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Abstract

Multi-distribution learning (MDL), which seeks to learn a shared model that minimizes the worst-
case risk across k distinct data distributions, has emerged as a unified framework in response to the
evolving demand for robustness, fairness, multi-group collaboration, etc. Achieving data-efficient MDL
necessitates adaptive sampling, also called on-demand sampling, throughout the learning process. How-
ever, there exist substantial gaps between the state-of-the-art upper and lower bounds on the optimal
sample complexity. Focusing on a hypothesis class of Vapnik—Chervonenkis (VC) dimension d, we
propose a novel algorithm that yields an e-optimal randomized hypothesis with a sample complexity
on the order of % (modulo some logarithmic factor), matching the best-known lower bound. Our
algorithmic ideas and theory are further extended to accommodate Rademacher classes. The proposed
algorithms are oracle-efficient, which access the hypothesis class solely through an empirical risk mini-
mization oracle. Additionally, we establish the necessity of randomization, revealing a large sample size
barrier when only deterministic hypotheses are permitted. These findings resolve three open problems
presented in COLT 2023 (i.e., Awasthi et al. (2023, Problems 1, 3 and 4)).

Keywords: multi-distribution learning; on-demand sampling; game dynamics; VC classes; Rademacher
classes; oracle efficiency
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1 Introduction

Driven by the growing need of robustness, fairness and multi-group collaboration in machine learning practice,
the multi-distribution learning (MDL) framework has emerged as a unified solution in response to these
evolving demands (Blum et al., 2017; Haghtalab et al., 2022; Mohri et al., 2019; Awasthi et al., 2023). Setting
the stage, imagine that we are interested in a collection of k& unknown data distributions D = {D;}*_,
supported on X x ), where X (resp. )) stands for the instance (resp. label) space. Given a hypothesis class
H and a prescribed loss function! £: H x X x Y — [—1,1], we are asked to identify a (possibly randomized)

LFor example, for each hypothesis h € H and each datapoint (x,y) € X x Y, we employ £(h, (z,y)) to measure the risk of
using hypothesis h to predict y based on x.



hypothesis h achieving near-optimal worst-case loss across these data distributions, namely,?

oy, B[ @)l < pinmax B[R (0)] +e @

with £ € (0,1] a target accuracy level. In light of the unknown nature of these data distributions, the learning
process is often coupled with data collection, allowing the learner to sample from {Di}le. The performance
of a learning algorithm is then gauged by its sample complexity — the number of samples required to fulfil
(1). Our objective is to design a learning paradigm that achieves the optimal sample complexity.

The MDL framework described above, which can viewed as an extension of agnostic learning (Valiant,
1984; Blumer et al., 1989) tailored to multiple data distributions, has found a wealth of applications across
multiple domains. Here, we highlight a few representative examples, and refer the interested reader to
Haghtalab et al. (2022) and the references therein for more extensive discussions.

e Collaborative and agnostic federated learning. In the realm of collaborative and agnostic federated
learning (Blum et al., 2017; Nguyen and Zakynthinou, 2018; Chen et al., 2018; Mohri et al., 2019;
Blum et al., 2021a; Du et al., 2021; Deng et al., 2020; Blum et al., 2021b), a group of k agents, each
having access to distinct data sources as characterized by different data distributions {D;}¥_;, aim
to learn a shared prediction model that ideally would achieve low risk for each of their respective
data sources. A sample-efficient MDL paradigm would help unleash the potential of collaboration and
information sharing in jointly learning a complicated task.

o Min-maz fairness in learning. The MDL framework is well-suited to scenarios requiring fairness across
multiple groups (Dwork et al., 2021; Rothblum and Yona, 2021; Du et al., 2021). For instance, in
situations where multiple subpopulations with distinct data distributions exist, a prevailing objective is
to ensure that the learned model does not adversely impact any of these subpopulations. One criterion
designed to meet this objective, known as “min-max fairness” in the literature (Mohri et al., 2019;
Abernethy et al., 2022), plays a pivotal role in mitigating the worst disadvantage experienced by any
particular subpopulation.

o Distributionally robust optimization/learning. Another context where MDL naturally finds applications
is group distributionally robust optimization and learning (DRO/DRL). Group DRO and DRL aim
to develop algorithms that offer robust performance guarantees across a finite number of possible
distributional models (Sagawa et al., 2019, 2020; Hashimoto et al., 2018; Hu et al., 2018; Xiong et al.,
2023; Zhang et al., 2020; Wang et al., 2023; Deng et al., 2020), and have garnered substantial attention
recently due to the pervasive need for robustness in modern decision-making (Carmon and Hausler,
2022; Asi et al., 2021; Haghtalab et al., 2022; Kar et al., 2019). When applying MDL to the context of
group DRO/DRL, the resultant sample complexity reflects the price that needs to be paid for learning
a robust solution.

The MDL framework is also closely related to other topics like multi-source domain adaptation, maximum
aggregation, to name just a few (Mansour et al., 2008; Zhao et al., 2020; Biihlmann and Meinshausen, 2015;
Guo, 2023).

In stark contrast to single-distribution learning, achieving data-efficient MDL necessitates adaptive
sampling throughout the learning process, also known as on-demand sampling (Haghtalab et al., 2022).
More specifically, pre-determining a sample-size budget for each distribution beforehand and sampling non-
adaptively could result in a loss of sample efficiency, as we lack knowledge about the complexity of learning
each distribution before the learning process begins. The question then comes down to how to optimally
adapt the online sampling strategy to effectively tackle diverse data distributions.

Inadequacy of prior results. The sample complexity of MDL has been explored in a strand of recent
works under various settings. Consider first the case where the hypothesis class H comprises a finite number

2Here, the expectation on the left-hand side of (1) is taken over the randomness of both the datapoints (z,y) and the
(randomized) hypothesis h.



of hypotheses. If we sample non-adaptively and draw the same number of samples from each individual

distribution D;, then this results in a total sample size exceeding the order of M%(Q‘HD (given that learning

each distribution requires a sample size at least on the order of bgi#) Fortunately, this sample size budget
can be significantly reduced with the aid of adaptive sampling. In particular, the state-of-the-art approach,
proposed by Haghtalab et al. (2022), accomplishes the objective (1) with probability at least 1 — ¢ using
O(w) samples. In comparison to agnostic learning on a single distribution, it only incurs
an extra additive cost of klog(k/5)/e? as opposed to a multiplicative factor in k, thus underscoring the

importance of adaptive sampling.

A more challenging scenario arises when H has a finite Vapnik—Chervonenkis (VC) dimension d. The
sample complexity for VC classes has only been settled for the reliazable case (Blum et al., 2017; Chen
et al., 2018; Nguyen and Zakynthinou, 2018), a special scenario where the loss function takes the form of
((h, (z,y)) = 1{h(x) # y} and it is feasible to achieve zero mean loss. For the general non-realizable case,
the best-known lower bound for such VC classes is (Haghtalab et al., 2022)3

~(d+k

0 ("5, 2
which serves as a theoretical benchmark. By first collecting 0 (%) samples to help construct a cover of H
with reasonable resolution, Haghtalab et al. (2022) established a sample complexity upper bound of

~(d+k dk
(Haghtalab et al., 2022) O ( i + ) .

3a
p 6 (3a)
Nevertheless, the term dk/e in (3a) fails to match the lower bound (2); put another way, this term might
result in a potentially large burn-in cost, as the optimality of this approach is only guaranteed (up to log
factors) when the total sample size already exceeds an enormous threshold on the order of %. In an effort
to alleviate this dk/e factor, Awasthi et al. (2023) put forward an alternative algorithm — which utilizes an
oracle to learn on a single distribution and obliviates the need for computing an epsilon-net of H — yielding
a sample complexity of
. ~(d k

(Awasthi et al., 2023) 0 (54 + €2> . (3b)
However, this result (3b) might fall short of optimality as well, given that the scaling d/c* is off by a factor of
1/e% compared with the lower bound (2). A more comprehensive list of past results can be found in Table 1.

Given the apparent gap between the state-of-the-art lower bound (2) and achievability bounds (3), a
natural question arises:

Question: Is_it plausible to design a multi-distribution learning algorithm with a sample
complexity of O (d‘H“) for VC classes, thereby matching the established lower bound (2)?

2

Notably, this question has been posed as an open problem during the Annual Conference on Learning Theory
(COLT) 2023; see Awasthi et al. (2023, Problem 1).

A glimpse of our main contributions. The present paper delivers some encouraging news: we come up
with a new MDL algorithm that successfully resolves the aforementioned open problem in the affirmative.
Specifically, focusing on a hypothesis class with VC dimension d and a collection of k data distributions, our
main findings can be summarized as follows.

Theorem 1. There exists an algorithm (see Algorithm 1 for details) such that: with probability exceeding
1 — 6, the randomized hypothesis hfi"? returned by this algorithm achieves

final :
max BT @) <minmax B [e(h(@.9)] +e

).

3Here and throughout, O(-) and €3(-) hide all logarithimic factors in (k,d, %,

=



Paper Sample complexity bound

Haghtalab et al. (2022) log(‘sw
Haghtalab et al. (2022) d+k + &
Awasthi et al. (2023) + E%
Peng (2023) (%)
our work (Theorem 1) d:;
lower bound: Haghtalab et al. (2022) ok

Table 1: Sample complexity bounds of MDL with &k data distributions and a hypothesis class of VC dimension
d. Here, we only report the polynomial depedency and hide all logarithmic dependency on (k d, L = 5)

provided that the total sample size exceeds

d+k 11
= poly log (k, d, = 5) (4)

The polylog factor in (4) will be specified momentarily. In a nutshell, we develop the first algorithm that
provably achieves a sample complexity matching the lower bound (2) modulo logarithmic factors. Following the
game dynamics template adopted in previous methods — namely, viewing MDL as a game between the learner
(who selects the best hypothesis) and the adversary (who chooses the most challenging mixture of distributions)

— our algorithm is built upon a novel and meticulously designed sampling scheme that deviates significantly
from previous methods. Further, we extend our algorithm and theory to accommodate Rademacher classes,
establishing a similar sample complexity bound when the weighted Rademacher complexity of the hypothesis

class on n points is upper bounded by O( ‘“%5(")).
Additionally, we solve two other open problems posed by Awasthi et al. (2023):

e Oracle-efficient solutions. An algorithm is said to be oracle-efficient if it only accesses H through
an empirical risk minimization (ERM) oracle (Dudik et al., 2020). Awasthi et al. (2023, Problem
4) then asked what the sample complexity of MDL is when confined to oracle-efficient paradigms.
Encouragingly, our algorithm (i.e., Algorithm 1) adheres to the oracle-efficient criterion, thus uncovering
that the sample complexity of MDL remains unchanged when restricted to oracle-efficient algorithms.

e Necessity of randomization. Both our algorithm and the most sample-efficient methods preceding
our work produce randomized hypotheses. As discussed around Awasthi et al. (2023, Problem 3), a
natural question concerns characterization of the sample complexity when restricting the final output to
deterministic hypotheses from H. Our result (see Theorem 2) delivers a negative message: under mild
conditions, for any MDL algorithm, there exists a hard problem instance such that it requires at least
Q(dk/e?) samples to find a deterministic hypothesis h € H that attains e-accuracy. This constitutes
an enormous sample complexity gap between what is achievable under randomized hypotheses and
what is achievable using deterministic hypotheses.

Concurrent work. We shall mention that a concurrent work Peng (2023), posted around the same time as
our work, also studied the MDL problem and significantly improved upon the prior results. More specifically,

Peng (2023) established a sample complexity of O (M (E) (1)), which is optimal up to some

sub-polynomial factor in k/e; in comparison, our sample complexity is optimal up to polylogarithmic factor.
Additionally, it is worth noting that the algorithm therein relies upon a certain recursive structure to eliminate
the non-optimal hypothesis, thus incurring exponential computational cost even when an ERM oracle is
available.

Notation. Throughout this paper, we denote [N] := {1,..., N} for any positive integer N. Let conv(.A)
represent the convex hull of a set A, and denote by A(n) the n-dimensional simplex for any positive integer



n. For two vectors v = [v;]1<i<n and v/ = [v}]1<i<n With the same dimension, we overload the notation
by using max{v,v’'} = [max{vi,vg}]KiSn to denote the coordinate-wise maximum of v and v'. Also we
say v < v’ iff v; < v} for all ¢ € [n]. For any random variable X, we use V[X] to denote its variance, i.e.,
V[X] = E[(X —E[X])?]. For any two distributions P and @ supported on X, the Kullback-Leibler (KL)

divergence from ) to P is defined and denoted by

()

KL(P|Q) = Bo| 30108 50 |

aQ " aq

2 Problem formulation

This section formulates the multi-distribution learning problem. We assume throughout that each datapoint
takes the form of (z,y) € X x Y, with X (resp. )) the instance space (resp. label space).

Learning from multiple distributions. The problem setting encompasses several elements below.

e Hypothesis class. Suppose we are interested in a hypothesis class H, comprising a set of candidate
functions from the instance space X to the label space ). Overloading the notation, we use h, to
represent a randomized hypothesis associated with a probability distribution 7 € A(?), meaning that a
hypothesis i from H is randomly selected according to distribution 7. Additionally, the VC dimension
(Vapnik et al., 1994) of H is assumed to be

VC-dim(H) = d. (6)

e Loss function. Suppose we are given a loss function ¢ : H x X x Y — [—1,1], so that £(h, (z,y))
quantifies the risk of using hypothesis h € H to make prediction on a datapoint (x,y) € X x Y (i.e.,
predicting y based on z). One example is the 0-1 loss function 4(h, (z,y)) = 1{h(x) # y}, which is
often used to measure the misclassification error.

o (Multiple) data distributions. Suppose that there are k data distributions of interest supported on
X x ), denoted by D = {D;,Ds,...,D;}. We are permitted to draw independent samples from each
of these data distributions.

Given a target accuracy level € € (0, 1), our objective is to identify a (randomized) hypothesis, represented by
hr with m € A(H), such that

pax, B @)l <minme B[R @ 9)] e @

Sampling and learning processes. In order to achieve the aforementioned goal (7), we need to draw
samples from the available data distributions in D, and the current paper focuses on sampling in an online
fashion. More precisely, the learning process proceeds as follows: in each step T,

o the learner selects i, € [k] based on the previous samples;

o the learner draws an independent sample (z,,y,) from the data distribution D;_.

The sample complexity of a learning algorithm thus refers to the total number of samples drawn from D
throughout the learning process. A desirable learning algorithm would yield an e-optimal (randomized)
hypothesis (i.e., a hypothesis that achieves (7)) using as few samples as possible.



3 Algorithm

In this section, we present our proposed algorithm. Before proceeding, we find it convenient to introduce some
notation concerning the loss under mixed distributions. Specifically, for any distribution w = [w;]1<i<k € A(k)
and any hypothesis h € H, the risk over the mixture Zie[k] w;D; of data distributions is denoted by:

k
Lh,w) =Y w; & [¢(h,(z,9))]; (8a)
i=1 (z,9)~D;
similarly, the risk of a randomized hypothesis h, (associated with =€ A(H)) over Zie[k] w;D; is given by

L(hr,w) =Z [¢(he, (@, 9))] = E [L(h,w)]. (8h)

(x,y Dl,h~7r h~m

Algorithm 1: Hedge for Multi-distribution Learning (MDL — Hedge)

1 input: k data distributions {D1,Da, ..., Di}, hypothesis class H, target accuracy level ¢, target success
rate 1 — 4.
2 hyper-parameters: stepsize n = 1005 number of rounds 7' = , auxiliary accuracy level

4000(k log(k/e1)+d lgg(kd/81)+log(1/6)) )
€1

20000 log( £)
T Es)

g1 = 1005 auxiliary sub-sample-size T} =

s initialization: for all i € [k], set W' = 1, @) =0 and nf = 0; S = &.
a fort=1,2,...,T do

t

5 set w' = [w!]i<i<k and ©° = [D} |1 <i<k, with wf « ZWWt and ! « @'! for all i € [k].
/* recompute W' & draw new samples for S only if w' changes sufficiently. */
6 if there exists j € [k] such that w} > 2w; ! then
7 @F < max{w}, @'} for all i € [k];
8 fori=1,...,k do
9 nt — [Tnﬁﬂ;
10 draw n! — nf_l independent samples from D;, and add these samples to S.
/* estimate the near-optimal hypothesis for weighted data distributions. */
11 compute h' «— argminpey fjt(h7 w'), where
Kk w? i
=) o D (hy (wi5,,5)) 9)
o™ O
with (zi,,y:,;) being the j-th datapoint from D; in S.
/* estimate the loss vector and execute weighted updates. */
12 W, < maxi<r<t wy for all i € [k].
13 for:=1,...,k do
—t
14 draw [kw!] independent samples — denoted by {(a:i S YEs) E’:‘ii] — from D;, and set
[kw}]
i = K] Z ¢ ht xmvym»
] &
15 | update the weight as Wit = Wexp(nrt). // Hedge updates.

16 output: a randomized hypothesis A" uniformly distributed over {hf}L_;.

Following the game dynamics proposed in previous works (Awasthi et al., 2023; Haghtalab et al., 2022),
our algorithm alternates between computing the most favorable hypothesis (performed by the learner) and
estimating the most challenging mixture of data distributions (performed by the adversary), with the aid of



no-regret learning algorithms (Roughgarden, 2016; Shalev-Shwartz, 2012). More specifically, in each round ¢,
our algorithm performs the following two steps:

(a)

Given a mixture of data distributions D®) = Diepr) WiDs (with w® = [w]iepr) € A(k)), we construct a

dataset to compute a hypothesis h! that nearly minimizes the loss under P®, namely,

ht ~ arg%éi{[ll/(h,wt). (10)

This is accomplished by calling an empirical risk minimization oracle.

Given hypothesis h?, we compute an updated weight vector w!*!* € A(k) — and hence an updated
mixed distribution D¢+ = Zie[k] waDZ'. The weight updates are carried out using the celebrated

Hedge algorithm (Freund and Schapire, 1997) designed for online adversarial learning,* in an attempt
to achieve low regret even when the loss vectors are adversarially chosen. More precisely, we run

wf“ o wexp (n?f), 1€ [k], (11)
where the loss vector 7* = [F{];cx) contains the empirical loss of h* under each data distribution, i.e.,

Mx K [E(ht,(a:,y))], i€ [k],

(z,y)~D;

computed over another set of data samples.

At the end of the algorithm, we output a randomized hypothesis Afi" that is uniformly distributed over the
hypothesis iterates {h'};<;<r over all T rounds, following common practice in online adversarial learning.

While the above paradigm has been adopted in past works (Awasthi et al., 2023; Haghtalab et al., 2022),
the resulting sample complexity depends heavily upon how data samples are collected and utilized throughout
the learning process. For instance, Awasthi et al. (2023, Algorithm 1) draws fresh data at each step of every
round, in order to ensure reliable estimation of the loss function of interest through elementary concentration
inequalities. This strategy, however, becomes wasteful over time, constituting the main source of its sample
sub-optimality.

In order to make the best use of data, we propose the following key strategies.

Sample reuse in Step (a). In stark contrast to Awasthi et al. (2023, Algorithm 1) that draws new
samples for estimating each h', we propose to reuse all samples collected in Step (a) up to the ¢-th
round to assist in computing h¢. As will be made precise in lines 6-11 of Algorithm 1, we shall maintain
a growing dataset S for conducting Step (a) throughout, ensuring that there are n! samples drawn
from distribution D; in the ¢-th round. These datapoints are employed to construct an empirical loss
estimator L!(h,w') for each h € H in each round ¢, with the aim of achieving uniform convergence
Lt (h, w') — L(h,w')| < O(¢) over all h € H. More detailed explanations are provided in Section 4.1.

Weighted sampling for Step (b). As shown in line 14 of Algorithm 1, in each round ¢, we sample
each D; a couple of times to compute the empirical estimator for E, ,ep, [Z(ht, (z, y))], where the
number of samples depends upon the running weights {w]}. More precisely, we collect [k@ﬂ fresh
samples from each D;, where @f ‘= maxi<,r<: W; is the maximum weight assigned to D; up to now.
Informally speaking, this strategy ensures reduced variance of the estimators and ultimately allows
for an improved bound for Zf=1 maxi<i<7 w!. The interested reader is referred to Section 4.2 and

Lemma 17 for more detailed explanations.

The whole procedure can be found in Algorithm 1.

4Note that the Hedge algorithm is closely related to Exponentiated Gradient Descent, Multiplicative Weights Update, Online
Mirror Descent, etc (Arora et al., 2012; Shalev-Shwartz, 2012; Hazan, 2022).



4 A glimpse of key technical novelty

In this section, we highlight two technical novelty that empowers our analysis: (i) uniform convergence of
the weighted sampling estimator that allows for sample reuse (see Section 4.1), and (ii) tight control of
certain /1 /¢y, norm of the iterates {w'}1<;<7 that dictates the sample efficiency (see Section 4.2). Given that
Haghtalab et al. (2022) already established near-optimal upper bounds when k = O(1/¢) (cf. the 2nd row in
Table 1), our analysis should focus on the regime where k > 100/e.

4.1 Towards sample reuse: uniform concentration and a key quantity

Recall that in Algorithm 1, we invoke the empirical risk estimator it(h, w?) as an estimate of the true risk
of hypothesis h over the weighted distribution specified by w? (cf. (9)). In order to facilitate sample reuse
when constructing such risk estimators across all iterations, it is desirable to establish uniform concentration
results to control the errors of such risk estimators throughout the execution of the algorithm. Towards this
end, our analysis strategy proceeds as follows.

Step 1: concentration for any fixed set of parameters. Consider any given set of integers n = {ni}le
and any given vector w € A(k). Suppose, for each i € [k], we have n; i.i.d. samples drawn from D; — denoted
by {(z;;, yi,j)}?;l — and let us look at the empirical risk estimator,

A~ k 1 g

Ln(h,w) = 21:1 Wit o ijl AUNCIFRTEI)P (12)
which is a sum of independent random variables. Evidently, for a given hypothesis h, the variance of zn(h, w)
is upper bounded by

2

Var(L,, (h,w)) < Zk Wi (2521%) 1 _ 1

i=1 n, min; n;/w;  ming n;/w;

Assuming that the central limit theorem is applicable, one can derive

52

- e
P{{Ln(h,w)—[/(h,wﬂks}$eXp —m Sexp —?Hlllna .

Armed with this result, we can extend it to accommodate all A € H through the union bound. For a VC class
with VC-dim(#) = d, the celebrated Sauer—Shelah lemma (Wainwright, 2019, Proposition 4.18) tells us that
the set of hypotheses can be effectively compressed into a subset with cardinality no larger than exp (5(d))
Taking the union bound then yields

~ ~ 2 ;
P <max | Ly, (h,w) — L(h,w)| = 5> < exp (O(d) s min m)
heH 2

Step 2: uniform concentration. Next, we would like to extend the above result to establish uniform
concentration over all n and w of interest. Towards this, we shall invoke the union bound as well as the
standard epsilon-net arguments. Let the set X € A(k) be a proper discretization of A(k), with cardinality
exp (é(k)) In addition, given the trivial upper bound n; < T for all i € [k], we know that there exist at

most TF = exp (5(14:)) possible combinations of {n;};e;). We can then apply the union bound to show that
2 .
P {Elw € X and feasible n s.t.|L,, (h,w) — L(h,w)| = 5} < exp (O(k) +0(d) — < min Z). (13)

When the discretized set X is chosen to have sufficient resolution, we can straightforwardly employ the
standard covering argument to extend the above inequality to accommodate all w € A(k).



Key takeaways. The above arguments reveal the following high-probability property: whenever we collect
n = {n;}¥_, samples in the learning process, we could obtain e-approximation L, (h,w) (see (12)) of L(h,w)
for all h € H and all w € A(k) with high probability, provided that

minm25<ktd>. (14)

1 Wj &€

This makes apparent the pivotal role of the quantity min; n;/w;. In our algorithm, we design the update rule
(cf. line 9 of Algorithm 1), so as to guaranteed that

t ~
mianT1>Q<k+d> (15)

for all 1 <t < T. In fact, this explains our choice of 77 in Algorithm 1. Crucially, the aforementioned uniform
concentration result allows us to reuse samples throughout the learning process instead of drawing fresh

samples to estimate L(h,w') in each round ¢ (the latter approach clearly loses data efficiency). To conclude,
k+d
).

to guarantee e-uniform convergence for all rounds, it suffices to choose T} = (NZ(

Finally, recall that n! > Tyw! for each i € [k] and t < T, with W! = max;<,<; w]; taking n! = T1w! (as
opposed to n! = Tiw!) ensures that the sample size n! is monotonically non-decreasing in t. With (15) in
mind, the total number of samples collected within T rounds in Algorithm 1 obeys

Lk 7 A A —

COMIRTE W (16)
This threshold |@w?|; — or equivalently, the £/, norm of {w!}i<;<r — is a critical quantity that we
wish to control; in particular, in the desirable scenario where |[w’|; < O(1), the total sample size obeys
Sl =Tifw" = O(%).

3

s

4.2 Bounding the key quantity |w'||; by controlling the Hedge trajectory

Perhaps the most innovative (and most challenging) part of our analysis lies in controlling the ¢1 /¢4, norm of
{w!}1<t<T, whose critical importance has been pointed out in Section 4.1.

Towards this end, the key lies in carefully tracking the dynamics of the Hedge algorithm. To elucidate
the high-level idea, we first consider the following minimax optimization problem w.r.t. the set of loss vectors
in the convex hull of a set V:

. T . . T
min  max w or equivalently, max min w'y), 17
yeconv(Y) weA(k) Y ( d Y weA(k) yeconv(Y) y) ( )
where the equivalence arises from von Neumann’s minimax theorem (v. Neumann, 1928). Let us look at the
following algorithm (cf. Algorithm 2) tailored to this minimax problem, assuming perfect knowledge about
the loss vector.®

Algorithm 2: The Hedge algorithm for bilinear games.

1 Imput: Y < [—1,1]%, target accuracy level € € (0,1).
2 Initialization: 7T = LO:;M, n= 11—05, and Wil =1foralll <i<k.
s fort=1,2,...,T do

t
a compute w! « Lt for every 1 <i < k.
% W
5 compute y' «— argmingey {(w',y).
6 update Wit+1 «— Wiexp(nyl) for every 1 <14 < k.

This algorithm is often referred to as the Hedge algorithm, which is known to yield an e-minimax solution
within O( 105#) iterations. A challenging question relevant to our analysis is:

5Note that in Algorithm 1, we can only estimate the loss vector using the collected samples. Additional efforts are needed
to reduce the variability (see line 14 in Algorithm 1 and Lemma 17).
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Question: can we bound |w? | = Zle maxi<i<7 Wi by poly-logarithmic terms?

As it turns out, we can answer this question affirmatively (see Lemma 3), and the key ideas will be elucidated
in the remainder of this section.

To streamline presentation of our techniques, we assume without loss of generality that

min  max w'y = max min w'y=0.
yeconv(Y) weA(k) weA(k) yeconv(Y)

Under this assumption, it is easily seen that [YXC: TODO)]

(w',y"y = mingey (w',y) <0, Vte[T] and T Zil (whyty = =0(e). (18)

Let us also assume for the moment that —(w?,y*) = O(e) for any t € [T].°

4.2.1 Doubling w; needs Q(1/22) steps

[YXC: Need more edits.]

Instead of bounding |[@w” |,

directly, our first attempt is to show that:

o there exist at most O(1) coordinates i € [k] obeying max;<;<7 w! > 1/4 (or some other universal
constant).

In other words, we would like to show that the cardinality of the following set is small:
W = {z € [k] | max;<icr wl = 1/4}. (19)
To do so, note that for small stepsize 1, one can find, for each ¢ € W, a time interval [s;,e;] < [0,7]

obeying
1/16 < wi* < 1/8, wi >1/4  and  wl>1/8, Vte (si el (20)

In words, w! at least doubles from t = s; to t = e;. We claim for the moment that
e —si = Q(1/e?)  VieW. (21)

Additionally, observe that for any ¢, there exist at most 8 coordinates i € W such that s; < t < e; (since
w! > 1/8 for t € [s;,e;]). This reveals that

8T > Y (ei—s:) = W[ Q(1/€%),
EeW

which combined with our choice of T = O(log(k/§)/e?) (cf. line 2 of Algorithm 1) yields
W] < O(Te?) = O(log(k/6)).

Proof strategy for (21). In this proof, we shall exploit properties of a bilinear game where the opponent plays
the best response. From (18) and the fact that 4* is the best response for w? in each ¢, one sees that

<wt,yt> <0, <wt,y7> > <wt,yt>, Vi<t<rt<T. (22)
Armed with (22), we claim that

KL(U)tl H wtz) < O(?]z(tg 7151)), 1 < tl < t2 < T.

6While this assumption is not valid in most cases, one can divide [T] into O(1) disjoint subsets and then tackle each subset.
As a trade-off, this strategy leads to some additional logarithmic factors (see Lemma 17).
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To show this, our calculation proceeds as follows:

s () Stoe () e )

k to—1 k k t

T 7 W :

= log (g Wt1> n Z Z wtlyz = Og <§:1M/tl> - 77(t2 - t1)<wtl7ytl>7
=1 [ T=t1 1=1

where the second identity holds since w! = =5 W‘ , the third identity is valid since W2 = W/* exp (n Zt; ti y7),

and the last relation results from (22). In hght of the properties
k t
Wk
n= @(8)’ _(wtl)Tytl = 0(6), log <z:;€1t1> S O((t2 - tl)n2)7 (23)
2 Wi
we can further obtain KL(w® |w'2) = O(g%(t2 — ¢1)) and hence
ty —t1 = Q (e KL (0™ |w')). (24)

By taking t; = s; and ty = ¢;, we can combine (24) and Pinsker’s inequality to obtain

o2 KL ) > (V" u))’)
a( Y(wr —wr)’) =2 (1),

4.2.2 Coping with the segments
Naturally, one would hope to generalize the arguments in Section 4.2.1 to bound the size of the set:
= {i € [k] | maxi<i<7 w! € [2p,4p]} (25)

for any p € [0,1]. Nevertheless, the arguments above fall short of delivering a desirable bound on [W(p)|
when p is small. To be more specific, for each i € W(p), let [s;, e;] represent a time interval such that

p/2 <w' <p, wi = 2p and wi =p forany s; <t <e,. (26)

7
While we can derive e; — s; = Q(p/e?) via the arguments in (24), this bound does not readily allow one to
bound |W(p)| by O(1/p), since the intervals [s;, e;] for different #’s might have lots of overlaps.

To address this issue, we make the following key observation: if there exist some coordinates i € W(p)
sharing similar [s;, e;], we can obtain an improved bound. For example, suppose that for each i € W(p) < W(p),
one has s; = s and e; = e, then one can derive e — s > Q (JW(p)|p/s?) , which strengthens the original bound
Q (p/e?) if W(p)| is large. As such, it is helpful to merge those coordinates with similar [s;,e;]. To facilitate
analysis, we introduce the notion of “segments.”

Definition 1 (Segment). For any p,x > 0 and i € [k], we say that (t1,t2) is a (p,q,x)-segment if there
exists a subset T < [k] such that

(1) Ziel’ wzt'l € [p/Qap];
(i) Ziez w? > pexp(x),
(i) Y,y wi = q for any t; <t < ts.
We shall refer to t1 as the starting point and to as the ending point, and call T the index set. Moreover, two

segments (s1,e1) and (s2,e2) are said to be disjoint if s1 < e1 < s3 < eg or s9 < ea < 81 < €7.

12



For any (p, p/2, x)-segment (t1,t2), repeating the arguments in (24) allows one to derive [YXC: TODO)]
ty —t1 = Q(pa?/e?).

For each i € W(p) (see its definition in (25)), there exists a (2, Z,log(2))-segment (s;, ;) with index set
Z = {i}. It then follows that

e; —s; = Q(p/e?) for each i € W(p). (27)

As a result, if the segments (s;, e;) are mutually disjoint, PV(p)| is at most O(1/p). More generally, if we can
divide the [W(p)| segments into disjoint blocks such that the segments belonging to the same block share the
same starting and ending points, then we can also derive [W(p)| < O(1/p). Suppose that we have ¢ blocks
Wlth the 1- th block (Wlth startlng-endlng points as (3%, ¢%)) containing m; coordinates, and suppose that
Fl<e' <32 <@ <. <5 <& Then from Definition 1, (5¢,¢") forms a (m; - &, m; - §,log(2))-segment

with index set as the m; coordlnates in the i-th block, thereby 1ndicating that

& =35 =Q (mp/e?).

p
4

Summing over 1 < i < £ leads to

|w<p>|<iﬁ1 (ﬁ @ =F) )<0(Tp)=6(;) 28)

~

which in turn implies that ZEW( ) MaxX1<e<T w! < O(1). With standard doubling arguments, it follows that

Zie[k] maxi<t<T wf = 5(1)

In light of the above observation, we introduce the following concept of regular configurations.”
Definition 2 (Configuration). A configuration Conf is a set of intervals Conf = {[a;, b;]}™, obeying b; > a;
for each i € [m] (note that repeated elements are allowed). A configuration Conf is said to be regular if, for
any i,j € [m], one of the following three properties holds:

(a) a; <b; < aj <by;
(b) a; < bj <a; < bi,'

(C) a; = aj, bl = bj.

In words, (28) asserts that if {[s;, €;]};ew(p) forms a regular configuration, then we have [W(p)| = O (1/p).
However, a general configuration of the segments might be irregular because it is possible that two segments
are not disjoint (see Figure 2). To address this issue, we find it helpful to construct a regular configuration
with sub-segments® of the original segments.

Our first step is to align one side of the segments. We then divide the whole learning process into disjoint
blocks such that the segments in each block have a common inner point (see Figure 3). In the meantime,
a segment is discarded if it intersects with more than one blocks. We show that there exists a regular
configuration of the blocks such that at most (1 — W>|W( p)| segments are discarded. In other words,

at least 3oz, %T) i [W(p)| segments are contained by these blocks. Since the blocks are disjoint, it suffices
to operate on one block. Without loss of generality, assume that there is only one block, which also means
that all segments have a common inner point t,;q. Then we divide this block into two parts according to

tmia (see Figure 4). Given that

log (w§* /wi™4) + log (wi™ /wi) = log(2),

7See an example in Figure 1.
8 A sub-segment is equivalent to a sub-interval of a segment. We refer to Figure 6 for more details.
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log(2) log(2)

one has: either (s;, tmia) is a (4,5, 25 a (wfm“‘, B, 28=)-segment
with index set {i}. Since w;™ € [p/4,p/2], we can roughly view (tmid,€;) as a (£, 2, 1°g2(2))—segment in the

latter case. Therefore, one can find at least %% different (p p 1og(2)

)—segment with index 4, or (tmiq,e;) is

18 3 segments with the same
starting (ending) points.

Without loss of generality, we assume that these (%, %, logz(z))—segments share a common starting point.

We denote the common starting point as ey, and re-order the coordinates so that e; is non-decreasing in ¢
(see Figure 3). Then we construct O(log,(k)) regular configurations using a recursion (see Lemma 16). This

allows us to show that at least one of these configurations contains O ([W(p)|) (%, 2, ﬁ%m)—segmen‘cs

(see Figures 5-6).

5 Analysis for VC classes (proof of Theorem 1)

The main steps for establishing Theorem 1 lie in proving three key lemmas, as stated below.

The first lemma is concerned with the hypothesis At = arg minpcy Et(h, w?) (cf. line 11 of Algorithm 1);
in words, h! is the minimizer of the empirical loss function Et(~, wt?), computed using samples obtained up
to the ¢-th round. The following lemma tells us that: even though h! is an empirical minimizer, it almost
optimizes the weighted population loss L(-,w!). In other words, this lemma justifies that the adaptive
sampling scheme proposed in Algorithm 1 ensures faithfulness of the empirical loss and its minimizer.

Lemma 1. With probability at least 1 — 6/4,

L(h',w") < min L(h, w?) + £, (29)
heH

holds for all 1 <t < T, where ht (resp. w') is the hypothesis (resp. weight vector) computed in round t of
Algorithm 1.

Proof. See Section C.1. O

Next, assuming that (29) holds, we can resort to standard analysis for the Hedge algorithm to demonstrate
the quality of the final output Afinal.

Lemma 2. Suppose that lines 6-11 in Algorithm 1 are replaced with some oracle that returns a hypothesis ht
satisfying L(h*,w") < minpey L(h,w') + &1 in the t-th round for each 1 <t < T. With probability exceeding
1 — 6/4, the hypothesis hf™? output by Algorithm 1 is e-optimal in the sense that

max L(h""! e;) < min max L(h,e;) + ¢. (30)

1<i<k heH 1<i<k

Proof. See Section C.2. O

Taking Lemma 1 and Lemma 2 together, one can readily see that Algorithm 1 returns an e-optimal
randomized hypothesis 2fi" with probability at least 1 — §/2. The next step then lies in bounding the total
number of samples that has been collected Algorithm 1. Towards this end, recall that EZT = MaX1<<T wf for
each i € [k]. Recognizing that @! < w! for each t € [T'] and i € [k], we can bound the total sample size by

k k
(sample size) Ty Y, @) +k + T<k Dl + k> < (M@ |y + KT|@ 1) + k(T + 1)
=1 i=1
d k
- dlog (£) + klog (£)

5 1. (31)

T“h

Consequently, everything then comes down to bounding |w for which we resort to the following lemma.
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Lemma 3. Assume Line 6-11 in Algorithm 1 is replaced by some oracle which returns a hypothesis ht
satisfies that L(ht, w') < minpey L(h,wt) + €1 in the t-th round for each 1 <t < T. With probability at least
1 —3/4, one has |w?||; is bounded by

@), <O <10g5(k) log (i) log? <§5>> .

It is noteworthy that the proof of Lemma 3 is the most technically challenging part of the analysis; we
postpone this proof to Appendix C.3.

Combining Lemma 3 with (31) immediately reveals that, with probability at least 1 — §, the sample
complexity of Algorithm 1 is bounded by

’ (dlog(g) ;klog () <1og5(k) log <i) log? <f5>>> ,

as claimed in Theorem 1. It remains to prove the above key lemmas, which we postpone to Section C.

6 Necessity of randomization

Given that the best-known sample complexities prior to our work were derived for algorithms that either
output randomized hypotheses or invoke majority votes, Awasthi et al. (2023) raised the question about how
the sample complexity is impacted if only deterministic (or “proper”) hypotheses are permitted as the output
of the learning algorithms. As it turns out, the restriction to deterministic hypotheses substantially worsens
the sample efficiency, as revealed by the following theorem.

Theorem 2. Assume that d = 21og(8k). Consider any e € (0,1/100), and let Ny = Qdel One can find

o a hypothesis class H containing at most kNy + 1 hypothesis,
e a collection of k distributions D = {D;}_,,
e aloss function £ : H x X x Y — [—1,1],

such that it takes at least % samples to find h € H obeying

. /

with probability exceeding 3/4.

Let us breifly desribe the high-level strategy for our construction of the hard instance: for each i € [k],
we build a hypothesis set H; that performs poorly solely on D;. To discriminate the optimal hypothesis —
denoted by h* — from some H;, the learner has to call Q(log(|H;|)/e%) = 2(d/e?) times to Query(D;) in
expectation. The result follows by taking sum over i € [k].

Proof of Theorem 2. Note that Ny = % Set N = kNg+1=2% Set X = {—1,0,1}*N. We set Y = {1}
to be a set with only one element. Without loss of generality, we write ¢(h, (z,y)) = £(h, ).

We now describe our construction. There are N hypotheses in H, where each hypothesis corresponds
to k dimensions of the ground set X. Without loss of generality, for h € H, we let I, = {jn}*_; be the
k dimensions related to h. Note that Z, n Iy = & for h # h’. We construct H as H = (UF_H;) u {h*}.
Then we define h(z) and 4(h,x) as h(x) = l(h,z) = zy where i/ = argminjez, 4,20. Now we design
the k distributions {D;}¥ . Fix i € [k], we let Pp,[z] = I[N, Pp, ,[z,], where Pp, ,[x¢] = I[z; = 0] for
C¢ {jnilh € "}, Pp, [we] = $1[xg = 1] + 31[xy = —1] for £ € {jni|h ¢ H;}, and Pp, ,[x¢] = (5 + 4¢) I[zy =
1]+ (5 — 4e) I[zy = —1] for £ € {jn;|h € H;}. In words, for each i € [k], we draw = ~ D; by independently
generate each coordinate of z, and there are |H| = N non-zero coordinates. Furthermore, for z ~ D; and
h e H, we have £(h,x) = xj, ,. Through this construction, we have the following properties:
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(i). L(h,z) e [-1,1] for any he H and z € X;

(ii). Egp,[l(h,2)] = Banp, ;,  [25,,] = 8¢ -I[h € H;] for any i € [k] and h € H;
(iii). the only e-optimal hypothesis is h* because for any h # h*, there exists some ¢ such that h € H;;
(iv). h(z) € {=1,1} for x € (UX_,;supp(D;))?, and |H| = N = kNy + 1 = 2¢ which imply VC(H) <

log, (N) < d over (U_,supp(Dy);
(v). £(h,x) could be regarded as a function of h(x) because ¢(h,z) = h(z).

For each call to Query(D;), we can get independent observations {z;, ,}nen where xj, , ~ D; j, , for each
h € H. Now we let the number of calls to Query(D;) be M; for i € [k]. Our target is to show to distinguish
h* from H;, M; has to be at least Q(d/e?).

Suppose now that there is an algorithm G with numbers of samples {M;}¥_; such that the output is h*
with probability at least 2. Let Pg[-] and Eg[] denote respectively the probability and expectation under
running the algorithm G. Let hqy be the output hypothesis. It then follows that

3
Pg [hout - h*] 2 Z
Let I3 be the set of permutations over H. Let U(Il3) be the uniform distribution over II(H). With a slight
abuse of notations, for z € {—1,0,1}*" and o € Ily;, we define o(z) to be the vector y such that y;, , = z;_,, .
for all h € H and i € [k]. Let G’ be the algorithm with # replaced by o(#H) in the input where o ~ U(Ily).
Recognizing G returns the optimal hypothesis with probability at least 3/4 for all problem instances, we can
see tat

IP)g’[hout = h*] =

>~ w

We note that G’ is a symmetric algorithm with respect to the hypothesis set. Formally, we have the
lemma below to bound the probability of returning a sub-optimal hypothesis.

Lemma 4. Fiz m >0 and i € [k]. Suppose Pg[hous = h*, M; < m] > 1. It then holds that for any h € H;

1
Pgr[houwt = h, My < m] > ilP’g/ [hout = h*, M; < m] exp(—80y/me — 40me?).

log(No/4)

Moreover, it holds that m > 000052 -

By Lemma 4, we have

log(No/0)] _ 1
Por | hows = h*, My < 8021 2 33
¢ [ ¢ = 73000062 2 (33)
Observing that Pg:[hout = h*] = %, we learn that
log(No/4) 1
Py [hows = h*, My > 202y o 2 34
o' [hous = 300002 1 7 1 (34)
which implies that Eg/[M;] > lngé(%%/;) > d1—21(<)>§§(()§§ ) > SToes-z . Summing over i € [k] gives
k
dk
Eg M| > ———. 35
¢ [; ] 24000022 (85)
The proof is thus completed. O
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Algorithm 3: Hedge for Multi-distribution Learning on Rademacher Class (MDL — Hedge —
Rademacher)

1 input: k data distributions {D1,Da, ..., Dy}, hypothesis class H, target accuracy level €, target success rate 1 — 4,
the constant {Cp}n>1 in Assumption 1.
20000 log( &)

2 hyper-parameters: stepsize n = WIOE, number of rounds T' = — = auxiliary accuracy level €1 = ﬁe,
400(klog( £ )+log(L)
auxiliary sub-sample-size 77 = min {t > ( 5512 ° )) ‘Ct < % .
1
s initialization: for all i € [k], set Wi1 =1, @? =0 and n? =0;8S=¢.
4 draw [12log(2k)] samples from D; for each %, and add these samples to S.
5 fort=1,2,...,7 do
. . wi ~ At .
6 set w' = [wi]1<i<k and W' = [W!]1<i<k, Where w! «— =i+ and W} «— W, or all i € [k].
tw' = [w!]i<icr and @ = [@f]1<ick, where w! — sk and @ — @] forall i€ [k
g
/* recompute W' & draw new samples for Sy only if w! changes sufficiently.
7 if there exists j € [k] such that w§ > 20¢ 7! then
@F « max{w?, ®! '} for all i € [k];
9 fori=1,...,k do
10 nf — [Tﬂf)ﬂ;
11 draw nﬁ — n’;71 independent samples from D;, and add these samples to S.
/* estimate the near-optimal hypothesis for weighted data distributions.
12 compute ht « argminpey L(h, wt), where
. kot T
Li(hw') =) ﬁfz (R (g, ving) (36)
i=1 "1 j=1
with n; = min 1w, + o , 414, and (4.4, eing the j-t atapoint from D; in §.
'hvz i T:lngQkT d (zi,j,9:,5) being the j-th datapoint f; D;inS
/* estimate the loss vector and execute weighted updates.
13 Eﬁ «— maxi<r<t w] for all i e [k].
14 fori=1,...,k do
kwt
15 raw [kw?| independent samples — denote xt oyl ,_wl] — from D;, and set
draw [k@t] independ ples — denoted by {(z 4! )}
1 [kw}]
~t tot ot
Ty = [kﬁt] Z e(h a(xi,j’yi,]’))§
il =1
16 update the weight as W;Jrl = W} exp(nrt). // Hedge updates.

hfinal

17 output: a randomized hypothesis as a uniform distribution over {ht}le.
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7 Extension: learning Rademacher classes

In this section, we study how to adapt our algorithm and theory to accommodate MDL for Rademacher
classes.

7.1 Preliminaries: Rademacher complexity

Let us first introduce the formal definition of the Rademacher complexity; more detailed introduction can be
found in Shalev-Shwartz and Ben-David (2014).

Definition 3 (Rademacher complexity). Given a distribution D supported on Z = X x Y and a positive
integer n, the (average) Rademacher complexity is defined as

1 n
Rad,(D):= E l E [max — Z ail(h, Zl)]] , (37)
{zi}7y [loadiy i=

where {z;}1, are drawn independently from D, and {o;}?_, are i.i.d. Rademacher random variables obeying
P{o; =1} =P{o; = —1} = 1/2 for each 1 <i < n.

Next, we would like to make an assumption on the Rademacher complexity of mixtures of distributions.
Denoting by D(w) the mixed distribution

k

for any probability vector w € A(k), we can state our assumption as follows.

Assumption 1. For each n > 1, there exists a universal constant C,, > 0 such that
Rad, (D(w)) < Cy, (39)
holds for all w e AF.

Remark 1. One might raise a natural question about Assumption 1: can we only assume Rad, (D;) < C,
for i € [k] without incuring a worse sample complexity? The answer is, however, negative. In fact, the
Rademacher complezity Rad,,(D(w)) is not convex in w, and hence we fail to use max; Rad,(D;) to bound
maxea (k) Rad, (D(w)). The interested reader is referred to Appendiz F.3 for more details.

It is well known that VC-dim(#) < d implies Assumption 1 holds with C,, = /218 d (\fohyi e al.,
2018).
To facilitate our analysis in this section, we find it helpful to introduce the notion of the weighted

Rademacher complexity as follows.

Definition 4 (Weighted Rademacher complexity). Given a collection of distributions D = {D;}¥_, and a set
of positive integers {m}f:l, the weighted (average) Rademacher complexity is defined as

k  n;
— 1 i ,
Rad, \« (D) := E [ E l max Z 2 all(h z])]l (40)
{ni}io, NI ivmi v k ’ ’
it Loy je, il [ Xy ma PR S50
where {{zf ?il}le are independently generated with each zf drawn from D;, and {{Uf ?”:'1}le are independent

Rademacher random variables obeying P{o? = 1} = P{o? = —1} = 1/2. Throughout the rest of this paper, we
shall often abbreviate Rady, yx = Rady, 3. (D).

9We use supp(D) to denote the support of the distribution D
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The weighted Rademacher complexity defined above satisfies an important property below.

Lemma 5. For any two groups of positive integers {n;}*_, and {m;}¥_,, it holds that

k
(Z nl> Rad{n K, (Z m; + n; ) Fga{miJrni};c:l
B Con
(Z ) Rad,, x  + (Z mi> Rady,, - (41)

i=1

In addition, the following lemma allows us to bound the weighted Rademacher complexity under
Assumption 1.

Lemma 6. Consider any {n;}¥_, obeyingn; > 12log(2k) for eachi € [k]. By takingw € A* with w; = Z,f“ -
1=1"
one has

Rad{m}?:l < 72Rad2f=1 n; (D(’U}))

7.2 Algorithm and sample complexity

Let us present our algorithm in Algorithm 3, which seeks to learn a Rademacher class in the presence of
multiple distributions. Note that Algorithm 3 is also a Hedge-like algorithm to learn a convex (concave)
game. Its major difference from Algorithm 1 lies in the subroutine to learn h® (see lines 6-12 in Algorithm 3).
More precisely, to compute the estimator Zt(h, wt) for L(h,w'), instead of using the first n! samples from D;
for each i € [k], we choose to use the first

i1y = min { [Tyw} + 12log(2k)|, T3 }
samples from D; for each ¢. Formally, we have the following theoretical guarantees.

Theorem 3. Suppose Assumption 1 holds. With probability at least 1 — &, the output hfi" returned by
Algorithm 3 satisfies

final . -
max L(h™ e;) = max Z L(h gél;{[lm?.x L(h,e;) +¢.

Meanwhile, the sample complexity of Algorithm 3 is bounded by
k
O T. log® (k)1 1 ,

400 (klog(g) + log(%>) ’ €1

<
€2 ©= 1200

where T, is defined as

T.:=min<{ t >

In the case where VC-dim(H) < d, we have C,, < Q/M, which implies that 7, = O (d;k) and a
d+k ) )

sample complexity bound of 0 (

Proof of Theorem 3. In view of Lemma 2 and Lemma ?7?, it suffices to show that running Algorithm 3 results
in L(ht, w') < minpey L(h,w') + &1 for any 1 <t < T, a property that holds with probability at least 1 —§/4.
Formally, we have the lemma below.

Lemma 7. Suppose Assumption 1 holds. With probability at least 1 — 6/4, the iterates of Algorithm 3 satisfy

L(h',w") < min L(h,w") + ¢, (42)
heH
forany 1 <t<T.
The proof of Lemma 7 is postponed to Appendix F. O
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8 Extension: oracle-efficient multi-group learning

Given a hypothesis set H where each h € H : X — ), a set of groups G such that each g € G is a
subset of X, and a loss function ¢ : Y x ¥ — [0,1] and a distribution D with support X x Y, define
Lp(h | g) := Egyy~p[l(h(z),y)|x € g]. Define Py = P, ,).p[r € g]. Let v = mingeg P;. The goal of the
learning algorithm is to find a (possibly randomized) hypothesis h to minimize Lp(h | g) for all g € G up to
some threshold ¢ € (0, 1]. That is,

Lp(h|g) < mmLD(h | g)+¢,VYgeg.
We continue with the compatibility assumption as below, which ensures the existence of such a near-
optimal hypothesis h.

Assumption 2. There exists h* € H, such that

Lp(h*|g) < min Lp(h | g) + Vgeg.
heH

€
8’

~ye
datapoints from D, and then estimate the optimal value f, for each group g € G. By taking Lp(h | g) — f4 to
be the loss function, we can then invoke a Hedge algorithm over G to solve the following problem:

The learning algorithm As presented in Algorithm 4, we first sample N = O (log(|g|/6)+flog(d/a))

Lo(h : 43
piin max(Lp(h | g) = fo) (43)

According to Assumption 2, it suffices to find some (possibly randomized) h such that
max(Lp(h | g) = fg) < max(Lp(h* | g) — fg) + O(e)
geg 9€g

Formally, we have the following theorem.

Theorem 4. Assume € € (O7 1/10]. Suppose Assumption 2 holds. By running Algorithm 4, with probability
at least 1 — &, the output hf"? satisfies that

T
LD(hfinaI | — Z ht ‘ g mln L'D(h | g) (44)

'ﬂ

for any g € G. Meanwhile, the sample complexity of Algorithm 4 is bounded by

o (dlog(d/&) + 10g(|g|/5)) ‘

ve?

Moreover, Algorithm 4 only access H with an ERM oracle.

Under Assumption 2, Theorem 4 recovers the result in Tosh and Hsu (2022) without direct access to the
hypothesis set H. In high-level idea, the proof of Theorem 4 is based on the uniform convergence argument,
which is a natural extension of our main results.

9 Discussion

In this paper, we have settled the problem of achieving optimal sample complexity in multi-distribution

learning, assuming the availability of adaptive (or on-demand) sampling. We have put forward a novel oracle-

M)

efficient algorithm that provably attains a sample complexity of 0 ( —5+) for VC classes, which matches the

20



best-known lower bound up to some logarithmic factor. From the technical perspective, the key novelty of our
analysis lies in carefully bounding the trajectory of the Hedge algorithm on a convex (concave) optimization
problem. We have further unveiled the necessesity of randomization, revealing that a considerably larger
sample size is necessary if the learning algorithm is constrained to return deterministic hypotheses. Notably,
our work manages to solve three open problems presented in COLT 2023 (namely, Awasthi et al. (2023,
Problems 1, 3 and 4)).

Our work not only addresses existing challenges but also opens up several directions for future exploration.
To begin with, while our sample complexity results are optimal up to logarithmic factors, further studies
are needed in order to sharpen the logarithmic depdency. Additionally, the current paper assumes a flexible
sampling protocol that allows the learner to take samples arbitrarily from any of the k distributions; how
will the sample complexity be impacted under additional constraints imposed on the sampling process?
Furthermore, can we extend our current analysis (which bounds the dynamics of the Hedge algorithm) to
control the trajectory of more general first-order/second-order algorithms, in the context of robust online
learning? Another venue for exploration is the extension of our multi-distribution learning framework to tackle
other related tasks like multi-calibration (Hébert-Johnson et al., 2018; Haghtalab et al., 2023). We believe
that our algorithmic and analysis framework can shed light on making progress in all of these directions.
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A Additional figures

In this section, we provide several examples with figures, in order to help the readers understand our strategy
in obtaining a regular configuration in Section 4.2.2 and Lemma 16. Let us provide a brief introduction to
these figures.

In Figure 1, we present an example of a regular configuration. In this example, letting [3;, &;] be the
interval for the i-th block, we have &; — 3; > Q(m;p/c?), where m; is the number of coordinates in the i-th
block. By observing that

2

> = 0()a -5 = o).

%

we can derive

W)l =D mi = O(T<*/p) = O(1/p).

In addition, we give an example of irregular configuration in Figure 2. Due to the non-disjoint segments, one
cannot perform the arguments above to bound |[W(p)|.

In Figure 3, we provide an example of the partition of blocks, and in Figure 4, we illustrate how to align
one side of the segments using a common inner point.

In Figure 5 and Figure 6, we illustrate how to construct the regular configurations using a group of segments
with the same starting points in the case where k = 8. In this toy example, we have in total 5 configurations

with 5 different colors. For each (%, £ 1°g2(2)>—segment in Figure 5, it forms an (%, g, #ggm

to at least one of these configurations. According to the pigeonhole principle, there must be at least one

)—segment

regular configuration with a number 6(1og2(T)|rigz(71)c|)g2 oy of (p B &»segmen‘cs (see Lemma 16).

47 87 2(log, (k) +2)

L 2R 4

Figure 1: Regular configuration.
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Figure 2: General irregular configuration.
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Discarded Segment

Figure 3: Partition of blocks.

B Auxiliary lemmas

In this section, we introduce several technical lemmas that are used multiple times in our analysis.
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'mid

Figure 4: Aligning one side of the configuration. The unfilled part of the segments means that the variation

over wi’ — wi™ (ie., log (wi™/w}*)) is not significant enough.
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Figure 5: A group of segments with common starting points.

We begin by introducing three handy concentrations inequalities. The first result is the well-renowned
Freedman inequality (Freedman, 1975), which assists in deriving variance-aware concentration inequalities for
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Figure 6: Construction of the regular configurations. Each segment is cut into at most log, (k) + 1 sub-segments
with different colors.

martingales.

Lemma 8 (Freedman’s inequality (Freedman, 1975)). Let (M,)n=0 be a martingale obeying My = 0.
Define V,, == ' E[(M), — My_1)* | Fi—1] for each n > 0, where Fj, denotes the o-algebra generated by
(My, My, ..., My). Suppose that My — My_1 <1 for all k = 1. Then for any x > 0 and y > 0, one has

2
ne
P(M, =nz,V, <ny) <exp| ——— | . 45
(M 3 0 Vi <) < e (550 ) (43
The second concentration result bounds the difference between the sum of a sequence of random variables
and the sum of their respective conditional means (w.r.t. the associated o-algebra).

Lemma 9 (Lemma 10 in Zhang et al. (2022)). Let X1, Xo,... be a sequence of random variables taking
value in the interval [0,1]. For any k > 1, let Fy, be the o-algebra generated by (X1, Xa, ..., Xk), and define
Yy := E[Xy | Fr—1].- Then for any § > 0, we have

n n 1
]P’{HneN,ZXk>3ZYk+llog}<5,

k=1 k=1 5
n n 1
P{IneN, Y V>3 X, +llog- <.

The third concentration result is the Mcdiarmid inequality, a celebrated inequality widely used to control
the flucutaion of multivariate functions when the input variables are independently generated.

Lemma 10 (Mcdiarmid’s inequality). Let X1, Xs,..., X, be a sequence of independent random variables,
with X; supported on X;. Let f: X) x Xy x -+ x X, > R be a function such that: for any i € [n] and any
{x1,..., 2} €X X -+ X Xy,

sup ‘f(xlv sy Lgy ,.’En)—f(.’ﬂl,"' 71.;'7"' 7x’n)’ <c
TieX;
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holds for some quantity ¢ > 0. It then holds that
2¢2
P{|f(X15X27"',Xn)_E[f(XbXQa"'7Xn)]|>5}<2exp _@ .

Additionally, the following lemma presents a sort of the data processing inequality w.r.t. the Kullback-
Leibler (KL) divergence, which is a classical result from information theory.

Lemma 11. Let X and Y be two sets, and consider any function f : X — Y. For any two random variables
X1 and X5 supported on X, it holds that

KL(u(X1) | 1(X2)) = KL(u(f (X)) | (£ (X2))), (46)

where we use uw(Z) to denote the distribution of a random variable Z.

Lastly, let us make note of an elementary bound regarding the KL divergence between two Bernoulli
distributions.

Lemma 12. Consider any ¢ > 0 and x € [0,log(2)]. Also, consider any y,y € (0,1) obeying y = q and
Yy = exp(x)y. It then holds that

2
KL (Ber(y) | Ber(y) = L,

where Ber(z) denotes the Bernoulli distribution with mean z.

Proof. To begin with, the function defined below satisfies

f(a,b) := KL(Ber(a) | Ber(b)) = alog (%) + (1 —a)log <1:Z> .

For any 0 < a < b < 1, it is readily seen that

(3f(a,b):_g+1—a: b—a > 0.
ab b 16 b(1_0)

It follows from our assumptions y > ¢ and 3’ > exp(z)y that

KL (Ber(y) | Ber(y))) = £(u.y/) = f(y.y) + f 01w:2) g, | R AR

Y 0z y 2(1—2)
I (v —y)?

>y ), BTV Ty
. W =y — exp(=2))

- 2

_1)2 2
- y(exp(z) — 1) S 97
4 4
where the penultimate inequality uses x € [0,log(2)], and the last inequality holds since y > q. O

C Proofs of auxiliary lemmas for VC classes

C.1 Proof of Lemma 1

For ease of presentation, suppose there exists a dataset S containing 7T} independent samples drawn from
each distribution D; (1 < i < k), so that in total it contains kT; samples. We find it helpful to introduce the
following notation.
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o For each i € [k] and j € [n;], denote by (; ;,v:,;) the j-th sample in S that is drawn from D;.

« For each set of integers n = {n;}}_, € N*, we define S(n) to be the dataset containing {(; ;, yi7j)}1<j<n_

for all i € [k]; namely, it comprises, for each i € [k], the first n; samples in S that are drawn from D;.

« We shall also let S*(n) = = {{(zf Y j)} | be an independent copy of S(n), where for each i € [k],

{( fj, Y; J)} are 1ndependent samples drawn from D;.

Equipped with the above notation, we are ready to present our proof.

Step 1: concentration bounds for any fixed n = {n;}}’_; and w € A(k). Consider first any fixed
n = {n;}¥_, obeying 0 < n; < T for all i € [k], and any fixed w € A(k). For any quantity A € [0, mingepy) %]7
if we take

E()\,n,w) = §I(Ei) [maxexp ( {Z w;— 2 L(h xz g Yig ) LU%“’)})} (47)

”

with the expectation taken over the randomness of S (n), then we can apply a standard “symmetrization
trick to bound E (A, n,w) as follows:

E\n,w) = E [I}rbieaé(exp ()\ {2 w%’ 2 (b, (zijoyig)) — L(h,w)})}

S(n) i=1 =1
k ng
Wy
= E |[maxexp | A — D Uh (@i, 05 g i
§(n>ih€H ( {1—21 11:21 (o) = S*(") iz Z b )i})i

k ng
I A e
k n;
< 5 E [%}g%?fexp </\ {Z % ; < xz,pyzd)) _K(h ( ,J?%,])))})] ) (48)

S(n),5t(n)

where the last two inequalities follow from Jensen’s inequality.

Next, let o(n) = {{o;, ity 1} be a collection of i.i.d. Rademacher random variables obeying P(o; ; =
1) =P(o;; = —1) = 1/2. Denoting C {(zij,vi;)} U{(z ,J,yw )}, we obtain

k n;
§(n)%+(n> ir’?ﬁ(exp< {Z Z( (e 91)) =L (ﬁ’j’y:j)))})i

=1

k n;
Py T 1

j 1

Note that for any dataset C with cardinality |C|, the Sauer—Shelah lemma (Wainwright, 2019, Proposition 4.18)
together with our assumption that VC-dim(#H) < d tells us that the cardinality of the following set obeys

()| < (lc] + 1) < (18] + 8T+ 1) < (kT3 + 1), (50)
where H(C) denotes the set obtained by applying all h € H to the data points in C, namely,
H(C) = { (h(er1), At ), hl@r ) h(ata), o) [ he M. (51)

We shall also define Hmin,c S H to be the minimum-cardinality subset of H that results in the same outcome
as H when applied to C, namely,

Hmin,c(c) = H(C) and ’Hmin,ci = iH(C)|
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With these in place, we can demonstrate that

O_E) l%le%iiexp <A {i_l ; = 2,] e(hy (xz,J7yl,])) f( ( ”,ymz))) }) )C]
= B | e (A4S o (600 ) — 0 (et ) ) [
a(n) heHmin,c : i %3 ’ 1,37 I, ) i,50 9,5

D=
E
Q
/N

i=1 " j=1
< E Z exp (A {Z % Z 0i,j (g(hv (mi,jvyivj)) K( ( ZJﬂZj)))}) ‘C]
o) | hetmmc i=1 "3
< |’Hmm C| erﬁii(. . UI([%) [exp ()\ {121 1::: jzl 04,5 <f(h, (l‘i,j7 yiJ)) - f(h, (l‘:j’ y;))) }) ‘C}
k n; .
< (2kTy +1) maxn [1E [exp <>\ {?%j (f(h» (@i.5,3,5)) = €(s (775, y:j))) }) ‘C]
1=1j= 17 v

< (2k:T1 + l)dexp (2)\2 Zk: W) . (52)

iz T

Here, the last inequality makes use of fact |((h, (i ;,yi;)) — €(h, (z];, u]7)))]

< 2 as well as the following
elementary inequality

—_

E [exp(oi2)] = 5 (exp(@) + exp(—2)) < exp (0.52%).

Taking (48), (49) and (52) together reveals that

k

E()\) < (2KTy + 1)%exp (2)\2 > (wi)2> . (53)

Repeating the same arguments also yields an upper bound on the following quantity:

k n;
= e e 25 s}
< (2kTy +1)° exp<A22 — )

for any A € [0, min;e(g) Z)—] Taking the above two inequalities and applying the Markov inequality reveal
that, for any 0 <&’ <1,

F (Iflble%i{ Z n; Z E (@i gy Vi ) L(h,w)

. E(\) + E()\)
§ min _—
0<A<min; 2 exp(Ae’)

k N2
< min 2. (2kT1 + 1)%exp (2)\2 Z ) _ /\5’> : (54)
0<A<min; Z—: i

n
i=1 v

Step 2: uniform concentration bounds over epsilon-nets w.r.t. n and w. Next, we move on to

extend the above result to uniform concentration bounds over all possible n and w. Towards this, let us first
introduce a couple of notation.
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o Let us use A, (k) € A(k) to denote an ez-net of A(k) — namely, for any z € A(k), there exists a
vector zg € A., (k) obeying ||z — o[ < 2. We shall choose A, (k) properly so that

A, (k)] < (1/e2)".
¢ Define the following set
B~ {n = tnsw = (e,

which clearly satisfies

E' = 770 <Ny < T17VZ. € [k]Dw € Asl/(8k)(k)}7

Applying the union bound yields that, for any 0 < &’ < 1,

k
Z wi n; Z K xw’ y“J)) (h’ w)

P <H(n,w) € B, max
heH

> 5’)
w)? M)

k
< Z min 2 (2kTy + 1) exp (2/\2 Z

(n.w)eB 0<A<min; % n;
< Y min 2-(2kTy + 1)%exp <2/\2 )
(n,w)eB 0<)‘<%
T, 2
< D) 20 (2kT + D) exp (- 1)
16
(n,w)eB
T, N2
< |B|-2- (2KT) + 1)%exp (- 1;2) )
T N2
2 (8kTy/e1)k(2kTy + 1) - exp ( 15‘2) > :
where the second inequality holds since ZZ 1 n2 < T% Z?zl w; = T% (according to the definition of B).

Step 3: concentration bounds w.r.t. n’ and w. Let S denote the value of S after line 10 of Algorithm 1
in the t-th round. Recall that nt = [nﬁ]lggk denotes the number of samples for all & distributions in S?,
and let w! = [w!]1<i<k Tepresent the weight iterates in the ¢-th round. It is easily seen from lines 6 and 9 of
Algorithm 1 that n! < Ty and n!/w! > nt/(2@!) = Ty /2. For analysis purposes, it suffices to take St = S(nt).

In view of the update rule in Algorithm 1, one can always find (n?,@") € B satisfying |@! — w!|; <
k@t — w||s < e1/8. As a result, for any 0 < ¢’ < 1, we can deduce that

- 1 - €1
P|3te [T],I}ILleaf}_)L( lewfﬂz i=1€(h, (:Ci,jayi,j)) — L(h,’ wt) > + Z
< P | 3t € [T], max Zﬁzti Y U(h,(z45,vi;)) — L(h,@")| > &
~= 7h€ ~ zng ~ 9 1,79 J,] ) =
T 2
<2 (8kTy/e1)k(2kT) + 1) - exp < 1556) ) : (55)

where the second inequality arises from the fact that -1 > ¢(h, (z;;,v:;)) € [-1,1] and L(h, @") € [-1,1].
4000(k'log(k/51)+dlog(kd/€1)+10g(1/5))

1

Taking ¢’ = £1/4 and substituting 7T} =

into (55), we can obtain

k g

1 &1
Pl3te [TL%%_)[( ; w} - n—gizzlﬂ(fu (xi,j,yi,j)) — L(h,w")| = )
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k d Tyet
< 2- (8kTy/e1)"(2kTy + 1) - exp | — 16

<2 (SKTy/e1)F (2kT1 + 1)% - exp ( — 10(klog(k/z1) + dlog(kd/z1) + 1og(1/5)))

2+ (8KTy/e1)*(2KTy + 1) - (k/e)) 7% - (kd/e1) 15
§/4. -

VASV/AN

Step 4: putting all this together. Recalling that

k
Lt (h,w') = Z w) -

a t
i

one can see from (56) that, with probability exceeding 1 — /4,

Lt(h,wt) — L(h,wt)‘ < %1 (57)
holds simultaneously for all ¢ € [T] and all h € H. Additionally, observing that
ht = in L (h, w'
argmin L' (h, w’), (58)
we can immediately deduce that
toty < T(ht ant) - SL — in T ty, f1 t
L(rY,w') < L(h',w") + 5 gél;{l[/(h,w)-l- 5 \I&%L(h,w)—l—el. (59)
This concludes the proof of Lemma 1.
C.2 Proof of Lemma 2
Before proceeding, let us introduce some additional notation. Let ¢’ := m, and define
OPT := min max L(h,e;)
heM 1<i<k
to be the optimal objective value. Additionally, set
v' = L(h',w") — OPT. (60)
It follows from the assumption of this lemma (i.e., L(h, w') < minpey L(h,w') + 1) that
v" < min L(h,w") — OPT + &; = min L(h,w") — minmax L(h, e;) + 1 < €1, Vi<t<T. (61)
heH heH heH i

We now begin to present the proof. In view of the Azuma-Hoeffding inequality and the union bound, we
see that with probability at least 1 — (k + 1)¢,

T T
w7y = 3 L(h w')| < 24/Tlog(1/6"), (62a)

< 24/T'log(1/4). (62b)

These motivate us to look at 3, (w!,7*) (vesp. 3I/_, 7t) as a surrogate for 3;_, L(h,w') (resp. 3/_, L(h!, e;)).
We then resort to standard analysis for the Hedge algorithm. Specifically, direct computation gives

Zk W.tJrl () k (ii) k
log | &= | Zlog Z wlexp(nrl) | < log Z w! (14} +n*(71)?)

k t
i Wi i=1 i=1
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k
< log (14—77210”"Z +n22wﬁ(ﬁ)2)> SUZUJ%?*'TIZ- (63)

=1

Here, (i) is valid since w! = ZLV:N and W/t = W exp(nrt) (cf. lines 5 and 15 of Algorithm 1); (ii) arises

from the elementary inequality e < 1 + x + 22 for z € [0, 1] as well as the facts that n < 1 and |F}| <
Summing the inequality (63) over all t and rearranging terms, we are left with

Z i { < k Wt+1) 2}
n ) (w7 log | &5—— | —n
t=1 Z’L 1 Wt
k k
= log (Z WiTH) — log Z W}) Tn?
i=1 i=1
> max log(W, ) — log(k) — Tn?

1<i<k
T
>n max Y 7t —log(k) — Tn?, (64)

1<z<k

where the penultimate lines makes use of W} =1 for all i € [k], and the last line holds since log (WZ»TH) =
log (W exp(n7l)) = nrt. Dividing both sides by 7 yields

é@)t Py > max Z Pt (lognk) + nT) . (65)

Combine the above inequality with (62) to show that, with probability at least 1 — (k + 1)d’,
T T

S L, w') > max Y L(h,e;) - <1°g( + T + 44/T log( 1/5/) (66)

<i<
t=1 Isisk i

20000 log( 5= )
62

Recalling that e; = n = tf5e and T = , we can derive

T T
I
max > L(h,e;) < TOPT + Y o' + < 8k) | T + 4\/Tlog(1/5) )

1<i<k
t=1 t=1
log(k)
< TOPT +Tey + < g(k) + 0T + 4+/T log(1/5") >
< TOPT + T, (67)

where the penultimate line results from (61). Given that Afi"' is taken to be uniformly distributed over
{h'}1<i<T, We arrive at

T
1
final  \ _ - t o) <
Jnax L(h"* e;) fax o ; L(h',e;) <OPT +¢ (68)
with probability at least 1 — (k + 1)¢’. This concludes the proof by recalling that §’ = m.

Remark 2. Note that the proof of this lemma works as long as 7t € [0,1] is an unbiased estimate of L(h',e;)
for each i € [k], regardless of how many samples are used to construct 7t.

C.3 Proof of Lemma 3
Set ¢’ = 6/(32T4k2), and define
= {ie[k]| max wie (277,27 (= 1)]}, 1<j< |logy(k)|+1 (69a)

1<t<T
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W = [k]/ Uj Wj. (69b)

In other words, we divide the k distributions into a logarithmic number of groups {W;}, where each W;
consists of those distributions whose corresponding max; w! are on the same order. The main step in
establishing Lemma 3 lies in bounding the size of each W;, as summarized below.

Lemma 13. Suppose that the assumptions of Lemma 3 hold. Then with probability exceeding 1 — 8T*ké’,
Wil <8107+ ((logy(k) + 1)" (log(k) + log(1/5"))” (logy(T) + 1) ) -2 (70)
holds all 1 < j <logy(k) — 2.
In words, Lemma 13 asserts that the cardinality of each W; is upper bounded by
W] < O(29).

Importantly, this lemma tells us that, with probability at least 1 — 8T*k?§’ = 1 — §/4, one has

k [log, (k)] —2 _
[@T |, = nax_ w! < k-2~ Mg ()] =2=1) 4 Z |Wj|2*(J*1)
i=1 j=1
16 llosa(k)]-2 '
<k- z + Z |Wj|2_(1_1)
Jj=1

<2-108- ((log2(k;) + 1)5(1og(Tk’) + 10g(1/6))2(10g2(T) + 1)> ,

where the first inequality is valid since max;<;<r w! < 27U~ holds for any i € W;. This immediately
concludes the proof of Lemma 3, as long as Lemma 13 can be established. Proving Lemma 13 is the most
challenging part of our analysis, and we dedicate the next section (Section D) to the proof of Lemma 13.

D Controlling the Hedge trajectory (proof of Lemma 13)
This section is devoted to proving Lemma 13. The proof relies heavily on the concepts of “segments” and
“configurations” introduced in Section 4.2. For convenience, we restate these definitions below.

Definition 5 (Segment (restated)). For any p,x > 0 and i € [k], we say that (t1,t2) is a (p, g, x)-segment if
there exists a subset T < [k] such that

(1) Ziez wfl € [p/QapL
(11) Ziel’ wzt‘Q > p exp(:ﬂ),
(iil) Yoz wi = q for any t; <t <ts.

We shall refer to t1 as the starting point and to as the ending point, and call T the index set. Moreover, two
segments (s1,e1) and (s2,e2) are said to be disjoint if s1 < e1 < s2 < eg or s9 < eg < 51 < €7.

Definition 6 (Configuration (restated)). A configuration Conf is a set of intervals Conf = {[a;, b;]},
obeying b; > a; for each i € [m] (note that repeated elements are allowed). A configuration Conf is said to be
reqular if, for any i,j € [m], one of the following three properties holds:

(a) a; <b; < aj <by;
(b) aj <bj <a; <b;;
(¢) a; =aj, by =b;.
In addition, we shall take &' = §/(327%k?) throughout this subsection, and we focus on any j €
[1, logy (k)] — 2.
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D.1 Outline

Before delving into the proof, we first describe the high-level idea. In Lemma 17, we provide a lower bound
on the length of a (p, ¢, z) segment. We then proceed to prove that: if [W;| is large, then there exist many
disjoint segments, thereby requiring the total length 7" to be large enough in order to contain these segments.

As discussed in Section 4.2, we will extract a regular configuration from a general configuration. At a
high level, the proof consists of the following steps.

1. Identify a suitable segment for each ¢ € W; (see Lemma 14 in Section D.2);
2. Identify some disjoint blocks such that (see Lemma 15 and Figure 3):

e The segments in the same blocks have a common inner point;

e The number of segments in these blocks is at least 3 times the number of all the

1
log,(T)+1)

. 1 .

segments, i.e., W|Wj|’

e Continue the analysis on a single block in view of the fact that these blocks are disjoint;

3. For each single block, use the common inner point to align either the starting points or the ending
points of at least half of these segments (see Lemma 16 and Figure 4);

4. Design a group of regular configurations (at most O(log,(k)) groups) such that at least one of the
regular configurations contains enough segments with significant variation (see Lemma 16 and Figure 6).

In the sequel, we shall present the details of each of these steps.

D.2 Step 1: identifying segments for each distribution in W,

Recall that W; contains those distributions whose corresponding weight iterates obey maxj<i<r w! €
(279,271 (cf. (69a)). As it turns out, for any i € W;, one can find an (QJ%, ﬁ,log(?))—segmen‘c, as
stated in the lemma below. This basic fact allows one to link each distribution in W; with a segment of
suitable parameters.

Lemma 14. For each i€ W;, there exists 1 < s; < e; < T, such that

L1 .1 »
oz < WS g wi' > 55 and  wt>270tD Vie[s; el (71)

In other words, there exists a (5, 5752, 10g(2))-segment (s;, e;) with the index set as {i} (see Definition 5).

Proof. From the definition (69a) of W, it is straightforward to find a time point e; obeying w;* > 2% It
then remains to identify a valid point s;. To this end, let us define

7 =max {t |t <e;wl <270}
which is properly defined since w} = 1/k < 2-(+2)  With this choice in mind, we have
wt > 2*@*2), YVt obeying 7 + 1 <t < e;.

In addition, it follows from the update rule (cf. lines 5 and 15 of Algorithm 1) that

los(w! ™ /uf) = log(W+ /W) ~log (S Wi/ Y )
j J

J
<7 —log (Z Wy W;) <25 < 1/10,
J J

which in turn allows us to show that

1
T+1 T
w; " < wj exp(1/10) < TS -exp(1/10) < PYESE (72)
As a result, it suffices to choose s; = 7 + 1, thus concluding the proof. O
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D.3 Step 2: extracting regular segments from irregular segments

Lemma 15. Recall the definition of W; in (69a). For each i€ Wj, denote by (s;,e;) the segment identified
in Lemma 14. Then there exist a group of disjoint subsets {Wp —1 of W; obeying

(i) WIS W;, WP a WP = &5, Wp #

T P P N4%1
(i) 2pms WS 2> s,y 7
(iii) Let S, = min;eyyr s; and €, = Maxieyyr € foreachl1 <p< P. Onehas1 <35 <€ <S5y <& <---<
J

Sp <ép <T and max;cyyr s; < mmlewp e; for each 1 < p < P.
J

In words, Lemma 15 reveals the existence a collection of disjoint subsets of W; such that (a) they account
for a sufficiently large fraction of indices in W;, and (b) the starting points and end points of their associated
segments can be well sorted in the sense that §; <€) <5y <éy <--- < 35p < ¢€p.

Proof. For any integer 1 < x < log,(T) + 1, define
z)={ie[k]|2°7" <e —s <27},

so that the length of each segment associated with W;(z) lies within [277!,2%]. Let 2* indicate the one that
maximizes the cardinality of W;(x):

*
= W;(x)].
oA 1<w<r12§2)%T)+1 Wi (@)]

Given that there are at most log,(T") + 1 choices of z, the pigeonhole principle gives
Wil

W; —_— . 73
W) 2 o (73)
In the sequel, we intend to choose the subsets V7" }2_; from W (z*).
To proceed, let us set
K1:= min e, Ul = 1€ W;(x $i < K T4a
LT iews ) i =1 5(@) | si < (74a)
and then for each o > 1, take
Kol = min €, (74b)
€W, (x*) /02, _ IU"
Z/IJ»OJrl ={ie W;(z*)/ ug_ U s < Kot1}- (74c)
We terminate such constructions until U,>1Uy = W;(z*). By construction, for each o, we have
Siy < Ko < €5y, Vi1, ig €U — max s; < mg{n €;. (75)
€U’

i€U?
J

Let us look at the three groups of subsets of W;(z*): {u?o_z}ogl, {M;’O_l}@l and {U3°}o=1. Clearly, there
exists £ € {0, 1,2} such that ; -, \U;’O*E\ > %Zozl |U42|; without loss of generality, assume that

DI el Z Ul = S ;™). (76)

o=1 O>1

With the above construction in place, we would like to verify that {U;"’*Q}(,)l forms the desired group of
subsets. First of all, Condition (i) holds directly from the definition of {¢/f},>1. When it comes to Condition
(ii), it follows from (76) and (73) that

30—2 |W]|
LU= g = gy

oo\»—~
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Regarding Condition (iii), it suffices to verify that

max e; < min s; (77)
ieU>°? ieydott
J J

for any o. To do so, note that for each o > 1, there exists i € W;(z*) such that s; > k, and ko11 = ¢;. We
can then deduce that
Kop1l =€ = 8; +2% 1 >k, 4+ 2% 7L, (78)

It then follows that, for any ¢ € L{;’OH, one has
8i = Ko = Kaoo1 + 27 1> Kgo o + 27 .
In addition, for any /£ € Z/lf"_z, it is seen that
er < 80+ 2% < kgon + 2",
Putting all this together yields

*
max e; < k3p—o +2% < min s;.

z‘euf°—2 z‘euf““

The proof is thus complete. O

Lemma 16. Recall the definition of W; in (69a). For each i € Wj, denote by (s;,e;) the segment identified

in Lemma 14. Then there exists a group of subsets {Vj" N_, satisfying the following properties:

(i) Vi W, Vi n Vi = @, ¥n#

s N n 1471 .
(H) Zn:l |V] | = 24 log, (k) (log, (T)+1) 7
P . ~ ~ ~ ~ ~ ~ N
(iii) There evist 1 <8 <€ <& <y <--- <8y <eénx <T, and {g,}N_, € [1,00)", such that for each

1<n<N, (5,,e,) is a (27(j+1)gn|V;L|, 27(j+2)|]/]??|, 211c;§(22(3€))‘5€gm6nt with index set as V}'. That is,

the following properties hold for each 1 <n < N:

gulV7] o _ aulVil
(a) 5+ <Ziev;n w;" S g

gn V]| log(2) én .
(b) =5 - exp ( 510g,11y <Ziev;.” w;";
Vil

v N ~
t .
(c) > ievn Wi > 574z for any t obeying 5, <t < €,.

Proof. We shall begin by presenting our construction of the subsets, followed by justification of the advertised
properties. In what follows, we set = = log(2).

Our construction. Let {Wf}gzl and {(5,,¢p)}._; be the construction in Lemma 15.

Step a): constructing W\Jp Consider any 1 < p < P. Setting

p . : .
tia = min e,
J

we can derive, for each i € WJP , that

e tha e th. e
i mi 1 Ci 1 _n]]d 1 i

max {log (fﬁ,) , log (wlsi )} = 2log< u:; > + ilog (wlsi ) = ilog (w§> = g,
wim]d w; ,wim;d w; w;
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where the last inequality holds since (s;, ;) is constructed to be a (21%, 21.%, m)—segment (see Lemma 14). It

then follows that
Z 1< log ut]p >Z log ut]p >Z4) > 12%4R
=, wha | 72 wha | 72

Without loss of generality, we assume that

x |Wf|
Z 1 {log ( m]d) 2} = 5 (79)
zeWp

This means that the set define below

W\f = {z e WP | log (wfi/w?“d) > g} (80)
satisfies N W
W)= (81)
In what follows, we take'®
= |17V\jp|, {:= max{€>O|25<Q} and Q= of

Without loss of generality, we assume

W\f:{172,...7Q} and e; <ex<---<egq. (82)

Step b): constructing Wf(ﬁ) Let us take eg = ¢¥ .., and employ [eg, ;] @ a as a shorthand notation for
[€q, €k+a]. We can then define a group of disjoint intervals of [T'] as follows:

ICI = {[6()’ 622—1]} ; (833‘)
K:Q = {[607 622—2]5 [607 622—2] ('B 26_1} 3 (83b)
IC3 [607 22 3:| [607 621?—3] @ 22723 [607 625—3] @ 2. 22‘72, [60; 622—3] @ 3 2272} ) (83C)

ICZ = {[607 622—2]7 [603 622—2] ('B 2€_£+17 [607 622—2] ('B 2- 2€_€+1a CE) [607 eQZ—Z] ('B (26_1 - 1)2[_Z+1} ; (83d)
{[ezi,egiﬂ] |i:0,1,2,...,2’7—1—1}; (83¢)
{[622+1ae21+2] | L= 071727'”722_1 - 1} (83f)

For each i € [Q — 1] with binary form {ig}gzl and 0 < ¢ < 7, we define trunc(w ) to be the number with

binary form {i1,2,...,4,,0,0,...,0}. For example, trunc(i,0) = 0 and trunc(i, ) =
From the definition (80) of 17\/\]” , we know that for each i € [Q — 1],

T etrunc(z £) etvunc(z £)
5 log ( > Z log ( etl’unc(l £— 1)) Z log ( etrunc(t £—1) ) ]l {etrunc(i,é) ;é etrunc(ivé_l)} ’ (84)

10We assume @ > 2 without loss of generality. In the case @ = 1, we simply choose an arbitrary element in 17\/\]” as a single

subset. In this way, we can collect at least + \Wp| segments.
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which in turn implies that

w?trunc(i,é) T
max lo 81% = —. 85
o (e ) > 5 )
By defining
— P w_etrunc(i,é/)
Digy o J s D i -
Wj (£)=<1ie Wj arg max _log —eem o | = 4
1<e<? w;
for each!! 1 </ < Z we can demonstrate that
7
> )= q-1, (86)
=1
thus implying the existence of some 1 < £* < 2 obeying
~ -1 0
‘Wf(f*) Q1.9 (87)
1 20

Step ¢): constructing Wf(ﬁ, 0), 5(p,0) and €(p,0). By definition, for any 4, if trunc(i, £*) # trunc(i, £* — 1),
then one has
[etrunc(i,f"fl)a etrunc(i,f*)] € ICZ*a

where the set Ky has been defined in (83). In addition, from the construction of ij(f*) (see (87)), we know
that trunc(s, £*) # trunc(i, £* — 1) for any i € Wf(ﬁ*). For each 1 < 0 < 2", define
Wf(€*7 O) = {Z € ij(f*) | [etrunc(i,é*—l)a etrunc(i,é*)] = [607 32212*] @ (O - 1)26_[ +1} ; (88)
where we employ the notation ¢* and ¢ to abbreviate ¢* (p) and 1 (p), respectively.
In addition, for any 1 <p < P and 1 < 0 < 28 ®~1 we set
g(pv O) = e(ofl)zf(P)*e*(lev (893‘)
€(p, 0) = €qi-er ) +(0—1)28@)—€* () +1° (89b)
In words, [5(p, 0),€(p,0)] can be understood as the o-th interval in the set Ky (p).
Step d): construction output. With the above construction in mind, we would like to select
2™ (p)—1

P *w-1)
{{Wg) (E* (p)’ 0)}0=1 } with intervals {{g(p; O)v é\(p7 O)}?f:i ) }
p=1 p=t

as the group of subsets we construct. With a slight abuse of notation, we use (p,0) as the index of the
segments instead of n. In what follows, we verify the validity of this construction.

Verification of the advertised properties. We now proceed to justify the claimed properties.

Property (i). By construction, it is clearly seen that

—

WP (% (p), 0) € WP (£*(p)) € W < WP

N

W;.
In addition, if " ~
WP () 00) 0 W7 (¢ p2).02) # .
then one has WP? n\WZ* # &, and as a result, p; = py (otherwise it violates the condition that Wi* nW5* = &

for p1 # p2). It also follows from the definition in (88) that 0; = 02. Therefore, for any (p1,01) that does not
equal (pz, 03), we have WP (¢*(p1),01) A WP (£ (p2), 03) = 2.

HWithout loss of generality, we assume the arg max function is a single-valued function.
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Property (ii). By construction, we have

20" (p)—1 =
. N A W)
WP (6*(p), 0)| = |[WE (¢*(p))| = > I, (90)
; ‘ ! ‘ ‘ / ‘ 4log, (IWP]) — 8log, (IW)1)
where we have made use of (87) and (81). Summing over p and applying Lemma 15 yield
p 2=t P p
WP (£*(p),0)| = s> 2 : 91
z;l ; ‘ J () )‘ ; 8logy(k) ~ 24log, (k) (logy(T) + 1) (01)

vy ) P
Property (iii)(a). Let us set the parameters {{g(p, 0)}%2:;'9)} as follows:
p=1

SR
g(]LO) _ eW; (£*(p),0)

- 2 >1
2762 - V7 (€ (p); o) |

Then Property (iii)(a) is satisfied since

Z W50 _ 9(p, 0)[W; (¢*(p), 0)|
7 - 2j+2 .
€W, (£ (p),0)

Property (iii)(b). For any i€ 17\/\]” S W2, we have

8i < Ctrunc(ib—1) S € for any 1 < ¢ < {(p),

which is valid since max;cyyr $; < mingeyr €; (see Lemma 15) and (82). It then holds that
J J
s; < 8(p,0) < e for any i € W\f

Also, the definition of (s;, ;) (see Lemma 14) tells us that w; »® > 2-(+2),

s
K2
Also, by construction, we know that for any i € Wf (f* (p), 0)7

é(p,0) .
log Wi > 2 and WP > 9= ([+2)
w' @0 20(p) v

(2

Recalling that = = log(2), one can further derive

Z wiP?) > 9-(+2). |V~V§)(€*(p)’ )|
i€W? (£* (p).0)

N é(p,0) N 3(p,0) z
log 2 (14 (p),0) Wi > log i (¢ (p),0) Wi eXp(z@@)) _ox log2)
e (0 (p).0) Wi ) e (1 (p) ) Wi () 20(p) ~ 2logy(k)

Property (iii)(c). Note that for any ¢ obeying S(p,0) < t < é(p,0), and any i € WJ” (ﬂ* (p), 0), it holds that
s; < 8(p,0) <t <e(p,o) <e;. Asa result, we have

Y ul =@, 270,
iEW] (£ (p),0)
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Proper ordering. To finish up, it remains to verify that the intersection of [$(p1,01),€(p1,01)] and
[S(p2,02),€(p2, 02)] is either empty or contains only the boundary points, unless (p1,01) = (p2, 02). To show
this, note that in the case where p; # po (assuming p; < ps), we have

gpl < g(plaol) < a(p1701) < €p1 g §p2 g g(p2702) < /é(pZ;OZ)’
which arises from Lemma 15. Also, in the case where p; = py = p and 07 # 09 (assuming o; < 03), we have
3(p,01) < 2(p;01) < (p; 02) < &(p;02),

which comes from the construction (89).

We have thus completed the proof of this lemma. O

D.4 Step 3: bounding the length of segments
Recall the definition of segment in Definition 1, as well as the definition (60) of v¢ as follows

v' = L(h',w") — OPT. (92)
We have the following lemma to bound the length of segments.

Lemma 17. Assume the conditions in Lemma 3 hold. Suppose (t1,t2) is a (p,q,x)-segment satisfying
p = 2q > 0. Then one has

x
to — 11 =2 —.
-tz g (93)
Moreover, if
2
qr 1 1
5 = max {277 log (5/) ’k} (94)
50(logy (k) + 1)
holds, then with probability exceeding 1 — 6T*ké’, at least one of the following two claims holds:
(1) there exists 1 < j <log,(1/n) + 1 such that
ta—1 2 9j—1 2 9j—1
A .97 .97
Ya{-v =27} > = > 7 (95)
—t 100(logy(1/m) +1)"n  100(logy(k) + 1)
(2) the length of the segment satisfies
2 2
to —t1 = e 5 = a 5 - (96)
100(logy(1/n) +1)™n?  100(logy (k) + 1) n?
Proof. See Section D.6. O

D.5 Putting all this together
With the above lemmas in place, we are positioned to establish Lemma 13. Denote by {V7 N | and

5n,n)}Y_, the construction in Lemma 16. We divide {V?}Y_, into two parts:
n=1 7 In=1

o The first part consists of those V}' obeying

log”(2)
50(log, (k) + 1)° log3 (k)

2-U+2)|pr .

; > max {2log(1/6")n, 1/k} , (97)

N

which we shall denote as {V;L}n:l in the sequel.
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e The second part consists of the remaining sets, which we denote as {yg }nﬂzl in the sequel.
In view of Lemma 17, for each 1 < n < N, at least one of the following two claims holds true:
e there exists 1 < j < log,(1/n) + 1 such that
5y o 2P llog?2) - 2

Ma{-v" =27} >

= 200 log2 (k) (logy (k) + 1)

o the length of the segment [5,,€,] obeys

(i =n 2
U2V log?(2) '
200 log2 (k) (logy (k) + 1)°2

~ ~

€n — Sp =

As a consequence, for each 1 < n < N, we have

en—1logy(1/n)+1 logy(1/n)+1e,—1

en—snn+z Z 1{—v =27}270"0 = (&, -8, + Z Zﬂ{—v > 279}

T= Sn T= Sn

—UYy] log 2)

> 5 5 (98)
2001ogs (k) (logy (k) + 1)
By observing that
logy (1/m)+1 . .
o ifz=277} 27070 <4p
j=1
holds for any « > 0, we can combine this fact with (98) to derive
g,—1 —(+2) 15" 1o
g 2702 V7 log?(2
(€n — Sn)n + 4-(=v7) = 5 [V log(2) - (99)
S 2001log; (k) (logy (k) + 1)

~

Summing over n and taking advantage of the property 1 < §; <é; <8 < --- <€, <T (see Lemma 16) give

T n en 9—(j+2) N VTL log2(2
Tn+42(vt)>z<(ensnn+z4 )Z 22":1| J|Og(2). (100)
n=1 200 1Og2(k)(10g2(k‘) + 1) n

Moreover, it follows from (66) that

ZT](—vt) <100 <1°g(k + T + 44/Tlog(1/5") ) (101)

which taken together with (100) gives

=

. 4, 0j+2 k)
V| < 3200(1%1(’“)2?2;) 2 00 (log( 4T + 44/T log(1/5") )
1 0g

8007 (logy (k) + 1)* - 29+2p?2
log®(2) '

In addition, in view of the first part of Lemma 17, we can demonstrate that

(102)

JUN log(2)
—_ 2 —_—,
T A logy ()
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which combined with the property 1 < §; <é; < Sy <---<é, <T (see Lemma 16) gives
N
= 4 log, (k 4nlog, (k
<3 (6 -3) nlogy(k) _ 4. Anlogy (k) (103)
= log(2) log(2)

As a result, it can be readily seen that

i V<N {50(log2(k) +1)° log3 (k)

2772 max {21og(1/8")n, l/k}}

log*(2)
2
. 550(1 1
ATnlogy (k)  oj+2 (logg (k) + 1) log(k max{210g(1/5')7771/k}
log(2) log*(2)
1600 - 27T (logy (k) + 1) 1og2(k)1og(1/5') 800 - 20T (log, (k) + 1) log3 (k)
< = , (104)
log®(2) klog®(2)

where the first inequality comes from the definition of V' (cf. the complement condition of (97)), and the
second inequality arises from (103).

To finish up, note that 2log(1/§’)n = 1/k according to our parameter choice. Thus, combining (102) and
(104), we arrive at

N
3 V| < 3200000(logy (k) + 1) (logy (k) + log(1/8"))” - 2. (105)

It then follows from Property (ii) of Lemma 16 that

N
[Wjl < 241og, (k) (logy(T) + 1) <Z |V?|>

n=1
<8-107- ((logz(k) +1)* (logy (k) + log(l/él))3 (logo(T) + 1)) 229

thereby completing the proof.

D.6 Proof of Lemma 17

Throughout this proof, we find it convenient to denote Z* = Zf=1 Wt.

Part 1. We start by proving the first claim (93). Recall that [¢, 2] is assumed to be a (p, g, x)-segment.
From the definition of the segment (see Definition 5), there exists ¢ € [k] such that

12
1 Uil >
og|— | =2
w;

Given that W/* = W/* exp (172 2! 77) and w; = W;/Z; (see lines 15 and 5 of Algorithm 1), the above

T=t1 "t
inequality can be equlvalently expressed as

to—1

n Y 7 —log(2"/Z") > x. (106)

T=11

Moreover, recognizing that

e Wit exp (1375, 77
Die[k] (0275, ) > ity —t1)

log(th/Ztl) = IOg ( Z [ ]th
i€k i

< 1forany 1 <7< T, we can use (106) to show that

r < 2(t2 — t1)77, (107)
from which the claimed inequality (93) follows.

and 77
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Part 2. We now turn to the remaining claims of Lemma 17. For each hypothesis h € H, let us introduce
the following vector v;, € R¥:

vy = [Uh,i]ie[k] with v, ; = L(h, 61') — OPT. (108)
Given the e1-optimality of k! (see Lemma 3), we have the following property that holds for any 1 < 7,¢ < T

(opr, why = g1i{tl<vh,wt> > (ope, w') — e = v — g, (109)
€
where we recall the definition of v* in (92). In the sequel, we divide the proof into a couple of steps.

Step 1: decomposing the KL divergence between w! and w'. Let us write

t
= exp ( Z nr; ) = exp (7] Z (vp-,i + OPT +§Z)> with & = 7] —vp-; — OPT,

where &7 =77 — L(h7,e;) is clearly a zero-mean random variable. Define

to—1

Athtz = Z fT'

T=t1

Taking W' = [W{];cix) and denoting by log(z/y) the vector {log(z;/y:)}ic(r] for two k-dimensional vectors
(z,y), one can then deduce that

WtZ to—1
< log (Wt1> AV wt> — (t2 —t1)OPT = Z (opr,why = (ta — t1) (0" — £1), (110)
T=1%1

where the last inequality results from (109).
Recall that Zt = 3% W! and w! = Vg—: By taking t; = ¢, we can derive from (110) that

to Zt2
<log (Z}t ) — 77At,t2,wt> + log ( 7 ) —n(ty — t)OPT = n(ty — t)(v" —&1). (111)

As it turns out, this inequality allows us to bound the KL divergence between w? and w?? as follows:

ot ¢ w'
KL(w' | w™) = <w ,log (wt2)>

<log(Z%/Z") = n(ta — )OPT —n(w’, Apy,) + n(t2 — t)(e1 — ") (112)

In what follows, we shall cope with the right-hand side of (112).

Step 2: bounding the term log(Z%2/Z%). We start with bounding log(Z%2/Z%). With probability
exceeding 1 — 272k¢’, it holds that

to—1 to—1
S Wi exp(ni]
log(Z"/2") = Y log(Z27%1/Z7) = > log | D 5 ( T)
T=t T=t ie[k] <Hielk] i

ty—1 a1 k
@ 22 log <2w exp(nr? ) (n) QZ: log (Zw +Zw )"'221”[772(77)2)
i=1

(111) t2—1

—1 k
Zlog<1+n2w +2772><22 (77211){?{4—2772)
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to—1 to—1 k

Zv +nt2—tOPT+nZZ<wz,l Uhr,i—OPT>+2(t2—t)772
T=t i=1
(V) ta—1 k

< n(ta —t)er + 0t — )OPT + 1 7 > (w], 7] — vpr i — OPT) + 2(t2 — t)n”. (113)

T=t i=1

Here, (i) comes from line 5 of Algorithm 1, (ii) follows from the elementary inequality exp(z) < 1 + z + 222
for any x < 1, (iii) is valid since Z w] = 1and |r7| <1, (iv) holds due to the fact that v* = (w', vj), and
(v) arises from the fact that v < e; (see (61)).

Step 3: bounding the weighted sum of {{J}. Next, we intend to control the two random terms below:

to—1 k to—1 k
7 2 Z<wl7 7T —vpr; —OPT)y =1 Z zwf 7, (114a)

7=t =1 ;:tlzzl
n<wta At,t2> =1 Z Z wff: (114b)

T=t i=1

Let F7 denote what happens before the 7-th round in Algorithm 1. Two properties are worth noting.

o The variance of £ is at most O ( k%_, ), according to the update rule (see line 14 in Algorithm 1);

{&7 }ierx) are independent conditioned on F7.
Let us develop bounds on the two quantities in (114) below.

o Letting ¢ = Zle wt&T, one sees that

=~ \ﬁh

Feydd-

i=1

lg"| <1, El¢"|F7]=0 and  Var[¢"|F7] < (115)

HM»

By virtue of Freedman’s inequality (cf. Lemma 8), with probability at least 1 — ¢’ one has

to—1 k
wiel | < F log(2/67) + 210g(2/8" 116
TZ“ZI «/ g(2/6") + 2log(2/4"); (116)

¢ Regarding the other term, by letting §7 = Zle w] &7, we have

k koo
i <1, E[|F]=0 and Var[§"|F7] < 2 w wa

Invoke Freedman’s inequality (cf. Lemma 8) once again to show that, with probability exceeding 1 — ¢§’,

2,22 - — L 10g(2/87) + 210g(2/). (117)

Step 4: bounding the KL divergence between w' and w’>. Combining (112), (113), (116) and (117),
and applying the union bound over (t,t3), we can demonstrate that with probability at least 1 — 674k,

KL(w" | w') < 2(ty — t)ney — (ta — t)no'

t

2—1 k
g ; TST

+ 477\/(’52_”1;5%(2/5/) +2(ta — t)n* + 4nlog(2/8") (118)

holds for any 1 <t < to < T. The analysis below then operates under the condition that (118) holds for any
1 <t< tg < T.
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Step 5: connecting the KL divergence with the advertised properties. Set

~

m=min{r [t ST <t -1, -7 < 2~ U-Dy 1 < J < Jmax = |logy(1/n) +1]; (119a)
Tjmaxt1 = (2- (119b)

By definition, we know that 7y = ¢; and 7j, > 7;, for jo = ji. Let Z be the index set of this segment [t1, 5],
and set y; = ZieI wZ-Tj . We then claim that there exists 1 < j < jmax such that

it o T
o ( ; ) > Togy(1/n) + 1 (120)

x
> 121
log, (k) +1 (121)

where the last inequality is valid since 1/n = 100/e < k (given our assumption that e 2 1/k).

Proof of (120). Suppose that none of 1 < 7 < jmax satisfies (120). Then for any 1 < 3 < Jmax, it holds that

log (y;“) < W, which implies that y; > y; , exp (—W . As a result, we have

5 J
> j x >
= . . eX _— - —_—
7 et LSBT gy (1) +1) 7
thus leading to contradiction (as according to the definition of the (p, ¢, z)-segment, one has y; < p). O

Now, assume that j satisfies (120). From the definition of the (p, ¢, z)-segment, we have y; =g It follows
from (118) that

KL(w | w+1) < 2(75,, — 75)ner + (5, — 7'3)772*(371)

(75,41 — 75) log(2/0")
+ 477\/ s fk +2(m5y — m5)n? + 4nlog(2/8). (122)
Since log (?/2;1) = W and y; = q, we can invoke Lemma 11 and Lemma 12 to show that
gz’

KL(w™ | wT+1) > KL (Ber(y;) | Ber(y5+1)) = 1(logy(1/m) + 1)2;
2

where Ber(z) denote the Bernoulli distribution with mean x € [0,1]. As a result, we can obtain

qa?

4(logy(1/m) + 1)

5 < 275 —Tner + (T — 75)772_(j_1)

(75,, — 1) log(2/0")
+ 4’7\/ — +2(75,, — )07 + 4 log(2/8), (123)
which in turn results in
. qz? . 1 21 1 kgt
T5+1—T;>mln 5 M § —, )5 (0 4
100( logy(1/n) +1) ner MM ) 10000n? log(1/0") (logy(1/n) + 1)

. qz? 1 o2t kq?xt
= min 5 min { —, y 5 (o 5 5
100(logy(1/n) + 1) mEr M M7 ) 10000m2 log(1/6") (logy(1/n) + 1) (logy(k) + 1)

2 23—1 1
= i 5 min 5 (- (124)
100(logy(1/n) + 1) n




Here, to see why (124) holds, it suffices to note that

qz? 9j—1 kg2

. < ,
100(logy (k) +1)> 1 100002 log(1/6") (log, (k) + 1)

100
g

a property that arises from the fact that 211 < 1/n =
21og(1/8" ).
With (124) in mind, we are ready to finish the proof.

< k and the assumption that 50(1(%52% >

o If 2

-1
n

1 .
= 7, then one has

qz? . 211 1 qz?
t27t1>7'3+1—75> 5 min i 5
100(logy(1/m) + 1) non 100( logy(1/m) + 1) n?
qa?
>

" 100(logy (k) +1)°n?

o If 2;% < %, then (124) tells us that

i1 — T > qu 2 5 (125)
100(logy(1/n) +1)™n
Additionally, it comes from the definition (119) that
to—1 N to—1 N
Z {—v">27}> Z 1{—v" >277} 2T 2T, T for any 1 < j < logy(k) + 1.
T=11 T=11

This taken collectively with (125) gives

ta—1 N 2 9j—1 2 9j—1
Z]l{—UT>2_j}>T5+1—T3> ge” -2 5 = gu” -2 5
floury 100(10g2(1/n) + 1) n 100(10g2(k) + 1) 7

This concludes the proof.

E Missing proofs for lower bounds

E.1 Restatement and proof of Lemma 4

Lemma 4. [Restatement] Fiz m > 0 and i € [k]. Suppose Pgi[how = h*, M; < m] > 1. It then holds that
for any h € H;

1
Pg: {how = h, My <m} > Py {hout = h*, M; < m} exp (— 80y/me — 40me?). (126)
) log(No/4)
Moreover, it holds that m > 3%)00852 .

Proof. For v e {—1,1}™, we let

nt(v) = [{p:vp =1}
denote the number of 1’s in the coordinates of v. Let V be a subset of {—1,1}?" defined as V :=
{vl,v?2 € {=1,1}™|n" (v!) — n*(v?) < 4y/m + 2me}. Let P¢[-] denote the probability distribution of
{{xg.w@)};g b, 1} and Pe/[-] denote the probability distribution of {{xl- D {at, () 1}.

Inx 3
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Recall the definition of {xéh (i 1)}, and {:vj . ( i)} . By Hoeffding’s inequality, we have that Pe[V] > 3.

Also noting that the distribution of V is mdependent of the algorithm G’, we have that

~ oy ~vm 3 3 1
P [hous = h*, My <m, {af (O3 {z) (O eV =5 -(1-5) =5
h) n¥ i 4 4 2

That is,

Y Bo[how =B My < fag, DNy =" (e, i = 2] >
v={v!,v2}eV

DO =

In addition, for any v = {v!,v?} € V, we have
Pe [U] = Pc [v] . (1 _ 85>”+(U1)*n+(v2) (1 n 88)n+(v2)_n+(vl)
— 8¢

nt (v —nt(v?)
il (e )

F +
> IEDC[U] p(—20(n* (v') — n* (v*))e)
=P xp(—80+/me — 40me?).

As a result, we can demonstrate that

Pg [hout = h, My <, {al (R =o' (el () = v2]

—Pg: [how = b, Mz < mil{ah ()N, =o' (ol ()N = v?| Pelv]

= Pgl hous = h, MN m\{x

)
ey = o' o, (DY) = v?] Belv] exp(~80vme — 40m=?)
B, =0t {xjh* (), = v2] v] exp(—80y/me — 40me?)

Yoii = ,{f (1')}2":1 =0 ] exp(—80y/me — 40me?).

I
~
Q
—

(
houw = h*, M; < m|{x (
(i

= ]P)g/ hout = h*,M7 ,{Z'J N

(127)

(128)

Here, (128) results from Lemma 18. We present the detailed computation as follows. Let v§ be the ¢-th

coordinate of v! for 1 < ¢ <mand o=1,2.

Pg [howh M; < mlfaf, ()F, =o' (ah, ()i, = o]

-3 g [ how = b, Mz =/ |{ (i, = o' o, (DYity = o?)

= 2} Por [how = b My = ml{af, , DIy = fobbily of, DV = (B} |

m/=1
il B ~ ’ ’ ~ ’ ’
= Z Pg' hout = h*7 M; = m/|{x§h3 (Z)}Za:l = {“t}}?ip {xfh*,; (Z)}Za:l = {U?}?L:l]
m/=1 -
m ~ ~
- Y Py [hom = ¥ My = [{af, (DY = ot e, (DN = 02]
m/=1

— Pg: [how = B*, M; < mifaf, ()N, =o' {af,, (Vi) =02

(129)

(130)

Here, (129) and (130) hold since for b’ = h, h*, the event {hqy = h', My = m'} is independent of {28} ommmi 11

Taking the sum over v = {v!,v?} € V, we obtain
]Pg/ [hout = h, Mz < m]
> 3 P [how = b My < m, {af, D}, =o' {af, ()H, = o]

vey
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> Py [hout = My <m ol (Fy = ol e, ()N = v2] exp(—80y/me — 40me?)

vey

— P [hout = h* M <m, {{zghyi(i)}g;l, {xﬁh’*;(Z)}}f“:l} e v] exp(—80v/me — 40me?)
1

> 5Pg [how = h*, M; < m] exp(—80y/me — 40me?)

as claimed in (126).

Summing over all h € Hy, we reach

N
1 = Pg/[hout € Hy, My <m] = TOIP’Q/ [hous = h*, M; < m] exp(—40me* — 80y/me), (131)

which reveals that

1 2
5 < Po [hout = h*, M; < m] < <N exp(40me? + 804/me). (132)
0

Consequently, it is seen that
40me? + 804/me = log(No/4),

log(No/4) log®(No/4) < log(No/4) O]

which implies that m > min{ =553, 0022~} = 3000052

E.2 Statement and proof of Lemma 18

Lemma 18. Fizi € [k], and let 2!(i) be the I-th sample from D; for any i € [k] and 1 > 1. Fiz h € H;,
m >0 and v, v? e {~1,1}>™.

]P’g,{hout—h M_m\{m ~()§n1_” {xa;* = }
:pg/{hout_hM_muxj Ny =2 g, (O =)

Proof. Let @ be the permutation over H with (h*) = h,5(h) = h* and o(h') = b’ for all ' ¢ {h,h*}. It
then holds that 7! = 5.

Fix {m;}¥_; and X (i) = {X*(i)}}¥, € {—1,0, 1}}N™i for i € [k]. Let (i) =
of the first m; calls to Query(D;). With a slight abuse of notations, we let o(x
1 € [k].

It follows from Lemma 19 that

{
(i

(i)}, be the datapoints
= {o(2!(i))}]" for each

.Tl
)
Pg,3 [hous = h, {Mi}i_y = {mi}i_y | 2(i) = X (i), Vi € [K]]

= Pg o) [hou = 07 (h), {Mi}ioy = {mi}isy | o7 (2(0) = X (3), Vi e [K]],

which implies that
PG o(m) [hou = h* {Mi}i_y = {mi}i_y, o((i)) = X (i), Vi € [k]]

= Po sy [hou = b (MY, = {ma}ky go(a(i)) = X (i), Vi € [K]] - 22 0)

)
Ploo(z(i)) = X (i), Vi € [k]]
) ]

= IEDQ,EU(”H) [h‘out =h, {Mi}i'c:l = {mi}i’LlﬂEU(x(i)) = X(i),Vi € [k]] ’
= Pg 5o (#) [Pou = by (M)}, = {mi}f—pﬁff(fﬂ(i))) = X (i), Vi€ [K]]
Pt (N = (XL @) dat, N = XL @)

Bl DN = (X))t ON = 1X] (0]

Jo(hy,

Ploo(x(1)) = X(1)]
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Re-arrange the equation to arrive at
PG (3 [h = WM, = {mally, o(2(3) = X(0), Vi € [k]
(ARG GG R CTRRN ) MUK S GO () ]
= Pgzon) [h = b (MY, = (i, o (a(i) = X(9), Vi€ [k]
(NG O <>}::%17{mzh,;<z>};:a—{X;(,Wm};';a].

Taking the sum over all possible choices of {X (i)}, 3, {{ s N0 i)} 1} L)

{0, L ONAY, e,y o0 (m i we obtain
P o1) lhout = h* M; = my
o, BN = (L, G e, N = {x;wm}zza]

K2

= ]ngg(?-[) lhout =h, M; = m~

){ Ljx ( )}l 1 =1{X U(,m( )}:’f’l,{méh ()}z 1 _{ U(h*) ()}71;11

for any X (i) € {—1,0, 1}kNm:,
Fix my; = m, and choose {le (Z)}?:l = vy, {X! G)}7:1 = vy. We then have

(h),3 Jo(n¥),3
Pg:.u [hm—h M= m | o}, DY, = {ah, I, = o?)

Y Poon [hou = h*, Mi = m | {a} D}z, =o' {ah, DN, = o*

|HH| oeTln,
1 ——1/p % m 2 l \Nym 1
=] & oo [how =71 (0F), My = m | {af, (D}ity =% (e, (D) =
oelly
1 N
= ] & Footo [how = b My = m | {2}, (DN = o ), Ot = ']
oelly

= Pg e o = b My = m | o D}ty =% {al, (OHE, = o'].

The proof is thus completed. O

E.3 Statement and proof of Lemma 19

Lemma 19. Fiz {m;}icq) , 0 € Iy and X € {~1,0, 1}’“NZL 1™ Let {X (i) }iepr) and {x(i)} be defined as
Lemma 18. We then have

Pg,3 [hous = h, {Mi}i_y = {mi}i_y | 2(i) = X (i), Vi € [K]]
= Pg o) [hou = 07 (h), {Mi}i=y = {ma}ioy | o7 ((d) = X (i), Vi e [K]] . (134)
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Proof. Let H' = o(H). Let hy(-) denote the p-th hypothesis in the hypothesis set. Then one has

Pg 3t [ow = hp(H), (M}, = {madly | 2(i) = X (), Vi € [K]
= P, [hows = hy(H) MYy = {madly | (e, o, 1AL 12 1—X]

:PQ,H’ |:hout =h ( ) {M }z 1= {ml}z 1 | {{ J}L J(HY), l( )}lH |1z 1} ’ =1 X] (135)

— P20 [how = hplo (), (MY, = {miYey | o (2(0)) = X(3),¥i € [K]

= Pg o(30) [Pous = 0 (hp(H)), {M Y1y = {ma}iy | o7 (2(i) = X (3), Vi € [K]]. (136)
Here, (135) holds since the algorithm G cannot distinguish H from H’ using its own randomness. O

F Missing proofs for Rademacher classes

F.1 Restatement and proof of Lemma 7
Lemma 7. [Restatement] By running Algorithm 3, with probability at least 1 — §/4, it holds that

L(h',w') < min L(h,w") + ¢, (137)
heH

forany1<t<T.

Proof. We will follow the notation in the proof of Lemma 1. Fix n = {n;}¥_, such that n; > 12log(2k) for
all i € [k] and w € A(k). Let £ = min; 3. Recall that (z;;,9;,;) is the j-th sample from D;.

Define

k
wj
F(n,w) =By, sy 3t ll,{g%f (Z n Z (ig,909)) = 2 wiL(hvei)ﬂ :
v i=1

Let {{(‘%i,jvgi,j)}?il}?:l be a group of ghost samples for {{(xi,j,yi,j)}?il}le. We then have

F(n,w)

w’L ~ ~
< E{{(x,i,j,y,-,j)};11}1;:1,{{(zi,j,gi,j)};il}f:l [I}{leaﬁ( (Z oy Z h, (i3, ¥i.5)) — £(h, (Ii,jvyz}j))))]

k ng
w; ~ ~
= B g )V @0V Y o l%ﬁ (2 o Z hy (@i, 9i.5)) = Uh, (mivaivj))))]
< 2IE{{(MJ7yi1j)};‘;'1}le,{{ag'};il}le lrilllg_)[( <Z Z o; E ﬂ%ga?Jz,J)))] (138)
k
< oZim1 i Rady,, . . (139)
K

Here, (138) follows from Lemma 20, as stated below.
Lemma 20. Let £ be a subset of R™. Let w', w? € R™ be such that |w}| < |w?| for all i € [n]. Then it holds

feL‘ Zazw f71 = zlif{il} lfeﬁ Z it fz] ’ (140)

E ,
(o {41}
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Proof. Tt suffices to prove (140) under the case where w}

1<is<n-—1.

1
Ey,~(+1} [r}}gg Z ow; fi]

n—1
B 1 1/ 01 2 1/r1 2
= 2#%8«2);6(. ouw; (fi + f7) +wy(fo — f2)

=1
1 n—1
_1 200 4 2wl (fl = f2
2 flifres <¢=1 g fn))
1 n—1
g _ 2 1+ 2 —+ 2 1 —_ 2
2 f%az’)e(ﬁ <i=1 o (fz g ) |wn(fn f")|
1 n—1
2 1 2 2 1 2
- - 2L+ ) + —
2 f}g%)eiﬁ (i—l o (fl & ) wn(fn fn))

1 n—1 ) ) 1 n—1 ) )
= 5 hax (Z ow; fi +wy, fn | + 5 Thax Z; ow; fi —wy, fn

The proof is thus completed by taking expectation over {o;}"~!.

By virtue of Lemma 10 with the choice ¢ = 1/k, we obtain

P{{(wmw,y)}}’il}?:l l

222
<2exp | — = .
Dliz1 M

According to (141), for any ¢’ € (0, 1], with probability at least 1 — ¢’, it holds that

k

w;
a —L(h, ( (h
g (35 200 () - 3wt

2221 ni [log(2/0)

=w?for1<i<n-1,and |w}

11}?}(2 oW; fz—l—w fn> + = max(Z o W; Lfi—w fn>

k
Wi
r}rgg_){( (;1 n—if(h Tij, Yij)) sz (h,e; > — F(

k
< 2Li=1"’Rad{n, A

2| Fix o; for

(141)

(142)

(143)

e K 221 1 nl
Replacing (¢, L) with (—¢, —L) and using similar arguments, we can show that, with probability at least
1— 24,
E
72( 1,79 I ? h‘
?eaﬁ(;m( (ig, 7)) Zw e;)

YY) Zle n; [log(2/¢")

< === Rad{n} +
K K 221 1711

Now we fix k = 0. Define that

L= {n = {ni}le,w = {wi}le € Aq, sk (k) | Thw; < 2n;,121log(2k) < n; <

50

&
it

(144)

n; < 2T1} .



By (144), for any ¢’ > 0, with probability at least 1 — ¢’, for any {n,w} € £~, we have that

k

Wi
max Z —L(h, (x Z w; L(h, e;
heH P n; ( z,]vyZJ 4 Z

S| log(|£]) + log(2/d")

k
< Q%Rad{n.}k +

1 Hi=1 T 221?:17%
— log(2|Z]) + log(2/8'
< 4Rad{m}’.c . +4\/ os( |£|); 05(2/9")
= 1

R A /
< 4Rad{n v + 4\/2k 10g(16kT1/;-1) + 10g(2/(5 )
1

/
< 6000, + 4\/% 1og(16kT1/;1) + log(2/0').
1

Here, the last inequality follows from Assumption 1, Lemma 5, Lemma 6 and the fact that Zle n; = %

Note that in Algorithm 3,

Uy (T4, Yi,5))-
1

o
=
E&
I
ing
28
R

<.
Il

By the definition that 7} = min{[Tiw! + 12log(2k)],T1} for i € [k], we have that Tyw! < n! — 1 and
12log(2k) < nt < T for all i € [k]. In addition,

nt < T+ k + 12klog(2k) < 2T — 2.

H
L=
0

Therefore, there exists some @ € A(k) such that {{ii}*_, @'} € £ and |w! — @[y < & for each 1 <t <T.
Choose §' = /4. We then obtain that: with probability at least 1 — 6/4, it holds that

Tt ty t < gil
r}?e%_)[dL (h,w") — L(h,w")| < 600CT, 5

for any 1 <t < 7T. Here the last inequality is by definition of Tj.
Finally, the fact that h! = arg minjey L(h, w') allows one to derive

L(h',w') < Lt (R, w') + %1 = Igé%l_’[lit(h,wt) + %1 < Eél{tlL(h w') + €1,

which concludes the proof. O

F.2 Restatement and proof of Lemma 5

Lemma 5.[Restatement] For any two groups of positive integers {n;}¥_, and {m;}¥_,, it holds that

k k
<2 n) Rady, ¢ (Z mi +n; ) Rad 0t
i=1 i=1
k k ey
(Z n> Rady,, x| (Z mz-) Rady,, 3 - (145)

=1 1=1
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Proof. In what follows, assume that each zf obeys zf ~ D;, and each O'g is a zero-mean Rademacher random
variable. Direct computation then gives

)

= E max Ujé h, =]
{21}, Vie[k] Log} i Vie[k] lheﬂ Z Z H

1=17=1
" k ni+m
= E E max E lZZ ]Ehzl
(=1}, vielk] | {0}, vie[k] | h€M (2 DT gelyrit e vielk] [i21 j=1
<n) komigms .
E E maxz oll(h,z])
(2)7i T vielk) | (0?7t vielk] | "M T jO
k ~—
= (Z(nz + mi)) Rad, ymyh
i=1 -
(2) E l lmax Z Z crjﬂ 1]
{z1}71, vie[k] {of}L vielk] | MM T

k nitm;
o’
+ E E [k]l%{Z > le

mtms . +
{Zf};;n::pvw[k’] {UJ}JZ,,w:fl;VE i=1j=n;+1

k k
_ (Z ni) Rad,:  + (Z mi> Rady,, i -
=1 i=1

Here, (i) is valid due to the zero-mean property of {07}, (ii) comes from Jensen’s inequality, and (iii) holds
since max, (f1(x) + f2(x)) < max, f1(z) + max, fo(x). O

F.2.1 Restatement and proof of Lemma 6

Lemma 6.[Restatement] Consider any {n;}¥_, obeying n; > 12log(2k) for each i € [k]. By taking w € A*
with w; = ﬁ, one has
=1 "

Proof. Set n = Zle n;. Let {X;}7_; be n i.i.d. multinomial random variables with parameter {w;}¥_,, and
take n; = Z?Zl 1{X, = ¢} for each ¢ € [k]. From (38) and Definition 3, it is easily seen that

1 P _
Rad; (D(w)) = E E E ~ max olt(h, 2 1 7
() (XY, | (22375, vielk] | {07372, vielk] [” he”zz H)

j=1’

where each zf is independently drawn from D;, and each O'g is an independent Rademacher random variable.

In addition, Lemma 9 tells us that: for any i € [k], one has

1 1 1
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with probability exceeding 1 — 5~. By defining £ to be the event where n; > n;/6 for all i € [k], we can
immediately see from the union bound that

P) = 1/2.
Consequently, we can derive
k n;
Rad; (D(w)) = P(E)- E E E max olt(h,z]
(X | (20)]1, vielk] | {07}, Vie[k] 7 her ; g
koo~
1 ;
D St
2 n
1 1~
> —- =R 14
12 6 ad{n L’ ( 7)
where the last two inequalities both follow from Lemma 19. This concludes the proof. O

F.3 Necessity of Assumption 1

In this section, we will discuss the necessity of Assumption 1 in comparison to the following weaker assumption,
the latter of which only assumes that the Rademacher complexity on each D; is well-bounded.

Assumption 3. For each n > 1, there exists a universal constant C,, = 0 such that
Rad,(D;) < Cy, (148)
for all i€ [k].
Formally, we have the following results.

Lemma 21. Let w® = [1/k,1/k,...,1/k]T. There exist a group of distributions {D;}*_, and a hypothesis
set H such that

k
Rad, (D(u)) = Q <]1C > Radn/k(Di)> (149)

for n = 12klog(k).

Proof. Without loss of generality, we set Y = {0} and ¢(h, (z,y)) = h(z) —y = h(z). We can then regard D;
as a distribution over X; because there is only one element in ).

Pick k subsets of X as {X;}¥ ;. For each i € [k], we choose the distribution D; to be an arbitrary
distribution supported by X;. In addition, we define H; to be a set of hypothesis h(z) = 0 for all = ¢ X;
for each i € [k]. For {h;}f_; such that h; € H;, we define joint({h;}¥_,) to be the hypothesis h such that
h(z) = hi(x),Vx € X;,i € [k] and h(xz) = 0 for = ¢ U;X;. Now we construct the hypothesis set H as

H = {joint({hi}i_)|hi € Hi, Vi € [k]}. (150)

Recalling the definition of ﬁi{ni}?ﬂ ({D;}r_)), we see that

Fganik ({Di}fﬂ): K l K [ max ajh H
frakicy v {o?}71, Vielk] Z ZZ

{azz}jil,Vze[k] i=1j=1

Z max Z afhﬂxi)}] (151)

{z]};l,we[k] (oly1, vielk] | Xy ma o heet I
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k "
1 1 N ;
= — Z ni E l E l max afhi(xg)]]
Qi1 Mo A= vielk] [ (o), | T he€H

k
1
57 n_ZlniRadm(Di).
i=1"% i=

Here (151) is by the definition of H. By taking n; = 3 for all i € [k] and Lemma 6, we reach

i —
p > Radyk(D;) = Rady,, 1x ({Di};) < 72Rad, (D(w°)) (152)
=1

O

By virtue of Lemma 21, if we set C), ~ \/% in Assumption 3, the best upper bound on is Rad,, (D(w®)) ~

dn—k, which implies that more samples are needed to learn the mixed distribution w®. Moreover, under the

construction in Lemma 21, by further assuming miny, ey, Eq~p, [hi(z)] = & for all i € [k], to find h such that

1
maxE; p,[h(z)] < 5 te (153)
we need to find h; € H; such that
1
Eypp,[hi(z)] < 5 te (154)

for all ¢ € [k]. Following this intuition, we can construct a counter example under Assumption 3 as follows.

Theorem 5. There exist a group of distributions {D;}%_, and a hypothesis set H such that Assumption 3
holds with C,, = O (\/g), and it takes at least ) (%) samples to find some h € H obeying

max L(h, e;) < min max L(h', e;) + €.
ie[k] h'eH ielk]

Proof. With the construction in Lemma 21, it suffices to find some H’ and D’ such that the following three
conditions hold.

1. The following inequality holds:

1 LA .
Rad, (D', H') := ~E W) [inag Z‘lojh/(ﬂ)
P

. d .
n A{2d}p_ ~D {0},

< O (155)

2. minpey Epop[h(x)] = %;
3. It takes at least ) (%) samples to find some h such that E,.p[h(2)] < 3 +e.

This construction is also straightforward. We set N = 2% and &’ = {0,1}". Let D’ to be the
distribution Pp/[2] = II3_, Pp/ [,,], where Ppr . [#,%] = 30[2ps = 1]+ LI[2,% = 0] for some n* , Pp, [2,] =
(3 + 2e)[@ps = 1]+ (5 — 2¢)[[x,x = 0] for all n # n*. Then we set H' = {h"})_, with h"(z) = x,, for each
n € [N]. Tt is then easy to verify that the first two conditions hold. Regarding the third condition, following
the arguments in Theorem 2, we need at least Q (E%) ii.d. samples from D’ to identify n*. The proof is thus
completed. ]
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G Proof of Theorem 4

Algorithm 4: Hedge for Multi-group Learning

1 Input: The hypothesis set H, the group set G, target accuracy level ¢, target success rate 1 — 4,

minimal probability ~.
10000 log(|G|/$)

2 Initialization: T = 1000010s(91/9) ) _ 1., . 20000005(61/9)+dlog(d/e)) , Wy =1forallgeg.
yE 10 ye2
3 Call Query(D) for N times to get N i.i.d. samples from D, denoted by {(Jcl,yl)}l 1-

'y

fg <« mil’lh6£ m Zi=l [Z‘z € g]f(h( 1)a l)avg € ga

Ng(_ZiJil [zi€gl,p &%,Vgeg
fort—1,2,.. T do

T wtﬁz thv.g€g

8 ht «— argminpey (deg wg - (N%, Zfil Lfz; € gle(h(zi), yi) — fg)>’
9 Call Query(D) to get a data point (T, 4),

10 7y < o 1[3¢e € g](U(h"(30),5e) — fy), Vg € G,

11 Wit — Wi - exp(nrl), Yg € G;

o o

12 Return: A randomized hypothesis 2fi" as a uniform distribution over {h*}7_,.

Throughout this section, we let F; be the event field before the t-th round. Clearly, the number of
samples used in Algorithm 4 is bounded by T+ N = O (aOg(‘gV(SEY);dlog(d/S)). So it suffices to prove the

optimality of hfi"a'. Formally, we have the lemma below.

Lemma 22. With probability at least 1 — 4, it holds that

p(h' | g) mln Lp(h]g)+ (156)

\\D/_]q

foranygeg.

Proof. We first show that p, > n with high probability. Using Lemma 9, for fixed g € G, we have that

1 1
P [Npg < gNPg -3 log(l/é')] <4 (157)
By choosing §' = T with probability at least 1 — ¢ 47 it holds that
1 1
pg = ng log(l/é) 6 Py

for any g € G.

Let W' =3 .o W¢. Because 1y, < % < 6¢ < 1 for any proper (g,t) pair, we have

T
log( VVT+1 = g

Wt+1 RN . RN
g (Vi) = o (2 f exp(n?tg)> < log (2 wh(L+ 0l + n2<r;>2>> < X whnf + 7))

9€gG 9eG 9eG

Observe that

T
log(W, 1) < log(W'H1) = > log(W' /W) + log(|G))

t=1
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for any g € G,

e At 2 1~ _ log(|9]) - t(nt\2
Z s — Z wyry < ———— 4+ Z Z wy(7g)°. (158)
t=1 t=1geg n t=1geg
By Lemma 24, with probability at least 1 —
T T
log(|G]) 3nT 5Te
¢ tat
PIUEDIDWLIA <5 (159)
t=1 t=1geG n v 16

T T T
P 4 1T 7r
ZLDh\g f) < DR =< D Nt < (160)
for any g € G. By Lemma 23, with probability at least 1 — J, we have that

T
t : <
; p(h'|g) = T'min Lp(hlg) < T=

which means that

’ﬂ \

T
Z (ht|g) — mln Lp(hlg) <

The proof is completed. O

Lemma 23. with probability at least 1 — it holds that

16’

—min L <
fq %él?l_[l p(h]g)

| ™

foranygeg.

Proof. Fix g€ G. Let {(z},v})})Y, to be the ghost samples, another group of N i.i.d. datapoints from D
which is independent of {(z;,v;)}X,. Let A € (0,1/2] be a positive real number.
Then we have that

N
E(es vy, [GXP (A max (Z [i € gll(h(xi),yi) — NE@y)~p[l[z € gll(h(z), y)]))]

< E{(%yi),(x’i,yi)}ﬁ\’:l [exp ()\max (Z [z; € glt(h(x;),y;) — L[] € g]f(h(xi),yi))))] (161)

N

— E{(wi,yi),(I;,y;)}yzlE{m}Li.de{ﬂ} lexp ()\ I}{le%_)[( 4 1[x; € gll(h(x;),y;) — 1z} € g]E(h(xQ),yé)))]

N
< E{(m“yl)’(m;’y:)}f\f:l lexp (Z IZ € g + ]1[13 (S} g]) )1
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< E{(xhyz‘) (CIRTAYE |f3xp (Z 4/\2 1[z; e g] + ]l[IE € g]))]
<exp (I6NA°P,) .

Here, (161) arises from Jenson’s inequality. As a result, we can deduce that

B
i

< ANN?P, — AN P,e/32
/\61(%1{1/2] exp ( 0€/32)

- NPe?
X eX -
P 16384
Nre?

< _

eXp( 16384)

5

<

64/g|

N
P |fnaX (Z ]l[xz € g]e(h(xi)7yi) - NE(z,y)~D[]l[x € g]g(h(x)’y)]> > NP95/321

Using similar arguments, we can obtain

0

N
P lmax (— Z 1[z; € gle(h(xi), ys) + NEz p~p[l[z € g]f(h(x),y)]) > NPye/32| < m

heH b

As a consequence, we see that

N
_ 0
[ Z [x; € glé(h(xi),y:) — Lp(hlg)| = 5/321 200
Recall that p, = N . Applying Chernoft’s inequality gives
P||INP, — Np,| > 2,/ NP, log(128/G]/6) | < 0
! S 640

which means that
P, )
PPy —pyl =L | < —=-

By (166) and (168), and taking a union bound over G, we obtain that with probability at least 1 —

N

Z [zi € g]€(h(x:), i) — Lo (hlg)| <

=
16

for any h € H,g € G. From the definition of h,, we have

1
H | Npg

=

U[z; € gl(h(xi),y:) — Lo(hlg)| <

fo— I}?L(él?l;l Lp(h|g)‘ 2maX

oo\m

Il
—

[

This concludes the proof.

Lemma 24. With probability at least 1 — it holds that

167

35w <=

t=1geg

LY

(162)

(163)

(164)

(165)

(166)

(167)

(168)

16°

(169)

(170)



Proof. By definition, we have

. a2 . ¢ Lz € g]
DT wh(F)? < Y > wh = (171)
t=1geg t=1geg Py
Let X; = deg wéw and recall F; is the event field before the ¢-th round. Then X; < 712, and
E[X?|F] = X, o whwl, %ﬁteq” < Z o wéwg/W < '%3 Freedman’s inequality (Lemma 8)
reveals that, with probability at least 1-— 16,
T T
N 1 Tlog(16/6 3T
SVt < 3 S wt Ly g [T108U60) 3T (172)
t=1geg t=1geg Py v v
where the last inequality arises from the fact that T > w. O
Lemma 25. Assume the events in Lemma 23 hold. With probability at least 1 — 7, it holds that
I Te
27— 2 Inhlg) —fy)| < 7 VoeG: (173)
t=1 t=1
T
~ TTe
2D Welg < 16 (174)
t=1 geg
Proof. Let us begin with the first inequality. By definition
T
D= > (Lp(hlg) = fy)
t=1 t=1
T o/ T
= 3% (51180 € akln@0. 3 - Lo(ila)) + ) ( el 1) (175)
t=1 9 t=1 9

Defining X; = i]l[%t € gll(h(Z:),7:). We then see that E[X|F,] = JLD(ht\g) and ]E[X2|.7:t] < p—g.
According to Freedman’s inequality (Lemma 8), we know that with probability at least 1 —

T
1 P Te
—1[z; € g]l(h Y Rt >\. 176
31 (100 = 0G0~ o) )| < 55 (176
for any g € G. Combine (176) with (168) to show that: with probability at least 1 — 53,
I Te
33 (1 < .50 - Eo10) < (1)
holds for any g € G.
Similarly, we have with probability exceeding 1 — 3%
T
Te
— 1z e g] — 1) fo < —
o] (pg [ t ] g 16
Therefore with probability at least 1 — 75,
L a Te
2.7 = D (Lo(htlg) = fo)] < 5 (178)
t=1 t=1




holds for any g € G.
As for the second inequality, we define X; = Yigec Wy (i]l[ft € g)(L(R (Zy), ;) — fg)). It then follows
that E[X|F] = 3 cq 0} e B (Lp(htlg) — f,) < © and

Treg 1 6
E[X?|F] < Z w;w;/ LA < Z whwl, < -
pgpg/ g9 \/pgpg’ v

Invoking Freedman’s inequality (cf. Lemma 8), we can demonstrate that, with probability at least 1 — 6 1

)y ( Zw LD (h'lg) — )) < % (179)

9€g

As a result, taking this together with (168) gives

T T
A Te
D 2wty < 3 Y wi(Lo(hflg) — fy) + e (180)
t=1geg

t=1geG

Recall the definition that

N
ht—%t@ggig(%w( ; [ € g]¢ )7yi)_fg>>- (181)

By Lemma 23, one has

N
€
i ¥i) — Lp(hlg)| < — 182
%E%Npgg [2: € g)e(h(w:), y:) — Lo(hlg)| < {5 (182)
for any g € G. It follows from the definition that Np, = N4, and consequently,
| N
2 wy (N 2 1[z; € gle(h' (z:), ys ) 2 wy, ( Z Lz, € gle(h*(x:),y:) — fg)
9€G Pg i3 geg Py i3
€
< 2 wy(Lp(h*|g) — fg) + I (183)
9€g
In view of (183), Assumption 2 and Lemma 23, we have
1 Y 5
t t
2 W (Npq Z Lz € gJl(h (i), yi) — fg) < 165 (184)
9geg i=1
Moreover, we also have
ol €
Siwt (Lo(h' | g) — fy) < > w} ( > [ € gle(h ),yz-)—fg>+,
9€G 9€G Npy 5 16
which implies that
+ + e
Swt (Lo(h' | g) - f,) < 5 (185)
geg
The advertised result thus follows by combining (180) and (185). O
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