 ď t ď t2.

We shall refer to t1 as the starting point and t2 as the ending point, and call I the index set. Moreover, two
segments ps1, e1q and ps2, e2q are said to be disjoint if s1 ă e1 ď s2 ă e2 or s2 ă e2 ď s1 ă e1.
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For any pp, p{2, xq-segment pt1, t2q, repeating the arguments in (24) allows one to derive [YXC: TODO]

t2 ´ t1 ě Ωppx2{ε2q.

For each i P Wppq (see its definition in (25)), there exists a
`

p
4 ,

p
8 , logp2q

˘

-segment psi, eiq with index set
I “ tiu. It then follows that

ei ´ si ě Ω
`

p{ε2˘ for each i P Wppq. (27)

As a result, if the segments psi, eiq are mutually disjoint, |Wppq| is at most rOp1{pq. More generally, if we can
divide the |Wppq| segments into disjoint blocks such that the segments belonging to the same block share the
same starting and ending points, then we can also derive |Wppq| ď rOp1{pq. Suppose that we have ` blocks
with the i-th block (with starting-ending points as prsi, reiq) containing mi coordinates, and suppose that
rs1 ă re1 ď rs2 ă re2 ď ¨ ¨ ¨ ď rs` ă re`. Then from Definition 1, prsi, reiq forms a

`

mi ¨
p
4 ,mi ¨

p
8 , logp2q

˘

-segment
with index set as the mi coordinates in the i-th block, thereby indicating that

rei ´ rsi ě Ω
`

mip{ε
2˘ .

Summing over 1 ď i ď ` leads to

|Wppq| ď
ÿ̀

i“1
mi ď O

˜

ÿ̀

i“1

prei ´ rsiqε2

p

¸

ď O

ˆ

Tε2

p

˙

“ rO

ˆ

1
p

˙

, (28)

which in turn implies that
ř

iPWppqmax1ďtďT w
t
i ď

rOp1q. With standard doubling arguments, it follows that
ř

iPrksmax1ďtďT w
t
i “

rOp1q.
In light of the above observation, we introduce the following concept of regular configurations.7

Definition 2 (Configuration). A configuration Conf is a set of intervals Conf “ trai, bisumi“1 obeying bi ą ai
for each i P rms (note that repeated elements are allowed). A configuration Conf is said to be regular if, for
any i, j P rms, one of the following three properties holds:

paq ai ă bi ď aj ă bj;

pbq aj ă bj ď ai ă bi;

pcq ai “ aj, bi “ bj.

In words, (28) asserts that if trsi, eisuiPWppq forms a regular configuration, then we have |Wppq| “ rO p1{pq.
However, a general configuration of the segments might be irregular because it is possible that two segments
are not disjoint (see Figure 2). To address this issue, we find it helpful to construct a regular configuration
with sub-segments8 of the original segments.

Our first step is to align one side of the segments. We then divide the whole learning process into disjoint
blocks such that the segments in each block have a common inner point (see Figure 3). In the meantime,
a segment is discarded if it intersects with more than one blocks. We show that there exists a regular
configuration of the blocks such that at most p1´ 1

3plog2pT q`1q q|Wppq| segments are discarded. In other words,
at least 1

3plog2pT q`1q ¨ |Wppq| segments are contained by these blocks. Since the blocks are disjoint, it suffices
to operate on one block. Without loss of generality, assume that there is only one block, which also means
that all segments have a common inner point tmid. Then we divide this block into two parts according to
tmid (see Figure 4). Given that

log
`

weii {w
tmid
i

˘

` log
`

wtmid
i {wsii

˘

ě logp2q,
7See an example in Figure 1.
8A sub-segment is equivalent to a sub-interval of a segment. We refer to Figure 6 for more details.
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one has: either psi, tmidq is a
`

p
4 ,

p
8 ,

logp2q
2

˘

-segment with index i, or ptmid, eiq is a
`

wtmid
i , p8 ,

logp2q
2

˘

-segment
with index set tiu. Since wtmid

i P rp{4, p{2s, we can roughly view ptmid, eiq as a
`

p
4 ,

p
8 ,

logp2q
2

˘

-segment in the
latter case. Therefore, one can find at least |Wppq|

3plog2pT q`1q
1
2 different

`

p
4 ,

p
8 ,

logp2q
2

˘

segments with the same
starting (ending) points.

Without loss of generality, we assume that these
`

p
4 ,

p
8 ,

logp2q
2

˘

-segments share a common starting point.
We denote the common starting point as e0, and re-order the coordinates so that ei is non-decreasing in i
(see Figure 3). Then we construct Oplog2pkqq regular configurations using a recursion (see Lemma 16). This
allows us to show that at least one of these configurations contains rO p|Wppq|q

´

p
4 ,

p
8 ,

logp2q
2plog2pkq`2q

¯

-segments
(see Figures 5-6).

5 Analysis for VC classes (proof of Theorem 1)

The main steps for establishing Theorem 1 lie in proving three key lemmas, as stated below.
The first lemma is concerned with the hypothesis ht “ arg minhPH pLtph,wtq (cf. line 11 of Algorithm 1);

in words, ht is the minimizer of the empirical loss function pLtp¨, wtq, computed using samples obtained up
to the t-th round. The following lemma tells us that: even though ht is an empirical minimizer, it almost
optimizes the weighted population loss Lp¨, wtq. In other words, this lemma justifies that the adaptive
sampling scheme proposed in Algorithm 1 ensures faithfulness of the empirical loss and its minimizer.

Lemma 1. With probability at least 1´ δ{4,

Lpht, wtq ď min
hPH

Lph,wtq ` ε1 (29)

holds for all 1 ď t ď T , where ht (resp. wt) is the hypothesis (resp. weight vector) computed in round t of
Algorithm 1.

Proof. See Section C.1.

Next, assuming that (29) holds, we can resort to standard analysis for the Hedge algorithm to demonstrate
the quality of the final output hfinal.

Lemma 2. Suppose that lines 6-11 in Algorithm 1 are replaced with some oracle that returns a hypothesis ht
satisfying Lpht, wtq ď minhPH Lph,wtq ` ε1 in the t-th round for each 1 ď t ď T . With probability exceeding
1´ δ{4, the hypothesis hfinal output by Algorithm 1 is ε-optimal in the sense that

max
1ďiďk

Lphfinal, eiq ď min
hPH

max
1ďiďk

Lph, eiq ` ε. (30)

Proof. See Section C.2.

Taking Lemma 1 and Lemma 2 together, one can readily see that Algorithm 1 returns an ε-optimal
randomized hypothesis hfinal with probability at least 1´ δ{2. The next step then lies in bounding the total
number of samples that has been collected Algorithm 1. Towards this end, recall that wTi “ max1ďtďT w

t
i for

each i P rks. Recognizing that pwti ď wti for each t P rT s and i P rks, we can bound the total sample size by

psample sizeq T1

k
ÿ

i“1
pwTi ` k ` T

ˆ

k
k
ÿ

i“1
wTi ` k

˙

ď
`

T1}w
T }1 ` kT }w

T }1
˘

` kpT ` 1q

À
d log

`

d
ε

˘

` k log
`

k
δε

˘

ε2 ¨ }wT }1. (31)

Consequently, everything then comes down to bounding }wT }1, for which we resort to the following lemma.
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Lemma 3. Assume Line 6-11 in Algorithm 1 is replaced by some oracle which returns a hypothesis ht
satisfies that Lpht, wtq ď minhPH Lph,wtq ` ε1 in the t-th round for each 1 ď t ď T . With probability at least
1´ δ{4, one has }wT }1 is bounded by

}wT }1 ď O

ˆ

log5
pkq log

ˆ

1
ε

˙

log2
ˆ

k

δε

˙˙

.

It is noteworthy that the proof of Lemma 3 is the most technically challenging part of the analysis; we
postpone this proof to Appendix C.3.

Combining Lemma 3 with (31) immediately reveals that, with probability at least 1 ´ δ, the sample
complexity of Algorithm 1 is bounded by

O

˜

d log
`

d
ε

˘

` k log
`

k
δε

˘

ε2 ¨

ˆ

log5
pkq log

ˆ

1
ε

˙

log2
ˆ

k

δε

˙˙

¸

,

as claimed in Theorem 1. It remains to prove the above key lemmas, which we postpone to Section C.

6 Necessity of randomization

Given that the best-known sample complexities prior to our work were derived for algorithms that either
output randomized hypotheses or invoke majority votes, Awasthi et al. (2023) raised the question about how
the sample complexity is impacted if only deterministic (or “proper”) hypotheses are permitted as the output
of the learning algorithms. As it turns out, the restriction to deterministic hypotheses substantially worsens
the sample efficiency, as revealed by the following theorem.

Theorem 2. Assume that d ě 2 logp8kq. Consider any ε P p0, 1{100q, and let N0 “
2d´1
k . One can find

• a hypothesis class H containing at most kN0 ` 1 hypothesis,

• a collection of k distributions D :“ tDiu
k
i“1,

• a loss function ` : Hˆ X ˆ Y Ñ r´1, 1s,

such that it takes at least dk
240000ε2 samples to find h P H obeying

max
1ďiďk

E
px,yq„Di

“

`
`

h, px, yq
˘‰

ď min
h1PH

max
iPrks

E
px,yq„Di

“

`
`

h1, px, yq
˘‰

` ε (32)

with probability exceeding 3{4.

Let us breifly desribe the high-level strategy for our construction of the hard instance: for each i P rks,
we build a hypothesis set Hi that performs poorly solely on Di. To discriminate the optimal hypothesis —
denoted by h‹ — from some Hi, the learner has to call Ωplogp|Hi|q{ε

2q “ rΩpd{ε2q times to QuerypDiq in
expectation. The result follows by taking sum over i P rks.

Proof of Theorem 2. Note that N0 “
2d´1
k . Set N “ kN0 ` 1 “ 2d. Set X “ t´1, 0, 1ukN . We set Y “ t1u

to be a set with only one element. Without loss of generality, we write `ph, px, yqq “ `ph, xq.
We now describe our construction. There are N hypotheses in H, where each hypothesis corresponds

to k dimensions of the ground set X . Without loss of generality, for h P H, we let Ih “ tjh,iuki“1 be the
k dimensions related to h. Note that Ih X Ih1 “ H for h ‰ h1. We construct H as H “ pYki“1Hiq Y th

‹u.
Then we define hpxq and `ph, xq as hpxq “ `ph, xq “ xi1 where i1 “ arg miniPIh,xi‰0. Now we design
the k distributions tDiu

k
i“1. Fix i P rks, we let PDirxs “ ΠkN

`“1PDi,`rx`s, where PDi,`rx`s “ Irx` “ 0s for
` R tjh,i|h P Hu, PDi,`rx`s “

1
2 Irx` “ 1s ` 1

2 Irx` “ ´1s for ` P tjh,i|h R Hiu, and PDi,`rx`s “
` 1

2 ` 4ε
˘

Irx` “
1s `

` 1
2 ´ 4ε

˘

Irx` “ ´1s for ` P tjh,i|h P Hiu. In words, for each i P rks, we draw x „ Di by independently
generate each coordinate of x, and there are |H| “ N non-zero coordinates. Furthermore, for x „ Di and
h P H, we have `ph, xq “ xjh,i . Through this construction, we have the following properties:
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(i). `ph, xq P r´1, 1s for any h P H and x P X ;

(ii). Ex„Dir`ph, xqs “ Ex„Di,jh,i rxjh,is “ 8ε ¨ Irh P His for any i P rks and h P H;

(iii). the only ε-optimal hypothesis is h‹ because for any h ‰ h‹, there exists some i such that h P Hi;

(iv). hpxq P t´1, 1u for x P pYki“1supppDiqq
9, and |H| “ N “ kN0 ` 1 “ 2d, which imply VCpHq ď

log2pNq ď d over pYki“1supppDiqq;

(v). `ph, xq could be regarded as a function of hpxq because `ph, xq “ hpxq.

For each call to QuerypDiq, we can get independent observations txjh,iuhPH where xjh,i „ Di,jh,i for each
h P H. Now we let the number of calls to QuerypDiq be Mi for i P rks. Our target is to show to distinguish
h‹ from Hi, Mi has to be at least Ωpd{ε2q.

Suppose now that there is an algorithm G with numbers of samples tMiu
k
i“1 such that the output is h‹

with probability at least 3
4 . Let PGr¨s and EGr¨s denote respectively the probability and expectation under

running the algorithm G. Let hout be the output hypothesis. It then follows that

PGrhout “ h‹s ě
3
4 .

Let ΠH be the set of permutations over H. Let UpΠHq be the uniform distribution over ΠpHq. With a slight
abuse of notations, for x P t´1, 0, 1ukN and σ P ΠH, we define σpxq to be the vector y such that yjh,i “ xjσphq,i
for all h P H and i P rks. Let G1 be the algorithm with H replaced by σpHq in the input where σ „ UpΠHq.
Recognizing G returns the optimal hypothesis with probability at least 3{4 for all problem instances, we can
see tat

PG1rhout “ h‹s ě
3
4 .

We note that G1 is a symmetric algorithm with respect to the hypothesis set. Formally, we have the
lemma below to bound the probability of returning a sub-optimal hypothesis.

Lemma 4. Fix m ě 0 and ri P rks. Suppose PG1rhout “ h‹,Mi ď ms ě 1
2 . It then holds that for any h P H

ri

PG1rhout “ h,M
ri ď ms ě

1
2PG1rhout “ h‹,M

ri ď ms expp´80
?
mε´ 40mε2q.

Moreover, it holds that m ě
logpN0{4q
30000ε2 .

By Lemma 4, we have

PG1

„

hout “ h‹,M
ri ď

logpN0{4q
30000ε2



ď
1
2 . (33)

Observing that PG1rhout “ h‹s ě 3
4 , we learn that

PG1rhout “ h‹,M
ri ě

logpN0{4q
30000ε2 s ě

1
4 , (34)

which implies that EG1rMris ě
logpN0{4q
120000ε2 ě

d´log2p8kq
120000ε2 ě d

240000ε2 . Summing over i P rks gives

EG1

«

k
ÿ

i“1
M

ri

ff

ě
dk

240000ε2 . (35)

The proof is thus completed.
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Algorithm 3: Hedge for Multi-distribution Learning on Rademacher Class (MDL´ Hedge ´

Rademacher)
1 input: k data distributions tD1,D2, . . . ,Dku, hypothesis class H, target accuracy level ε, target success rate 1´ δ,

the constant tCnuně1 in Assumption 1.

2 hyper-parameters: stepsize η “ 1
100 ε, number of rounds T “ 20000 logp kδ q

ε2 , auxiliary accuracy level ε1 “
1

100 ε,

auxiliary sub-sample-size T1 “ min
#

t ě
400

´

k logp k
ε1
q`logp 1

δ
q
˘¯

ε2
1

ˇ

ˇ

ˇ
Ct ď

ε1
1200

+

.

3 initialization: for all i P rks, set W 1
i “ 1, pw0

i “ 0 and n0
i “ 0; S “ H.

4 draw r12 logp2kqs samples from Di for each i, and add these samples to S.
5 for t “ 1, 2, . . . , T do
6 set wt “ rwti s1ďiďk and pwt “ r pwti s1ďiďk, where w

t
i Ð

W t
i

ř

j W
t
j

and pwti Ð pwt´1
i for all i P rks.

/* recompute pwt & draw new samples for Sw only if wt changes sufficiently. */
7 if there exists j P rks such that wtj ě 2 pwt´1

j then
8 pwti Ð maxtwti , pw

t´1
i u for all i P rks;

9 for i “ 1, . . . , k do
10 nti Ð

P

T1 pwti
T

;
11 draw nti ´ n

t´1
i independent samples from Di, and add these samples to S.

/* estimate the near-optimal hypothesis for weighted data distributions. */
12 compute ht Ð arg minhPH pLph,wtq, where

pLtph,wtq :“
k
ÿ

i“1

wti
qnti
¨

qnti
ÿ

j“1
`
`

h, pxi,j , yi,jq
˘

(36)

with qnti “ mint
P

T1wti ` 12 logp2kq
T

, T1u, and pxi,j , yi,jq being the j-th datapoint from Di in S.
/* estimate the loss vector and execute weighted updates. */

13 wti Ð max1ďτďt wτi for all i P rks.
14 for i “ 1, . . . , k do
15 draw rkwtis independent samples — denoted by

 

pxti,j , y
t
i,jq

(rkwtis

j“1 — from Di, and set

prti “
1

rkwtis

rkwtis
ÿ

j“1
`
`

ht, pxti,j , y
t
i,jq

˘

;

16 update the weight as W t`1
i “W t

i exppηprtiq. // Hedge updates.

17 output: a randomized hypothesis hfinal as a uniform distribution over thtuTt“1.
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7 Extension: learning Rademacher classes

In this section, we study how to adapt our algorithm and theory to accommodate MDL for Rademacher
classes.

7.1 Preliminaries: Rademacher complexity

Let us first introduce the formal definition of the Rademacher complexity; more detailed introduction can be
found in Shalev-Shwartz and Ben-David (2014).

Definition 3 (Rademacher complexity). Given a distribution D supported on Z :“ X ˆ Y and a positive
integer n, the (average) Rademacher complexity is defined as

RadnpDq :“ E
tziuni“1

«

E
tσiuni“1

«

max
hPH

1
n

n
ÿ

i“1
σi`ph, ziq

ffff

, (37)

where tziuni“1 are drawn independently from D, and tσiuni“1 are i.i.d. Rademacher random variables obeying
Ptσi “ 1u “ Ptσi “ ´1u “ 1{2 for each 1 ď i ď n.

Next, we would like to make an assumption on the Rademacher complexity of mixtures of distributions.
Denoting by Dpwq the mixed distribution

Dpwq :“
k
ÿ

i“1
wiDi (38)

for any probability vector w P ∆pkq, we can state our assumption as follows.

Assumption 1. For each n ě 1, there exists a universal constant Cn ą 0 such that

Radn
`

Dpwq
˘

ď Cn (39)

holds for all w P ∆k.

Remark 1. One might raise a natural question about Assumption 1: can we only assume RadnpDiq ď Cn
for i P rks without incuring a worse sample complexity? The answer is, however, negative. In fact, the
Rademacher complexity RadnpDpwqq is not convex in w, and hence we fail to use maxi RadnpDiq to bound
maxwP∆pkq RadnpDpwqq. The interested reader is referred to Appendix F.3 for more details.

It is well known that VC-dimpHq ď d implies Assumption 1 holds with Cn “
b

2d logpen{dq
n (Mohri et al.,

2018).
To facilitate our analysis in this section, we find it helpful to introduce the notion of the weighted

Rademacher complexity as follows.

Definition 4 (Weighted Rademacher complexity). Given a collection of distributions D “ tDiu
k
i“1 and a set

of positive integers tniuki“1, the weighted (average) Rademacher complexity is defined as

ĄRadtniuki“1
pDq :“ E

tzj
i
u
ni
j“1,@iPrks

«

E
tσj
i
u
ni
j“1,@iPrks

«

1
řk
i“1 ni

max
hPH

k
ÿ

i“1

ni
ÿ

j“1
σji `

`

h, zji
˘

ffff

, (40)

where
 

tzji u
nk
j“1

(k

i“1 are independently generated with each zji drawn from Di, and
 

tσji u
ni
j“1

(k

i“1 are independent
Rademacher random variables obeying Ptσji “ 1u “ Ptσji “ ´1u “ 1{2. Throughout the rest of this paper, we
shall often abbreviate ĄRadtniuki“1

“ ĄRadtniuki“1
pDq.

9We use supppDq to denote the support of the distribution D
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The weighted Rademacher complexity defined above satisfies an important property below.
Lemma 5. For any two groups of positive integers tniuki“1 and tmiu

k
i“1, it holds that

˜

k
ÿ

i“1
ni

¸

ĄRadtniuki“1
ď

˜

k
ÿ

i“1
pmi ` niq

¸

ĄRadtmi`niuki“1

ď

˜

k
ÿ

i“1
ni

¸

ĄRadtniuki“1
`

˜

k
ÿ

i“1
mi

¸

ĄRadtmiuki“1
. (41)

In addition, the following lemma allows us to bound the weighted Rademacher complexity under
Assumption 1.
Lemma 6. Consider any tniuki“1 obeying ni ě 12 logp2kq for each i P rks. By taking w P ∆k with wi “ ni

řk
l“1 nl

,
one has

ĄRadtniuki“1
ď 72Radřk

i“1 ni

`

Dpwq
˘

.

7.2 Algorithm and sample complexity

Let us present our algorithm in Algorithm 3, which seeks to learn a Rademacher class in the presence of
multiple distributions. Note that Algorithm 3 is also a Hedge-like algorithm to learn a convex (concave)
game. Its major difference from Algorithm 1 lies in the subroutine to learn ht (see lines 6-12 in Algorithm 3).
More precisely, to compute the estimator pLtph,wtq for Lph,wtq, instead of using the first nti samples from Di

for each i P rks, we choose to use the first
qnti “ min

 P

T1w
t
i ` 12 logp2kq

T

, T1
(

samples from Di for each i. Formally, we have the following theoretical guarantees.
Theorem 3. Suppose Assumption 1 holds. With probability at least 1 ´ δ, the output hfinal returned by
Algorithm 3 satisfies

max
i
Lphfinal, eiq “ max

i

1
T

T
ÿ

t“1
Lpht, eiq ď min

hPH
max
i
Lph, eiq ` ε.

Meanwhile, the sample complexity of Algorithm 3 is bounded by

O

ˆ

Tε ¨ log5
pkq log

ˆ

1
ε

˙

log2
ˆ

k

δε

˙˙

,

where Tε is defined as

Tε :“ min

$

&

%

t ě
400

´

k logp kε1
q ` logp 1

δ q

¯

ε2
1

ˇ

ˇ

ˇ
Ct ď

ε1
1200

,

.

-

.

In the case where VC-dimpHq ď d, we have Cn ď
b

2d logpen{dq
n , which implies that Tε “ rO

`

d`k
ε2

˘

and a
sample complexity bound of rO

`

d`k
ε2

˘

.

Proof of Theorem 3. In view of Lemma 2 and Lemma ??, it suffices to show that running Algorithm 3 results
in Lpht, wtq ď minhPH Lph,wtq` ε1 for any 1 ď t ď T , a property that holds with probability at least 1´ δ{4.
Formally, we have the lemma below.

Lemma 7. Suppose Assumption 1 holds. With probability at least 1´ δ{4, the iterates of Algorithm 3 satisfy
Lpht, wtq ď min

hPH
Lph,wtq ` ε1 (42)

for any 1 ď t ď T .

The proof of Lemma 7 is postponed to Appendix F.
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8 Extension: oracle-efficient multi-group learning

Given a hypothesis set H where each h P H : X Ñ Y, a set of groups G such that each g P G is a
subset of X , and a loss function ` : Y ˆ Y Ñ r0, 1s and a distribution D with support X ˆ Y, define
LDph | gq :“ Epx,yq„Dr`phpxq, yq|x P gs. Define Pg “ Ppx,yq„Drx P gs. Let γ “ mingPG Pg. The goal of the
learning algorithm is to find a (possibly randomized) hypothesis h to minimize LDph | gq for all g P G up to
some threshold ε P p0, 1s. That is,

LDph | gq ď min
h1PH

LDph
1 | gq ` ε,@g P G.

We continue with the compatibility assumption as below, which ensures the existence of such a near-
optimal hypothesis h.

Assumption 2. There exists h˚ P H, such that

LDph
˚|gq ď min

hPH
LDph | gq `

ε

8 , @g P G.

The learning algorithm As presented in Algorithm 4, we first sample N “ O
´

logp|G|{δq`d logpd{εq
γε2

¯

datapoints from D, and then estimate the optimal value fg for each group g P G. By taking LDph | gq ´ fg to
be the loss function, we can then invoke a Hedge algorithm over G to solve the following problem:

min
hP∆pHq

max
gPG

pLDph | gq ´ fgq. (43)

According to Assumption 2, it suffices to find some (possibly randomized) h such that

max
gPG

pLDph | gq ´ fgq ď max
gPG

pLDph
˚ | gq ´ fgq `Opεq

Formally, we have the following theorem.

Theorem 4. Assume ε P p0, 1{10s. Suppose Assumption 2 holds. By running Algorithm 4, with probability
at least 1´ δ, the output hfinal satisfies that

LDph
final | gq “

1
T

T
ÿ

t“1
LDph

t | gq ď min
hPH

LDph | gq ` ε (44)

for any g P G. Meanwhile, the sample complexity of Algorithm 4 is bounded by

O

ˆ

d logpd{εq ` logp|G|{δq
γε2

˙

.

Moreover, Algorithm 4 only access H with an ERM oracle.

Under Assumption 2, Theorem 4 recovers the result in Tosh and Hsu (2022) without direct access to the
hypothesis set H. In high-level idea, the proof of Theorem 4 is based on the uniform convergence argument,
which is a natural extension of our main results.

9 Discussion

In this paper, we have settled the problem of achieving optimal sample complexity in multi-distribution
learning, assuming the availability of adaptive (or on-demand) sampling. We have put forward a novel oracle-
efficient algorithm that provably attains a sample complexity of rO

`

d`k
ε2

˘

for VC classes, which matches the
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best-known lower bound up to some logarithmic factor. From the technical perspective, the key novelty of our
analysis lies in carefully bounding the trajectory of the Hedge algorithm on a convex (concave) optimization
problem. We have further unveiled the necessesity of randomization, revealing that a considerably larger
sample size is necessary if the learning algorithm is constrained to return deterministic hypotheses. Notably,
our work manages to solve three open problems presented in COLT 2023 (namely, Awasthi et al. (2023,
Problems 1, 3 and 4)).

Our work not only addresses existing challenges but also opens up several directions for future exploration.
To begin with, while our sample complexity results are optimal up to logarithmic factors, further studies
are needed in order to sharpen the logarithmic depdency. Additionally, the current paper assumes a flexible
sampling protocol that allows the learner to take samples arbitrarily from any of the k distributions; how
will the sample complexity be impacted under additional constraints imposed on the sampling process?
Furthermore, can we extend our current analysis (which bounds the dynamics of the Hedge algorithm) to
control the trajectory of more general first-order/second-order algorithms, in the context of robust online
learning? Another venue for exploration is the extension of our multi-distribution learning framework to tackle
other related tasks like multi-calibration (Hébert-Johnson et al., 2018; Haghtalab et al., 2023). We believe
that our algorithmic and analysis framework can shed light on making progress in all of these directions.
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A Additional figures

In this section, we provide several examples with figures, in order to help the readers understand our strategy
in obtaining a regular configuration in Section 4.2.2 and Lemma 16. Let us provide a brief introduction to
these figures.

In Figure 1, we present an example of a regular configuration. In this example, letting rrsi, reis be the
interval for the i-th block, we have rei ´ rsi ě Ωpmip{ε

2q, where mi is the number of coordinates in the i-th
block. By observing that

ÿ

i

mip

ε2 “ Op
ÿ

i

rei ´ rsiq “ OpT q,

we can derive
|Wppq| “

ÿ

i

mi “ OpTε2{pq “ rOp1{pq.

In addition, we give an example of irregular configuration in Figure 2. Due to the non-disjoint segments, one
cannot perform the arguments above to bound |Wppq|.

In Figure 3, we provide an example of the partition of blocks, and in Figure 4, we illustrate how to align
one side of the segments using a common inner point.

In Figure 5 and Figure 6, we illustrate how to construct the regular configurations using a group of segments
with the same starting points in the case where k “ 8. In this toy example, we have in total 5 configurations
with 5 different colors. For each

´

p
4 ,

p
8 ,

logp2q
2

¯

-segment in Figure 5, it forms an
´

p
4 ,

p
8 ,

logp2q
2plog2pkq`2q

¯

-segment
to at least one of these configurations. According to the pigeonhole principle, there must be at least one
regular configuration with a number |Wppq|

6plog2pT q`1qplog2pkq`2q of
´

p
4 ,

p
8 ,

logp2q
2plog2pkq`2q

¯

-segments (see Lemma 16).

Figure 1: Regular configuration.
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Figure 2: General irregular configuration.

Figure 3: Partition of blocks.

B Auxiliary lemmas

In this section, we introduce several technical lemmas that are used multiple times in our analysis.
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Figure 4: Aligning one side of the configuration. The unfilled part of the segments means that the variation
over wsii Ñ wtmid

i (i.e., log
`

wtmid
i {wsii

˘

) is not significant enough.

Figure 5: A group of segments with common starting points.

We begin by introducing three handy concentrations inequalities. The first result is the well-renowned
Freedman inequality (Freedman, 1975), which assists in deriving variance-aware concentration inequalities for
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Figure 6: Construction of the regular configurations. Each segment is cut into at most log2pkq`1 sub-segments
with different colors.

martingales.

Lemma 8 (Freedman’s inequality (Freedman, 1975)). Let pMnqně0 be a martingale obeying M0 “ 0.
Define Vn :“

řn
k“1 ErpMk ´Mk´1q

2 |Fk´1s for each n ě 0, where Fk denotes the σ-algebra generated by
pM1,M2, . . . ,Mkq. Suppose that Mk ´Mk´1 ď 1 for all k ě 1. Then for any x ą 0 and y ą 0, one has

P
`

Mn ě nx, Vn ď ny
˘

ď exp
ˆ

´
nx2

2py ` 1
3xq

˙

. (45)

The second concentration result bounds the difference between the sum of a sequence of random variables
and the sum of their respective conditional means (w.r.t. the associated σ-algebra).

Lemma 9 (Lemma 10 in Zhang et al. (2022)). Let X1, X2, . . . be a sequence of random variables taking
value in the interval r0, ls. For any k ě 1, let Fk be the σ-algebra generated by pX1, X2, . . . , Xkq, and define
Yk :“ ErXk | Fk´1s. Then for any δ ą 0, we have

P

#

Dn P N,
n
ÿ

k“1
Xk ě 3

n
ÿ

k“1
Yk ` l log 1

δ

+

ď δ,

P

#

Dn P N,
n
ÿ

k“1
Yk ě 3

n
ÿ

k“1
Xk ` l log 1

δ

+

ď δ.

The third concentration result is the Mcdiarmid inequality, a celebrated inequality widely used to control
the flucutaion of multivariate functions when the input variables are independently generated.

Lemma 10 (Mcdiarmid’s inequality). Let X1, X2, . . . , Xn be a sequence of independent random variables,
with Xi supported on Xi. Let f : X1 ˆ X2 ˆ ¨ ¨ ¨ ˆ Xn Ñ R be a function such that: for any i P rns and any
tx1, . . . , xnu P X1 ˆ ¨ ¨ ¨ ˆ Xn,

sup
x1
i
PXi

ˇ

ˇfpx1, ¨ ¨ ¨ , xi, ¨ ¨ ¨ , xnq ´ fpx1, ¨ ¨ ¨ , x
1
i, ¨ ¨ ¨ , xnq

ˇ

ˇ ď c
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holds for some quantity c ą 0. It then holds that

P
!

ˇ

ˇfpX1, X2, ¨ ¨ ¨ , Xnq ´ E
“

fpX1, X2, ¨ ¨ ¨ , Xnq
‰
ˇ

ˇ ě ε
)

ď 2 exp
ˆ

´
2ε2

nc2

˙

.

Additionally, the following lemma presents a sort of the data processing inequality w.r.t. the Kullback-
Leibler (KL) divergence, which is a classical result from information theory.

Lemma 11. Let X and Y be two sets, and consider any function f : X Ñ Y. For any two random variables
X1 and X2 supported on X , it holds that

KL
`

µpX1q }µpX2q
˘

ě KL
`

µ
`

fpX1q
˘

}µ
`

fpX2q
˘˘

, (46)

where we use µpZq to denote the distribution of a random variable Z.

Lastly, let us make note of an elementary bound regarding the KL divergence between two Bernoulli
distributions.

Lemma 12. Consider any q ą 0 and x P r0, logp2qs. Also, consider any y, y1 P p0, 1q obeying y ě q and
y1 ě exppxqy. It then holds that

KL
`

Berpyq }Berpy1q
˘

ě
qx2

4 ,

where Berpzq denotes the Bernoulli distribution with mean z.

Proof. To begin with, the function defined below satisfies

fpa, bq :“ KL
`

Berpaq }Berpbq
˘

“ a log
´a

b

¯

` p1´ aq log
ˆ

1´ a
1´ b

˙

.

For any 0 ă a ď b ď 1, it is readily seen that

Bfpa, bq

Bb
“ ´

a

b
`

1´ a
1´ b “

b´ a

bp1´ bq ě 0.

It follows from our assumptions y ě q and y1 ě exppxqy that

KL
`

Berpyq }Berpy1q
˘

“ fpy, y1q “ fpy, yq `

ż y1

y

Bfpy, zq

Bz
dz “

ż y1

y

z ´ y

zp1´ zqdz

ě
1
y1

ż y1

y

pz ´ yqdz ě py1 ´ yq2

2y1

ě
py1 ´ yqp1´ expp´xqq

2

ě
ypexppxq ´ 1q2

4 ě
qx2

4 ,

where the penultimate inequality uses x P r0, logp2qs, and the last inequality holds since y ě q.

C Proofs of auxiliary lemmas for VC classes

C.1 Proof of Lemma 1

For ease of presentation, suppose there exists a dataset rS containing T1 independent samples drawn from
each distribution Di (1 ď i ď k), so that in total it contains kT1 samples. We find it helpful to introduce the
following notation.
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• For each i P rks and j P rnis, denote by pxi,j , yi,jq the j-th sample in rS that is drawn from Di.

• For each set of integers n “ tniuki“1 P Nk, we define rSpnq to be the dataset containing
 

pxi,j , yi,jq
(

1ďjďni
for all i P rks; namely, it comprises, for each i P rks, the first ni samples in rS that are drawn from Di.

• We shall also let rS`pnq “
  `

x`i,j , y
`
i,j

˘(ni

j“1

(k

i“1 be an independent copy of rSpnq, where for each i P rks,
 `

x`i,j , y
`
i,j

˘(

are independent samples drawn from Di.

Equipped with the above notation, we are ready to present our proof.

Step 1: concentration bounds for any fixed n “ tniu
k
i“1 and w P ∆pkq. Consider first any fixed

n “ tniu
k
i“1 obeying 0 ď ni ď T1 for all i P rks, and any fixed w P ∆pkq. For any quantity λ P

“

0,miniPrks niwi
‰

,
if we take

Epλ, n,wq :“ E
rSpnq

«

max
hPH

exp
˜

λ

#

k
ÿ

i“1
wi

1
ni

ni
ÿ

i“1
`
`

h, pxi,j , yi,jq
˘

´ Lph,wq

+¸ff

(47)

with the expectation taken over the randomness of rSpnq, then we can apply a standard “symmetrization”
trick to bound Epλ, n,wq as follows:

Epλ, n,wq :“ E
rSpnq

«

max
hPH

exp
˜

λ

#

k
ÿ

i“1

wi
ni

ni
ÿ

i“1
`
`

h, pxi,j , yi,jq
˘

´ Lph,wq

+¸ff

“ E
rSpnq

«

max
hPH

exp
˜

λ

#

k
ÿ

i“1

wi
ni

ni
ÿ

i“1
`
`

h, pxi,j , yi,jq
˘

´ E
rS`pnq

«

k
ÿ

i“1

wi
ni

ni
ÿ

i“1
`
`

h, px`i,j , y
`
i,jq

˘

ff+¸ff

ď E
rSpnq

«

max
hPH

E
rS`pnq

«

exp
˜

λ

#

k
ÿ

i“1

wi
ni

ni
ÿ

j“1

´

`
`

h, pxi,j , yi,jq
˘

´ `
`

h, px`i,j , y
`
i,jq

˘

¯

+¸ffff

ď E
rSpnq, rS`pnq

«

max
hPH

exp
˜

λ

#

k
ÿ

i“1

wi
ni

ni
ÿ

j“1

´

`
`

h, pxi,j , yi,jq
˘

´ `
`

h, px`i,j , y
`
i,jq

˘

¯

+¸ff

, (48)

where the last two inequalities follow from Jensen’s inequality.
Next, let σpnq :“

 

tσi,ju
ni
j“1

(k

i“1 be a collection of i.i.d. Rademacher random variables obeying Ppσi,j “
1q “ Ppσi,j “ ´1q “ 1{2. Denoting C “

 

pxi,j , yi,jq
(
Ť
 

px`i,j , y
`
i,jq

(

, we obtain

E
rSpnq, rS`pnq

«

max
hPH

exp
˜

λ

#

k
ÿ

i“1

wi
ni

ni
ÿ

j“1

´

`
`

h, pxi,j , yi,jq
˘

´ `
`

h, px`i,j , y
`
i,jq

˘

¯

+¸ff

“ E
rSpnq, rS`pnq

«

E
σpnq

«

max
hPH

exp
˜

λ

#

k
ÿ

i“1

wi
ni

ni
ÿ

j“1
σi,j

´

`
`

h, pxi,j , yi,jq
˘

´ `
`

h, px`i,j , y
`
i,jq

˘

¯

+¸

ˇ

ˇ

ˇ
C

ffff

. (49)

Note that for any dataset C with cardinality |C|, the Sauer–Shelah lemma (Wainwright, 2019, Proposition 4.18)
together with our assumption that VC-dimpHq ď d tells us that the cardinality of the following set obeys

ˇ

ˇHpCq
ˇ

ˇ ď p|C| ` 1qd ď
`

| rS| ` | rS`| ` 1
˘d
ď p2kT1 ` 1qd, (50)

where HpCq denotes the set obtained by applying all h P H to the data points in C, namely,

HpCq :“
!

`

hpx1,1q, hpx
`
1,1q, hpx1,2q, hpx

`
1,2q, ¨ ¨ ¨

˘

| h P H
)

. (51)

We shall also define Hmin,C Ď H to be the minimum-cardinality subset of H that results in the same outcome
as H when applied to C, namely,

Hmin,CpCq “ HpCq and
ˇ

ˇHmin,C
ˇ

ˇ “
ˇ

ˇHpCq
ˇ

ˇ.
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With these in place, we can demonstrate that

E
σpnq

«

max
hPH

exp
˜

λ

#

k
ÿ

i“1

wi
ni

ni
ÿ

j“1
σi,j

´

`
`

h, pxi,j , yi,jq
˘

´ `
`

h, px`i,j , y
`
i,jq

˘

¯

+¸

ˇ

ˇ

ˇ
C

ff

“ E
σpnq

«

max
hPHmin,C

exp
˜

λ

#

k
ÿ

i“1

wi
ni

ni
ÿ

j“1
σi,j

´

`
`

h, pxi,j , yi,jq
˘

´ `
`

h, px`i,j , y
`
i,jq

˘

¯

+¸

ˇ

ˇ

ˇ
C

ff

ď E
σpnq

»

–

ÿ

hPHmin,C

exp
˜

λ

#

k
ÿ

i“1

wi
ni

ni
ÿ

j“1
σi,j

´

`
`

h, pxi,j , yi,jq
˘

´ `
`

h, px`i,j , y
`
i,jq

˘

¯

+¸

ˇ

ˇ

ˇ
C

fi

fl

ď
ˇ

ˇHmin,C
ˇ

ˇ max
hPHmin,C

E
σpnq

«

exp
˜

λ

#

k
ÿ

i“1

wi
ni

ni
ÿ

j“1
σi,j

´

`
`

h, pxi,j , yi,jq
˘

´ `
`

h, px`i,j , y
`
i,jq

˘

¯

+¸

ˇ

ˇ

ˇ
C

ff

ď
`

2kT1 ` 1
˘d max

hPH

k
ź

i“1

ni
ź

j“1
E
σi,j

„

exp
ˆ

λ

"

wi
ni
σi,j

´

`
`

h, pxi,j , yi,jq
˘

´ `
`

h, px`i,j , y
`
i,jq

˘

¯

*˙

ˇ

ˇ

ˇ
C


ď
`

2kT1 ` 1
˘d exp

˜

2λ2
k
ÿ

i“1

pwiq
2

ni

¸

. (52)

Here, the last inequality makes use of fact
ˇ

ˇ`
`

h, pxi,j , yi,jq
˘

´ `
`

h, px`i,j , y
`
i,jq

˘

| ď 2 as well as the following
elementary inequality

E
σi,j

“

exppσi,jxq
‰

“
1
2
`

exppxq ` expp´xq
˘

ď exp
`

0.5x2˘.

Taking (48), (49) and (52) together reveals that

Epλq ď p2kT1 ` 1qd exp
˜

2λ2
k
ÿ

i“1

pwiq
2

ni

¸

. (53)

Repeating the same arguments also yields an upper bound on the following quantity:

Epλq :“ E
rSpnq

«

max
hPH

exp
˜

λ

#

Lph,wq ´
k
ÿ

i“1

wi
ni

ni
ÿ

i“1
`
`

h, pxi,j , yi,jq
˘

+¸ff

ď p2kT1 ` 1qd exp
˜

2λ2
k
ÿ

i“1

pwiq
2

ni

¸

for any λ P
“

0,miniPrks niwi
‰

. Taking the above two inequalities and applying the Markov inequality reveal
that, for any 0 ă ε1 ď 1,

P

˜

max
hPH

ˇ

ˇ

ˇ

ˇ

ˇ

k
ÿ

i“1
wi

1
ni

ni
ÿ

i“1
`
`

h, pxi,j , yi,jq
˘

´ Lph,wq

ˇ

ˇ

ˇ

ˇ

ˇ

ě ε1

¸

ď min
0ďλďmini

ni
wi

Epλq ` Epλq

exppλε1q

ď min
0ďλďmini

ni
wi

2 ¨ p2kT1 ` 1qd exp
˜

2λ2
k
ÿ

i“1

pwiq
2

ni
´ λε1

¸

. (54)

Step 2: uniform concentration bounds over epsilon-nets w.r.t. n and w. Next, we move on to
extend the above result to uniform concentration bounds over all possible n and w. Towards this, let us first
introduce a couple of notation.
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• Let us use ∆ε2pkq Ď ∆pkq to denote an ε2-net of ∆pkq — namely, for any x P ∆pkq, there exists a
vector x0 P ∆ε2pkq obeying }x´ x0}8 ď ε2. We shall choose ∆ε2pkq properly so that

|∆ε2pkq| ď p1{ε2q
k.

• Define the following set

B “
"

n “ tniu
k
i“1, w “ twiu

k
i“1

ˇ

ˇ

ˇ

ni
wi
ě
T1

2 , 0 ď ni ď T1,@i P rks, w P ∆ε1{p8kqpkq

*

,

which clearly satisfies

|B| ď T k1 ¨

ˆ

8k
ε1

˙k

.

Applying the union bound yields that, for any 0 ă ε1 ď 1,

P

˜

Dpn,wq P B,max
hPH

ˇ

ˇ

ˇ

ˇ

ˇ

k
ÿ

i“1
wi

1
ni

ni
ÿ

i“1
`
`

h, pxi,j , yi,jq
˘

´ Lph,wq

ˇ

ˇ

ˇ

ˇ

ˇ

ě ε1

¸

ď
ÿ

pn,wqPB

min
0ďλďmini

ni
wi

2 ¨ p2kT1 ` 1qd exp
˜

2λ2
k
ÿ

i“1

pwiq
2

ni
´ λε1

¸

ď
ÿ

pn,wqPB

min
0ďλďT1

2

2 ¨ p2kT1 ` 1qd exp
ˆ

2λ2 ¨
2
T1
´ λε1

˙

ď
ÿ

pn,wqPB

2 ¨ p2kT1 ` 1qd exp
ˆ

´
T1pε

1q2

16

˙

ď |B| ¨ 2 ¨ p2kT1 ` 1qd exp
ˆ

´
T1pε

1q2

16

˙

ď 2 ¨ p8kT1{ε1q
kp2kT1 ` 1qd ¨ exp

ˆ

´
T1pε

1q2

16

˙

,

where the second inequality holds since
řk
i“1

w2
i

ni
ď 2

T1

řk
i“1 wi “

2
T1

(according to the definition of B).

Step 3: concentration bounds w.r.t. nt and wt. Let St denote the value of S after line 10 of Algorithm 1
in the t-th round. Recall that nt “ rntis1ďiďk denotes the number of samples for all k distributions in St,
and let wt “ rwtis1ďiďk represent the weight iterates in the t-th round. It is easily seen from lines 6 and 9 of
Algorithm 1 that nti ď T1 and nti{wti ě nti{p2 pwtiq ě T1{2. For analysis purposes, it suffices to take St “ rSpntq.

In view of the update rule in Algorithm 1, one can always find pnt, rwtq P B satisfying } rwt ´ wt}1 ď
k} rwt ´ wt}8 ď ε1{8. As a result, for any 0 ă ε1 ď 1, we can deduce that

P

¨

˝Dt P rT s,max
hPH

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

k
ÿ

i“1
wti

1
nti

nti
ÿ

i“1
`
`

h, pxi,j , yi,jq
˘

´ Lph,wtq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě ε1 `
ε1

4

˛

‚

ď P

¨

˝Dt P rT s,max
hPH

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

k
ÿ

i“1
rwti

1
nti

nti
ÿ

i“1
`
`

h, pxi,j , yi,jq
˘

´ Lph, rwtq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě ε1

˛

‚

ď 2 ¨ p8kT1{ε1q
kp2kT1 ` 1qd ¨ exp

ˆ

´
T1pε

1q2

16

˙

, (55)

where the second inequality arises from the fact that 1
ni

řni
i“1 `

`

h, pxi,j , yi,jq
˘

P r´1, 1s and Lph, rwtq P r´1, 1s.
Taking ε1 “ ε1{4 and substituting T1 “

4000pk logpk{ε1q`d logpkd{ε1q`logp1{δqq
ε2

1
into (55), we can obtain

P

¨

˝Dt P rT s,max
hPH

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

k
ÿ

i“1
wti ¨

1
nti

nti
ÿ

i“1
`
`

h, pxi,j , yi,jq
˘

´ Lph,wtq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě
ε1

2

˛

‚
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ď 2 ¨ p8kT1{ε1q
kp2kT1 ` 1qd ¨ exp

ˆ

´
T1ε

2
1

16

˙

ď 2 ¨ p8kT1{ε1q
kp2kT1 ` 1qd ¨ exp

´

´ 10
`

k logpk{ε1q ` d logpkd{ε1q ` logp1{δq
˘

¯

ď 2 ¨ p8kT1{ε1q
kp2kT1 ` 1qd ¨ pk{ε1q

´10k ¨ pkd{ε1q
´10d ¨ δ

ď δ{4. (56)

Step 4: putting all this together. Recalling that

pLtph,wtq “
k
ÿ

i“1
wti ¨

1
nti

nti
ÿ

i“1
`
`

h, pxi,j , yi,jq
˘

,

one can see from (56) that, with probability exceeding 1´ δ{4,
ˇ

ˇ

ˇ

pLtph,wtq ´ Lph,wtq
ˇ

ˇ

ˇ
ď
ε1

2 (57)

holds simultaneously for all t P rT s and all h P H. Additionally, observing that

ht “ arg min
hPH

pLtph,wtq, (58)

we can immediately deduce that

Lpht, wtq ď pLpht, wtq `
ε1

2 “ min
hPH

pLph,wtq `
ε1

2 ď min
hPH

Lph,wtq ` ε1. (59)

This concludes the proof of Lemma 1.

C.2 Proof of Lemma 2

Before proceeding, let us introduce some additional notation. Let δ1 :“ δ
4pT`k`1q , and define

OPT :“ min
hPH

max
1ďiďk

Lph, eiq

to be the optimal objective value. Additionally, set

vt :“ Lpht, wtq ´ OPT. (60)

It follows from the assumption of this lemma (i.e., Lpht, wtq ď minhPH Lph,wtq ` ε1) that

vt ď min
hPH

Lph,wtq ´ OPT` ε1 “ min
hPH

Lph,wtq ´min
hPH

max
i
Lph, eiq ` ε1 ď ε1, @1 ď t ď T. (61)

We now begin to present the proof. In view of the Azuma-Hoeffding inequality and the union bound, we
see that with probability at least 1´ pk ` 1qδ1,

ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1

@

wt, prt
D

´

T
ÿ

t“1
Lpht, wtq

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2
a

T logp1{δ1q, (62a)
ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1
prti ´

T
ÿ

t“1
Lpht, eiq

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2
a

T logp1{δ1q. (62b)

These motivate us to look at
řT
t“1

@

wt, prt
D

(resp.
řT
t“1 pr

t
i) as a surrogate for

řT
t“1 Lph

t, wtq (resp.
řT
t“1 Lph

t, eiq).
We then resort to standard analysis for the Hedge algorithm. Specifically, direct computation gives

log
˜

řk
i“1W

t`1
i

řk
i“1W

t
i

¸

(i)
“ log

˜

k
ÿ

i“1
wti exppηprtiq

¸

(ii)
ď log

˜

k
ÿ

i“1
wti

`

1` ηprti ` η2pprtiq
2˘
¸
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ď log
˜

1` η
k
ÿ

i“1
wtipr

t
i ` η

2
k
ÿ

i“1
wtippr

t
iq

2˘
¸

ď η
k
ÿ

i“1
wtipr

t
i ` η

2. (63)

Here, (i) is valid since wti “
W t
i

ř

jW
t
j
and W t`1

i “ W t
i exppηprtiq (cf. lines 5 and 15 of Algorithm 1); (ii) arises

from the elementary inequality ex ď 1 ` x ` x2 for x P r0, 1s as well as the facts that η ď 1 and |prti | ď 1.
Summing the inequality (63) over all t and rearranging terms, we are left with

η
T
ÿ

t“1

@

wt, prt
D

ě

T
ÿ

t“1

#

log
˜

řk
i“1W

t`1
i

řk
i“1W

t
i

¸

´ η2

+

“ log
˜

k
ÿ

i“1
WT`1
i

¸

´ log
˜

k
ÿ

i“1
W 1
i

¸

´ Tη2

ě max
1ďiďk

logpWT`1
i q ´ logpkq ´ Tη2

ě η max
1ďiďk

T
ÿ

t“1
prti ´ logpkq ´ Tη2, (64)

where the penultimate lines makes use of W 1
i “ 1 for all i P rks, and the last line holds since log

`

WT`1
i

˘

“

log
`

WT
i exppηprtiq

˘

ě ηprti . Dividing both sides by η yields

T
ÿ

t“1

@

wt, prt
D

ě max
i

T
ÿ

t“1
prti ´

ˆ

logpkq
η

` ηT

˙

. (65)

Combine the above inequality with (62) to show that, with probability at least 1´ pk ` 1qδ1,
T
ÿ

t“1
Lpht, wtq ě max

1ďiďk

T
ÿ

t“1
Lpht, eiq ´

ˆ

logpkq
η

` ηT ` 4
a

T logp1{δ1q
˙

. (66)

Recalling that ε1 “ η “ 1
100ε and T “ 20000 logp k

δ1ε
q

ε2 , we can derive

max
1ďiďk

T
ÿ

t“1
Lpht, eiq ď TOPT`

T
ÿ

t“1
vt `

ˆ

logpkq
η

` ηT ` 4
a

T logp1{δ1q
˙

ď TOPT` Tε1 `

ˆ

logpkq
η

` ηT ` 4
a

T logp1{δ1q
˙

ď TOPT` Tε, (67)

where the penultimate line results from (61). Given that hfinal is taken to be uniformly distributed over
thtu1ďtďT , we arrive at

max
1ďiďk

Lphfinal, eiq “ max
1ďiďk

1
T

T
ÿ

t“1
Lpht, eiq ď OPT` ε (68)

with probability at least 1´ pk ` 1qδ1. This concludes the proof by recalling that δ1 “ δ
4pT`k`1q .

Remark 2. Note that the proof of this lemma works as long as prti P r0, 1s is an unbiased estimate of Lpht, eiq
for each i P rks, regardless of how many samples are used to construct prti .

C.3 Proof of Lemma 3

Set δ1 “ δ{p32T 4k2q, and define

Wj :“
 

i P rks | max
1ďtďT

wti P p2´j , 2´pj´1qs
(

, 1 ď j ď tlog2pkqu` 1 (69a)
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W :“ rks{ Yj Wj . (69b)

In other words, we divide the k distributions into a logarithmic number of groups tWju, where each Wj

consists of those distributions whose corresponding maxt wti are on the same order. The main step in
establishing Lemma 3 lies in bounding the size of each Wj , as summarized below.

Lemma 13. Suppose that the assumptions of Lemma 3 hold. Then with probability exceeding 1´ 8T 4kδ1,

|Wj | ď 8 ¨ 107 ¨
´

`

log2pkq ` 1
˘4 `logpkq ` logp1{δ1q

˘2 ` log2pT q ` 1
˘

¯

¨ 2j (70)

holds all 1 ď j ď log2pkq ´ 2.

In words, Lemma 13 asserts that the cardinality of each Wj is upper bounded by

|Wj | ď rOp2jq.

Importantly, this lemma tells us that, with probability at least 1´ 8T 4k2δ1 “ 1´ δ{4, one has

}wT }1 “
k
ÿ

i“1
max

1ďtďT
wti ď k ¨ 2´ptlog2pkqu´2´1q `

tlog2pkqu´2
ÿ

j“1
|Wj |2´pj´1q

ď k ¨
16
k
`

tlog2pkqu´2
ÿ

j“1
|Wj |2´pj´1q

ď 2 ¨ 108 ¨
´

`

log2pkq ` 1
˘5` logpTkq ` logp1{δq

˘2` log2pT q ` 1
˘

¯

,

where the first inequality is valid since max1ďtďT w
t
i ď 2´pj´1q holds for any i P Wj . This immediately

concludes the proof of Lemma 3, as long as Lemma 13 can be established. Proving Lemma 13 is the most
challenging part of our analysis, and we dedicate the next section (Section D) to the proof of Lemma 13.

D Controlling the Hedge trajectory (proof of Lemma 13)

This section is devoted to proving Lemma 13. The proof relies heavily on the concepts of “segments” and
“configurations” introduced in Section 4.2. For convenience, we restate these definitions below.

Definition 5 (Segment (restated)). For any p, x ą 0 and i P rks, we say that pt1, t2q is a pp, q, xq-segment if
there exists a subset I Ď rks such that

piq
ř

iPI w
t1
i P rp{2, ps,

piiq
ř

iPI w
t2
i ě p exppxq,

piiiq
ř

iPI w
t
i ě q for any t1 ď t ď t2.

We shall refer to t1 as the starting point and t2 as the ending point, and call I the index set. Moreover, two
segments ps1, e1q and ps2, e2q are said to be disjoint if s1 ă e1 ď s2 ă e2 or s2 ă e2 ď s1 ă e1.

Definition 6 (Configuration (restated)). A configuration Conf is a set of intervals Conf “ trai, bisu
m
i“1

obeying bi ą ai for each i P rms (note that repeated elements are allowed). A configuration Conf is said to be
regular if, for any i, j P rms, one of the following three properties holds:

paq ai ă bi ď aj ă bj;

pbq aj ă bj ď ai ă bi;

pcq ai “ aj, bi “ bj.

In addition, we shall take δ1 “ δ{p32T 4k2q throughout this subsection, and we focus on any j P
r1, tlog2pkqus ´ 2.
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D.1 Outline

Before delving into the proof, we first describe the high-level idea. In Lemma 17, we provide a lower bound
on the length of a pp, q, xq segment. We then proceed to prove that: if |Wj | is large, then there exist many
disjoint segments, thereby requiring the total length T to be large enough in order to contain these segments.

As discussed in Section 4.2, we will extract a regular configuration from a general configuration. At a
high level, the proof consists of the following steps.

1. Identify a suitable segment for each i P Wj (see Lemma 14 in Section D.2);

2. Identify some disjoint blocks such that (see Lemma 15 and Figure 3):

• The segments in the same blocks have a common inner point;
• The number of segments in these blocks is at least 1

3plog2pT q`1q times the number of all the
segments, i.e., 1

3plog2pT q`1q |Wj |;
• Continue the analysis on a single block in view of the fact that these blocks are disjoint;

3. For each single block, use the common inner point to align either the starting points or the ending
points of at least half of these segments (see Lemma 16 and Figure 4);

4. Design a group of regular configurations (at most Oplog2pkqq groups) such that at least one of the
regular configurations contains enough segments with significant variation (see Lemma 16 and Figure 6).

In the sequel, we shall present the details of each of these steps.

D.2 Step 1: identifying segments for each distribution in Wj

Recall that Wj contains those distributions whose corresponding weight iterates obey max1ďtďT w
t
i P

p2´j , 2´j`1s (cf. (69a)). As it turns out, for any i P Wj , one can find an
` 1

2j`1 ,
1

2j`2 , logp2q
˘

-segment, as
stated in the lemma below. This basic fact allows one to link each distribution in Wj with a segment of
suitable parameters.
Lemma 14. For each i P Wj, there exists 1 ď si ă ei ď T , such that

1
2j`2 ă wsii ď

1
2j`1 , weii ą

1
2j , and wti ą 2´pj`2q @t P rsi, eis. (71)

In other words, there exists a
` 1

2j`1 ,
1

2j`2 , logp2q
˘

-segment psi, eiq with the index set as tiu (see Definition 5).

Proof. From the definition (69a) of Wj , it is straightforward to find a time point ei obeying weii ą 1
2j . It

then remains to identify a valid point si. To this end, let us define

τ “ max
 

t | t ď ei, w
t
i ď 2´pj`2q(,

which is properly defined since w1
i “ 1{k ď 2´pj`2q. With this choice in mind, we have

wti ą 2´pj`2q, @t obeying τ ` 1 ď t ď ei.

In addition, it follows from the update rule (cf. lines 5 and 15 of Algorithm 1) that

logpwt`1
i {wtiq “ logpW t`1

i {W t
i q ´ log

´

ÿ

j

W t`1
j {

ÿ

j

W t
j

¯

ď η ´ log
´

ÿ

j

W t`1
j {

ÿ

j

W t
j

¯

ď 2η ď 1{10,

which in turn allows us to show that

wτ`1
i ď wτi expp1{10q ď 1

2j`2 ¨ expp1{10q ď 1
2j`1 . (72)

As a result, it suffices to choose si “ τ ` 1, thus concluding the proof.
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D.3 Step 2: extracting regular segments from irregular segments

Lemma 15. Recall the definition of Wj in (69a). For each i P Wj, denote by psi, eiq the segment identified
in Lemma 14. Then there exist a group of disjoint subsets tWp

j u
P
p“1 of Wj obeying

piq Wp
j Ď Wj, Wp

j XWp1

j “ H, @p ‰ p1;

piiq
řP
p“1 |W

p
j | ě

|Wj |

3plog2pT q`1q ;

piiiq Let rsp “ miniPWp
j
si and rep “ maxiPWp

j
ei for each 1 ď p ď P . One has 1 ď rs1 ă re1 ď rs2 ă re2 ď ¨ ¨ ¨ ď

rsP ă reP ď T and maxiPWp
j
si ď miniPWp

j
ei for each 1 ď p ď P .

In words, Lemma 15 reveals the existence a collection of disjoint subsets of Wj such that (a) they account
for a sufficiently large fraction of indices in Wj , and (b) the starting points and end points of their associated
segments can be well sorted in the sense that rs1 ă re1 ď rs2 ă re2 ď ¨ ¨ ¨ ď rsP ă reP .

Proof. For any integer 1 ď x ď log2pT q ` 1, define

Wjpxq :“
 

i P rks | 2x´1 ď ei ´ si ď 2x
(

,

so that the length of each segment associated with Wjpxq lies within r2x´1, 2xs. Let x‹ indicate the one that
maximizes the cardinality of Wjpxq:

x‹ “ arg max
1ďxďlog2pT q`1

|Wjpxq|.

Given that there are at most log2pT q ` 1 choices of x, the pigeonhole principle gives

|Wjpx
‹q| ě

|Wj |

log2pT q ` 1 . (73)

In the sequel, we intend to choose the subsets tWm
j u

M
m“1 from Wjpx

‹q.
To proceed, let us set

κ1 :“ min
iPWjpx‹q

ei, U1
j :“

 

i P Wjpx
‹q | si ď κ1

(

, (74a)

and then for each o ě 1, take

κo`1 :“ min
iPWjpx‹q{Yoo1“1

Uo1
j

ei, (74b)

Uo`1
j :“

 

i P Wjpx
‹q{ Yoo1“1 Uo

1

j | si ď κo`1
(

. (74c)

We terminate such constructions until Yoě1Uoj “ Wjpx
‹q. By construction, for each o, we have

si2 ď κo ď ei1 , @i1, i2 P Uoj ðñ max
iPUo

j

si ď min
iPUo

j

ei. (75)

Let us look at the three groups of subsets of Wjpx
‹q: tU3o´2

j uoě1, tU3o´1
j uoě1 and tU3o

j uoě1. Clearly, there
exists ` P t0, 1, 2u such that

ř

oě1 |U
3o´`
j | ě 1

3
ř

oě1 |Uoj |; without loss of generality, assume that
ÿ

oě1
|U3o´2
j | ě

1
3
ÿ

oě1
|Uoj | “

1
3 |Wjpx

‹q|. (76)

With the above construction in place, we would like to verify that tU3o´2
j uoě1 forms the desired group of

subsets. First of all, Condition (i) holds directly from the definition of tUoj uoě1. When it comes to Condition
(ii), it follows from (76) and (73) that

ÿ

oě1
|U3o´2
j | ě

1
3 |Wjpx

‹q| ě
|Wj |

3plog2pT q ` 1q .
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Regarding Condition (iii), it suffices to verify that

max
iPU3o´2

j

ei ď min
iPU3o`1

j

si (77)

for any o. To do so, note that for each o ě 1, there exists i P Wjpx
‹q such that si ě κo and κo`1 “ ei. We

can then deduce that
κo`1 “ ei ě si ` 2x

‹
´1 ě κo ` 2x

‹
´1. (78)

It then follows that, for any i P U3o`1
j , one has

si ě κ3o ě κ3o´1 ` 2x
‹
´1 ě κ3o´2 ` 2x

‹

.

In addition, for any ` P U3o´2
j , it is seen that

e` ď s` ` 2x
‹

ď κ3o´2 ` 2x
‹

.

Putting all this together yields

max
iPU3o´2

j

ei ď κ3o´2 ` 2x
‹

ď min
iPU3o`1

j

si.

The proof is thus complete.

Lemma 16. Recall the definition of Wj in (69a). For each i P Wj, denote by psi, eiq the segment identified
in Lemma 14. Then there exists a group of subsets tVnj uNn“1 satisfying the following properties:

piq Vnj Ď Wj, Vnj X Vn1j “ H, @n ‰ n1;

piiq
řN
n“1 |Vnj | ě

|Wj |

24 log2pkqplog2pT q`1q ;

piiiq There exist 1 ď ps1 ă pe1 ď ps2 ă pe2 ď ¨ ¨ ¨ ď psN ă peN ď T , and tgnuNn“1 P r1,8q
N , such that for each

1 ď n ď N , ppsn, penq is a
´

2´pj`1qgn|Vnj |, 2´pj`2q|Vnj |,
logp2q

2 log2pkq

¯

-segment with index set as Vnj . That is,
the following properties hold for each 1 ď n ď N :

paq gn|Vnj |
2j`2 ď

ř

iPVn
j
wpsn
i ď

gn|Vnj |
2j`1 ;

pbq gn|Vnj |
2j ¨ exp

´

logp2q
2 log2pkq

¯

ď
ř

iPVn
j
wpen
i ;

pcq
ř

iPVn
j
wti ě

|Vnj |
2j`2 for any t obeying psn ď t ď pen.

Proof. We shall begin by presenting our construction of the subsets, followed by justification of the advertised
properties. In what follows, we set x “ logp2q.

Our construction. Let tWp
j u
P
p“1 and tprsp, repquPp“1 be the construction in Lemma 15.

Step a): constructing xWp
j . Consider any 1 ď p ď P . Setting

tpmid :“ min
iPWp

j

ei,

we can derive, for each i P Wp
j , that

max
#

log
˜

weii

w
tpmid
i

¸

, log
˜

w
tpmid
i

wsii

¸+

ě
1
2 log

˜

weii

w
tpmid
i

¸

`
1
2 log

˜

w
tpmid
i

wsii

¸

“
1
2 log

ˆ

weii
wsii

˙

ě
x

2 ,
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where the last inequality holds since psi, eiq is constructed to be a
` 1

2j`1 ,
1

2j`2 , x
˘

-segment (see Lemma 14). It
then follows that

ÿ

iPWp
j

˜

1

#

log
˜

weii

w
tpmid
i

¸

ě
x

2

+

` 1

#

log
˜

weii

w
tpmid
i

¸

ě
x

2

+¸

ě |Wp
j |.

Without loss of generality, we assume that

ÿ

iPWp
j

1

#

log
˜

weii

w
tpmid
i

¸

ě
x

2

+

ě
|Wp

j |

2 , (79)

This means that the set define below

xWp
j :“

!

i P Wp
j | log

`

weii {w
tpmid
i

˘

ě
x

2

)

(80)

satisfies
|xWp

j | ě
|Wp

j |

2 . (81)

In what follows, we take10

Q :“ |xWp
j |,

r` :“ max
 

` ě 0 | 2` ď Q
(

and rQ :“ 2r`.

Without loss of generality, we assume

xWp
j “ t1, 2, . . . , Qu and e1 ď e2 ď ¨ ¨ ¨ ď eQ. (82)

Step b): constructing ĂWp
j p`q. Let us take e0 “ tpmid, and employ re0, eks ‘ a as a shorthand notation for

rea, ek`as. We can then define a group of disjoint intervals of rT s as follows:

K1 “
 

re0, e2r`´1s
(

; (83a)

K2 “
!

re0, e2r`´2s, re0, e2r`´2s ‘ 2r`´1
)

; (83b)

K3 “
!

re0, e2r`´3s, re0, e2r`´3s ‘ 2r`´2, re0, e2r`´3s ‘ 2 ¨ 2r`´2, re0, e2r`´3s ‘ 3 ¨ 2r`´2
)

; (83c)

. . .

K` “

!

re0, e2r`´`s, re0, e2r`´`s ‘ 2r`´``1, re0, e2r`´`s ‘ 2 ¨ 2r`´``1, . . . , re0, e2r`´`s ‘ p2`´1 ´ 1q2r`´``1
)

; (83d)

. . .

K
r` “

!

re2i, e2i`1s | i “ 0, 1, 2, . . . , 2r`´1 ´ 1
)

; (83e)

K
r``1 “

!

re2i`1, e2i`2s | i “ 0, 1, 2, . . . , 2r`´1 ´ 1
)

. (83f)

For each i P r rQ ´ 1s with binary form ti`u
r`
`“1 and 0 ď ` ď r`, we define truncpi, `q to be the number with

binary form ti1, i2, . . . , i`, 0, 0, . . . , 0u. For example, truncpi, 0q “ 0 and truncpi, r`q “ i.
From the definition (80) of xWp

j , we know that for each i P r rQ´ 1s,

x

2 ď log
ˆ

weii
we0
i

˙

“

r

ÿ̀

`“1
log

ˆ

w
etruncpi,`q
i

w
etruncpi,`´1q
i

˙

“

r

ÿ̀

`“1
log

ˆ

w
etruncpi,`q
i

w
etruncpi,`´1q
i

˙

1
 

etruncpi,`q ‰ etruncpi,`´1q
(

, (84)

10We assume rQ ě 2 without loss of generality. In the case rQ “ 1, we simply choose an arbitrary element in xWp
j as a single

subset. In this way, we can collect at least 1
4 |
yWp
j | segments.
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which in turn implies that

max
1ď`ďr`

log
ˆ

w
etruncpi,`q
i

w
etruncpi,`´1q
i

˙

ě
x

2r`
. (85)

By defining

ĂWp
j p`q :“

#

i P xWp
j : arg max

1ď`1ďr`
log

˜

w
etruncpi,`1q
i

w
etruncpi,`1´1q
i

¸

“ `

+

for each11 1 ď ` ď r`, we can demonstrate that
r

ÿ̀

`“1

ˇ

ˇ

ˇ

ĂWp
j p`q

ˇ

ˇ

ˇ
ě rQ´ 1, (86)

thus implying the existence of some 1 ď `‹ ď r` obeying
ˇ

ˇ

ˇ

ĂW p
j p`

‹q

ˇ

ˇ

ˇ
ě

rQ´ 1
r`

ě
rQ

2r`
. (87)

Step c): constructing ĂWp
j p`, oq, pspp, oq and pepp, oq. By definition, for any i, if truncpi, `‹q ‰ truncpi, `‹ ´ 1q,

then one has
retruncpi,`‹´1q, etruncpi,`‹qs P K`‹ ,

where the set K` has been defined in (83). In addition, from the construction of ĂWp
j p`

‹q (see (87)), we know
that truncpi, `‹q ‰ truncpi, `‹ ´ 1q for any i P ĂWp

j p`
‹q. For each 1 ď o ď 2`‹´1, define

ĂWp
j p`

‹, oq :“
!

i P ĂWp
j p`

‹q | retruncpi,`‹´1q, etruncpi,`‹qs “ re0, e2r`´`‹ s ‘ po´ 1q2r`´`‹`1
)

, (88)

where we employ the notation `‹ and r` to abbreviate `‹ppq and r`ppq, respectively.
In addition, for any 1 ď p ď P and 1 ď o ď 2`‹ppq´1, we set

pspp, oq “ e
po´1q2r`ppq´`‹ppq`1 , (89a)

pepp, oq “ e2r`ppq´`‹ppq`po´1q2r`ppq´`‹ppq`1 . (89b)

In words, rpspp, oq, pepp, oqs can be understood as the o-th interval in the set K`‹ppq.

Step d): construction output. With the above construction in mind, we would like to select
"

 

ĂWp
j

`

`‹ppq, o
˘(2`

‹ppq´1

o“1

*P

p“1
with intervals

"

 

pspp, oq, pepp, oq
(2`

‹ppq´1

o“1

*P

p“1

as the group of subsets we construct. With a slight abuse of notation, we use pp, oq as the index of the
segments instead of n. In what follows, we verify the validity of this construction.

Verification of the advertised properties. We now proceed to justify the claimed properties.

Property (i). By construction, it is clearly seen that
ĂWp
j

`

`‹ppq, o
˘

Ď ĂWp
j

`

`‹ppq
˘

Ď xWp
j Ď Wp

j Ď Wj .

In addition, if
ĂW p1
j

`

`‹pp1q, o1
˘

XĂW p2
j

`

`‹pp2q, o2
˘

‰ H,

then one has Wp2
j XWp2

j ‰ H, and as a result, p1 “ p2 (otherwise it violates the condition that Wp2
j XWp2

j “ H

for p1 ‰ p2). It also follows from the definition in (88) that o1 “ o2. Therefore, for any pp1, o1q that does not
equal pp2, o2q, we have ĂW p1

j

`

`‹pp1q, o1
˘

XĂW p2
j

`

`‹pp2q, o2
˘

“ H.
11Without loss of generality, we assume the arg max function is a single-valued function.
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Property (ii). By construction, we have

2`
‹ppq´1
ÿ

o“1

ˇ

ˇ

ˇ

ĂWp
j

`

`‹ppq, o
˘

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ĂWp
j

`

`‹ppq
˘

ˇ

ˇ

ˇ
ě

|xWp
j |

4 log2
`

|xWp
j |
˘
ě

|Wp
j |

8 log2
`

|xWp
j |
˘
, (90)

where we have made use of (87) and (81). Summing over p and applying Lemma 15 yield

P
ÿ

p“1

2`
‹ppq´1
ÿ

o“1

ˇ

ˇ

ˇ

ĂWp
j

`

`‹ppq, o
˘

ˇ

ˇ

ˇ
ě

P
ÿ

p“1

|Wp
j |

8 log2pkq
ě

|Wj |

24 log2pkq
`

log2pT q ` 1
˘ . (91)

Property (iii)(a). Let us set the parameters
!

tgpp, oqu2
`‹ppq

o“1

)P

p“1
as follows:

gpp, oq “

ř

iPĂWjp`‹ppq,oq
w

pspp,oq
i

2´pj`2q ¨
ˇ

ˇĂWp
j

`

`‹ppq, o
˘
ˇ

ˇ

ě 1.

Then Property (iii)(a) is satisfied since

ÿ

iPĂWjp`‹ppq,oq

w
pspp,oq
i “

gpp, oq
ˇ

ˇĂWjp`
‹ppq, oq

ˇ

ˇ

2j`2 .

Property (iii)(b). For any i P xWp
j Ď Wp

j , we have

si ď etruncpi,`´1q ď ei for any 1 ď ` ď r`ppq,

which is valid since maxiPWp
j
si ď miniPWp

j
ei (see Lemma 15) and (82). It then holds that

si ď pspp, oq ď ei for any i P xWp
j .

Also, the definition of psi, eiq (see Lemma 14) tells us that wpspp,oq
i ě 2´pj`2q.

Also, by construction, we know that for any i P ĂWp
j

`

`‹ppq, o
˘

,

log
˜

w
pepp,oq
i

w
pspp,oq
i

¸

ě
x

2r`ppq
and w

pspp,oq
i ě 2´pj`2q.

Recalling that x “ logp2q, one can further derive
ÿ

iPĂWp
j
p`‹ppq,oq

w
pspp,oq
i ě 2´pj`2q ¨

ˇ

ˇĂWp
j

`

`‹ppq, o
˘
ˇ

ˇ

log

¨

˝

ř

iPĂWp
j
p`‹ppq,oq

w
pepp,oq
i

ř

iPĂWp
j
p`‹ppq,oq

w
pspp,oq
i

˛

‚ě log

¨

˝

ř

iPĂWp
j
p`‹ppq,oq

w
pspp,oq
i ¨ exp

´

x

2r`ppq

¯

ř

iPĂWp
j
p`‹ppq,oq

w
pspp,oq
i

˛

‚“
x

2r`ppq
ě

logp2q
2 log2pkq

.

Property (iii)(c). Note that for any t obeying pspp, oq ď t ď pepp, oq, and any i P ĂWp
j

`

`‹ppq, o
˘

, it holds that
si ď pspp, oq ď t ď pepp, oq ď ei. As a result, we have

ÿ

iPĂWp
j
p`‹ppq,oq

wti ě
ˇ

ˇĂWp
j

`

`‹ppq, o
˘
ˇ

ˇ ¨ 2´pj`2q.
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Proper ordering. To finish up, it remains to verify that the intersection of rpspp1, o1q, pepp1, o1qs and
rpspp2, o2q, pepp2, o2qs is either empty or contains only the boundary points, unless pp1, o1q “ pp2, o2q. To show
this, note that in the case where p1 ‰ p2 (assuming p1 ă p2), we have

rsp1 ď pspp1, o1q ă pepp1, o1q ď rep1 ď rsp2 ď pspp2, o2q ă pepp2, o2q,

which arises from Lemma 15. Also, in the case where p1 “ p2 “ p and o1 ‰ o2 (assuming o1 ă o2), we have

pspp, o1q ă pepp, o1q ă pspp, o2q ă pepp, o2q,

which comes from the construction (89).

We have thus completed the proof of this lemma.

D.4 Step 3: bounding the length of segments

Recall the definition of segment in Definition 1, as well as the definition (60) of vt as follows

vt :“ Lpht, wtq ´ OPT. (92)

We have the following lemma to bound the length of segments.

Lemma 17. Assume the conditions in Lemma 3 hold. Suppose pt1, t2q is a pp, q, xq-segment satisfying
p ě 2q ą 0. Then one has

t2 ´ t1 ě
x

2η . (93)

Moreover, if
qx2

50
`

log2pkq ` 1
˘2 ě max

"

2η log
ˆ

1
δ1

˙

,
1
k

*

(94)

holds, then with probability exceeding 1´ 6T 4kδ1, at least one of the following two claims holds:

(1) there exists 1 ď pj ď log2p1{ηq ` 1 such that

t2´1
ÿ

τ“t1

1
 

´ vτ ě 2´pj
(

ě
qx2 ¨ 2pj´1

100
`

log2p1{ηq ` 1
˘2
η
ě

qx2 ¨ 2pj´1

100
`

log2pkq ` 1
˘2
η

; (95)

(2) the length of the segment satisfies

t2 ´ t1 ě
qx2

100
`

log2p1{ηq ` 1
˘2
η2
ě

qx2

100
`

log2pkq ` 1
˘2
η2
. (96)

Proof. See Section D.6.

D.5 Putting all this together

With the above lemmas in place, we are positioned to establish Lemma 13. Denote by tVnj uNn“1 and
tppsn, penqu

N
n“1 the construction in Lemma 16. We divide tVnj uNn“1 into two parts:

• The first part consists of those Vnj obeying

2´pj`2q|Vnj | ¨
log2

p2q
50
`

log2pkq ` 1
˘2 log2

2pkq
ě max

 

2 logp1{δ1qη, 1{k
(

, (97)

which we shall denote as tVnj uNn“1 in the sequel.
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• The second part consists of the remaining sets, which we denote as tVnj u
N
n“1 in the sequel.

In view of Lemma 17, for each 1 ď n ď N , at least one of the following two claims holds true:

• there exists 1 ď pj ď log2p1{ηq ` 1 such that

pen´1
ÿ

τ“psn

1
 

´ vτ ě 2´pj
(

ě
2´pj`2q|Vnj | log2

p2q ¨ 2pj´1

200 log2
2pkq

`

log2pkq ` 1
˘2
η

• the length of the segment rpsn, pens obeys

pen ´ psn ě
2´pj`2q|Vnj | log2

p2q
200 log2

2pkq
`

log2pkq ` 1
˘2
η2
.

As a consequence, for each 1 ď n ď N , we have

ppen ´ psnqη `
pen´1
ÿ

τ“psn

log2p1{ηq`1
ÿ

pj“1

1
 

´ vτ ě 2´pj
(

2´ppj´1q “ ppen ´ psnqη `

log2p1{ηq`1
ÿ

pj“1

pen´1
ÿ

τ“psn

1
 

´ vτ ě 2´pj
(

2´ppj´1q

ě
2´pj`2q|Vnj | log2

p2q
200 log2

2pkq
`

log2pkq ` 1
˘2
η
. (98)

By observing that
log2p1{ηq`1

ÿ

pj“1

1
 

x ě 2´pj
(

¨ 2´ppj´1q ď 4x

holds for any x ě 0, we can combine this fact with (98) to derive

ppen ´ psnqη `
pen´1
ÿ

τ“psn

4 ¨ p´vτ q ě
2´pj`2q|Vnj | log2

p2q
200 log2

2pkq
`

log2pkq ` 1
˘2
η
. (99)

Summing over n and taking advantage of the property 1 ď ps1 ď pe1 ď ps2 ď ¨ ¨ ¨ ď pen ď T (see Lemma 16) give

Tη ` 4
T
ÿ

t“1
p´vtq ě

n
ÿ

n“1

˜

ppen ´ psnqη `
pen´1
ÿ

τ“psn

4 ¨ p´vτ q
¸

ě
2´pj`2qřN

n“1 |V
n

j | log2
p2q

200 log2
2pkq

`

log2pkq ` 1
˘2
η
. (100)

Moreover, it follows from (66) that

T
ÿ

t“1
p´vtq ď 100

ˆ

logpkq
η

` ηT ` 4
a

T logp1{δ1q
˙

, (101)

which taken together with (100) gives

N
ÿ

n“1
|Vnj | ď

3200plog2pkq ` 1q4η ¨ 2j`2

log2
p2q

¨ 100
ˆ

logpkq
η

` ηT ` 4
a

T logp1{δ1q
˙

`
800T plog2pkq ` 1q4 ¨ 2j`2η2

log2
p2q

. (102)

In addition, in view of the first part of Lemma 17, we can demonstrate that

pen ´ psn ě
logp2q

4η log2pkq
,
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which combined with the property 1 ď ps1 ď pe1 ď ps2 ď ¨ ¨ ¨ ď pen ď T (see Lemma 16) gives

N ď

N
ÿ

n“1

`

pen ´ psn
˘4η log2pkq

logp2q ď T ¨
4η log2pkq

logp2q . (103)

As a result, it can be readily seen that
N
ÿ

n“1
|Vnj | ď N ¨

#

50
`

log2pkq ` 1
˘2 log2

2pkq

log2
p2q

2j`2 max
 

2 logp1{δ1qη, 1{k
(

+

ď
4Tη log2pkq

logp2q ¨ 2j`2 50
`

log2pkq ` 1
˘2 log2

2pkq

log2
p2q

¨maxt2 logp1{δ1qη, 1{ku

ď
1600 ¨ 2jTη2` log2pkq ` 1

˘2 log3
2pkq logp1{δ1q

log3
p2q

`
800 ¨ 2jTη

`

log2pkq ` 1
˘2 log3

2pkq

k log3
p2q

, (104)

where the first inequality comes from the definition of Vnj (cf. the complement condition of (97)), and the
second inequality arises from (103).

To finish up, note that 2 logp1{δ1qη ě 1{k according to our parameter choice. Thus, combining (102) and
(104), we arrive at

N
ÿ

n“1
|Vnj | ď 3200000plog2pkq ` 1q3

`

log2pkq ` logp1{δ1q
˘3
¨ 2j . (105)

It then follows from Property (ii) of Lemma 16 that

|Wj | ď 24 log2pkq
`

log2pT q ` 1
˘

˜

N
ÿ

n“1
|Vnj |

¸

ď 8 ¨ 107 ¨
´

plog2pkq ` 1q4
`

log2pkq ` logp1{δ1q
˘3
plog2pT q ` 1q

¯

¨ 2j ,

thereby completing the proof.

D.6 Proof of Lemma 17

Throughout this proof, we find it convenient to denote Zt “
řk
i“1W

t
i .

Part 1. We start by proving the first claim (93). Recall that rt1, t2s is assumed to be a pp, q, xq-segment.
From the definition of the segment (see Definition 5), there exists i P rks such that

log
ˆ

wt2i
wt1i

˙

ě x.

Given that W t2
i “ W t1

i exp
`

η
řt2´1
τ“t1

prτi
˘

and wt “ Wt{Zt (see lines 15 and 5 of Algorithm 1), the above
inequality can be equivalently expressed as

η
t2´1
ÿ

τ“t1

prτi ´ logpZt2{Zt1q ě x. (106)

Moreover, recognizing that

logpZt2{Zt1q “ log
˜

ř

iPrksW
t1
i exp

`

η
řt2´1
τ“t1

prτi
˘

ř

iPrksW
t1
i

¸

ě ´ηpt2 ´ t1q

and prτi ď 1 for any 1 ď τ ď T , we can use (106) to show that

x ď 2pt2 ´ t1qη, (107)

from which the claimed inequality (93) follows.
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Part 2. We now turn to the remaining claims of Lemma 17. For each hypothesis h P H, let us introduce
the following vector vh P Rk:

vh “ rvh,isiPrks with vh,i “ Lph, eiq ´ OPT. (108)

Given the ε1-optimality of ht (see Lemma 3), we have the following property that holds for any 1 ď τ, t ď T :

xvhτ , w
ty ě min

hPH
xvh, w

ty ě xvht , w
ty ´ ε1 “ vt ´ ε1, (109)

where we recall the definition of vt in (92). In the sequel, we divide the proof into a couple of steps.

Step 1: decomposing the KL divergence between wt and wt2 . Let us write

W t
i “ exp

˜

η
t
ÿ

τ“1
ηprτi

¸

“ exp
˜

η
t
ÿ

τ“1

`

vhτ ,i ` OPT` ξτi
˘

¸

with ξτi “ prτi ´ vhτ ,i ´ OPT,

where ξτi “ prτi ´ Lph
τ , eiq is clearly a zero-mean random variable. Define

∆t1,t2 “

t2´1
ÿ

τ“t1

ξτ .

Taking W t “ rW t
i siPrks and denoting by logpx{yq the vector tlogpxi{yiquiPrks for two k-dimensional vectors

px, yq, one can then deduce that
B

1
η

log
ˆ

W t2

W t1

˙

´∆t1,t2 , w
t

F

´ pt2 ´ t1qOPT “
t2´1
ÿ

τ“t1

xvhτ , w
ty ě pt2 ´ t1qpv

t ´ ε1q, (110)

where the last inequality results from (109).
Recall that Zt “

řk
i“1W

t
i and wti “

W t
i

Zt . By taking t1 “ t, we can derive from (110) that
B

log
ˆ

wt2

wt

˙

´ η∆t,t2 , w
t

F

` log
ˆ

Zt2

Zt

˙

´ ηpt2 ´ tqOPT ě ηpt2 ´ tqpv
t ´ ε1q. (111)

As it turns out, this inequality allows us to bound the KL divergence between wt and wt2 as follows:

KLpwt }wt2q :“
B

wt, log
ˆ

wt

wt2

˙F

ď logpZt2{Ztq ´ ηpt2 ´ tqOPT´ ηxwt,∆t,t2y ` ηpt2 ´ tqpε1 ´ v
tq. (112)

In what follows, we shall cope with the right-hand side of (112).

Step 2: bounding the term logpZt2{Ztq. We start with bounding logpZt2{Ztq. With probability
exceeding 1´ 2T 2kδ1, it holds that

logpZt2{Ztq “
t2´1
ÿ

τ“t

logpZτ`1{Zτ q “
t2´1
ÿ

τ“t

log

¨

˝

ÿ

iPrks

W τ
i exppηprτi q
ř

jPrksW
τ
i

˛

‚

piq
“

t2´1
ÿ

τ“t

log
˜

k
ÿ

i“1
wτi exppηprτi q

¸

piiq
ď

t2´1
ÿ

τ“t

log
˜

k
ÿ

i“1
wτi `

k
ÿ

i“1
wτi pηpr

τ
i q ` 2

k
ÿ

i“1
wτi η

2pprτi q
2

¸

piiiq
ď

t2´1
ÿ

τ“t

log
˜

1` η
k
ÿ

i“1
wτi pr

τ
i ` 2η2

¸

ď

t2´1
ÿ

τ“t

˜

η
k
ÿ

i“1
wτi pr

τ
i ` 2η2

¸
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pivq
“ η

t2´1
ÿ

τ“t

vτ ` ηpt2 ´ tqOPT` η
t2´1
ÿ

τ“t

k
ÿ

i“1

@

wτi , pr
τ
i ´ vhτ ,i ´ OPT

D

` 2pt2 ´ tqη2

pvq
ď ηpt2 ´ tqε1 ` ηpt2 ´ tqOPT` η

t2´1
ÿ

τ“t

k
ÿ

i“1

@

wτi , pr
τ
i ´ vhτ ,i ´ OPT

D

` 2pt2 ´ tqη2. (113)

Here, (i) comes from line 5 of Algorithm 1, (ii) follows from the elementary inequality exppxq ď 1` x` 2x2

for any x ď 1, (iii) is valid since
ř

i w
τ
i “ 1 and |prτi | ď 1, (iv) holds due to the fact that vt “ xwt, vhty, and

(v) arises from the fact that vτ ď ε1 (see (61)).

Step 3: bounding the weighted sum of tξτi u. Next, we intend to control the two random terms below:

η
t2´1
ÿ

τ“t

k
ÿ

i“1

@

wτi , pr
τ
i ´ vhτ ,i ´ OPT

D

“ η
t2´1
ÿ

τ“t

k
ÿ

i“1
wτi ξ

τ
i , (114a)

η
@

wt,∆t,t2

D

“ η
t2´1
ÿ

τ“t

k
ÿ

i“1
wtiξ

τ
i . (114b)

Let Fτ denote what happens before the τ -th round in Algorithm 1. Two properties are worth noting.

• The variance of ξτi is at most O
´

1
kwτi

¯

, according to the update rule (see line 14 in Algorithm 1);

• tξτi uiPrks are independent conditioned on Fτ .

Let us develop bounds on the two quantities in (114) below.

• Letting qτ “
řk
i“1 w

t
iξ
τ
i , one sees that

|qτ | ď 1, Erqτ |Fτ s “ 0 and Varrqτ |Fτ s ď

k
ÿ

i“1

pwtiq
2

kwτi
ď

k
ÿ

i“1

wti
k
“

1
k
. (115)

By virtue of Freedman’s inequality (cf. Lemma 8), with probability at least 1´ δ1 one has
ˇ

ˇ

ˇ

ˇ

ˇ

t2´1
ÿ

τ“t

k
ÿ

i“1
wtiξ

τ
i

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2
c

t2 ´ t

k
logp2{δ1q ` 2 logp2{δ1q; (116)

• Regarding the other term, by letting pqτ “
řk
i“1 w

τ
i ξ
τ
i , we have

|pqτ | ď 1, Erpqτ |Fτ s “ 0 and Varrpqτ |Fτ s ď

k
ÿ

i“1

pwτi q
2

kwτi
ď

k
ÿ

i“1

wτi
k
“

1
k
.

Invoke Freedman’s inequality (cf. Lemma 8) once again to show that, with probability exceeding 1´ δ1,
ˇ

ˇ

ˇ

ˇ

ˇ

t2´1
ÿ

τ“t

k
ÿ

i“1
wτi ξ

τ
i

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2
c

t2 ´ t

k
logp2{δ1q ` 2 logp2{δ1q. (117)

Step 4: bounding the KL divergence between wt and wt2 . Combining (112), (113), (116) and (117),
and applying the union bound over pt, t2q, we can demonstrate that with probability at least 1´ 6T 4kδ1,

KLpwt }wt2q ď 2pt2 ´ tqηε1 ´ pt2 ´ tqηv
t

` 4η
c

pt2 ´ tq logp2{δ1q
k

` 2pt2 ´ tqη2 ` 4η logp2{δ1q (118)

holds for any 1 ď t ă t2 ď T . The analysis below then operates under the condition that (118) holds for any
1 ď t ă t2 ď T .
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Step 5: connecting the KL divergence with the advertised properties. Set

τ
pj

:“ mintτ | t1 ď τ ď t2 ´ 1, ´vτ ď 2´ppj´1qu, 1 ď pj ď jmax :“ tlog2p1{ηq ` 1u ; (119a)
τjmax`1 :“ t2. (119b)

By definition, we know that τ1 “ t1 and τj2 ě τj1 for j2 ě j1. Let I be the index set of this segment rt1, t2s,
and set yj :“

ř

iPI w
τj
i . We then claim that there exists 1 ď rj ď jmax such that

log
˜

y
rj`1

y
rj

¸

ě
x

log2p1{ηq ` 1 (120)

ě
x

log2pkq ` 1 , (121)

where the last inequality is valid since 1{η “ 100{ε ď k (given our assumption that ε Á 1{k).

Proof of (120). Suppose that none of 1 ď rj ď jmax satisfies (120). Then for any 1 ď pj ď jmax, it holds that
log

´

y
pj`1
y
pj

¯

ď x
log2p1{ηq`1 , which implies that y

pj ě y
pj`1 exp

´

´ x
log2p1{ηq`1

¯

. As a result, we have

y1 ě yjmax`1 ¨ exp
ˆ

´jmax ¨
x

log2p1{ηq ` 1

˙

ą p,

thus leading to contradiction (as according to the definition of the pp, q, xq-segment, one has y1 ď p).

Now, assume that rj satisfies (120). From the definition of the pp, q, xq-segment, we have y
rj ě q. It follows

from (118) that

KLpwτrj }wτrj`1q ď 2pτ
rj`1 ´ τrjqηε1 ` pτrj`1 ´ τrjqη2´prj´1q

` 4η

d

pτ
rj`1 ´ τrjq logp2{δ1q

k
` 2pτ

rj`1 ´ τrjqη
2 ` 4η logp2{δ1q. (122)

Since log
´

y
rj`1
y
rj

¯

ě x
log2p1{ηq`1 and y

rj ě q, we can invoke Lemma 11 and Lemma 12 to show that

KLpwτrj }wτrj`1q ě KL
´

Ber
`

y
rj

˘

}Ber
`

y
rj`1

˘

¯

ě
qx2

4
`

log2p1{ηq ` 1
˘2 ,

where Berpxq denote the Bernoulli distribution with mean x P r0, 1s. As a result, we can obtain

qx2

4
`

log2p1{ηq ` 1
˘2 ď 2pτ

rj`1 ´ τrjqηε1 ` pτrj`1 ´ τrjqη2´prj´1q

` 4η

d

pτ
rj`1 ´ τrjq logp2{δ1q

k
` 2pτ

rj`1 ´ τrjqη
2 ` 4η logp2{δ1q, (123)

which in turn results in

τ
rj`1 ´ τrj ě min

#

qx2

100
`

log2p1{ηq ` 1
˘2 min

#

1
ηε1

,
2rj´1

η
,

1
η2

+

,
kq2x4

10000η2 logp1{δ1q
`

log2p1{ηq ` 1
˘4

+

ě min
#

qx2

100
`

log2p1{ηq ` 1
˘2 min

#

1
ηε1

,
2rj´1

η
,

1
η2

+

,
kq2x4

10000η2 logp1{δ1q
`

log2p1{ηq ` 1
˘2` log2pkq ` 1

˘2

+

“
qx2

100
`

log2p1{ηq ` 1
˘2 min

#

2rj´1

η
,

1
η2

+

. (124)
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Here, to see why (124) holds, it suffices to note that

qx2

100
`

log2pkq ` 1
˘2 ¨

2rj´1

η
ď

kq2x4

10000η2 logp1{δ1q
`

log2pkq ` 1
˘4 ,

a property that arises from the fact that 2rj´1 ď 1{η “ 100
ε ď k and the assumption that qx2

50plog2pkq`1q2 ě

2 logp1{δ1qη.
With (124) in mind, we are ready to finish the proof.

• If 2rj´1

η ě 1
η2 , then one has

t2 ´ t1 ě τ
rj`1 ´ τrj ě

qx2

100
`

log2p1{ηq ` 1
˘2 min

#

2rj´1

η
,

1
η2

+

“
qx2

100
`

log2p1{ηq ` 1
˘2
η2

ě
qx2

100
`

log2pkq ` 1
˘2
η2
.

• If 2rj´1

η ă 1
η2 , then (124) tells us that

τ
rj`1 ´ τrj ě

qx2 ¨ 2rj´1

100
`

log2p1{ηq ` 1
˘2
η
. (125)

Additionally, it comes from the definition (119) that

t2´1
ÿ

τ“t1

1
 

´ vτ ě 2´pj
(

ě

t2´1
ÿ

τ“t1

1
 

´ vτ ą 2´pj
(

ě τ
pj`1 ´ t1 ě τ

pj`1 ´ τpj for any 1 ď pj ď log2pkq ` 1.

This taken collectively with (125) gives

t2´1
ÿ

τ“t1

1
 

´ vτ ě 2´rj
(

ě τ
rj`1 ´ τrj ě

qx2 ¨ 2rj´1

100
`

log2p1{ηq ` 1
˘2
η
ě

qx2 ¨ 2rj´1

100
`

log2pkq ` 1
˘2
η
.

This concludes the proof.

E Missing proofs for lower bounds

E.1 Restatement and proof of Lemma 4

Lemma 4. [Restatement] Fix m ě 0 and ri P rks. Suppose PG1rhout “ h‹,Mi ď ms ě 1
2 . It then holds that

for any h P H
ri

PG1
 

hout “ h,M
ri ď m

(

ě
1
2PG1

 

hout “ h‹,M
ri ď m

(

exp
`

´ 80
?
mε´ 40mε2˘. (126)

Moreover, it holds that m ě
logpN0{4q
30000ε2 .

Proof. For v P t´1, 1um, we let
n`pvq “ |tp : vp “ 1u|

denote the number of 1’s in the coordinates of v. Let V be a subset of t´1, 1u2m defined as V :“
tv1, v2 P t´1, 1um|n`pv1q ´ n`pv2q ď 4

?
m ` 2mεu. Let PCr¨s denote the probability distribution of

!

txljh,rip
riquml“1, tx

l
jh˚,ri

priquml“1

)

and PC1r¨s denote the probability distribution of
!

txljh˚,rip
riquml“1, tx

l
jh,ri
priquml“1

)

.
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Recall the definition of txljh,rip
riquml“1 and txljh˚,rip

riquml“1. By Hoeffding’s inequality, we have that PCrVs ě 3
4 .

Also noting that the distribution of V is independent of the algorithm G1, we have that

PG1
”

hout “ h˚,M
ri ď m,

!

txljh,rip
riquml“1, tx

l
jh˚,ri

priquml“1

)

P V
ı

ě
3
4 ´ p1´

3
4 q “

1
2 . (127)

That is,
ÿ

v“tv1,v2uPV

PG1
”

hout “ h˚,M
ri ď m, txljh,rip

riquml“1 “ v1, txljh˚,rip
riquml“1 “ v2

ı

ě
1
2 .

In addition, for any v “ tv1, v2u P V, we have

PC1rvs “ PCrvs ¨ p1´ 8εqn
`
pv1
q´n`pv2

q
p1` 8εqn

`
pv2
q´n`pv1

q

“ PCrvs

ˆ

1´ 8ε
1` 8ε

˙n`pv1
q´n`pv2

q

ě PCrvs expp´20pn`pv1q ´ n`pv2qqεq

ě PCrvs expp´80
?
mε´ 40mε2q.

As a result, we can demonstrate that

PG1
”

hout “ h,M
ri ď m, txljh˚,rip

riquml“1 “ v1, txljh,rip
riquml“1 “ v2

ı

“ PG1
”

hout “ h,M
ri ď m|txljh˚,rip

riquml“1 “ v1, txljh,rip
riquml“1 “ v2

ı

PC1rvs

ě PG1
”

hout “ h,M
ri ď m|txljh˚,rip

riquml“1 “ v1, txljh,rip
riquml“1 “ v2

ı

PCrvs expp´80
?
mε´ 40mε2q

“ PG1
”

hout “ h˚,M
ri ď m|tx`jh,rip

riqum`“1 “ v1, tx`jh˚,rip
riqum`“1 “ v2

ı

PCrvs expp´80
?
mε´ 40mε2q (128)

“ PG1
”

hout “ h˚,M
ri ď m, tx`jh,rip

riqum`“1 “ v1, tx`jh˚,rip
riqum`“1 “ v2

ı

expp´80
?
mε´ 40mε2q.

Here, (128) results from Lemma 18. We present the detailed computation as follows. Let vo` be the `-th
coordinate of v1 for 1 ď ` ď m and o “ 1, 2.

PG1
”

hout “ h,M
ri ď m|tx`jh˚,rip

riqum`“1 “ v1, tx`jh,rip
riqum`“1 “ v2

ı

“

m
ÿ

m1“1
PG1

”

hout “ h,M
ri “ m1|tx`jh˚,rip

riqum`“1 “ v1, tx`jh,rip
riqum`“1 “ v2

ı

“

m
ÿ

m1“1
PG1

”

hout “ h,M
ri “ m1|tx`jh˚,rip

riqum
1

`“1 “ tv
1
` u
m1

`“1, tx
`
jh,ri
priqum

1

`“1 “ tv
2
` u
m1

`“1

ı

(129)

“

m
ÿ

m1“1
PG1

”

hout “ h˚,M
ri “ m1|tx`jh,rip

riqum
1

`“1 “ tv
1
` u
m1

`“1, tx
`
jh˚,ri

priqum
1

`“1 “ tv
2
` u
m1

`“1

ı

“

m
ÿ

m1“1
PG1

”

hout “ h˚,M
ri “ m1|tx`jh,rip

riqum`“1 “ v1, tx`jh˚,rip
riqum`“1 “ v2

ı

(130)

“ PG1
”

hout “ h˚,M
ri ď m|tx`jh,rip

riqum`“1 “ v1, tx`jh˚,rip
riqum`“1 “ v2

ı

.

Here, (129) and (130) hold since for h1 “ h, h˚, the event thout “ h1,M
ri “ m1u is independent of tx`priqu`ěm1`1.

Taking the sum over v “ tv1, v2u P V, we obtain

PG1rhout “ h,M
ri ď ms

ě
ÿ

vPV
PG1

”

hout “ h,M
ri ď m, tx`jh˚,rip

riqum`“1 “ v1, tx`jh,rip
riqum`“1 “ v2

ı
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ě
ÿ

vPV
PG1

”

hout “ h˚,M
ri ď m, tx`jh,rip

riqum`“1 “ v1, tx`jh˚,rip
riqum`“1 “ v2

ı

expp´80
?
mε´ 40mε2q

“ PG1
”

hout “ h˚,M
ri ď m,

!

tx`jh,rip
riqum`“1, tx

`
jh˚,ri

priqum`“1

)

P V
ı

expp´80
?
mε´ 40mε2q

ě
1
2PG1rhout “ h˚,M

ri ď ms expp´80
?
mε´ 40mε2q

as claimed in (126).
Summing over all h P H

ri, we reach

1 ě PG1rhout P H
ri,Mri ď ms ě

N0

2 PG1rhout “ h˚,M
ri ď ms expp´40mε2 ´ 80

?
mεq, (131)

which reveals that
1
2 ď PG1

“

hout “ h˚,M
ri ď m

‰

ď
2
N0

expp40mε2 ` 80
?
mεq. (132)

Consequently, it is seen that
40mε2 ` 80

?
mε ě logpN0{4q,

which implies that m ě mint logpN0{4q
80ε2 , log2

pN0{4q
30000ε2 u ě

logpN0{4q
30000ε2

E.2 Statement and proof of Lemma 18

Lemma 18. Fix ri P rks, and let xlpiq be the l-th sample from Di for any i P rks and l ě 1. Fix h P H
ri,

m ą 0 and v1, v2 P t´1, 1u2m.

PG1
!

hout “ h˚,Mi “ m | txljh,rip
riquml“1 “ v1, txljh˚,rip

riquml“1 “ v2
)

“ PG1
!

hout “ h,Mi “ m | txljh,rip
riquml“1 “ v2, txljh˚,rip

riquml“1 “ v1
)

.

Proof. Let σ be the permutation over H with σph˚q “ h, σphq “ h˚ and σph1q “ h1 for all h1 R th, h˚u. It
then holds that σ´1 “ σ.

Fix tmiu
k
i“1 and Xpiq “ tX`piqumi`“1 P t´1, 0, 1ukNmi for i P rks. Let xpiq “ txlpiqumil“1 be the datapoints

of the first mi calls to QuerypDiq. With a slight abuse of notations, we let σpxpiqq “ tσpxlpiqqumil“1 for each
i P rks.

It follows from Lemma 19 that

PG,H
“

hout “ h, tMiu
k
i“1 “ tmiu

k
i“1 | xpiq “ Xpiq,@i P rks

‰

“ PG,σpHq
“

hout “ σ´1phq, tMiu
k
i“1 “ tmiu

k
i“1 | σ

´1pxpiqq “ Xpiq,@i P rks
‰

,

which implies that

PG,σpHq
“

hout “ h˚, tMiu
k
i“1 “ tmiu

k
i“1, σpxpiqq “ Xpiq,@i P rks

‰

“ PG,σσpHq
“

hout “ h, tMiu
k
i“1 “ tmiu

k
i“1, σσpxpiqq “ Xpiq,@i P rks

‰

¨
Prσpxpiqq “ Xpiq,@i P rkss

Prσσpxpiqq “ Xpiq,@i P rkss

“ PG,σσpHq
“

hout “ h, tMiu
k
i“1 “ tmiu

k
i“1, σσpxpiqq “ Xpiq,@i P rks

‰

¨
Prσpxpriqq “ Xpriqs

Prσσpxpriqq “ Xpriqs

“ PG,σσpHq
“

hout “ h, tMiu
k
i“1 “ tmiu

k
i“1, σσpxpiqqq “ Xpiq,@i P rks

‰

¨

P
”

txljh,ip
riqu

m
ri

l“1 “ tX
l
jσphq,ri

priqu
m

ri

l“1, tx
l
jh˚,ri

priqu
m

ri

l“1 “ tX
l
jσph˚q,ri

priqu
m

ri

l“1

ı

P
”

txljh˚,ri
priqu

m
ri

l“1 “ tX
l
jσphq,ri

priqu
m

ri

l“1, tx
l
jh,ri
priqu

m
ri

l“1 “ tX
l
jσph˚q,ri

priqu
m

ri

l“1

ı . (133)
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Re-arrange the equation to arrive at

PG,σpHq

«

hout “ h˚, tMiu
k
i“1 “ tmiu

k
i“1, σpxpiqq “ Xpiq,@i P rks

ˇ

ˇ

ˇ
txljh,rip

riqu
m

ri

l“1 “ tX
l
jσphq,ri

priqu
m

ri

l“1, tx
l
jh˚,ri

priqu
m

ri

l“1 “ tX
l
jσph˚q,ri

priqu
m

ri

l“1

ff

“ PG,σσpHq

«

hout “ h, tMiu
k
i“1 “ tmiu

k
i“1, σσpxpiqq “ Xpiq,@i P rks

ˇ

ˇ

ˇ
txljh˚,rip

riqu
m

ri

l“1 “ tX
l
jσphq,ri

priqu
m

ri

l“1, tx
l
jh,ri
priqu

m
ri

l“1 “ tX
l
jσph˚q,ri

priqu
m

ri

l“1

ff

.

Taking the sum over all possible choices of tXpiqui‰ri,
!

tX l
jh1,i1

priqu
m

ri

l“1

)

i1Prks,h1Rth,h˚u
,

!

tX l
jh1,i1

priqu
m

ri

l“1

)

h1Pth,h˚u,i1‰ri
and tmiui‰ri, we obtain

PG,σpHq

«

hout “ h˚,M
ri “ m

ri

ˇ

ˇ

ˇ
txljh,rip

riqu
m

ri

l“1 “ tX
l
jσphq,ri

priqu
m

ri

l“1, tx
l
jh˚,ri

priqu
m

ri

l“1 “ tX
l
jσph˚q,ri

priqu
m

ri

l“1

ff

“ PG,σσpHq

«

hout “ h,M
ri “ m

ri

ˇ

ˇ

ˇ
txljh˚,rip

riqu
m

ri

l“1 “ tX
l
jσphq,ri

priqu
m

ri

l“1, tx
l
jh,ri
priqu

m
ri

l“1 “ tX
l
jσph˚q,ri

priqu
m

ri

l“1

ff

for any Xpriq P t´1, 0, 1ukNmri .
Fix m

ri “ m, and choose tX l
jσphq,ri

priqu
m

ri

l“1 “ v1, tX l
jσph˚q,ri

priqu
m

ri

l“1 “ v2. We then have

PG1,H

”

hout “ h˚,Mi “ m | txljh,rip
riquml“1 “ v1, txljh˚,rip

riquml“1 “ v2
ı

“
1
|ΠH|

ÿ

σPΠH

PG,σpHq

”

hout “ h˚,Mi “ m | txljh,rip
riquml“1 “ v1, txljh˚,rip

riquml“1 “ v2
ı

“
1
|ΠH|

ÿ

σPΠH

PG,σσpHq

”

hout “ σ´1ph˚q,Mi “ m | txljh,rip
riquml“1 “ v2, txljh˚,rip

riquml“1 “ v1
ı

“
1
|ΠH|

ÿ

σPΠH

PG,σpHq

”

hout “ h,Mi “ m | txljh,rip
riquml“1 “ v2, txljh˚,rip

riquml“1 “ v1
ı

“ PG1,H

”

hout “ h,Mi “ m | txljh,rip
riquml“1 “ v2, txljh˚,rip

riquml“1 “ v1
ı

.

The proof is thus completed.

E.3 Statement and proof of Lemma 19

Lemma 19. Fix tmiuiPrks , σ P ΠH and X P t´1, 0, 1ukN
řk
i“1 mi . Let tXpiquiPrks and txpiqu be defined as

Lemma 18. We then have

PG,H
“

hout “ h, tMiu
k
i“1 “ tmiu

k
i“1 | xpiq “ Xpiq,@i P rks

‰

“ PG,σpHq
“

hout “ σ´1phq, tMiu
k
i“1 “ tmiu

k
i“1 | σ

´1pxpiqq “ Xpiq,@i P rks
‰

. (134)
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Proof. Let H1 “ σpHq. Let hpp¨q denote the p-th hypothesis in the hypothesis set. Then one has

PG,H
“

hout “ hppHq, tMiu
k
i“1 “ tmiu

k
i“1 | xpiq “ Xpiq,@i P rks

‰

“ PG,H

”

hout “ hppHq, tMiu
k
i“1 “ tmiu

k
i“1 | ttx

l
jh
p1
pHq,i

pi1qu
|H|,k
p1“1,i“1u

mi1
l“1u

k
i1“1 “ X

ı

“ PG,H1

„

hout “ hppH1q, tMiu
k
i“1 “ tmiu

k
i“1 | ttx

l
jh
p1
pH1q,i

pi1qu
|H1|,k
p1“1,i“1u

mi1
l“1u

k
i1“1 “ X



(135)

“ PG,σpHq
“

hout “ hppσpHqq, tMiu
k
i“1 “ tmiu

k
i“1 | σ

´1pxpiqq “ Xpiq,@i P rks
‰

“ PG,σpHq
“

hout “ σ´1phppHqq, tMiu
k
i“1 “ tmiu

k
i“1 | σ

´1pxpiqq “ Xpiq,@i P rks
‰

. (136)

Here, (135) holds since the algorithm G cannot distinguish H from H1 using its own randomness.

F Missing proofs for Rademacher classes

F.1 Restatement and proof of Lemma 7

Lemma 7. [Restatement] By running Algorithm 3, with probability at least 1´ δ{4, it holds that

Lpht, wtq ď min
hPH

Lph,wtq ` ε1 (137)

for any 1 ď t ď T .

Proof. We will follow the notation in the proof of Lemma 1. Fix n “ tniuki“1 such that ni ě 12 logp2kq for
all i P rks and w P ∆pkq. Let κ “ mini niwi . Recall that pxi,j , yi,jq is the j-th sample from Di.

Define

F pn,wq :“ Ettpxi,j ,yi,jqunij“1u
k
i“1

«

max
hPH

˜

k
ÿ

i“1

wi
ni

ni
ÿ

j“1
`ph, pxi,j , yi,jqq ´

k
ÿ

i“1
wiLph, eiq

¸ff

.

Let ttprxi,j , ryi,jqunij“1u
k
i“1 be a group of ghost samples for ttpxi,j , yi,jqunij“1u

k
i“1. We then have

F pn,wq

ď Ettpxi,j ,yi,jqunij“1u
k
i“1,ttprxi,j ,ryi,jqu

ni
j“1u

k
i“1

«

max
hPH

˜

k
ÿ

i“1

wi
ni

ni
ÿ

j“1
p`ph, pxi,j , yi,jqq ´ `ph, prxi,j , ryi,jqqq

¸ff

“ E
ttpxi,j ,yi,jqu

ni
j“1u

k
i“1,ttprxi,j ,ryi,jqu

ni
j“1u

k
i“1,ttσ

j
i
u
ni
j“1u

k
i“1

«

max
hPH

˜

k
ÿ

i“1

wi
ni

ni
ÿ

j“1
σji p`ph, pxi,j , yi,jqq ´ `ph, prxi,j , ryi,jqqq

¸ff

ď 2E
ttpxi,j ,yi,jqu

ni
j“1u

k
i“1,ttσ

j
i
u
ni
j“1u

k
i“1

«

max
hPH

˜

k
ÿ

i“1

1
κ

ni
ÿ

j“1
σji `ph, pxi,j , yi,jqq

¸ff

(138)

ď 2
řk
i“1 ni
κ

ĄRadtniuki“1
. (139)

Here, (138) follows from Lemma 20, as stated below.

Lemma 20. Let L be a subset of Rn. Let w1, w2 P Rn be such that |w1
i | ď |w

2
i | for all i P rns. Then it holds

E
tσiuni“1

iid
„t˘1u

«

max
fPL

n
ÿ

i“1
σiw

1
i fi

ff

ď E
tσiuni“1

iid
„t˘1u

«

max
fPL

n
ÿ

i“1
σiw

2
i fi

ff

. (140)
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Proof. It suffices to prove (140) under the case where w1
i “ w2

i for 1 ď i ď n´ 1, and |w1
n| ď |w

2
n|. Fix σi for

1 ď i ď n´ 1.

Eσn„t˘1u

«

max
fPL

n
ÿ

i“1
σiw

1
i fi

ff

“
1
2 max
fPL

˜

n´1
ÿ

i“1
σiw

1
i fi ` w

1
nfn

¸

`
1
2 max
fPL

˜

n´1
ÿ

i“1
σiw

1
i fi ´ w

1
nfn

¸

“
1
2 max
f1,f2PL

˜

n´1
ÿ

i“1
σiw

1
i pf

1
i ` f

2
i q ` w

1
npf

1
n ´ f

2
nq

¸

“
1
2 max
f1,f2PL

˜

n´1
ÿ

i“1
σiw

2
i pf

1
i ` f

2
i q ` w

1
npf

1
n ´ f

2
nq

¸

ď
1
2 max
f1,f2PL

˜

n´1
ÿ

i“1
σiw

2
i pf

1
i ` f

2
i q ` |w

2
npf

1
n ´ f

2
nq|

¸

“
1
2 max
f1,f2PL

˜

n´1
ÿ

i“1
σiw

2
i pf

1
i ` f

2
i q ` w

2
npf

1
n ´ f

2
nq

¸

“
1
2 max
fPL

˜

n´1
ÿ

i“1
σiw

2
i fi ` w

2
nfn

¸

`
1
2 max
fPL

˜

n´1
ÿ

i“1
σiw

2
i fi ´ w

2
nfn

¸

“ Eσn„t˘1u

«

max
fPL

n
ÿ

i“1
σiw

2
i fi

ff

.

The proof is thus completed by taking expectation over tσiun´1
i“1 .

By virtue of Lemma 10 with the choice c “ 1{κ, we obtain

Pttpxi,j ,yi,jqunij“1u
k
i“1

«
ˇ

ˇ

ˇ

ˇ

ˇ

max
hPH

˜

k
ÿ

i“1

wi
ni
`ph, pxi,j , yi,jqq ´

k
ÿ

i“1
wiLph, eiq

¸

´ F pn,wq

ˇ

ˇ

ˇ

ˇ

ˇ

ě ε

ff

ď2 exp
˜

´
2κ2ε2
řk
i“1 ni

¸

. (141)

According to (141), for any δ1 P p0, 1s, with probability at least 1´ δ1, it holds that

max
hPH

˜

k
ÿ

i“1

wi
ni
`ph, pxi,j , yi,jqq ´

k
ÿ

i“1
wiLph, eiq

¸

(142)

ď 2
řk
i“1 ni
κ

ĄRadtniuki“1
`

řk
i“1 ni
κ

d

logp2{δ1q
2
řk
i“1 ni

. (143)

Replacing p`, Lq with p´`,´Lq and using similar arguments, we can show that, with probability at least
1´ 2δ1,

max
hPH

ˇ

ˇ

ˇ

ˇ

ˇ

k
ÿ

i“1

wi
ni
`ph, pxi,j , yi,jqq ´

k
ÿ

i“1
wiLph, eiq

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2
řk
i“1 ni
κ

ĄRadtniuki“1
`

řk
i“1 ni
κ

d

logp2{δ1q
2
řk
i“1 ni

. (144)

Now we fix κ ě 0. Define that

rL “

#

n “ tniu
k
i“1, w “ twiu

k
i“1 P ∆ε1{p8kqpkq | T1wi ď 2ni, 12 logp2kq ď ni ď T1,@i P rks,

k
ÿ

i“1
ni ď 2T1

+

.
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By (144), for any δ1 ą 0, with probability at least 1´ δ1, for any tn,wu P rL, we have that

max
hPH

ˇ

ˇ

ˇ

ˇ

ˇ

k
ÿ

i“1

wi
ni
`ph, pxi,j , yi,jqq ´

k
ÿ

i“1
wiLph, eiq

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2
řk
i“1 ni
T1

ĄRadtniuki“1
`

řk
i“1 ni
T1

g

f

f

e

logp| rL|q ` logp2{δ1q
2
řk
i“1 ni

ď 4ĄRadtniuki“1
` 4

d

logp2| rL|q ` logp2{δ1q
T1

ď 4ĄRadtniuki“1
` 4

d

2k logp16kT1{ε1q ` logp2{δ1q
T1

ď 600CT1 ` 4

d

2k logp16kT1{ε1q ` logp2{δ1q
T1

.

Here, the last inequality follows from Assumption 1, Lemma 5, Lemma 6 and the fact that
řk
i“1 ni ě

T1
2 .

Note that in Algorithm 3,

pLtph,wtq “
k
ÿ

i“1

wti
qnti
¨

qnti
ÿ

j“1
`ph, pxi,j , yi,jqq.

By the definition that qnti “ mintrT1w
t
i ` 12 logp2kqs , T1u for i P rks, we have that T1w

t
i ď qnti ´ 1 and

12 logp2kq ď qnti ď T1 for all i P rks. In addition,

k
ÿ

1“1
qnti ď T1 ` k ` 12k logp2kq ď 2T1 ´ 2.

Therefore, there exists some rwt P ∆pkq such that ttqntiuki“1, rw
tu P rL and }wt ´ rwt}1 ď

ε1
8k for each 1 ď t ď T .

Choose δ1 “ δ{4. We then obtain that: with probability at least 1´ δ{4, it holds that

max
hPH

|pLtph,wtq ´ Lph,wtq| ď 600CT1 ď
ε1

2

for any 1 ď t ď T . Here the last inequality is by definition of T1.
Finally, the fact that ht “ arg minhPH pLtph,wtq allows one to derive

Lpht, wtq ď pLtpht, wtq `
ε1

2 “ min
hPH

pLtph,wtq `
ε1

2 ď min
hPH

Lph,wtq ` ε1,

which concludes the proof.

F.2 Restatement and proof of Lemma 5

Lemma 5.[Restatement] For any two groups of positive integers tniuki“1 and tmiu
k
i“1, it holds that

˜

k
ÿ

i“1
ni

¸

ĄRadtniuki“1
ď

˜

k
ÿ

i“1
pmi ` niq

¸

ĄRadtmi`niuki“1

ď

˜

k
ÿ

i“1
ni

¸

ĄRadtniuki“1
`

˜

k
ÿ

i“1
mi

¸

ĄRadtmiuki“1
. (145)
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Proof. In what follows, assume that each zji obeys zji „ Di, and each σji is a zero-mean Rademacher random
variable. Direct computation then gives

˜

k
ÿ

i“1
ni

¸

ĄRadtniuki“1

“ E
tzj
i
u
ni
j“1,@iPrks

«

E
tσj
i
u
ni
j“1,@iPrks

«

max
hPH

k
ÿ

i“1

ni
ÿ

j“1
σji `ph, z

j
i q

ffff

piq
“ E
tzj
i
u
ni
j“1,@iPrks

»

– E
tσj
i
u
ni
j“1,@iPrks

»

–max
hPH

E
tzj
i
u
ni`mi
j“ni`1,tσ

j
i
u
ni`mi
j“ni`1,@iPrks

«

k
ÿ

i“1

ni`mi
ÿ

j“1
σji `ph, z

j
i q

ff

fi

fl

fi

fl

piiq
ď E
tzj
i
u
ni`mi
j“1 ,@iPrks

»

– E
tσj
i
u
ni`mi
j“1 ,@iPrks

«

max
hPH

k
ÿ

i“1

ni`mi
ÿ

j“1
σji `ph, z

j
i q

ff

fi

fl

“

˜

k
ÿ

i“1
pni `miq

¸

ĄRadtni`miuki“1

piiiq
ď E

tzj
i
u
ni
j“1,@iPrks

«

E
tσj
i
u
ni
j“1,@iPrks

«

max
hPH

k
ÿ

i“1

ni
ÿ

j“1
σji `ph, z

j
i q

ffff

` E
tzj
i
u
ni`mi
j“ni`1,@iPrks

»

– E
tσj
i
u
ni`mi
j“ni`1,@iPrks

«

max
hPH

k
ÿ

i“1

ni`mi
ÿ

j“ni`1
σji `ph, z

j
i q

ff

fi

fl

“

˜

k
ÿ

i“1
ni

¸

ĄRadtniuki“1
`

˜

k
ÿ

i“1
mi

¸

ĄRadtmiuki“1
.

Here, (i) is valid due to the zero-mean property of tσji u, (ii) comes from Jensen’s inequality, and (iii) holds
since maxxpf1pxq ` f2pxqq ď maxx f1pxq `maxx f2pxq.

F.2.1 Restatement and proof of Lemma 6

Lemma 6.[Restatement] Consider any tniuki“1 obeying ni ě 12 logp2kq for each i P rks. By taking w P ∆k

with wi “ ni
řk
l“1 nl

, one has

ĄRadtniuki“1
ď 72Radřk

i“1 ni

`

Dpwq
˘

.

Proof. Set rn “
řk
i“1 ni. Let tXju

n
j“1 be n i.i.d. multinomial random variables with parameter twiuki“1, and

take pni “
řn
j“1 1tXj “ iu for each i P rks. From (38) and Definition 3, it is easily seen that

Rad
rn

`

Dpwq
˘

“ E
tXiurni“1

»

– E
tzj
i
u
pni
j“1,@iPrks

»

– E
tσj
i
u
pni
j“1,@iPrks

«

1
rn

max
hPH

k
ÿ

i“1

pni
ÿ

j“1
σji `

`

h, zji
˘

ff

fi

fl

fi

fl ,

where each zji is independently drawn from Di, and each σji is an independent Rademacher random variable.
In addition, Lemma 9 tells us that: for any i P rks, one has

pni ě
1
3ni ´ 2 logp2kq ě 1

6ni ùñ pni ě

R

1
6ni

V

“:
rni (146)
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with probability exceeding 1 ´ 1
2k . By defining E to be the event where pni ě ni{6 for all i P rks, we can

immediately see from the union bound that

PpEq ě 1{2.

Consequently, we can derive

Rad
rn

`

Dpwq
˘

ě PpEq ¨ E
tXiurni“1

»

– E
tzj
i
u
pni
j“1,@iPrks

»

– E
tσj
i
u
pni
j“1,@iPrks

«

1
rn

max
hPH

k
ÿ

i“1

pni
ÿ

j“1
σji `

`

h, zji
˘

| E

ff

fi

fl

fi

fl

ě
1
2 ¨

řk
i“1 rni
rn

ĄRadtrniuki“1

ě
1
12 ¨

1
6
ĄRadtniuki“1

, (147)

where the last two inequalities both follow from Lemma 19. This concludes the proof.

F.3 Necessity of Assumption 1

In this section, we will discuss the necessity of Assumption 1 in comparison to the following weaker assumption,
the latter of which only assumes that the Rademacher complexity on each Di is well-bounded.

Assumption 3. For each n ě 1, there exists a universal constant Cn ě 0 such that

RadnpDiq ď Cn (148)

for all i P rks.

Formally, we have the following results.

Lemma 21. Let w0 “ r1{k, 1{k, . . . , 1{ksJ. There exist a group of distributions tDiu
k
i“1 and a hypothesis

set H such that

RadnpDpw0qq ě Ω
˜

1
k

k
ÿ

i“1
Radn{kpDiq

¸

(149)

for n ě 12k logpkq.

Proof. Without loss of generality, we set Y “ t0u and `ph, px, yqq “ hpxq ´ y “ hpxq. We can then regard Di

as a distribution over Xi because there is only one element in Y.
Pick k subsets of X as tXiuki“1. For each i P rks, we choose the distribution Di to be an arbitrary

distribution supported by Xi. In addition, we define Hi to be a set of hypothesis hpxq “ 0 for all x R Xi
for each i P rks. For thiuki“1 such that hi P Hi, we define jointpthiuki“1q to be the hypothesis h such that
hpxq “ hipxq,@x P Xi, i P rks and hpxq “ 0 for x R YiXi. Now we construct the hypothesis set H as

H “ tjointpthiuki“1q|hi P Hi,@i P rksu. (150)

Recalling the definition of ĄRadtniuki“1
ptDiu

k
i“1q, we see that

ĄRadtniuki“1
ptDiu

k
i“1q “ E

txj
i
u
ni
j“1,@iPrks

«

E
tσj
i
u
ni
j“1,@iPrks

«

1
řk
i“1 ni

max
hPH

k
ÿ

i“1

ni
ÿ

j“1
σji hpx

j
i q

ffff

“ E
tzj
i
u
ni
j“1,@iPrks

«

E
tσj
i
u
ni
j“1,@iPrks

«

1
řk
i“1 ni

k
ÿ

i“1
max
hiPHi

ni
ÿ

j“1
σji hipx

j
i q

ffff

(151)

53



“
1

řk
i“1 ni

k
ÿ

i“1
ni E
tzj
i
u
ni
j“1,@iPrks

«

E
tσj
i
u
ni
j“1

«

1
ni

max
hiPHi

ni
ÿ

j“1
σji hipx

j
i q

ffff

“
1

řk
i“1 ni

k
ÿ

i“1
niRadnipDiq.

Here (151) is by the definition of H. By taking ni “ n
k for all i P rks and Lemma 6, we reach

1
k

k
ÿ

i“1
Radn{kpDiq “ ĄRadtniuki“1

ptDiu
k
i“1q ď 72RadnpDpw0qq (152)

By virtue of Lemma 21, if we set Cn „
b

d
n in Assumption 3, the best upper bound on is RadnpDpw0qq „

b

dk
n , which implies that more samples are needed to learn the mixed distribution w0. Moreover, under the

construction in Lemma 21, by further assuming minhiPHi Ex„Dirhipxqs “
1
2 for all i P rks, to find h such that

max
i

Ex„Dirhpxqs ď
1
2 ` ε, (153)

we need to find hi P Hi such that

Ex„Dirhipxqs ď
1
2 ` ε (154)

for all i P rks. Following this intuition, we can construct a counter example under Assumption 3 as follows.

Theorem 5. There exist a group of distributions tDiu
k
i“1 and a hypothesis set H such that Assumption 3

holds with Cn “ O
´
b

d
n

¯

, and it takes at least rΩ
`

dk
ε2

˘

samples to find some h P H obeying

max
iPrks

Lph, eiq ď min
h1PH

max
iPrks

Lph1, eiq ` ε.

Proof. With the construction in Lemma 21, it suffices to find some H1 and D1 such that the following three
conditions hold.

1. The following inequality holds:

RadnpD1,H1q :“ 1
n
E
txjun

j“1
iid
„D1,tσjun

j“1
iid
„t˘1u

«

max
h1PH1

n
ÿ

j“1
σjh1pxjq

ff

ď Cn; (155)

2. minh1PH Ex„D1rhpxqs “
1
2 ;

3. It takes at least rΩ
`

d
ε2

˘

samples to find some h such that Ex„D1rhpxqs ď
1
2 ` ε.

This construction is also straightforward. We set N “ 2d and X 1 “ t0, 1uN . Let D1 to be the
distribution PD1rxs “ ΠN

n“1PD1nrxns, where PD1
n˚
rxn˚s “

1
2 Irxn˚ “ 1s` 1

2 Irxn˚ “ 0s for some n˚ , PD1nrxns “

p 1
2 ` 2εqIrxn˚ “ 1s ` p 1

2 ´ 2εqIrxn˚ “ 0s for all n ‰ n˚. Then we set H1 “ thnuNn“1 with hnpxq “ xn for each
n P rN s. It is then easy to verify that the first two conditions hold. Regarding the third condition, following
the arguments in Theorem 2, we need at least rΩ

`

d
ε2

˘

i.i.d. samples from D1 to identify n˚. The proof is thus
completed.
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G Proof of Theorem 4

Algorithm 4: Hedge for Multi-group Learning
1 Input: The hypothesis set H, the group set G, target accuracy level ε, target success rate 1´ δ,

minimal probability γ.
2 Initialization: T “ 10000 logp|G|{δq

γε2 , η “ 1
10εγ, N “

20000plogp|G|{δq`d logpd{εqq
γε2 , W 1

g “ 1 for all g P G.
3 Call QuerypDq for N times to get N i.i.d. samples from D, denoted by tpxi, yiquNi“1.
4 fg Ð minhPL

1
řN
i“1 1rxiPgs

řN
i“1 1rxi P gs`phpxiq, yiq,@g P G,

5 Ng Ð
řN
i“1 1rxi P gs, pg Ð

Ng
N , @g P G

6 for t “ 1, 2, . . . , T do
7 wtg Ð

W t
g

ř

gPG W
t
g
,@g P G,

8 ht Ð arg minhPH

´

ř

gPG w
t
g ¨

´

1
Ng

řN
i“1 1rxi P gs`phpxiq, yiq ´ fg

¯¯

,
9 Call QuerypDq to get a data point ppxt, pytq,

10 prtg Ð
1
pg
1rpxt P gsp`ph

tppxtq, pytq ´ fgq, @g P G,
11 W t`1

g ÐW t
g ¨ exppηprtgq, @g P G;

12 Return: A randomized hypothesis hfinal as a uniform distribution over thtuTt“1.

Throughout this section, we let Ft be the event field before the t-th round. Clearly, the number of
samples used in Algorithm 4 is bounded by T ` N “ O

´

plogp|G|{δqq`d logpd{εq
γε2

¯

. So it suffices to prove the
optimality of hfinal. Formally, we have the lemma below.

Lemma 22. With probability at least 1´ δ, it holds that

1
T

T
ÿ

t“1
LDph

t | gq ď min
hPH

LDph | gq ` ε (156)

for any g P G.

Proof. We first show that pg ě η with high probability. Using Lemma 9, for fixed g P G, we have that

P
„

Npg ď
1
3NPg ´

1
3 logp1{δ1q



ď δ1. (157)

By choosing δ1 “ δ
64|G| , with probability at least 1´ δ

64 , it holds that

pg ě
1
3Pg ´

1
3N logp1{δ1q ě 1

6Pg

for any g P G.
Let W t “

ř

gPG W
t
g . Because ηprtg ď η

pg
ď 6ε ď 1 for any proper pg, tq pair, we have

logpWT`1
g q “ η

T
ÿ

t“1
prtg,

log
ˆ

W t`1

W t

˙

“ log
˜

ÿ

gPG
wtg exppηprtgq

¸

ď log
˜

ÿ

gPG
wtgp1` ηprtg ` η2pprtgq

2q

¸

ď
ÿ

gPG
wtgpηpr

t
g ` η

2pprtgq
2q.

Observe that

logpWT`1
g q ď logpWT`1q “

T
ÿ

t“1
logpW t`1{W tq ` logp|G|q
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for any rg P G,

η
T
ÿ

t“1
prt
rg ď η

T
ÿ

t“1

ÿ

gPG
wtgpr

t
g ` η

2
T
ÿ

t“1

ÿ

gPG
wtgppr

t
gq

2 ` logp|G|q.

Dividing both side by η, we reach

T
ÿ

t“1
prt
rg ´

T
ÿ

t“1

ÿ

gPG
wtgpr

t
g ď

logp|G|q
η

` η
T
ÿ

t“1

ÿ

gPG
wtgppr

t
gq

2. (158)

By Lemma 24, with probability at least 1´ δ
16 ,

T
ÿ

t“1
prt
rg ´

T
ÿ

t“1

ÿ

gPG
wtgpr

t
g ď

logp|G|q
η

`
3ηT
γ

ď
5Tε
16 (159)

for any rg P G. By (159) and Lemma 25, with probability at least 1´ 3δ
4 ,

T
ÿ

t“1

`

LDph
t|gq ´ fg

˘

ď

T
ÿ

t“1
prtg `

Tε

8 ď

T
ÿ

t“1

ÿ

gPG
wtgpr

t
g `

7Tε
16 ď

7Tε
8 (160)

for any g P G. By Lemma 23, with probability at least 1´ δ, we have that

T
ÿ

t“1
LDph

t|gq ´ T min
hPH

LDph|gq ď Tε,

which means that

1
T

T
ÿ

t“1
LDph

t|gq ´min
hPH

LDph|gq ď ε.

The proof is completed.

Lemma 23. with probability at least 1´ δ
16 , it holds that
ˇ

ˇ

ˇ

ˇ

fg ´min
hPH

LDph | gq

ˇ

ˇ

ˇ

ˇ

ď
ε

8

for any g P G.

Proof. Fix g P G. Let tpx1i, y1iquNi“1 to be the ghost samples, another group of N i.i.d. datapoints from D
which is independent of tpxi, yiquNi“1. Let λ P p0, 1{2s be a positive real number.

Then we have that

Etpxi,yiquNi“1

«

exp
˜

λmax
hPH

˜

N
ÿ

i“1
1rxi P gs`phpxiq, yiq ´NEpx,yq„Dr1rx P gs`phpxq, yqs

¸¸ff

ď Etpxi,yiq,px1i,y1iquNi“1

«

exp
˜

λmax
hPH

˜

N
ÿ

i“1

`

1rxi P gs`phpxiq, yiq ´ 1rx1i P gs`phpx
1
iq, y

1
iq
˘

¸¸ff

(161)

“ Etpxi,yiq,px1i,y1iquNi“1
E
tσiuNi“1

i.i.d.
„ t˘1u

«

exp
˜

λmax
hPH

N
ÿ

i“1
σi

`

1rxi P gs`phpxiq, yiq ´ 1rx1i P gs`phpx
1
iq, y

1
iq
˘

¸ff

ď Etpxi,yiq,px1i,y1iquNi“1

«

exp
˜

N
ÿ

i“1
2λ2p1rxi P gs ` 1rx1i P gsq

2

¸ff
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ď Etpxi,yiq,px1i,y1iquNi“1

«

exp
˜

N
ÿ

i“1
4λ2p1rxi P gs ` 1rx1i P gsq

¸ff

ď exp
`

16Nλ2Pg
˘

. (162)

Here, (161) arises from Jenson’s inequality. As a result, we can deduce that

P

«

max
hPH

˜

N
ÿ

i“1
1rxi P gs`phpxiq, yiq ´NEpx,yq„Dr1rx P gs`phpxq, yqs

¸

ą NPgε{32
ff

ď min
λPp0,1{2s

exp
`

4Nλ2Pg ´ λNPgε{32
˘

ď exp
ˆ

´
NPgε

2

16384

˙

(163)

ď exp
ˆ

´
Nγε2

16384

˙

ď
δ

64|G| . (164)

Using similar arguments, we can obtain

P

«

max
hPH

˜

´

N
ÿ

i“1
1rxi P gs`phpxiq, yiq `NEpx,yq„Dr1rx P gs`phpxq, yqs

¸

ą NPgε{32
ff

ď
δ

64|G| (165)

As a consequence, we see that

P

«

Dh,

ˇ

ˇ

ˇ

ˇ

ˇ

1
NPg

N
ÿ

i“1
1rxi P gs`phpxiq, yiq ´ LDph|gq

ˇ

ˇ

ˇ

ˇ

ˇ

ě ε{32
ff

ď
δ

32|G| . (166)

Recall that pg “
řN
i“1 1rxiPgs

N . Applying Chernoff’s inequality gives

P
„

|NPg ´Npg| ě 2
b

NPg logp128|G|{δq


ď
δ

64|G| , (167)

which means that

P
„

|Pg ´ pg| ě
Pgε

32



ď
δ

64|G| . (168)

By (166) and (168), and taking a union bound over G, we obtain that with probability at least 1´ δ
16 ,

ˇ

ˇ

ˇ

ˇ

ˇ

1
Npg

N
ÿ

i“1
1rxi P gs`phpxiq, yiq ´ LDph|gq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ε

16 (169)

for any h P H, g P G. From the definition of hg, we have
ˇ

ˇ

ˇ

ˇ

fg ´min
hPH

LDph|gq

ˇ

ˇ

ˇ

ˇ

ď 2 max
hPH

ˇ

ˇ

ˇ

ˇ

ˇ

1
Npg

N
ÿ

i“1
1rxi P gs`phpxiq, yiq ´ LDph|gq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ε

8 .

This concludes the proof.

Lemma 24. With probability at least 1´ δ
16 , it holds that

T
ÿ

t“1

ÿ

gPG
wtgppr

t
gq

2 ď
3T
γ
. (170)
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Proof. By definition, we have

T
ÿ

t“1

ÿ

gPG
wtgppr

t
gq

2 ď
T
ÿ

t“1

ÿ

gPG
wtg

1rxt P gs

p2
g

. (171)

Let Xt “
ř

gPG w
t
g
1rxtPgs
p2
g

and recall Ft is the event field before the t-th round. Then Xt ď
1
γ2 , and

ErX2
t |Fts “

ř

g,g1 w
t
gw

t
g1

Er1rpxtPg,pxtPg1ss
p2
gp

2
g1

ď
ř

g,g1 w
t
gw

t
g1

1
ppgpg1 q

3{2 ď 1
γ3 . Freedman’s inequality (Lemma 8)

reveals that, with probability at least 1´ δ
16 ,

T
ÿ

t“1

ÿ

gPG
wtgppr

t
gq

2 ď
T
ÿ

t“1

ÿ

gPG
wtg

1
pg
` 2

d

T logp16{δq
γ3 ď

3T
γ
, (172)

where the last inequality arises from the fact that T ě logp16{δq
γ .

Lemma 25. Assume the events in Lemma 23 hold. With probability at least 1´ δ
4 , it holds that

ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1
prtg ´

T
ÿ

t“1
pLDph

t|gq ´ fgq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
Tε

8 , @g P G; (173)

T
ÿ

t“1

ÿ

gPG
wtgpr

t
g ď

7Tε
16 . (174)

Proof. Let us begin with the first inequality. By definition,

T
ÿ

t“1
prtg ´

T
ÿ

t“1
pLDph

t|gq ´ fgq

“

T
ÿ

t“1

ˆ

1
pg
1rpxt P gs`phppxtq, pytq ´ LDph

t|gq

˙

`

T
ÿ

t“1

ˆ

1
pg
1rpxt P gs ´ 1

˙

fg. (175)

Defining pXt “
1
pg
1rpxt P gs`phppxtq, pytq. We then see that Er pXt|Fts “ Pg

pg
LDph

t|gq and Er pX2
t |Fts ď

Pg
p2
g
.

According to Freedman’s inequality (Lemma 8), we know that with probability at least 1´ δ
64 ,

ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1

ˆ

1
pg
1rpxt P gs`phppxtq, pytq ´

Pg
pg
LDph

t|gq

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ď
Tε

32 . (176)

for any g P G. Combine (176) with (168) to show that: with probability at least 1´ δ
32 ,

ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1

ˆ

1
pg
1rpxt P gs`phppxtq, pytq ´ LDph

t|gq

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ď
Tε

16 (177)

holds for any g P G.
Similarly, we have with probability exceeding 1´ δ

32

T
ÿ

t“1

ˆ

1
pg
1rpxt P gs ´ 1

˙

fg ď
Tε

16 .

Therefore with probability at least 1´ δ
16 ,

ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1
prtg ´

T
ÿ

t“1
pLDph

t|gq ´ fgq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
Tε

8 , (178)
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holds for any g P G.
As for the second inequality, we define rXt “

ř

gPG w
t
g

´

1
pg
1rpxt P gsp`ph

tppxtq, pytq ´ fgq
¯

. It then follows
that Er rXt|Fts “

ř

gPG w
t
g
Pg
pg
pLDph

t|gq ´ fgq ď
6
γ and

Er rX2
t |Fts ď

ÿ

g1,g1

wtgw
t
g1
Er1rpxt P g, pxt P g1ss

pgpg1
ď

ÿ

g1,g1

wtgw
t
g1

1
?
pgpg1

ď
6
γ
.

Invoking Freedman’s inequality (cf. Lemma 8), we can demonstrate that, with probability at least 1´ δ
64 ,

T
ÿ

t“1

˜

rXt ´
ÿ

gPG
wtg
Pg
pg
pLDph

t|gq ´ fgq

¸

ď
Tε

32 . (179)

As a result, taking this together with (168) gives

T
ÿ

t“1

ÿ

gPG
wtgpr

t
g ď

T
ÿ

t“1

ÿ

gPG
wtgpLDph

t|gq ´ fgq `
Tε

16 . (180)

Recall the definition that

ht “ arg min
hPH

˜

ÿ

gPG
wtg

˜

1
Ng

N
ÿ

i“1
1rxi P gs`phpxiq, yiq ´ fg

¸¸

. (181)

By Lemma 23, one has

max
hPH

ˇ

ˇ

ˇ

ˇ

ˇ

1
Npg

N
ÿ

i“1
1rxi P gs`phpxiq, yiq ´ LDph|gq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ε

16 (182)

for any g P G. It follows from the definition that Npg “ Ng, and consequently,

ÿ

gPG
wtg

˜

1
Npg

N
ÿ

i“1
1rxi P gs`ph

tpxiq, yiq ´ fg

¸

ď
ÿ

gPG
wtg

˜

1
Npg

N
ÿ

i“1
1rxi P gs`ph

˚pxiq, yiq ´ fg

¸

ď
ÿ

gPG
wtgpLDph

˚|gq ´ fgq `
ε

16 . (183)

In view of (183), Assumption 2 and Lemma 23, we have

ÿ

gPG
wtg

˜

1
Npg

N
ÿ

i“1
1rxi P gs`ph

tpxiq, yiq ´ fg

¸

ď
5
16ε. (184)

Moreover, we also have

ÿ

gPG
wtg

`

LDph
t | gq ´ fg

˘

ď
ÿ

gPG
wtg

˜

1
Npg

N
ÿ

i“1
1rxi P gs`ph

tpxiq, yiq ´ fg

¸

`
ε

16 ,

which implies that
ÿ

gPG
wtg

`

LDph
t | gq ´ fg

˘

ď
3ε
8 . (185)

The advertised result thus follows by combining (180) and (185).
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