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Abstract
Logistic regression is used thousands of times a day to fit data, predict future outcomes,
and assess the statistical significance of explanatory variables. When used for the
purpose of statistical inference, logistic models produce p-values for the regression
coefficients by using an approximation to the distribution of the likelihood-ratio test
(LRT). Indeed, Wilks’ theorem asserts that whenever we have a fixed number p of
variables, twice the log-likelihood ratio (LLR) 2� is distributed as a χ2

k variable in
the limit of large sample sizes n; here, χ2

k is a Chi-square with k degrees of freedom
and k the number of variables being tested. In this paper, we prove that when p is
not negligible compared to n, Wilks’ theorem does not hold and that the Chi-square
approximation is grossly incorrect; in fact, this approximation produces p-values that
are far too small (under the null hypothesis). Assume that n and p grow large in such a

way that p/n→ κ for some constant κ < 1/2. (For κ > 1/2, 2�
P→ 0 so that the LRT

is not interesting in this regime.) We prove that for a class of logistic models, the LLR

converges to a rescaled Chi-square, namely, 2�
d→ α(κ)χ2

k , where the scaling factor
α(κ) is greater than one as soon as the dimensionality ratio κ is positive. Hence, the
LLR is larger than classically assumed. For instance, when κ = 0.3, α(κ) ≈ 1.5. In
general, we show how to compute the scaling factor by solving a nonlinear system of
two equations with two unknowns. Our mathematical arguments are involved and use
techniques from approximate message passing theory, from non-asymptotic random
matrix theory and from convex geometry. We also complement our mathematical
study by showing that the new limiting distribution is accurate for finite sample sizes.
Finally, all the results from this paper extend to some other regression models such as
the probit regression model.
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1 Introduction

Logistic regression is by far themostwidely used tool for relating a binary response to a
family of explanatory variables. This model is used to infer the importance of variables
and nearly all standard statistical softwares have inbuilt packages for obtaining p-
values for assessing the significance of their coefficients. For instance, one can use the
snippet of R code below to fit a logistic regression model from a vector y of binary
responses and a matrix X of covariates:

fitted <- glm(y ˜ X+0, family = ‘binomial’)
pvals <- summary(fitted)$coefficients[,4]

The vector pvals stores p-values for testing whether a variable belongs to a model
or not, and it is well known that the underlying calculations used to produce these p-
values can also be used to construct confidence intervals for the regression coefficients.
Since logistic models are used hundreds of times every day for inference purposes, it
is important to know whether these calculations—e.g. these p-values—are accurate
and can be trusted.

1.1 Binary regression

Imagine we have n samples of the form (yi , X i ), where yi ∈ {0, 1} and X i ∈ R
p. In a

generalized linear model, one postulates the existence of a link function μ(·) relating
the conditional mean of the response variable to the linear predictor X�i β,

E[yi |X i ] = μ(X�i β), (1)

where β = [β1, β2, . . . , βp]� ∈ R
p is an unknown vector of parameters. We focus

here on the two most commonly used binary regression models, namely, the logistic
and the probit models for which

μ(t) :=
{
et/(1+ et ) in the logistic model,

�(t) in the probit model; (2)

here, � is the cumulative distribution function (CDF) of a standard normal random
variable. In both cases, the Symmetry Condition

μ(t)+ μ(−t) = 1 (3)

holds, which says that the two types yi = 0 and yi = 1 are treated in a symmetric
fashion. Assuming that the observations are independent, the negative log-likelihood
function is given by [1, Section 4.1.2]
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� (β) := −
n∑

i=1

{
yi log

(
μi

1− μi

)
+ log (1− μi )

}
, μi := μ(X�i β).

Invoking the symmetry condition, a little algebra reveals an equivalent expression

� (β) :=
n∑

i=1
ρ
(− ỹiX�i β

)
, (4)

where

ỹi :=
{
1 if yi =1,

−1 if yi =0,
and ρ(t) :=

{
log
(
1+ et

)
in the logistic case,

− log�(−t) in the probit case.
(5)

Throughout we refer to this function ρ as the effective link.

1.2 The likelihood-ratio test andWilks’phenomenon

Researchers often wish to determine which covariates are of importance, or more
precisely, to test whether the j th variable belongs to the model or not: formally, we
wish to test the hypothesis

Hj : β j = 0 versus β j �= 0. (6)

Arguably, one of the most commonly deployed techniques for testing Hj is the
likelihood-ratio test (LRT), which is based on the log-likelihood ratio (LLR) statistic

� j := �
(
β̂(− j)

)− �
(
β̂
)
. (7)

Here, β̂ and β̂(− j) denote respectively the maximum likelihood estimates (MLEs)
under the full model and the reduced model on dropping the j th predictor; that is,

β̂ = arg min
β∈Rp

�(β) and β̂(− j) = arg min
β∈Rp,β j=0

�(β).

Inference based on such log-likelihood ratio statistics has been studied extensively
in prior literature [13,44,66]. Arguably, one of the most celebrated results in the large-
sample regime is the Wilks’ theorem.

To describe the Wilks’ phenomenon, imagine we have a sequence of observations
(yi , X i ) where yi ∈ {0, 1}, X i ∈ R

p with p fixed. Since we are interested in the limit
of large samples, we may want to assume that the covariates are i.i.d. drawn from
some population with non-degenerate covariance matrix so that the problem is fully
p-dimensional. As before, we assume a conditional logistic model for the response.
In this setting, Wilks’ theorem [66] calculates the asymptotic distribution of � j (n)

when n grows to infinity:
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Fig. 1 Histogram of p-values for logistic regression under i.i.d. Gaussian design, when β = 0, n = 4000,
p = 1200, and κ = 0.3: a classically computed p-values; bBartlett-corrected p-values; c adjusted p-values
by comparing the LLR to the rescaled chi square α(κ)χ2

1 (27)

(Wilks’ phenomenon) Under suitable regularity conditions which, for instance,
guarantee that the MLE exists and is unique,1 the LLR statistic for testing Hj :
β j = 0 vs. β j �= 0 has asymptotic distribution under the null given by

2� j (n)
d→ χ2

1 , as n→∞. (8)

This fixed-p large-n asymptotic result,which is a consequence of asymptotic normality
properties of the MLE [64, Theorem 5.14], applies to a much broader class of testing
problems in parametric models; for instance, it applies to the probit model as well. We
refer the readers to [41, Chapter 12] and [64, Chapter 16] for a thorough exposition
and details on the regularity conditions under which Wilks’ theorem holds. Finally,
there is a well-known extension which states that if we were to drop k variables from
the model, then the LLR would converge to a Chi-square distribution with k degrees
of freedom under the hypothesis that the reduced model is correct.

1.3 Inadequacy ofWilks’ theorem in high dimensions

The Chi-square approximation to the distribution of the LLR statistic is used in stan-
dard statistical softwares to provide p-values for the single or multiple coefficient
likelihood ratio tests. Here, we perform a simple experiment on synthetic data to
study the accuracy of the Chi-square approximation when p and n are both decently
large. Specifically, we set β = 0 and test β1 = 0 versus β1 �= 0 using the LRT in
a setting where p = 1200. In each trial, n = 4000 observations are produced with

yi
i.i.d.∼ Bernoulli(1/2), and X := [X1, . . . , Xn]� ∈ R

n×p is obtained by generating
a random matrix composed of i.i.d. N (0, 1) entries. We fit a logistic regression of y
on X using R, and extract the p-values for each coefficient. Figure 1 plots the pooled
histogram that aggregates 4.8 × 105 p-values in total (400 trials with 1200 p-values
obtained in each trial).

1 Such conditions would also typically imply asymptotic normality of the MLE.
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If the χ2
1 approximation were true, then we would expect to observe uniformly

distributed p-values. The histrogram from Fig. 1 is, however, far from uniform. This
is an indication of the inadequacy of Wilks’ theorem when p and n are both large. The
same issue was also reported in [12], where the authors observed that this discrepancy
is highly problematic since the distribution is skewed towards smaller values. Hence,
such p-values cannot be trusted to construct level-α tests and the problem is increas-
ingly severe when we turn attention to smaller p-values as in large-scale multiple
testing applications.

1.4 The Bartlett correction?

A natural question that arises immediately is whether the observed discrepancy could
be an outcome of a finite-sample effect. It has been repeatedly observed that the Chi-
square approximation does not yield accurate results with finite sample size. One
correction to the LRT that is widely used in finite samples is the Bartlett correction,
which dates back to Bartlett [5] and has been extensively studied over the past few
decades (e.g. [9,11,14,16,40]). In the context of testing for a single coefficient in
the logistic model, this correction can be described as follows [45]: compute the
expectation of the LLR statistic up to terms of order 1/n; that is, compute a parameter
α such that

E[2� j ] = 1+ α

n
+ O

(
1

n2

)
,

which suggests a corrected LLR statistic

2� j

1+ αn
n

(9)

with αn being an estimator of α. With a proper choice of αn , one can ensure

E

[
2� j

1+ αn
n

]
= 1+ O

(
1

n2

)

in the classical setting where p is fixed and n diverges. In expectation, this corrected
statistic is closer to a χ2

1 distribution than the original LLR for finite samples. Notably,
the correction factor may in general be a function of the unknown β and, in that case,
must be estimated from the null model via maximum likelihood estimation.

In the context of GLMs, Cordeiro [14] derived a general formula for the Bartlett
corrected LLR statistic, see [15,20] for a detailed survey. In the case where there is
no signal (β = 0), one can compute αn for the logistic regression model following
[14,45], which yields

αn = n

2

[
Tr
(
D2

p

)
− Tr

(
D2

p−1
)]

. (10)
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Here, D p is the diagonal part of X(X�X)−1X� and D p−1 is that of X(− j)
(
X�(− j)

X(− j)
)−1X�(− j) in which X(− j) is the design matrix X with the j th column removed.

Comparing the adjusted LLRs to a χ2
1 distribution yields adjusted p-values. In the

setting of Fig. 1a, the histogram of Bartlett corrected p-values is shown in Fig. 1b. As
we see, these p-values are still far from uniform.

If the mismatch is not due to finite sample-size effects, what is the distribution
of the LLR in high dimensions? Our main contribution is to provide a very precise
answer to this question; below, we derive the high-dimensional asymptotic distribution
of the log-likelihood ratios, i.e. in situations where the dimension p is not necessarily
negligible compared to the sample size n.

Under suitable assumptions, we establish in Theorem 1 that the asymptotic distri-
bution of the LLR is a rescaled χ2

1 and identify the rescaling factor precisely. Figure 1c
shows the histogram of the computed p-values by comparing the LLR to this distri-
bution. Clearly, these adjusted p-values are much closer to uniform random variables.

2 Main results

2.1 Modelling assumptions

In this paper, we focus on the high-dimensional regime where the sample size is not
much larger than the number of parameters to be estimated—a setting which has
attracted a flurry of activity in recent years. In particular, we assume that the number
p(n) of covariates grows proportionally with the number n of observations; that is,

lim
n→∞

p(n)

n
= κ, (11)

where κ > 0 is a fixed constant independent of n and p(n). In fact, we shall also
assume κ < 1/2 for both the logistic and the probit models, as the MLE does not exist
otherwise; see Sect. 2.2.

To formalize the notion of high-dimensional asymptotics when both n and p(n)

diverge, we consider a sequence of instances {X(n), y(n)}n≥0 such that for any n,

• X(n) ∈ R
n×p(n) has i.i.d. rows X i (n) ∼ N (0,�), where � ∈ R

p(n)×p(n) is
positive definite;

• yi (n) | X(n) ∼ yi (n) | X i (n)
ind.∼ Bernoulli

(
μ(X i (n)�β(n))

)
, where μ satisfies

the Symmetry Condition;
• we further assumeβ(n) = 0. From the Symmetry Condition it follows thatμ(0) =
1/2, which directly implies that y(n) is a vector with i.i.d Bernoulli(1/2) entries.

TheMLE is denoted by β̂(n) and there are p(n) LLR statistics� j (n) (1 ≤ j ≤ p(n)),
one for each of the p(n) regression coefficients. In the sequel, the dependency on n
shall be suppressed whenever it is clear from the context.
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2.2 When does theMLE exist?

Even though we are operating in the regime where n > p, the existence of the MLE
cannot be guaranteed for all p and n. Interestingly, the norm of the MLE undergoes a
sharp phase transition in the sense that with high probability,

‖β̂‖ = ∞ if κ > 1/2; (12)

‖�1/2β̂‖ = O(1) if κ < 1/2. (13)

The first result (12) concerns the separating capacity of linear inequalities, which
dates back toCover’s Ph.D. thesis [17]. Specifically, given thatρ(t) ≥ ρ(−∞) = 0 for
both the logistic and probit models, each summand in (4) isminimized if ỹi X�i β = ∞,
which occurs when sign(X�i β) = sign(ỹi ) and ‖β‖ = ∞. As a result, if there exists
a nontrivial ray β such that

X�i β > 0 if ỹi = 1 and X�i β < 0 if ỹi = −1 (14)

for any 1 ≤ i ≤ n, then pushing ‖β‖ to infinity leads to an optimizer of (4). In other
words, the solution to (4) becomes unbounded (the MLE is at∞) whenever there is a
hyperplane perfectly separating the two sets of samples {i | ỹi = 1} and {i | ỹi = −1}.
According to [17,18], the probability of separability tends to one when κ > 1/2, in
which case the MLE does not exist. This separability result was originally derived
using classical combinatorial geometry.

The current paper follows another route by resorting to convex geometry, which,
as we will demonstrate later, also tells us how to control the norm of the MLE when
κ < 1/2.2 To begin with, we observe that ỹi is independent of X and the distribution of
X is symmetric under the assumptions from Sect. 2.1. Hence, to calculate the chance
that there exists a separating hyperplane, we can assume ỹi = 1 (1 ≤ i ≤ n) without
loss of generality. In this case, the event (14) becomes

{
Xβ | β ∈ R

p} ∩ R
n++ �= ∅, (15)

whereR
n++ is the positive orthant. Write X = Z�1/2 so that Z is an n× pmatrix with

i.i.d. standard Gaussian entries, and θ = �1/2β. Then the event (15) is equivalent to

{
Zθ | θ ∈ R

p} ∩ R
n++ �= ∅. (16)

Now the probability that (16) occurs is the same as that

{
Zθ | θ ∈ R

p} ∩ R
n+ �= {0} (17)

occurs, where R
n+ denotes the non-negative orthant.

2 The separability results in [17,18] do not imply the control on the norm of the MLE when κ < 1/2.
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From the approximate kinematic formula [3, Theorem I] in the literature on convex
geometry, the event (17) happens with high probability if and only if the total statistical
dimension of the two closed convex cones exceeds the ambient dimension, i.e.

δ
({
Zθ | θ ∈ R

p})+ δ
(
R
n+
)

> n + o(n). (18)

Here, the statistical dimension of a closed convex cone K is defined as

δ(K) := Eg∼N (0,I)

[
‖�K (g) ‖2

]
(19)

with �K (g) := argminz∈K ‖g − z‖ the Euclidean projection. Recognizing that [3,
Proposition 2.4]

δ
({
Zθ | θ ∈ R

p}) = p and δ(Rn+) = n/2,

we reduce the condition (18) to

p + n/2 > n + o(n) or p/n > 1/2+ o(1),

thus indicating that ‖β̂‖ = ∞ with high probability when κ = lim p/n > 1/2.
(Hence, in this regime the LLR converges in probability to 0.)

The preceding argument only reveals that the MLE does not exist with high prob-
ability when κ > 1/2. If κ = p/n < 1/2, we establish precise control on the norm
of the MLE, properly scaled. In fact, in Theorem 4 we prove that in this regime,
‖�1/2β̂‖ = O(1) with high probability. In light of these observations we work with
the additional condition

κ < 1/2. (20)

2.3 The high-dimensional limiting distribution of the LLR

In contrast to the classical Wilks’ result, our findings reveal that the LLR statistic
follows a rescaledChi-square distribution with a rescaling factor that can be explicitly
pinned down through the solution to a system of equations.

2.3.1 A system of equations

We start by setting up the crucial system of equations. Before proceeding, we first
recall the proximal operator

proxbρ(z) := argmin
x∈R

{
bρ(x)+ 1

2
(x − z)2

}
(21)

defined for any b > 0 and convex function ρ(·). As in [22], we introduce the operator

�(z; b) := bρ′(proxbρ(z)), (22)
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which is simply the proximal operator of the conjugate (bρ)∗ of bρ.3 To see this, we
note that � satisfies the relation [22, Proposition 6.4]

�(z; b)+ proxbρ(z) = z. (23)

The claim that �(·; b) = prox(bρ)∗(·) then follows from the Moreau decomposition

prox f (z)+ prox f ∗(z) = z, ∀z, (24)

which holds for a closed convex function f [47, Section 2.5]. Interested readers are
referred to [22, Appendix 1] for more properties of proxbρ and �.

We are now in position to present the system of equations that plays a crucial role
in determining the distribution of the LLR statistic in high dimensions:

τ 2 = 1

κ
E

[
(� (τ Z; b))2

]
, (25)

κ = E
[
� ′ (τ Z; b) ], (26)

where Z ∼ N (0, 1), and � ′ (·, ·) denotes differentiation with respect to the first
variable. The fact that this system of equations would admit a unique solution in R

2+
is not obvious a priori. We shall establish this for the logistic and the probit models
later in Sect. 6.

2.3.2 Main result

Theorem 1 Consider a logistic or probit regressionmodel under the assumptions from
Sect. 2.1. If κ ∈ (0, 1/2), then for any 1 ≤ j ≤ p, the log-likelihood ratio statistic
� j as defined in (7) obeys

2� j
d→ α(κ) χ2

1 , α(κ) = τ 2∗ /b∗, as n→∞, (27)

where (τ∗, b∗) ∈ R
2+ is the unique solution to the system of Eqs. (25) and (26). Fur-

thermore, the LLR statistic obtained by dropping k variables for any fixed k converges
to α(κ) χ2

k . Finally, these results extend to all binary regression models with links
obeying the assumptions listed in Sect. 2.3.3.

Hence, the limiting distribution is a rescaled Chi-square with a rescaling factor
α(κ) that only depends on the aspect ratio κ . Figure 2 illustrates the dependence of
the rescaling factor on the limiting aspect ratio κ for logistic regression. The figures
for the probit model are similar as the rescaling constants actually differ by very small
values.

To study the quality of approximation for finite samples, we repeat the same numeri-
cal experiments as before but now obtain the p-values by comparing the LLR statistic
with the rescaled Chi-square suggested by Theorem 1. For a particular run of the

3 The conjugate f ∗ of a function f is defined as f ∗(x) = supu∈dom( f ){〈u, x〉 − f (u)}.

123



496 P. Sur et al.

1.00

1.25

1.50

1.75

2.00

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

κ

R
es

ca
lin

g 
C

on
st

an
t

1.0

2.5

5.0

10.0

15.0

20.0

25.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

κ

R
es

ca
lin

g 
C

on
st

an
t

Fig. 2 Rescaling constant α(κ) as a function of κ for the logistic model. Note the logarithmic scale in the
right panel. The curves for the probit model are nearly identical

experiment (n = 4000, p = 1200, κ = 0.3), we compute the adjusted LLR statistic
2� j/α(κ) for each coefficient and obtain the p-values based on the χ2

1 distribution.
The pooled histogram that aggregates 4.8× 105 p-values in total is shown in Fig. 1c.

As we clearly see, the p-values are much closer to a uniform distribution now. One
can compute the Chi-square goodness of fit statistic to test the closeness of the above
distribution to uniformity. To this end, we divide the interval [0, 1] into 20 equally
spaced bins of width 0.05 each. For each binwe compute the observed number of times
a p-value falls in the bin out of the 4.8× 105 values. Then a Chi-square goodness of
fit statistic is computed, noting that the expected frequency is 24000 for each bin. The
Chi-square statistic in this case is 16.049,which gives a p-value of 0.654 in comparison
with aχ2

19 variable. The same test when performedwith the Bartlett corrected p-values
(Fig. 1b) yields a Chi-square statistic 5599 with a p-value of 0.4 Thus, our correction
gives the desired uniformity in the p-values when the true signal β = 0.

Practitioners would be concerned about the validity of p-values when they are
small—again, think about multiple testing applications. In order to study whether our
correction yields valid results for small p-values, we compute the proportion of times
the p-values (in all the three cases) lie below5%, 1%, 0.5%, 0.1%, 0.05%, 0.01%out of
the 4.8× 105 times. The results are summarized in Table 1. This further illustrates the
deviation from uniformity for the classical and Bartlett corrected p-values, whereas
the “adjusted” p-values obtained invoking Theorem 1 are still valid.

Last but not least, it is seen from Fig. 2 that the rescaling factor α(κ)→ 1 as κ → 0.
This reveals an important message: the classical Wilks phenomenon remains valid as
long as p/n → 0. This fact arises even though the classical asymptotic normality of
the MLE may fail to hold [30], see Sect. 2.7 for a more detailed discussion.

4 Note that the p-values obtained at each trial are not exactly independent. However, they are exchangeable,
and weakly dependent (see the proof of Corollary 1 for a formal justification of this fact). Therefore, we
expect the goodness of fit test to be an approximately valid procedure in this setting.
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Table 1 Estimates of p-value probabilities with estimatedMonte Carlo standard errors in parentheses under
i.i.d. Gaussian design

Classical Bartlett-corrected Adjusted

P{p-values ≤ 5%} 11.1044% (0.0668%) 6.9592% (0.0534%) 5.0110% (0.0453%)

P{p-values ≤ 1%} 3.6383% (0.038%) 1.6975% (0.0261%) 0.9944% (0.0186%)

P{p-values ≤ 0.5%} 2.2477% (0.0292%) 0.9242% (0.0178%) 0.4952% (0.0116%)

P{p-values ≤ 0.1%} 0.7519% (0.0155%) 0.2306% (0.0078%) 0.1008% (0.0051%)

P{p-values ≤ 0.05%} 0.4669% (0.0112%) 0.124% (0.0056%) 0.0542% (0.0036%)

P{p-values ≤ 0.01%} 0.1575% (0.0064%) 0.0342% (0.0027%) 0.0104% (0.0014%)

2.3.3 Extensions

As noted in Sect. 1.1, the Symmetry Condition (3) allows to express the negative
log-likelihood in the form (4), which makes use of the effective link ρ(·). Theorem 1
applies to any ρ(·) obeying the following properties:

1. ρ is non-negative, has up to three derivatives, and obeys ρ(t) ≥ t .
2. ρ′ may be unbounded but it should grow sufficiently slowly, in particular, we

assume |ρ′(t)| = O(|t |) and ρ′(proxcρ(Z)) is a sub-Gaussian random variable for
any constant c > 0 and any Z ∼ N (0, σ 2) for some finite σ > 0.

3. ρ′′(t) > 0 for any t which implies that ρ is convex, and supt ρ
′′(t) <∞.

4. supt |ρ′′′(t)| <∞.
5. Given any τ > 0 ,the Eq. (26) has a unique solution in b.
6. The map V(τ 2) as defined in (59) has a fixed point.

It can be checked that the effective links for both the logistic and the probit models
(5) obey all of the above. The last two conditions are assumed to ensure existence of a
unique solution to the system of Eqs. (25) and (26) as will be seen in Sect. 6; we shall
justify these two conditions for the logistic and the probit models in Sect. 6.1.

2.4 Reduction to independent covariates

In order to derive the asymptotic distribution of the LLR statistics, it in fact suffices
to consider the special case � = I p.

Lemma 1 Let � j (X) be the LLR statistic based on the design matrix X , where the
rows of X are i.i.d.N (0,�) and� j (Z) that where the rows are i.i.d.N (0, I p). Then

� j (X)
d= � j (Z).

Proof Recall from (4) that the LLR statistic for testing the j th coefficient can be
expressed as

� j (X) = min
β

n∑
i=1

ρ(−ỹi e�i Xβ)− min
β:β j=0

n∑
i=1

ρ(−ỹi e�i Xβ).
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Write Z′ = X�−1/2 so that the rows of Z′ are i.i.d. N (0, I p) and set θ ′ = �1/2β.
With this reparameterization, we observe that the constraint β j = 0 is equivalent to
a�j θ ′ = 0 for some non-zero vector a j ∈ R

p. This gives

� j (X) = min
θ ′

n∑
i=1

ρ(−ỹi e�i Z′θ ′)− min
θ ′:a�j θ ′=0

n∑
i=1

ρ(−ỹi e�i Z′θ ′).

Now let Q be an orthogonal matrix mapping a j ∈ R
p into the vector ‖a j‖e j ∈ R

p,
i.e. Qa j = ‖a j‖e j . Additionally, set Z = Z′Q (the rows of Z are still i.i.d.N (0, I p))
and θ = Qθ ′. Since a�j θ ′ = 0 occurs if and only if θ j = 0, we obtain

� j (X) = min
θ

n∑
i=1

ρ(−ỹi e�i Zθ)− min
θ :θ j=0

n∑
i=1

ρ(−ỹi e�i Zθ) = � j (Z),

which proves the lemma. ��
In the remainder of the paper we, therefore, assume � = I p.

2.5 Proof architecture

This section presents the main steps for proving Theorem 1. We will only prove the
theorem for {� j }, theLLRstatistic obtained bydropping a single variable. The analysis
for the LLR statistic obtained on dropping k variables (for some fixed k) follows very
similar steps and is hence omitted for the sake of conciseness. As discussed before,
we are free to work with any configuration of the yi ’s. For the two steps below, we
will adopt two different configurations for convenience of presentation.

2.5.1 Step 1: Characterizing the asymptotic distributions of ˆ̌ j
Without loss of generality, we assume here that yi = 1 (and hence ỹi = 1) for all
1 ≤ i ≤ n and, therefore, the MLE problem reduces to

minimizeβ∈Rp

∑n

i=1 ρ(−X�i β).

We would first like to characterize the marginal distribution of β̂, which is crucial in
understanding the LLR statistic. To this end, our analysis follows by a reduction to the
setup of [22,24–26], with certain modifications that are called for due to the specific
choices of ρ(·) we deal with here. Specifically, consider the linear model

y = Xβ + w, (28)
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and prior work [22,24–26] investigating the associated M-estimator

minimizeβ∈Rp

n∑
i=1

ρ(yi − X�i β). (29)

Our problem reduces to (29) on setting y = w = 0 in (29). When ρ(·) satisfies
certain assumptions (e.g. strong convexity), the asymptotic distributionof‖β̂‖has been
studied in a series of works [24–26] using a leave-one-out analysis and independently
in [22] using approximate message passing (AMP) machinery. An outline of their
main results is described in Sect. 2.7. However, the function ρ(·) in our cases has
vanishing curvature and, therefore, lacks the essential strong convexity assumption
that was utilized in both the aforementioned lines of work. To circumvent this issue,
we propose to invoke the AMPmachinery as in [22], in conjunction with the following
critical additional ingredients:

• (Norm bound condition) We utilize results from the conic geometry literature (e.g.
[3]) to establish that

‖β̂‖ = O(1)

with high probability as long as κ < 1/2. This will be elaborated in Theorem 4.
• (Likelihood curvature condition) We establish some regularity conditions on the
Hessian of the log-likelihood function, generalizing the strong convexity condition,
which will be detailed in Lemma 4.
• (Uniqueness of the solution to (25) and (26)) We establish that for both the logistic
and the probit case, the system of Eqs. (25) and (26) admits a unique solution.

We emphasize that these elements are not straightforward, require significant effort
and a number of novel ideas, which form our primary technical contributions for this
step.

These ingredients enable the use of the AMP machinery even in the absence of
strong convexity on ρ(·), finally leading to the following theorem:

Theorem 2 Under the conditions of Theorem 1,

lim
n→∞‖β̂‖

2 =a.s. τ 2∗ . (30)

This theorem immediately implies that the marginal distribution of β̂ j is normal.

Corollary 1 Under the conditions of Theorem 1, for every 1 ≤ j ≤ p, it holds that

√
pβ̂ j

d→ N (0, τ 2∗ ), as n→∞. (31)

Proof From the rotational invariance of our i.i.d. Gaussian design, it can be easily
verified that β̂/‖β̂‖ is uniformly distributed on the unit sphere S

p−1 and is inde-
pendent of ‖β̂‖. Therefore, β̂ j has the same distribution as ‖β̂‖Z j/‖Z‖, where
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Z = (Z1, . . . , Z p) ∼ N (0, I p) independent of ‖β̂‖. Since √p‖β̂‖/‖Z‖ converges
in probability to τ∗, we have, by Slutsky’s theorem, that

√
pβ̂ j converges toN (0, τ 2∗ )

in distribution. ��

2.5.2 Step 2: Connecting3j with ˆ̌ j

Now that we have derived the asymptotic distribution of β̂ j , the next step involves
a reduction of the LLR statistic to a function of the relevant coordinate of the MLE.
Before continuing, we note that the distribution of � j is the same for all 1 ≤ j ≤ p
due to exchangeability. As a result, going forward we will only analyze �1 without
loss of generality. In addition, we introduce the following convenient notations and
assumptions:

• the design matrix on dropping the first column is written as X̃ and the MLE in the
corresponding reduced model as β̃;
• write X = [X1, . . . , Xn]� ∈ R

n×p and X̃ = [X̃1, . . . , X̃n]� ∈ R
n×(p−1);

• without loss of generality, assume that ỹi = −1 for all i in this subsection, and
hence the MLEs under the full and the reduced models reduce to

β̂ = arg min
β∈Rp

�(β) :=
n∑

i=1
ρ(X�i β), (32)

β̃ = arg min
β∈Rp−1

�̃(β) :=
n∑

i=1
ρ(X̃

�
i β). (33)

With the above notations in place, the LLR statistic for testing β1 = 0 vs. β1 �= 0 can
be expressed as

�1 := �̃(β̃)− �(β̂) =
n∑

i=1

{
ρ(X̃

�
i β̃)− ρ(X�i β̂)

}
. (34)

To analyze �1, we invoke Taylor expansion to reach

�1 =
n∑

i=1
ρ′
(
X�i β̂

) (
X̃
�
i β̃ − X�i β̂

)
︸ ︷︷ ︸

:=Qlin

+ 1

2

n∑
i=1

ρ′′
(
X�i β̂

) (
X̃
�
i β̃ − X�i β̂

)2

+1

6

n∑
i=1

ρ′′′(γi )
(
X̃
�
i β̃ − X�i β̂

)3
, (35)

where γi lies between X̃
�
i β̃ and X�i β̂. A key observation is that the linear term Qlin in

the above equation vanishes. To see this, note that the first-order optimality conditions
for the MLE β̂ is given by

∑n

i=1 ρ′(X�i β̂)X i = 0. (36)

123



The likelihood ratio test in high-dimensional logistic… 501

Replacing X̃
�
i β̃ with X�i

[
0
β̃

]
in Qlin and using the optimality condition, we obtain

Qlin =
(

n∑
i=1

ρ′
(
X�i β̂

)
X i

)� ([
0
β̃

]
− β̂

)
= 0.

Consequently, �1 simplifies to the following form

�1 = 1

2

n∑
i=1

ρ′′(X�i β̂)
(
X̃
�
i β̃ − X�i β̂

)2 + 1

6

n∑
i=1

ρ′′′(γi )
(
X̃
�
i β̃ − X�i β̂

)3
. (37)

Thus, computing the asymptotic distribution of �1 boils down to analyzing X�i β̂ −
X̃
�
i β̃. Our argument is inspired by the leave-one-predictor-out approach developed in

[24,25].
We re-emphasize that our setting is not covered by that of [24,25], due to the

violation of strong convexity and some other technical assumptions. We sidestep this
issue by utilizing theNorm Bound Condition and the Likelihood Curvature Condition.
In the end, our analysis establishes the equivalence of �1 and β̂1 up to some explicit
multiplicative factors modulo negligible error terms. This is summarized as follows.

Theorem 3 Under the assumptions of Theorem 1,

2�1 − p

b∗
β̂2
1

P→ 0, as n→∞. (38)

Theorem 3 reveals a simple yet surprising connection between the LLR statistic�1

and the MLE β̂. As we shall see in the proof of the theorem, the quadratic term in (37)
is 1

2
p
b∗ β̂

2
1 + o(1), while the remaining third-order term of (37) is vanishingly small.

Finally, putting Corollary 1 and Theorem 3 together directly establishes Theorem 1.

2.6 Comparisons with the classical regime

We pause to shed some light on the interpretation of the correction factor τ 2∗ /b∗ in
Theorem 1 and understand the differences from classical results. Classical theory (e.g.
[35,36]) asserts that when p is fixed and n diverges, the MLE for a fixed design X is
asymptotically normal, namely,

√
n(β̂ − β)

d→ N (0, I−1β ), (39)

where

Iβ = 1

n
X�DβX with Dβ :=

⎡
⎢⎣

ρ′′
(
X�1 β

)
. . .

ρ′′
(
X�n β

)
⎤
⎥⎦ (40)
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Fig. 3 Ratio of asymptotic variance and dimensionality factor κ as a function of κ

is the normalized Fisher information at the true value β. In particular, under the global
null and i.i.d. Gaussian design, this converges to

EX [Iβ ] =
{

1
4 I, for the logistic model
2
π
I, for the probit model

as n tends to infinity [64, Example 5.40].
The behavior in high dimensions is different. In particular, Corollary 1 states that

under the global null, we have

√
p(β̂ j − β j )

d→ N (0, τ 2∗ ). (41)

Comparing the variances in the logistic model, we have that

lim
n→∞Var

(√
pβ̂ j

)
=
{
4κ, in classical large-sample theory;
τ 2∗ , in high dimensions.

Figure 3 illustrates the behavior of the ratio τ 2∗ /κ as a function of κ . Two observations
are immediate:

• First, in Fig. 3a we have τ 2∗ ≥ 4κ for all κ ≥ 0. This indicates an inflation in vari-
ance or an “extra Gaussian noise” component that appears in high dimensions, as
discussed in [22]. The variance of the “extra Gaussian noise” component increases
as κ grows.
• Second, as κ → 0, we have τ 2∗ /4κ → 1 in the logistic model, which indicates that
classical theory becomes accurate in this case. In other words, our theory recovers
the classical prediction in the regime where p = o(n).
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Further, for the testing problem considered here, the LLR statistic in the classical
setup can be expressed, through Taylor expansion, as

2�1 = n(β̂ − β̃)�Iβ(β̂ − β̃)+ oP (1), (42)

where β̃ is defined in (33). In the high-dimensional setting, we will also establish a
quadratic approximation of the form

2�1 = n(β̂ − β̃)�G(β̂ − β̃)+ oP (1), G = 1

n
X�D

β̂
X .

In Theorem 7, we shall see that b∗ is the limit of 1
nTr(G

−1), the Stieltjes transform
of the empirical spectral distribution of G evaluated at 0. Thus, this quantity in some
sense captures the spread in the eigenvalues of G one would expect to happen in high
dimensions.

2.7 Prior art

Wilks’ type of phenomenon in the presence of a diverging dimension p has received
much attention in the past. For instance, Portnoy [51] investigated simple hypotheses
in regular exponential families, and established the asymptotic Chi-square approx-
imation for the LLR test statistic as long as p3/2/n → 0. This phenomenon was
later extended in [54] to accommodate the MLE with a quadratic penalization, and
in [67] to account for parametric models underlying several random graph models.
Going beyond parametric inference, Fan et al. [27,29] explored extensions to infinite-
dimensional non-parametric inference problems, for which the MLE might not even
exist or might be difficult to derive. While the classical Wilks’ phenomenon fails to
hold in such settings, Fan et al. [27,29] proposed a generalization of the likelihood ratio
statistics based on suitable non-parametric estimators and characterized the asymp-
totic distributions. Such results have further motivated Boucheron and Massart [10]
to investigate the non-asymptotic Wilks’ phenomenon or, more precisely, the concen-
tration behavior of the difference between the excess empirical risk and the true risk,
from a statistical learning theory perspective. The Wilks’ phenomenon for penalized
empirical likelihood has also been established [59]. However, the precise asymptotic
behavior of the LLR statistic in the regime that permits p to grow proportional to n is
still beyond reach.

On the other hand, as demonstrated in Sect. 2.5.1, the MLE here under the global
null can be viewed as anM-estimator for a linear regression problem.Questions regard-
ing the behavior of robust linear regression estimators in high dimensions—where p
is allowed to grow with n—were raised in Huber [35], and have been extensively
studied in subsequent works, e.g. [43,48–50]. When it comes to logistic regression,
the behavior of the MLE was studied for a diverging number of parameters by [33],
which characterized the squared estimation error of the MLE if (p log p)/n → 0. In
addition, the asymptotic normality properties of the MLE and the penalized MLE for
logistic regression have been established by [28,42], respectively. A very recent paper
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by Fan et al. [30] studied the logistic model under the global null β = 0, and inves-
tigated the classical asymptotic normality as given in (39). It was discovered in [30]
that the convergence property breaks down even in terms of the marginal distribution,
namely,

√
nβ̂i(Iβ

)−1/2
i,i

d
� N (0, 1) , Iβ = 1

4n
X�X,

as soon as p grows at a rate exceeding n2/3. In other words, classical theory breaks
down.Having said this, when κ = p/n→ 0,Wilks’ theorem still holds since Theorem
1 and Fig. 2 demonstrate that the LLR statistic 2� j converges in distribution to a Chi-
square.5

The line of work that is most relevant to the present paper was initially started
by El Karoui et al. [26]. Focusing on the regime where p is comparable to n, the
authors uncovered, via a non-rigorous argument, that the asymptotic �2 error of the
MLE could be characterized by a system of nonlinear equations. This seminal result
was later made rigorous independently by Donoho et al. [22,23] under i.i.d. Gaussian
design and by El Karoui [24,25] under more general i.i.d. random design as well as
certain assumptions on the error distribution. Both approaches rely on strong convexity
on the function ρ(·) that defines the M-estimator, which does not hold in the models
considered herein. The case of ridge regularized M-estimators were also studied in
[24,25]. Thrampoulidis et al. [61] studied the asymptotic behavior of the squared error
for regularized M-estimators for a broad class of regularizers. They also examined the
unregularized case under more general assumptions on the loss function. Our setup is
not covered by this work; several conditions are violated including some pertaining to
the growth rate of ρ′.We also have completely different error distributions sincewe are
not working under the linear model as they are. Simultaneously, penalized likelihood
procedures have been studied extensively under high-dimensional setups with sparsity
constraints imposed on the underlying signal; see, for instance, [37,39,62,63] and the
references cited therein.

Finally,we remark that theAMPmachinery has already been successfully applied to
study other statistical problems, including but not limited to themean square estimation
error of the Lasso [8], the tradeoff between the type I and type II errors along the Lasso
path [55], and the hidden clique problem [21].

2.8 Notations

We adopt the standard notation f (n) = O (g(n)) or f (n) � g(n) which means that
there exists a constant c > 0 such that | f (n)| ≤ c|g(n)|. Likewise, f (n) = �(g(n))

or f (n) � g(n) means that there exists a constant c > 0 such that | f (n)| ≥ c |g(n)|,
5 Mathematically, the convex geometry and the leave-one-out analyses employed in our proof naturally
extend to the case where p = o(n). It remains to develop a formal AMP theory for the regime where
p = o(n). Alternatively, we note that the AMP theory has been mainly invoked to characterize ‖β̂‖, which
can also be accomplished via the leave-one-out argument (cf. [25]). This alternative proof strategy can
easily extend to the regime p = o(n).
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Fig. 4 Histogram of p-values for logistic regression under i.i.d. Bernoulli design (this is, therefore, not the
setup of Fig. 1), when β = 0, n = 4000, p = 1200, and κ = 0.3: a classically computed p-values; b
Bartlett corrected p-values; c adjusted p-values

f (n) � g(n)means that there exist constants c1, c2 > 0 such that c1|g(n)| ≤ | f (n)| ≤
c2|g(n)|, and f (n) = o(g(n))means that limn→∞ f (n)

g(n)
= 0. Anymention ofC ,Ci , c,

ci for i ∈ N refers to some positive universal constants whose value may change from
line to line. For a square symmetric matrix M, the minimum eigenvalue is denoted by
λmin(M). Logarithms are base e.

3 Numerics

3.1 Non-Gaussian covariates

In this section we first study the sensitivity of our result to the Gaussianity assumption
on the designmatrix. To this end, we consider a high dimensional binary regression set
up with a Bernoulli design matrix. We simulate n = 4000 i.i.d. observations (yi , X i )

with yi
i.i.d.∼ Bernoulli(1/2), and X i generated independent of yi , such that each entry

takes on values in {1,−1} w.p. 1/2. At each trial, we fit a logistic regression model to
the data and obtain the classical, Bartlett corrected and adjusted p-values (using the
rescaling factor α(κ)). Figure 4 plots the histograms for the pooled p-values, obtained
across 400 trials.

It is instructive to compare the histograms to that obtained in the Gaussian case
(Fig. 1). The classical and Bartlett corrected p-values exhibit similar deviations from
uniformity as in the Gaussian design case, whereas our adjusted p-values continue
to have an approximate uniform distribution. We test for deviations from uniformity
using a formal Chi-squared goodness of fit test as in Sect. 2.3.2. For the Bartlett
corrected p-values, the Chi-squared statistic turns out to be 5885, with a p-value 0.
For the adjusted p-values,the Chi-squared statistic is 24.1024, with a p-value 0.1922.6

Once again, the Bartlett correction fails to provide valid p-values whereas the
adjusted p-values are consistent with a uniform distribution. These findings indicate
that the distribution of the LLR statistic under the i.i.d. Bernoulli design is in agreement

6 Recall our earlier footnote about the use of a χ2 test.
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Table 2 Estimates of p-value
probabilities with estimated
Monte Carlo standard errors in
parentheses under
i.i.d. Bernoulli design

Adjusted

P{p-values ≤ 5%} 5.0222% (0.0412%)

P{p-values ≤ 1%} 1.0048% (0.0174%)

P{p-values ≤ 0.5%} 0.5123% (0.0119%)

P{p-values ≤ 0.1%} 0.1108% (0.005%)

P{p-values ≤ 0.05%} 0.0521% (0.0033%)

P{p-values ≤ 0.01%} 0.0102% (0.0015%)

to the rescaledχ2
1 derived under theGaussian design in Theorem 1, suggesting that the

distribution is not too sensitive to the Gaussianity assumption. Estimates of p-value
probabilities for our method are provided in Table 2.

3.2 Quality of approximations for finite sample sizes

In the rest of this section, we report some numerical experiments which study the
applicability of our theory in finite sample setups.

Validity of tail approximation The first experiment explores the efficacy of our
correction for extremely small p-values. This is particularly important in the context
of multiple comparisons, where practitioners care about the validity of exceedingly
small p-values. To this end, the empirical cumulative distribution of the adjusted p-
values is estimated under a standard Gaussian design with n = 4000, p = 1200 and
4.8 × 105 p-values. The range [0.1/p, 12/p] is divided into points which are equi-
spaced with a distance of 1/p between any two consecutive points. The estimated
empirical CDF at each of these points is represented in Fig. 5. The estimated CDF
is in near-perfect agreement with the diagonal, suggesting that the adjusted p-values
computed using the rescaledChi-square distribution are remarkably close to a uniform,

Fig. 5 Empirical CDF of
adjusted pvalues for logistic
regression when β = 0,
n = 4000, p = 1200. Here, the
points represent the empirical
CDF (t vs. the fraction of
p-values below t), and the line is
the diagonal
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Fig. 6 Empirical CDF of
adjusted pvalues for logistic
regression when β = 0,
n = 200, p = 60. Here, the
points represent the empirical
CDF (t vs. the fraction of
p-values below t), and the line is
the diagonal.
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even when we zoom in at very small resolutions as would be the case when applying
Bonferroni-style corrections.

Moderate sample sizes The final experiment studies the accuracy of our asymptotic
result for moderately large samples. This is especially relevant for applications where
the sample sizes are not too large.We repeat our numerical experiments with n = 200,
p = 60 for i.i.d. Gaussian design, and 4.8 × 105 p-values. The empirical CDF for
these p-values are estimated and Fig. 6 shows that the adjusted p-values are nearly
uniformly distributed even for moderate sample sizes such as n = 200.

4 Preliminaries

This section gathers a few preliminary results that will be useful throughout the paper.
We start by collecting some facts regarding i.i.d. Gaussian random matrices.

Lemma 2 Let X = [X1, X2, . . . Xn]� be an n×p matrixwith i.i.d. standardGaussian
entries. Then

P

(
‖X�X‖ ≤ 9n

)
≥ 1− 2 exp(−n/2); (43)

P
(
sup1≤i≤n ‖X i‖ ≤ 2

√
p
) ≥ 1− 2n exp(−(

√
p − 1)2/2). (44)

Proof This is a straighforward application of [65, Corollary 5.35] and the union bound.
��

Lemma 3 Suppose X is an n× p matrix with entries i.i.dN (0, 1), then there exists a
constant ε0 such that whenever 0 ≤ ε ≤ ε0 and 0 ≤ t ≤ √1− ε −√p/n,

λmin

(
1

n

∑
i∈S

X iX�i

)
≥
(√

1−ε−
√

p

n
−t
)2

, ∀S⊆[n] with |S|=(1−ε)n (45)
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with probability exceeding 1 − 2 exp
(
−
(

(1−ε)t2

2 − H (ε)
)
n
)
. Here, H(ε) =

−ε log ε − (1− ε) log(1− ε).

Proof See Appendix A.1. ��

The above facts are useful in establishing an eigenvalue lower bound on the Hessian
of the log-likelihood function. Specifically, recall that

∇2�(β) =
n∑

i=1
ρ′′
(
X�i β

)
X iX�i , (46)

and the result is this:

Lemma 4 (Likelihood curvature condition) Suppose that p/n < 1 and that ρ′′(·) ≥ 0.
Then there exists a constant ε0 such that whenever 0 ≤ ε ≤ ε0, with probability at
least 1− 2 exp (−nH (ε))− 2 exp (−n/2), the matrix inequality

1

n
∇2�(β) �

⎛
⎝ inf

z:|z|≤ 3‖β‖√
ε

ρ′′ (z)

⎞
⎠
(√

1− ε −
√

p

n
− 2

√
H(ε)

1− ε

)2

I (47)

holds simultaneously for all β ∈ R
p.

Proof See Appendix A.2. ��

The message of Lemma 4 is this: take ε > 0 to be a sufficiently small constant.
Then

1

n
∇2�(β) � ω(‖β‖) I

for some non-increasing, continuous and positive functionω(·) independent of n. This
is a generalization of the strong convexity condition.

5 When is theMLE bounded?

5.1 Phase transition

In Sect. 2.2, we argued that the MLE is at infinity if we have less than two observa-
tions per dimension or κ > 1/2. In fact, a stronger version of the phase transition
phenemonon occurs in the sense that
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‖β̂‖ = O(1)

as soon as κ < 1/2. This is formalized in the following theorem.

Theorem 4 (Norm Bound Condition) Fix any small constant ε > 0, and let β̂ be the
MLE for a model with effective link satisfying the conditions from Sect. 2.3.3.

(i) If p/n ≥ 1/2 + ε, then the MLE does not exist with probability exceeding 1 −
4 exp

(−ε2n/8
)
.

(ii) There exist universal constants c1, c2,C2 > 0 such that if p/n < 1/2 − c1ε3/4,
then7

‖β̂‖ <
4 log 2

ε2

with probability at least 1− C2 exp(−c2ε2n).

These conclusions clearly continue to hold if β̂ is replaced by β̃ (the MLE under the
restricted model obtained on dropping the first predictor).

The rest of this section is devoted to proving this theorem. As we will see later, the
fact that ‖β̂‖ = O(1) is crucial for utilizing the AMP machinery in the absence of
strong convexity.

5.2 Proof of Theorem 4

As in Sect. 2.5.1, we assume ỹi ≡ 1 throughout this section, and hence the MLE
reduces to

minimizeβ∈Rp �0 (β) :=
n∑

i=1
ρ(−X�i β). (48)

5.2.1 Proof of Part (i)

Invoking [3, Theorem I] yields that if

δ
({
Xβ | β ∈ R

p})+ δ
(
R
n+
) ≥ (1+ ε) n,

or equivalently, if p/n ≥ 1/2+ ε, then

P
{{

Xβ | β ∈ R
p} ∩ R

n+ �= {0}
} ≥ 1− 4 exp

(
−ε2n/8

)
.

As is seen in Sect. 2.2, ‖β̂‖ = ∞when {Xβ | β ∈ R
p}∩R

n+ �= {0}, establishing Part
(i) of Theorem 4.

7 When X i ∼ N (0, �) for a general � � 0, one has ‖�1/2β̂‖ � 1/ε2 with high probability.
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5.2.2 Proof of Part (ii)

We now turn to the regime in which p/n ≤ 1/2 − O(ε3/4), where 0 < ε < 1 is any
fixed constant. Begin by observing that the least singular value of X obeys

σmin (X) ≥ √n/4 (49)

with probability at least 1 − 2 exp
( − 1

2

( 3
4 − 1√

2

)2
n
)
(this follows from Lemma 3

using ε = 0). Then for any β ∈ R
p obeying

�0(β) =
∑n

j=1 ρ
(
−X�j β

)
≤ n log 2 = �0(0) (50)

and ‖β‖ ≥ 4 log 2

ε2
, (51)

we must have

n∑
j=1

max
{
−X�j β, 0

}
=

∑
j : X�j β<0

(
−X�j β

) (a)≤
∑

j : X�j β<0

ρ
(
−X�j β

) (b)≤ n log 2;

(a) follows since t ≤ ρ(t) and (b) is a consequence of (50). Continuing, (49) and (51)
give

n log 2 ≤ 4
√
n
‖Xβ‖
‖β‖ log 2 ≤ ε2

√
n‖Xβ‖.

This implies the following proposition: if the solution β̂—which necessarily satisfies
�0(β̂) ≤ �0(0)—has norm exceeding ‖β̂‖ ≥ 4 log 2

ε2
, then Xβ̂ must fall within the cone

A :=
⎧⎨
⎩u ∈ R

n

∣∣∣∣∣∣
n∑
j=1

max
{−u j , 0

} ≤ ε2
√
n‖u‖

⎫⎬
⎭ . (52)

Therefore, if one wishes to rule out the possibility of having ‖β̂‖ ≥ 4 log 2
ε2

, it suffices
to show that with high probability,

{
Xβ | β ∈ R

p} ∩A = {0} . (53)

This is the content of the remaining proof.
We would like to utilize tools from conic geometry [3] to analyze the probability

of the event (53). Note, however, that A is not convex, while the theory developed in
[3] applies only to convex cones. To bypass the non-convexity issue, we proceed in
the following three steps:

1. Generate a set of N = exp
(
2ε2 p

)
closed convex cones {Bi | 1 ≤ i ≤ N } such that

it forms a cover of A with probability exceeding 1− exp
(−�(ε2 p)

)
.
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2. Show that if p <
(
1
2 − 2

√
2ε

3
4 − 2H(2

√
ε)
)
n and if n is sufficiently large, then

P
{{

Xβ | β ∈ R
p} ∩ Bi �= {0}

}
≤ 4 exp

{
−1

8

(
1

2
− 2
√
2ε

3
4 − 10H(2

√
ε)− p

n

)2

n

}

for each 1 ≤ i ≤ N .
3. Invoke the union bound to reach

P
{{

Xβ | β ∈ R
p} ∩A �= {0}} ≤ P {{Bi | 1 ≤ i ≤ N } does not form a cover of A}

+
N∑
i=1

P
{{

Xβ | β ∈ R
p} ∩ Bi �= {0}

}
≤ exp

(−�(ε2 p)
)
,

where we have used the fact that

N∑
i=1

P
{{

Xβ | β ∈ R
p} ∩ Bi �= {0}

}

≤ 4N exp

{
−1

8

(
1

2
− 2
√
2ε

3
4 − 10H(2

√
ε)− p

n

)2

n

}

< 4 exp

{
−
(
1

8

(
1

2
− 2
√
2ε

3
4 − 10H(2

√
ε)− p

n

)2

− 2ε2
)
n

}

< 4 exp
{
−ε2n

}
.

Here, the last inequality holds if
(
1
2 − 2

√
2ε

3
4 − 10H(2

√
ε)− p

n

)2
> 24ε2, or

equivalently, p
n < 1

2 − 2
√
2ε

3
4 − 10H(2

√
ε)−√24ε.

Taken collectively, these steps establish the following claim: if p
n < 1

2 − 2
√
2ε

3
4 −

10H(2
√

ε)−√24ε, then

P

{
‖β̂‖ >

4 log 2

ε2

}
< exp

{
−�(ε2n)

}
,

thus establishing Part (ii) of Theorem 4.We defer the complete details of the preceding
steps to Appendix D.
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6 Asymptotic �2 error of theMLE

This section aims to establish Theorem 2,which characterizes precisely the asymptotic
squared error of the MLE β̂ under the global null β = 0. As described in Sect. 2.5.1,
it suffices to assume that β̂ is the solution to the following problem

minimizeβ∈Rp

n∑
i=1

ρ(−X�i β). (54)

In what follows, we derive the asymptotic convergence of ‖β̂‖ under the assumptions
from our main theorem.

Theorem 5 Under the assumptions of Theorem 1, the solution β̂ to (54) obeys

lim
n→∞‖β̂‖

2 =a.s. τ 2∗ . (55)

Theorem 5 is derived by invoking the AMP machinery [7,8,38]. The high-level
idea is the following: in order to study β̂, one introduces an iterative algorithm (called

AMP) where a sequence of iterates β̂
t
is formed at each time t . The algorithm is

constructed so that the iterates asymptotically converge to the MLE in the sense that

lim
t→∞ lim

n→∞‖β̂
t − β̂‖2 =a.s. 0. (56)

On the other hand, the asymptotic behavior (asymptotic in n) of β̂
t
for each t can be

described accurately by a scalar sequence {τt }—called state evolution (SE)—following
certain update equations [7]. This, in turn, provides a characterization of the �2 loss
of β̂.

Further, in order to prove Theorem 2, one still needs to justify

(a) the existence of a solution to the system of Eqs. (25) and (26),
(b) and the existence of a fixed point for the iterative map governing the SE sequence

updates.

We will elaborate on these steps in the rest of this section.

6.1 State evolution

We begin with the SE sequence {τt } introduced in [22]. Starting from some initial
point τ0, we produce two sequences {bt } and {τt } following a two-step procedure.

• For t = 0, 1, . . .:

– Set bt to be the solution in b to

κ = E
[
� ′(τt Z; b)

]; (57)

123



The likelihood ratio test in high-dimensional logistic… 513

– Set τt+1 to be

τ 2t+1 =
1

κ
E
[
(�2(τt Z; bt ))

]
. (58)

Suppose that for given any τ > 0, the solution in b to (57) with τt = τ exists and is
unique, then one can denote the solution as b(τ ), which in turn allows one to write the
sequence {τt } as

τ 2t+1 = V(τ 2t )

with the variance map

V(τ 2) = 1

κ
E

[
�2(τ Z; b(τ ))

]
. (59)

As a result, if there exists a fixed point τ∗ obeying V(τ 2∗ ) = τ 2∗ and if we start with
τ0 = τ∗, then by induction,

τt ≡ τ∗ and bt ≡ b∗ := b(τ∗), t = 0, 1, . . .

Notably, (τ∗, b∗) solves the system of Eqs. (25) and (26). We shall work with this
choice of initial condition throughout our proof.

The preceding arguments hold under two conditions: (i) the solution to (57) exists
and is unique for any τt > 0; (ii) the variance map (59) admits a fixed point. To verify
these two conditions, we make two observations.

• Condition (i) holds if one can show that the function

G(b) := E
[
� ′(τ Z; b)] , b > 0 (60)

is strictly monotone for any given τ > 0, and that limb→0 G(b) < κ <

limb→∞ G(b).
• Since V(·) is a continuous function, Condition (ii) becomes self-evident once we
show that V(0) > 0 and that there exists τ > 0 obeying V(τ 2) < τ 2. The behavior
of the variance map is illustrated in Fig. 7 for the logistic and probit regression
when κ = 0.3. One can in fact observe that the fixed point is unique. For other
values of κ , the variance map shows the same behavior.

In fact, the aforementioned properties can be proved for a certain class of effective
links, as summarized in the following lemmas. In particular, they can be shown for
the logistic and the probit models.

Lemma 5 Suppose the effective link ρ satisfies the following two properties:

(a) ρ′ is log-concave.
(b) For any fixed τ > 0 and any fixed z, bρ′′(proxbρ(τ z))→∞ when b→∞.
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a b

Fig. 7 The variance map for both the logistic and the probit models when κ = 0.3: (solid line) variance
map V(τ2) as a function of τ2; (dotted line) diagonal

Then for any τ > 0, the function G(b) defined in (60) is an increasing function in b
(b > 0), and the equation

G(b) = κ

has a unique positive solution.

Proof See Appendix B. ��
Lemma 6 Suppose that 0 < κ < 1/2 and that ρ = log(1+ et ) or ρ = − log�(−t).
Then

(i) V(0) > 0;
(ii) V(τ 2) < τ 2 for some sufficiently large τ 2.

Proof See Appendix C and the supplemental material [58]. ��
Remark 1 Abyproduct of the proof is that the following relations hold for any constant
0 < κ < 1/2:

• In the logistic case,⎧⎪⎨
⎪⎩
limτ→∞

V(τ 2)
τ 2

= x2P{Z>x}+E[Z21{0<Z<x}
]

P{0<Z<x}

∣∣∣∣
x=�−1(κ+0.5)

;
limτ→∞ b(τ )

τ
= �−1(κ + 0.5).

• In the probit case,

lim
τ→∞ b(τ ) = 2κ

1− 2κ
and lim

τ→∞
V(τ 2)

τ 2
= 2κ. (61)
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Remark 2 Lemma 6 is proved for the two special effective link functions, the logistic
and the probit cases. However, the proof sheds light on general conditions on the
effective link that suffice for the lemma to hold. Such general sufficient conditions are
also discussed in the supplemental material [58].

6.2 AMP recursion

In this section, we construct the AMP trajectory tracked by two sequences {β̂ t
(n) ∈

R
p} and {ηt (n) ∈ R

n} for t ≥ 0. Going forward we suppress the dependence on n to

simplify presentation. Picking β̂
0
such that

lim
n→∞‖β̂

0‖2 = τ 20 = τ 2∗

and taking η−1 = 0 and b−1 = 0, the AMP path is obtained via Algorithm 1, which
is adapted from the algorithm in [22, Section 2.2].

Algorithm 1 Approximate message passing.
For t = 0, 1, · · · :
1. Set

ηt = Xβ̂
t +�

(
ηt−1; bt−1

)
; (62)

2. Let bt be the solution to

κ = E
[
� ′(τt Z; b)

]
, (63)

where τt is the SE sequence value at that time.
3. Set

β̂
t+1 = β̂

t − 1

p
X��

(
ηt ; bt

)
. (64)

Here, �(·) is applied in an entrywise manner, and � ′(., .) denotes derivative w.r.t the
first variable.

As asserted by [22], the SE sequence {τt } introduced in Sect. 6.1 proves useful as it
offers a formal procedure for predicting operating characteristics of the AMP iterates
at any fixed iteration. In particular it assigns predictions to two types of observables:

observables which are functions of the β̂
t
sequence and those which are functions of

ηt . Repeating identical argument as in [22, Theorem 3.4], we obtain

lim
n→∞‖β̂

t‖2 =a.s. τ 2t ≡ τ 2∗ , t = 0, 1, . . . . (65)
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6.3 AMP converges to theMLE

We are now in position to show that the AMP iterates {β̂ t } converge to the MLE in the
large n and t limit. Before continuing, we state below two properties that are satisfied
under our assumptions.

• The MLE β̂ obeys

lim
n→∞‖β̂‖ <∞ (66)

almost surely.
• And there exists some non-increasing continuous function 0 < ω (·) < 1 inde-
pendent of n such that

P

{
1

n
∇2� (β) � ω (‖β‖) · I, ∀β

}
≥ 1− c1e

−c2n . (67)

In fact, the norm bound (66) follows from Theorem 4 together with Borel-Cantelli,
while the likelihood curvature condition (67) is an immediate consequence of
Lemma 4. With this in place, we have:

Theorem 6 Suppose (66) and (67) hold. Let (τ∗, b∗) be a solution to the system (25)

and (26), and assume that limn→∞ ‖β̂0‖2 = τ 2∗ . Then the AMP trajectory as defined
in Algorithm 1 obeys

lim
t→∞ lim

n→∞‖β̂
t − β̂‖ =a.s. 0.

Taken collectively, Theorem 6 and Eq. (65) imply that

lim
n→∞‖β̂‖ =a.s. lim

t→∞ lim
n→∞‖β̂

t‖ =a.s. τ∗, (68)

thus establishing Theorem 5. In addition, an upshot of these theorems is a uniqueness
result:

Corollary 2 The solution to the system of Eqs. (25) and (26) is unique.

Proof When theAMP trajectory β̂
t
is startedwith the initial condition fromTheorem6,

limn→∞ ‖β̂‖2 =a.s. τ 2∗ . This holds for any τ∗ such that (τ∗, b∗) is a solution to (25) and
(26). However, since the MLE problem is strongly convex and hence admits a unique
solution β̂, this implies that τ∗ must be unique, which together with the monotonicity
of G(·) (cf. (60)) implies that b∗ is unique as well. ��
Proof of Theorem 6 To begin with, repeating the arguments in [22, Lemma 6.9] we
reach

lim
t→∞ lim

n→∞‖β̂
t+1 − β̂

t‖2 =a.s. 0; (69)

lim
t→∞ lim

n→∞
1

n
‖ηt+1 − ηt‖2 =a.s. 0. (70)
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To show that the AMP iterates converge to the MLE, we shall analyze the log-
likelihood function. Recall from Taylor’s theorem that

�(β̂) = �(β̂
t
)+

〈
∇�(β̂

t
), β̂ − β̂

t 〉+ 1

2

(
β̂ − β̂

t)� ∇2�
(
β̂
t + λ(β̂ − β̂

t
)
) (

β̂ − β̂
t)

holds for some 0 < λ < 1. To deal with the quadratic term, we would like to control

the Hessian of the likelihood at a point between β̂ and β̂
t
. Invoking the likelihood

curvature condition (67), one has

�(β̂
t
) ≥ �(β̂) ≥ �(β̂

t
)+

〈
∇�(β̂

t
), β̂ − β̂

t 〉+ 1

2
nω
(
max

{
‖β̂‖, ‖β̂ t‖

} )
‖β̂ − β̂

t‖2
(71)

with high probability. Apply Cauchy-Schwarz to yield that with exponentially high
probability,

‖β̂ − β̂
t‖ ≤ 2

ω
(
max

{
‖β̂‖, ‖β̂ t‖

} )∥∥∥1n∇�(β̂
t
)

∥∥∥ ≤ 2

ω
(‖β̂‖)ω(‖β̂ t‖)

∥∥∥1
n
∇�(β̂

t
)

∥∥∥,
where the last inequality follows since 0 < ω(·) < 1 and ω(·) is non-increasing.

It remains to control ‖∇�(β̂
t
)‖. The identity �(z; b∗) = z − proxb∗ρ(z) and (62)

give

proxb∗ρ
(
ηt−1

)
= Xβ̂

t + ηt−1 − ηt . (72)

In addition, substituting � (z; b) = bρ′(proxρb(z)) into (64) yields

p

b∗
(β̂

t − β̂
t−1

) = −X�ρ′
(
proxb∗ρ(ηt−1)

)
= −X�ρ′

(
Xβ̂

t + ηt−1 − ηt
)

.

We are now ready to bound ‖∇�(β̂
t
)‖. Recalling that

∇�(β̂
t
) = X�ρ′(X�β̂

t
) = X�ρ′

(
Xβ̂

t + ηt−1 − ηt
)

+ X�
(
ρ′(X�β̂

t
)− ρ′

(
Xβ̂

t + ηt−1 − ηt
))

and that supz ρ′′(z) <∞, we have

∥∥∇�(β̂
t
)
∥∥ ≤ ∥∥∥−X�ρ′

(
Xβ̂

t + ηt−1 − ηt
)∥∥∥

+‖X‖
∣∣∣ρ′ (Xβ̂

t + ηt−1 − ηt
)
− ρ′(Xβ̂

t
)

∣∣∣
≤ p

b∗
‖β̂ t − β̂

t−1‖ + ‖X‖
(
sup
z

ρ′′(z)
)
‖ηt−1 − ηt‖.
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This establishes that with probability at least 1− c1e−c2n ,

‖β̂ − β̂
t‖ ≤ 2

ω
(
‖β̂‖

)
ω
(
‖β̂ t‖

) { p

b∗n
‖β̂ t − β̂

t−1‖ + 1

n

(
sup
z

ρ′′(z)
)
‖X‖‖ηt−1 − ηt‖

}
.

(73)

Using (44) together with Borel-Cantelli yields limn→∞ ‖X‖/√n < ∞ almost

surely. Further, it follows from (65) that limn→∞ ‖β̂ t‖ is finite almost surely as τ∗ <

∞. These taken together with (66), (69) and (70) yield

lim
t→∞ lim

n→∞‖β̂ − β̂
t‖ =a.s. 0 (74)

as claimed. ��

7 Likelihood ratio analysis

This section presents the analytical details for Sect. 2.5.2, which relates the log-
likelihood ratio statistic �i with β̂i . Recall from (37) that the LLR statistic for testing
β1 = 0 vs. β1 �= 0 is given by

�1 = 1

2

(
X̃β̃ − Xβ̂

)�
D

β̂

(
X̃β̃ − Xβ̂

)
+ 1

6

n∑
i=1

ρ′′′(γi )
(
X̃
�
i β̃ − X�i β̂

)3
, (75)

where

D
β̂
:=

⎡
⎢⎢⎢⎣

ρ′′
(
X�1 β̂

)
. . .

ρ′′
(
X�n β̂

)
⎤
⎥⎥⎥⎦ (76)

and γi lies between X�i β̂ and X̃
�
i β̃. The asymptotic distribution of �1 claimed in

Theorem 3 immediately follows from the result below, whose proof is the subject of
the rest of this section.

Theorem 7 Let (τ∗, b∗) be the unique solution to the system of Eqs. (25) and (26), and
define

G̃ = 1

n
X̃
�
D

β̃
X̃ and α̃ = 1

n
Tr(G̃

−1
). (77)

Suppose p/n→ κ ∈ (0, 1/2) . Then

(a) the log-likelihood ratio statistic obeys

2�1 − pβ̂2
1/α̃

P→ 0; (78)
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(b) and the scalar α̃ converges,

α̃
P→ b∗. (79)

7.1 More notations and preliminaries

Before proceeding, we introduce some notations that will be used throughout. For any
matrix X , denote by Xi j and X · j its (i, j)-th entry and j th column, respectively.

We denote an analogue r = {ri }1≤i≤n (resp. r̃ = {r̃i }1≤i≤n) of residuals in the full
(resp. reduced) model by

ri := −ρ′
(
X�i β̂

)
and r̃i := −ρ′

(
X̃
�
i β̃
)
. (80)

As in (76), set

D
β̃
:=

⎡
⎢⎢⎣

ρ′′
(
X̃
�
1 β̃
)

. . .

ρ′′
(
X̃
�
n β̃
)
⎤
⎥⎥⎦ and D

β̂,b̃ :=
⎡
⎢⎣

ρ′′
(
γ ∗1
)

. . .

ρ′′(γ ∗n ),

⎤
⎥⎦ ,

(81)

where γ ∗i is between X�i β̂ and X�i b̃, and b̃ is to be defined later in Sect. 7.2. Further,
as in (77), introduce the Gram matrices

G := 1

n
X�D

β̂
X and G

β̂,b̃ =
1

n
X�D

β̂,b̃X . (82)

Let G̃(i) denote the version of G̃ without the term corresponding to the i th observation,
that is,

G̃(i) = 1

n

∑
j : j �=i

ρ′′(X̃�j β̃)X̃ j X̃
�
j . (83)

Additionally, let β̂[−i] be the MLE when the i th observation is dropped and let
G[−i] be the corresponding Gram matrix,

G[−i] = 1

n

∑
j : j �=i

ρ′′(X�j β̂[−i])X jX�j . (84)

Further, let β̃[−i] be theMLEwhen the first predictor and i th observation are removed,
i.e.

β̃[−i] := arg min
β∈Rp−1

∑
j : j �=i

ρ(X̃
�
j β).
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Below G̃[−i] is the corresponding version of G̃,

G̃[−i] = 1

n

∑
j : j �=i

ρ′′(X̃�j β̃[−i])X̃ j X̃
�
j . (85)

For these different versions of G, their least eigenvalues are all bounded away from
0, as asserted by the following lemma.

Lemma 7 There exist some absolute constants λlb,C, c > 0 such that

P(λmin(G) > λlb) ≥ 1− Ce−cn .

Moreover, the same result holds for G̃, G
β̂,b̃, G̃(i), G[−i] and G̃[−i] for all i ∈ [n].

Proof This result follows directly from Lemmas 2, 4, and Theorem 4. ��
Throughout the rest of this section, we restrict ourselves (for any given n) to the

following event:

An := {λmin(G̃) > λlb} ∩ {λmin(G) > λlb} ∩ {λmin(Gβ̂,b̃) > λlb}
∩ {∩ni=1λmin(G̃(i)) > λlb} ∩ {∩ni=1λmin(G̃[−i]) > λlb}
∩ {∩ni=1λmin(G[−i]) > λlb}. (86)

By Lemma 7, An arises with exponentially high probability, i.e.

P(An) ≥ 1− exp(−�(n)). (87)

7.2 A surrogate for theMLE

In view of (75), the main step in controlling �1 consists of characterizing the differ-

ences Xβ̂− X̃β̃ or β̂−
[
0
β̃

]
. Since the definition of β̂ is implicit and not amenable to

direct analysis, we approximate β̂ by a more amenable surrogate b̃, an idea introduced
in [24–26]. We collect some properties of the surrogate which will prove valuable in
the subsequent analysis.

To begin with, our surrogate is

b̃ =
[
0
β̃

]
+ b̃1

[
1

−G̃−1w

]
, (88)

where G̃ is defined in (82),

w := 1

n

n∑
i=1

ρ′′(X̃�i β̃)Xi1 X̃ i = 1

n
X̃
�
D

β̃
X ·1, (89)
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and b̃1 is a scalar to be specified later. This vector is constructed in the hope that

β̂ ≈ b̃, or equivalently,

{
β̂1 ≈ b̃1,

β̂2:p − β̃ ≈ − b̃1G̃
−1

w,
(90)

where β̂2:p contains the 2nd through pth components of β̂.

Before specifying b̃1, we shall first shed some insights into the remaining terms in
b̃. By definition,

∇2�

([
0
β̃

])
= X�D

β̃
X =

[
X�·1Dβ̃

X ·1 X�·1Dβ̃
X̃

X̃
�
D

β̃
X ·1 X̃

�
D

β̃
X̃

]
=
[
X�·1Dβ̃

X ·1 nw�

nw nG̃

]
.

Employing the first-order approximation of ∇�(·) gives

∇2�

([
0
β̃

])(
β̂ −

[
0
β̃

])
≈ ∇�(β̂)−∇�

([
0
β̃

])
. (91)

Suppose β̂2:p is well approximated by β̃. Then all but the first coordinates of ∇�(β̃)

and ∇�

([
0
β̂

])
are also very close to each other. Therefore, taking the 2nd through

pth components of (91) and approximating them by zero give

[
w, G̃

](
β̂ −

[
0
β̃

])
≈ 0.

This together with a little algebra yields

β̂2:p − β̃ ≈ − β̂1G̃
−1

w ≈ − b̃1G̃
−1

w,

which coincides with (90). In fact, for all but the 1st entries, b̃ is constructed bymoving
β̃ one-step in the direction which takes it closest to β̂.

Next, we come to discussing the scalar b̃1. Introduce the projection matrix

H := I − 1

n
D1/2

β̃
X̃ G̃
−1

X̃
�
D1/2

β̃
, (92)

and define b̃1 as

b̃1 := X�·1 r̃
X�·1D

1/2

β̃
HD1/2

β̃
X ·1

, (93)

where r̃ comes from (80). In fact, the expression b̃1 is obtained through similar (but
slightly more complicated) first-order approximation as for b̃2:p, in order to make sure
that b1 ≈ β̂1; see [26, Pages 14560–14561] for a detailed description.
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We now formally justify that the surrogate b̃ and theMLE β̂ are close to each other.

Theorem 8 The MLE β̂ and the surrogate b̃ (88) obey

‖β̂ − b̃‖ � n−1+o(1), (94)

|b̃1| � n−1/2+o(1), (95)

and

sup
1≤i≤n

|X�i b̃− X̃
�
i β̃| � n−1/2+o(1) (96)

with probability tending to one as n→∞.

Proof See Sect. 7.4. ��
The global accuracy (94) immediately leads to a coordinate-wise approximation

result between β̂1 and b̃1.

Corollary 3 With probability tending to one as n→∞,

√
n|b̃1 − β̂1| � n−1/2+o(1). (97)

Another consequence from Theorem 8 is that the value X�i β̂ in the full model and

its counterpart X̃
�
i β̃ in the reduced model are uniformly close.

Corollary 4 The values X�i β̂ and X̃
�
i β̃ are uniformly close in the sense that

sup
1≤i≤n

∣∣X�i β̂ − X̃
�
i β̃
∣∣ � n−1/2+o(1) (98)

holds with probability approaching one as n→∞.

Proof Note that

sup
1≤i≤n

∣∣X�i β̂ − X̃
�
i β̃
∣∣ ≤ sup

1≤i≤n
∣∣X�i (β̂ − b̃)

∣∣+ sup
1≤i≤n

∣∣X�i b̃− X̃
�
i β̃
∣∣.

The second term in the right-hand side is upper bounded by n−1/2+o(1) with probability
1 − o(1) according to Theorem 8. Invoking Lemma 2 and Theorem 8 and applying
Cauchy-Schwarz inequality yield that the first term is O(n−1/2+o(1)) with probability
1− o(1). This establishes the claim. ��
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7.3 Analysis of the likelihood-ratio statistic

We are now positioned to use our surrogate b̃ to analyze the likelihood-ratio statistic.
In this subsection we establish Theorem 7(a). The proof for Theorem 7(b) is deferred
to Appendix I.

Recall from (37) that

2�1 = (X̃β̃ − Xβ̂)�D
β̂
(X̃β̃ − Xβ̂)+ 1

3

n∑
i=1

ρ′′′(γi )(X̃
�
i β̃ − X�i β̂)3

︸ ︷︷ ︸
:=I3

.

To begin with, Corollary 4 together with the assumption supz ρ′′′(z) < ∞ implies
that

I3 � n−1/2+o(1)

with probability 1− o(1). Hence, I3 converges to zero in probability.
Reorganize the quadratic term as follows:

(X̃β̃ − Xβ̂)�D
β̂
(X̃β̃ − Xβ̂) =

∑
i

ρ′′(X�i β̂)
(
X�i β̂ − X̃

�
i β̃
)2

=
∑
i

ρ′′(X�i β̂)
[
X�i (β̂ − b̃)+ (X�i b̃− X̃

�
i β̃)

]2

=
∑
i

ρ′′(X�i β̂)(X�i (β̂ − b̃))2 + 2
∑
i

ρ′′(X�i β̂)X�i (β̂ − b̃)(X�i b̃− X̃
�
i β̃)

+
∑
i

ρ′′(X�i β̂)
(
X�i b̃− X̃

�
i β̃
)2

. (99)

We control each of the three terms in the right-hand side of (99).

• Since supz ρ′′(z) <∞, the first term in (99) is bounded by

∑
i

ρ′′(X�i β̂)(X�i (β̂ − b̃))2 � ||β̃ − b̃||2
∥∥∥∑

i
X iX�i

∥∥∥ � n−1+o(1)

with probability 1− o(1), by an application of Theorem 8 and Lemma 2.
• From the definition of b̃, the second term can be upper bounded by

2
∑
i

ρ′′(X�i β̂)(β̂ − b̃)�X iX�i b̃1

[
1

−G̃−1w

]

≤ |b̃1| · ‖β̂ − b̃‖ ·
∥∥∥∑

i
X iX�i

∥∥∥ ·
√
1+ w�G̃−2w

� n−
1
2+o(1)
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with probability 1 − o(1), where the last line follows from a combination of
Theorem 8, Lemma 2 and the following lemma.

Lemma 8 Let G̃ and w be as defined in (82) and (89), respectively. Then

P

(
w�G̃−2w � 1

)
≥ 1− exp(−�(n)). (100)

Proof See Appendix E. ��

• The third term in (99) can be decomposed as

∑
i

ρ′′(X�i β̂)(X�i b̃− X̃
�
i β̃))2

=
∑
i

(
ρ′′(X�i β̂)− ρ′′(X̃�i β̃)

)
(X�i b̃− X̃

�
i β̃))2

+
∑
i

ρ′′(X̃�i β̃)(X�i b̃− X̃
�
i β̃)2

=
∑
i

ρ′′′(γ̃i )(X�i β̂ − X̃
�
i β̃)

(
X�i b̃− X̃

�
i β̃
)2

+
∑
i

ρ′′(X̃�i β̃)
(
X�i b̃− X̃

�
i β̃
)2

(101)

for some γ̃i between X�i β̂ and X̃
�
i β̃. From Theorem 8 and Corollary 4, the first

term in (101) is O(n−1/2+o(1))with probability 1−o(1). Hence, the only remaining
term is the second.

In summary, we have

2�1 −
∑
i

ρ′′(X̃�i β̃)
(
X�i b̃− X̃

�
i β̃
)2

︸ ︷︷ ︸
=v�X�D

β̃
Xv

P→ 0, (102)

where v := b̃1

[
1

−G̃−1w

]
according to (88). On simplification, the quadratic form

reduces to

v�X�D
β̃
Xv = b̃21

(
X ·1 − X̃ G̃

−1
w
)�

D
β̃

(
X ·1 − X̃ G̃

−1
w
)

= b̃21

(
X�·1Dβ̃

X ·1 − 2X�·1Dβ̃
X̃ G̃
−1

w + w�G̃−1 X̃�D
β̃
X̃ G̃
−1

w
)
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= b̃21

(
X�·1Dβ̃

X ·1 − nw�G̃−1w
)

= nb̃21

(
1

n
X�·1D

1/2

β̃
HD1/2

β̃
X ·1︸ ︷︷ ︸

:=ξ

)
,

recalling the definitions (82), (89), and (92). Hence, the log-likelihood ratio 2�1
simplifies to nb̃21ξ + oP (1) on An .

Finally, rewrite v�X�D
β̃
Xv as n(b̃21 − β̂2

1 )ξ + nβ̂2
1ξ . To analyze the first term,

note that

n|b̃21 − β̂2
1 | = n|b̃1 − β̂1| · |b̃1 + β̂1| ≤ n|b̃1 − β̂1|2 + 2n|b̃1| · |b̃1 − β̂1| � n−

1
2+o(1)
(103)

with probability 1− o(1) in view of Theorem 8 and Corollary 3. It remains to analyze
ξ . Recognize that X ·1 is independent of D1/2

β̃
HD1/2

β̃
. Applying the Hanson-Wright

inequality [32,52] and the Sherman-Morrison-Woodbury formula (e.g. [31]) leads to
the following lemma:

Lemma 9 Let α̃ = 1
nTr(G̃

−1
), where G̃ = 1

n X̃
�
D

β̃
X̃ . Then one has

∣∣∣∣ p − 1

n
− α̃

1

n
X�·1D

1/2

β̃
HD1/2

β̃
X ·1
∣∣∣∣ � n−1/2+o(1) (104)

with probability approaching one as n→∞.

Proof See Appendix F. ��
In addition, if one can show that α̃ is bounded away from zerowith probability 1−o(1),
then it is seen from Lemma 9 that

ξ − p

nα̃

P→ 0. (105)

To justify the above claim, we observe that since ρ′′ is bounded, λmax(G̃) �
λmax(X̃

�
X̃)/n � 1 with exponentially high probability (Lemma 2). This yields

α̃ = Tr(G̃
−1

)/n � p/n

with probability 1− o(1). On the other hand, on An one has

α̃ ≤ p/(nλmin(G̃)) � p/n.

Hence, it follows that ξ = �(1) with probability 1− o(1). Putting this together with
(103) gives the approximation

v�X�D
β̃
Xv = nβ̂2

1ξ + o(1). (106)
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Taken collectively (102), (105) and (106) yields the desired result

2�1 − pβ̂2
1/α̃

P→ 0.

7.4 Proof of Theorem 8

This subsection outlines the main steps for the proof of Theorem 8. To begin with, we
shall express the difference β̂− b̃ in terms of the gradient of the negative log-likelihood
function. Note that ∇�(β̂) = 0, and hence

∇�(b̃) = ∇�(b̃)−∇�(β̂) =
n∑

i=1
X i [ρ′(X�i b̃)− ρ′(X ′i β̂)]

=
n∑

i=1
ρ′′(γ ∗i )X iX�i (b̃− β̂),

where γ ∗i is between X�i β̂ and X�i b̃. Recalling the notation introduced in (82), this
can be rearranged as

b̃− β̂ = 1

n
G−1

β̂,b̃
∇�(b̃).

Hence, on An , this yields

‖β̂ − b̃‖ ≤ ‖∇�(b̃)‖
λlbn

. (107)

The next step involves expressing ∇�(b̃) in terms of the difference b̃−
[
0
β̃

]
.

Lemma 10 On the eventAn (86), the negative log-likelihood evaluated at the surrogate
b̃ obeys

∇�(b̃) =
n∑

i=1

[
ρ′′(γ ∗i )− ρ′′(X̃�i β̃)

]
X iX�i

(
b̃−

[
0
β̃

])
,

where γ ∗i is some quantity between X�i b̃ and X̃
�
i β̃.

Proof The proof follows exactly the same argument as in the proof of [25, Proposi-
tion 3.11], and is thus omitted. ��
The point of expressing ∇�(b̃) in this way is that the difference b̃ −

[
0
β̃

]
is known

explicitly from the definition of b̃. Invoking Lemma 10 and the definition (88) allows
one to further upper bound (107) as
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‖β̂ − b̃‖ � 1

n

∥∥∥∇�(b̃)
∥∥∥ � sup

i

∣∣∣ρ′′(γ ∗i )− ρ′′(X̃�i β̃)

∣∣∣
∥∥∥∥∥1n

n∑
i=1

X iX�i

∥∥∥∥∥
∥∥∥∥b̃−

[
0
β̃

]∥∥∥∥
� sup

i

∣∣∣X�i b̃− X̃
�
i β̃

∣∣∣ |ρ′′′|∞
×
∥∥∥∥1n

∑n

i=1 X iX�i
∥∥∥∥ · |b̃1|

√
1+ w�G̃−2w

� |b̃1| sup
i

∣∣∣X�i b̃− X̃
�
i β̃

∣∣∣ (108)

with probability at least 1 − exp(−�(n)). The last inequality here comes from our
assumption that supz |ρ′′′(z)| <∞ together with Lemmas 2 and 8 .

In order to bound (108), we first make use of the definition of b̃ to reach

sup
i

∣∣∣X�i b̃− X̃
�
i β̃

∣∣∣ = |b̃1| sup
i
|Xi1 − X̃

�
i G̃
−1

w|. (109)

The following lemma provides an upper bound on supi |Xi1 − X̃
�
i G̃
−1

w|.
Lemma 11 With G̃ and w as defined in (82) and (89),

P

(
sup

1≤i≤n
∣∣Xi1 − X̃

�
i G̃
−1

w
∣∣ ≤ no(1)

)
≥ 1− o(1). (110)

Proof See Appendix G. ��
In view of Lemma 11, the second term in the right-hand side of (109) is bounded

above by no(1) with high probability. Thus, in both the bounds (108) and (109), it
only remains to analyze the term b̃1. To this end, we control the numerator and the
denominator of b̃1 separately.

• Recall from the definition (93) that the numerator of b̃1 is given by X�·1 r̃ and that
r̃ is independent of X ·1. Thus, conditional on X̃ , the quantity X�·1 r̃ is distributed
as a Gaussian with mean zero and variance

σ 2 =
∑n

i=1
(
ρ′(X̃�i β̃)

)2
.

Since |ρ′(x)| = O(|x |), the variance is bounded by

σ 2 � β̃
� (∑n

i=1 X̃ i X̃
�
i

)
β̃ � n‖β̃‖2 � n (111)

with probability at least 1 − exp(−�(n))), a consequence from Theorem 4 and
Lemma 2. Therefore, with probability 1− o(1), we have

1√
n
X�·1 r̃ � no(1). (112)
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• We now move on to the denominator of b̃1 in (93). In the discussion following
Lemma 9 we showed 1

n X
�·1D

1/2

β̃
HD1/2

β̃
X ·1 = �(1) with probability 1− o(1).

Putting the above bounds together, we conclude

P

(
|b̃1| � n−

1
2+o(1)

)
= 1− o(1). (113)

Substitution into (108) and (109) yields

‖β̂ − b̃‖ � n−1+o(1) and sup
i

∣∣∣X�i b̃− X̃
�
i β̃

∣∣∣ � n−1/2+o(1)

with probability 1− o(1) as claimed.

8 Discussion

In this paper, we derived the high-dimensional asymptotic distribution of the LLR
under our modelling assumptions. In particular, we showed that the LLR is inflated
vis a vis the classical Wilks’ approximation and that this inflation grows as the dimen-
sionality κ increases. This inflation is typical of high-dimensional problems, and one
immediate practical consequence is that it explains why classically computed p-values
are completely off since they tend to be far too small under the null hypothesis. In
contrast, we have shown in our simulations that our new limiting distribution yields
reasonably accurate p-values in finite samples. Having said this, our work raises a
few important questions that we have not answered and we conclude this paper with
a couple of them.

• We expect that our results continue to hold when the covariates are not normally
distributed; see Sect. 3 for some numerical evidence in this direction. To be more
precise, we expect the same limiting distribution to hold when the variables are
simply sub-Gaussian so that our approximation would enjoy a form of universal
validity. Notably, all three sets of analysis techniques we employ in this work have
already been extended to accommodate non-Gaussian designs for other problems:
the universality law of several convex geometry results has been established via
the Lindeberg principle [46]; the AMP machinery has been extended to non-
Gaussian designs via the moment method (e.g. [6,21]); and the leave-one-out
analysis developed can readily cope with other types of i.i.d. random designs
as well [25]. Taken collectively, these suggest a possible path to establish the
universality of our results.
• Amajor limitation of our work is the fact that our limiting distribution holds under
the global null; that is, under the assumption that all the regression coefficients
vanish. A natural question is, therefore, how would the distribution change in the
case where the coefficients are not all zero? Consider for instance the setup where
the empirical distribution of the regression coefficients satisfies
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1

p

p∑
i=1

δβi

d→ �,

where � is some limiting distribution. How is the distribution of LLR affected
by �? While this manuscript was under review, the first and third authors have
established, amongother results, an explicit characterization for the existenceof the
MLE and the limiting distribution of the LRT in this setup [57]. The proofs in this
manuscript are the foundation of this follow-up work, although several new ideas
are needed. We refer the interested reader to [56] for an in-depth explanation. In
sum, the insights from this paper are essential for establishing a complete likelihood
theory.
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A Proofs for eigenvalue bounds

A.1 Proof of Lemma 3

Fix ε ≥ 0 sufficiently small. For any given S ⊆ [n] obeying |S| = (1 − ε)n and
0 ≤ t ≤ √1− ε −√p/n it follows from [65, Corollary 5.35] that

λmin

(
1

n

∑
i∈S

X iX�i

)
<

1

n

(√|S| − √p − t
√
n
)2 = (√1− ε −

√
p

n
− t

)2

holds with probability at most 2 exp
(
− t2|S|

2

)
= 2 exp

(
− (1−ε)t2n

2

)
. Taking the union

bound over all possible subsets S of size (1− ε)n gives

P

{
∃S ⊆ [n] with |S| = (1− ε)n s.t.

1

n
λmin

(∑
i∈S

X iX�i

)

<

(√
1− ε −

√
p

n
− t

)2
}

≤
(

n

(1− ε)n

)
2 exp

(
− (1− ε) t2n

2

)

≤ 2 exp

(
nH (ε)− (1− ε) t2

2
n

)
,
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where the last line is a consequence of the inequality
( n
(1−ε)n

) ≤ enH(ε) [19, Exam-
ple 11.1.3].

A.2 Proof of Lemma 4

Define

SB (β) :=
{
i : |X�i β| ≤ B‖β‖

}

for any B > 0 and any β. Then

n∑
i=1

ρ′′
(
X�i β

)
X iX�i �

∑
i∈SB (β)

ρ′′
(
X�i β

)
X iX�i � inf

z:|z|≤B‖β‖
ρ′′ (z)

∑
i∈SB (β)

X iX�i .

If one also has |SB (β) | ≥ (1− ε)n (for ε ≥ 0 sufficiently small), then this together
with Lemma 3 implies that

1

n

n∑
i=1

ρ′′
(
X�i β

)
X iX�i � inf

z:|z|≤B‖β‖
ρ′′ (z)

(√
1− ε −

√
p

n
− t

)2

I

with probability at least 1− 2 exp
(
−
(

(1−ε)t2

2 − H (ε)
)
n
)
.

Thus if we can ensure that with high probability, |SB (β) | ≥ (1 − ε)n holds
simultaneously for all β, then we are done. From Lemma 2 we see that 1

n

∥∥X�X∥∥ ≤ 9
with probability exceeding 1− 2 exp (−n/2). On this event,

‖Xβ‖2 ≤ 9n‖β‖2, ∀β. (114)

On the other hand, the definition of SB(β) gives

‖Xβ‖2≥
∑

i /∈SB (β)

∣∣∣X�i β

∣∣∣2 ≥ (n − |SB(β)| ) (B‖β‖)2=n

(
1− |SB(β)|

n

)
B2‖β‖2.

(115)

Taken together, (114) and (115) yield

|SB(β)| ≥
(
1− 9

B2

)
n, ∀β

with probability at least 1−2 exp(−n/2). Therefore, with probability 1−2 exp(−n/2),∣∣∣S3/√ε(β)

∣∣∣ ≥ (1− ε) n holds simultaneously for all β. Putting the above results

together and setting t = 2
√

H(ε)
1−ε

give
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n∑
i=1

ρ′′
(
X�i β

)
X iX�i � inf

z:|z|≤ 3‖β‖√
ε

ρ′′ (z)
(√

1− ε −
√

p

n
− 2

√
H(ε)

1− ε

)2

I

simultaneously for all β with probability at least 1−2 exp (−nH (ε))−2 exp (−n/2).

B Proof of Lemma 5

Applying an integration by parts leads to

E
[
� ′(τ Z; b)] = ∫ ∞

−∞
� ′(τ z; b)φ(z)dz = 1

τ
�(τ z; b)φ(z)

∣∣∣∞−∞
−1

τ

∫ ∞
−∞

�(τ z; b)φ′(z)dz

= −1

τ

∫ ∞
−∞

�(τ z; b)φ′(z)dz

with φ(z) = 1√
2π

exp(−z2/2). This reveals that

G ′(b) = −1

τ

∫ ∞
−∞

∂�(τ z; b)
∂b

φ′(z)dz = −1

τ

∫ ∞
−∞

ρ′
(
proxbρ(τ z)

)
1+ bρ′′

(
proxbρ(τ z)

)φ′(z)dz
= 1

τ

∫ ∞
0

(
ρ′
(
proxbρ(−τ z)

)
1+ xρ′′

(
proxbρ(−τ z)

) − ρ′
(
proxbρ(τ z)

)
1+ xρ′′

(
proxbρ(τ z)

)
)

φ′(z)dz,

(116)

where the second identity comes from [22, Proposition 6.4], and the last identity holds
since φ′(z) = −φ′(−z).

Next, we claim that

(a) The function h (z) := ρ′(z)
1+bρ′′(z) is increasing in z;

(b) proxbρ(z) is increasing in z.

These two claims imply that

ρ′
(
proxbρ(−τ z)

)
1+ bρ′′

(
proxbρ(−τ z)

) − ρ′
(
proxbρ(τ z)

)
1+ bρ′′

(
proxbρ(τ z)

) < 0, ∀z > 0,

which combined with the fact φ′(z) < 0 for z > 0 reveals

sign

((
ρ′
(
proxbρ(−τ z)

)
1+ bρ′′

(
proxbρ(−τ z)

) − ρ′
(
proxbρ(τ z)

)
1+ bρ′′

(
proxbρ(τ z)

)
)

φ′(z)
)
= 1, ∀z > 0.

In other words, the integrand in (116) is positive, which allows one to conclude that
G ′(b) > 0.
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We then move on to justify (a) and (b). For the first, the derivative of h is given by

h′(z) = ρ′′(z)+ b(ρ′′(z))2 − bρ′(z)ρ′′′(z)
(1+ bρ′′(z))2

.

Since ρ′ is log concave, this directly yields (ρ′′)2 − ρ′ρ′′′ > 0. As ρ′′ > 0 and b ≥ 0,
the above implies h′(z) > 0 for all z.

The second claim follows from
∂proxbρ(z)

∂z ≥ 1
1+b‖ρ′′‖∞ > 0 (cf. [22, Equation (56)]).

It remains to analyze the behavior of G in the limits when b → 0 and b → ∞.
From [22, Proposition 6.4], G(b) can also be expressed as

G(b) = 1− E

[
1

1+ bρ′′(proxbρ(τ Z))

]
.

Sinceρ′′ is bounded and the integrand is atmost 1, the dominated convergence theorem
gives

lim
b→0

G(b) = 0.

When b→∞, bρ′′(proxbρ(τ z))→∞ for a fixed z. Again by applying the dominated
convergence theorem,

lim
b→∞G(b) = 1.

It follows that limb→0 G(b) < κ < limb→∞ G(b) and, therefore, G(b) = κ has a
unique positive solution.

Remark 3 Finally, we show that the logistic and the probit effective links obey the
assumptions of Lemma 5. We work with a fixed τ > 0.

• A direct computation shows that ρ′ is log-concave for the logistic model. For the
probit, it is well-known that the reciprocal of the hazard function (also known as
Mills’ ratio) is strictly log-convex [4].
• To check the other condition, recall that the proximal mapping operator satisfies

bρ′(proxbρ(τ z))+ proxbρ(τ z) = τ z. (117)

For a fixed z, we claim that if b→∞,proxbρ(τ z)→−∞. To prove this claim,we
start by assuming that this is not true.Then eitherproxbρ(τ z) is boundedor diverges
to∞. If it is bounded, theLHSabove diverges to∞while theRHS is fixed,which is
a contradiction. Similarly if proxbρ(τ z) diverges to∞, the left-hand side of (117)
diverges to ∞ while the right-hand side is fixed, which cannot be true as well.
Further, when b → ∞, we must have proxbρ(τ z) → −∞, bρ′(proxbρ(τ z)) →
∞, such that the difference of these two is τ z. Observe that for the logistic,ρ′′(x) =
ρ′(x)(1 − ρ′(x)) and for the probit, ρ′′(x) = ρ′(x)(ρ′(x) − x) [53]. Hence,
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combining the asymptotic behavior of proxbρ(τ z) and bρ′(proxbρ(τ z)), we obtain
that bρ′′(proxbρ(τ z)) diverges to∞ in both models when b→∞.

C Proof of Lemma 6

C.1 Proof of Part (i)

Recall from [22, Proposition 6.4] that

κ = E
[
� ′ (τ Z; b(τ ))

] = 1− E

[
1

1+ b(τ )ρ′′
(
proxb(τ )ρ (τ Z)

)
]

. (118)

If we denote c := proxbρ(0), then b(0) is given by the following relation:

1− κ = 1

1+ b(0)ρ′′(c)
�⇒ b(0) = κ

ρ′′(c)(1− κ)
> 0

as ρ′′(c) > 0 for any given c > 0. In addition, since ρ′(c) > 0, we have

V(0) = �(0, b(0))2

κ

(a)= b(0)2ρ′(c)2

κ
> 0,

where (a) comes from (22).

C.2 Proof of Part (ii)

We defer the proof of this part to the supplemental materials [58].

D Proof of Part (ii) of Theorem 4

As discussed in Sect. 5.2.2, it suffices to (1) construct a set {Bi | 1 ≤ i ≤ N } that forms
a cover of the cone A defined in (52), and (2) upper bound P{{Xβ | β ∈ R

p} ∩ Bi �=
{0}}. In what follows, we elaborate on these two steps.
• Step 1. Generate N = exp

(
2ε2 p

)
i.i.d. points z(i) ∼ N (0, 1

p I p), 1 ≤ i ≤ N ,
and construct a collection of convex cones

Ci :=
{
u ∈ R

p

∣∣∣∣∣
〈
u,

z(i)

‖z(i)‖

〉
≥ ε‖u‖

}
, 1 ≤ i ≤ N .

In words, Ci consists of all directions that have nontrivial positive correlation with
z(i). With high probability, this collection {Ci | 1 ≤ i ≤ N } forms a cover of R

p,
a fact which is an immediate consequence of the following lemma.
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Lemma 12 Consider any given constant 0 < ε < 1, and let N = exp
(
2ε2 p

)
. Then

there exist some positive universal constants c5,C5 > 0 such that with probability
exceeding 1− C5 exp

(−c5ε2 p),
N∑
i=1

1{〈x,z(i)〉≥ε‖x‖‖z(i)‖} ≥ 1

holds simultaneously for all x ∈ R
p.

With our family {Ci | 1 ≤ i ≤ N } we can introduce

Bi :=Ci ∩
⎧⎨
⎩u ∈ R

n |
n∑
j=1

max
{−u j , 0

}≤ε
√
n

〈
u,

z(i)

‖z(i)‖

〉⎫⎬
⎭ , 1≤ i≤N , (119)

which in turn forms a cover of the nonconvex cone A defined in (52). To justify this,
note that for any u ∈ A, one can find i ∈ {1, . . . , N } obeying u ∈ Ci , or equivalently,〈
u, z(i)

‖z(i)‖
〉
≥ ε‖u‖, with high probability. Combined with the membership to A this

gives

n∑
j=1

max
{−u j , 0

} ≤ ε2
√
n‖u‖ ≤ ε

√
n

〈
u,

z(i)

‖z(i)‖

〉
,

indicating that u is contained within some Bi .

• Step 2.Wenowmoveon to controlP {{Xβ | β ∈ R
p} ∩ Bi �= {0}}. If the statistical

dimensions of the two cones obey δ (Bi ) < n− δ ({Xβ | β ∈ R
p}) = n− p, then

an application of [3, Theorem I] gives

P
{{

Xβ | β ∈ R
p} ∩ Bi �= {0}

}
≤ 4 exp

{
−1

8

(
n − δ ({Xβ | β ∈ R

p})− δ (Bi )√
n

)2
}

≤ 4 exp

{
− (n − p − δ(Bi ))

2

8n

}
. (120)

It then comes down to upper bounding δ(Bi ), which is the content of the following
lemma.

Lemma 13 Fix ε > 0. When n is sufficiently large, the statistical dimension of the
convex cone Bi defined in (119) obeys

δ(Bi ) ≤
(
1

2
+ 2
√
2ε

3
4 + 10H(2

√
ε)

)
n, (121)

where H(x) := −x log x − (1− x) log(1− x).
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Substitution into (120) gives

P
{{

Xβ | β ∈ R
p} ∩ Bi �= {0}

}

≤ 4 exp

⎧⎪⎨
⎪⎩−

((
1
2 − 2

√
2ε

3
4 − 10H(2

√
ε)
)
n − p

)2
8n

⎫⎪⎬
⎪⎭

= 4 exp

{
−1

8

(
1

2
− 2
√
2ε

3
4 − 10H(2

√
ε)− p

n

)2

n

}
. (122)

Finally, we prove Lemmas 12 and 13 in the next subsections. These are the only
remaining parts for the proof of Theorem 4.

D.1 Proof of Lemma 12

To begin with, it is seen that all ‖z(i)‖ concentrates around 1. Specifically, apply [34,
Proposition 1] to get

P

{
‖z(i)‖2 > 1+ 2

√
t

p
+ 2t

p

}
≤ e−t ,

and set t = 3ε2 p to reach

P

{
‖z(i)‖2 > 1+ 10ε

}
≤ P

{
‖z(i)‖2 > 1+ 2

√
3ε + 6ε2

}
≤ e−3ε2 p.

Taking the union bound we obtain

P

{
∃1 ≤ i ≤ N s.t. ‖z(i)‖2 > 1+ 10ε

}
≤ Ne−3ε2 p = e−ε2 p. (123)

Next, we note that it suffices to prove Lemma 12 for all unit vectors x. The following
lemma provides a bound on

〈
z(i), x

〉
for any fixed unit vector x ∈ R

p.

Lemma 14 Consider any fixed unit vector x ∈ R
p and any given constant 0 < ε < 1,

and set N = exp
(
2ε2 p

)
. There exist positive universal constants c5, c6,C6 > 0 such

that

P

{
N∑
i=1

1{〈z(i),x〉≥ 1
2 ε
} ≤ exp

(
(1− o (1))

7

4
ε2 p

)}

≤ exp

{
−2 exp

(
(1− o (1))

7

4
ε2 p

)}
. (124)

Recognizing that Lemma 12 is a uniform result, we need to extend Lemma 14 to all
x simultaneously, which we achieve via the standard covering argument. Specifically,
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one can find a set C := {
x( j) ∈ R

p | 1 ≤ j ≤ K
}
of unit vectors with cardinality

K = (1+ 2p2
)p

to form a cover of the unit ball of resolution p−2 [65, Lemma 5.2];
that is, for any unit vector x ∈ R

p, there exists a x( j) ∈ C such that

‖x( j) − x‖ ≤ p−2.

Apply Lemma 14 and take the union bound to arrive at

N∑
i=1

1{〈z(i),x( j)〉≥ 1
2 ε
} ≥ exp

(
(1− o(1))

7

4
ε2 p

)
> 1, 1 ≤ j ≤ K (125)

with probability exceeding 1 − K exp
{−2 exp ((1− o(1)) 7

4ε
2 p
)} ≥ 1 − exp{−2 (1− o (1)) exp

(
(1− o(1)) 7

4ε
2 p
)}
. This guarantees that for each x( j), one can

find at least one z(i) obeying 〈
z(i), x( j)

〉
≥ 1

2
ε.

This result together with (123) yields that with probability exceeding 1 − C exp(−cε2 p), for some universal constants C, c > 0.〈
z(i), x

〉
≥
〈
z(i), x( j)

〉
−
〈
z(i), x( j) − x

〉
≥
〈
z(i), x( j)

〉
− ‖z(i)‖ · ‖x( j) − x‖

≥ 1

2
ε − 1

p2
‖z(i)‖ ≥

1
2ε√

1+ 10ε
‖z(i)‖

− 1

p2
‖z(i)‖

≥ 1

30
ε‖z(i)‖

holds simultaneously for all unit vectors x ∈ R
p. Since ε > 0 can be an arbitrary

constant, this concludes the proof.

Proof of Lemma 14 Without loss of generality, it suffices to consider x = e1 =
[1, 0, . . . , 0]�. For any t > 0 and any constant ζ > 0, it comes from [2, Theo-
rem A.1.4] that

P

{
1

N

N∑
i=1

1{〈z(i),e1〉<ζ} > (1+ t)�
(
ζ
√
p
)} ≤ exp

(
−2t2�2 (ζ√p

)
N
)

.

Setting t = 1−�
(
ζ
√
p
)
gives

P

{
1

N

N∑
i=1

1{〈z(i),e1〉<ζ} >
(
2−�

(
ζ
√
p
))

�
(
ζ
√
p
)}

≤ exp
(
−2 (1−�

(
ζ
√
p
))2

�2 (ζ√p
)
N
)

.
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Recall that for any t > 1, one has (t−1 − t−3)φ(t) ≤ 1 −�(t) ≤ t−1φ(t) which
implies that

1−�
(
ζ
√
p
) = exp

(
− (1+ o (1)) ζ 2 p

2

)
.

Taking ζ = 1
2ε, we arrive at(
2−�

(
ζ
√
p
))

�
(
ζ
√
p
) = 1− exp

(
− (1+ o (1)) ζ 2 p

)
= 1− exp

(
− (1+ o (1))

1

4
ε2 p

)
,

(
1−�

(
ζ
√
p
))2

�2 (ζ√p
) = exp

(
− (1+ o (1)) ζ 2 p

)
= exp

(
− (1+ o (1))

1

4
ε2 p

)
! 1

N
.

This justifies that

P

{
N∑
i=1

1{〈z(i),e1〉≥ 1
2 ε
} ≤ N exp

(
− (1+ o (1))

1

4
ε2 p

)}

= P

{
1

N

N∑
i=1

1{〈z(i),e1〉<ζ} >
(
2−�

(
ζ
√
p
))

�
(
ζ
√
p
)}

≤ exp

{
−2 exp

(
− (1+ o (1))

1

4
ε2 p

)
N

}

= exp

{
−2 exp

(
(1− o (1))

7

4
ε2 p

)}

as claimed. ��

D.2 Proof of Lemma 13

First of all, recall from the definition (19) that

δ(Bi ) = E

[∥∥�Bi (g)
∥∥2] = E

[
‖g‖2 − min

u∈Bi

‖g − u‖2
]
= n − E

[
min
u∈Bi

‖g − u‖2
]

≤ n − E

[
min
u∈Di

‖g − u‖2
]

,

where g ∼ N (0, In), and Di is a superset of Bi defined by

Di :=
⎧⎨
⎩u ∈ R

n |
n∑
j=1

max
{−u j , 0

} ≤ ε
√
n‖u‖

⎫⎬
⎭ . (126)
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Recall from the triangle inequality that

‖g − u‖ ≥ ‖u‖ − ‖g‖ > ‖g‖ = ‖g − 0‖, ∀u : ‖u‖ > 2‖g‖.

Since 0 ∈ Di , this implies that

∥∥∥ arg min
u∈Di

‖g − u‖
∥∥∥ ≤ 2‖g‖,

revealing that

E

[
min
u∈Di

‖g − u‖2
]
= E

[
min

u∈Di ,‖u‖≤2‖g‖
‖g − u‖2

]
.

In what follows, it suffices to look at the set of u’s withinDi obeying ‖u‖ ≤ 2‖g‖,
which verify

n∑
j=1

max
{−u j , 0

} ≤ ε
√
n‖u‖ ≤ 2ε

√
n‖g‖. (127)

It is seen that

‖g − u‖2 ≥
∑
i :gi<0

(gi − ui )
2 =

⎧⎪⎨
⎪⎩

∑
i :gi<0,ui≥0

+
∑

i :gi<0, −√ ε
n ‖g‖<ui<0

+
∑

i :gi<0, ui≤−
√

ε
n ‖g‖

⎫⎪⎬
⎪⎭ (gi − ui )

2

≥
∑

i :gi<0,ui≥0
g2i +

∑
i :gi<0, −√ ε

n ‖g‖<ui<0

(gi − ui )
2

≥
∑

i :gi<0,ui≥0
g2i +

∑
i :gi<0, −√ ε

n ‖g‖<ui<0

(
g2i − 2ui gi

)

≥
∑

i :gi<0, ui>−
√

ε
n ‖g‖

g2i −
∑

i :gi<0, −√ ε
n ‖g‖<ui<0

2ui gi . (128)

1. Regarding the first term of (128), we first recognize that

{
i | ui ≤ −

√
ε

n
‖g‖

}
≤
∑

i : ui<0 |ui |√
ε
n ‖g‖

=
∑n

i=1 max {−ui , 0}√
ε
n ‖g‖

≤ 2
√

εn,
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where the last inequality follows from the constraint (127). As a consequence,

∑
i :gi<0, ui>−

√
ε
n ‖g‖

g2i ≥
∑
i :gi<0

g2i −
∑

i :ui≤−
√

ε
n ‖g‖

g2i

≥
∑
i :gi<0

g2i − max
S⊆[n]: |S|=2√εn

∑
i∈S

g2i .

2. Next, we turn to the second term of (128), which can be bounded by

∑
i :gi<0, −√ ε

n ‖g‖<ui<0

ui gi

≤

√√√√√√
⎛
⎜⎝ ∑

i :gi<0, −√ ε
n ‖g‖<ui<0

u2i

⎞
⎟⎠
⎛
⎜⎝ ∑

i :gi<0, −√ ε
n ‖g‖<ui<0

g2i

⎞
⎟⎠

≤

√√√√√
(

max
i :−√ ε

n ‖g‖<ui<0
|ui |
)⎛⎝ ∑

i :ui<0

|ui |
⎞
⎠ · ‖g‖2

≤

√√√√√√ ε

n
‖g‖

⎛
⎝ ∑

i :ui<0

|ui |
⎞
⎠ · ‖g‖2 ≤ √2ε 3

4 ‖g‖2,

where the last inequality follows from the constraint (127).

Putting the above results together, we have

‖g − u‖2 ≥
∑
i :gi<0

g2i − max
S⊆[n]: |S|=2√εn

∑
i∈S

g2i − 2
√
2ε

3
4 ‖g‖2

for any u ∈ Di obeying ‖u‖ ≤ 2‖g‖, whence

E

[
min
u∈Di

‖g − u‖2
]
≥ E

⎡
⎣ ∑
i :gi<0

g2i − max
S⊆[n]: |S|=2√εn

∑
i∈S

g2i − 2
√
2ε

3
4 ‖g‖2

⎤
⎦

=
(
1

2
− 2
√
2ε

3
4

)
n − E

[
max

S⊆[n]: |S|=2√εn

∑
i∈S

g2i

]
. (129)

Finally, it follows from [34, Proposition 1] that for any t > 2
√

εn,

P

{∑
i∈S

g2i ≥ 5t

}
≤ P

{∑
i∈S

g2i ≥ |S| + 2
√|S|t + 2t

}
≤ e−t ,
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which together with the union bound gives

P

{
max

S⊆[n]: |S|=2√εn

∑
i∈S

g2i ≥ 5t

}
≤

∑
S⊆[n]: |S|=2√εn

P

{∑
i∈S

g2i ≥ 5t

}

≤ exp
{
H
(
2
√

ε
)
n − t

}
.

This gives

E

[
max

S⊆[n]: |S|=2√εn

∑
i∈S

g2i

]
=
∫ ∞

0
P

{
max

S⊆[n]: |S|=2√εn

∑
i∈S

g2i ≥ t

}
dt

≤ 5H
(
2
√

ε
)
n +

∫ ∞
5H(2

√
ε)n

exp

{
H
(
2
√

ε
)
n − 1

5
t

}
dt

< 10H
(
2
√

ε
)
n,

for any given ε > 0 with the proviso that n is sufficiently large. This combined with
(129) yields

E

[
min
u∈Di

‖g − u‖2
]
≥
(
1

2
− 2
√
2ε

3
4 − 10H(2

√
ε)

)
n (130)

as claimed.

E Proof of Lemma 8

Throughout, we shall restrict ourselves on the event An as defined in (86), on which
G̃ � λlb I . Recalling the definitions of G̃ and w from (82) and (89), we see that

w�G̃−2w = 1

n2
X�·1Dβ̃

X̃
(
1

n
X̃
�
D

β̃
X̃
)−2

X̃
�
D

β̃
X ·1

≤
∥∥X�·1∥∥2

n

∥∥∥∥∥1n D
β̃
X̃
(
1

n
X̃
�
D

β̃
X̃
)−2

X̃
�
D

β̃

∥∥∥∥∥ . (131)

If we let the singular value decomposition of 1√
n
D1/2

β̃
X̃ beU�V�, then a little algebra

gives � � √λlb I and

1

n
D1/2

β̃
X̃
(
1

n
X̃
′
D

β̃
X̃
)−2

X̃
�
D1/2

β̃
= U�−2U� " λ−1lb I .
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Substituting this into (131) and using the fact ‖X ·1‖2 � n with high probability (by
Lemma 2), we obtain

w�G̃−2w � 1

nλlb
‖X ·1‖2 � 1

with probability at least 1− exp(−�(n)).

F Proof of Lemma 9

Throughout this and the subsequent sections, we consider Hn and Kn to be two diverg-
ing sequences with the following properties:

Hn = o
(
nε
)
, Kn = o

(
nε
)
, n2 exp

(
−c1H2

n

)
= o(1), n exp

(
−c2K 2

n

)
= o(1),

(132)

for any constants ci > 0, i = 1, 2 and any ε > 0. This lemma is an analogue of [25,
Proposition 3.18]. We modify and adapt the proof ideas to establish the result in our
setup. Throughout we shall restrict ourselves to the event An , on which G̃ � λlb I .

Due to independence between X ·1 and {Dβ̃
, H}, one can invoke theHanson-Wright

inequality [52, Theorem 1.1] to yield

P

(∣∣∣∣1n X�·1D1/2

β̃
HD1/2

β̃
X ·1 − 1

n
Tr
(
D1/2

β̃
HD1/2

β̃

)∣∣∣∣ > t

∣∣∣∣ H, D
β̃

)

≤ 2 exp

⎛
⎝−cmin

⎧⎨
⎩ t2

K 4

n2

∥∥D1/2

β̃
HD1/2

β̃

∥∥2
F

,
t

K 2

n

∥∥D1/2

β̃
HD1/2

β̃

∥∥
⎫⎬
⎭
⎞
⎠

≤ 2 exp

⎛
⎝−cmin

⎧⎨
⎩ t2

K 4

n

∥∥D1/2

β̃
HD1/2

β̃

∥∥2 ,
t

K 2

n

∥∥D1/2

β̃
HD1/2

β̃

∥∥
⎫⎬
⎭
⎞
⎠ ,

where ‖.‖F denotes the Frobenius norm. Choose t = C2
∥∥D1/2

β̃
HD1/2

β̃

∥∥Hn/
√
n with

C > 0 a sufficiently large constant, and take Hn to be as in (132). Substitution into
the above inequality and unconditioning give

P

(∣∣∣∣1n X�·1D1/2

β̃
HD1/2

β̃
X ·1 − 1

n
Tr
(
D1/2

β̃
HD1/2

β̃

)∣∣∣∣ >
1√
n
C2Hn‖D1/2

β̃
HD1/2

β̃
‖
)

≤ 2 exp

(
−cmin

{
C4H2

n

K 4 ,
C2√nHn

K 2

})
= C exp

(
−cH2

n

)
= o(1), (133)

for some universal constants C, c > 0.
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We are left to analyzing Tr
(
D1/2

β̃
HD1/2

β̃

)
. Recall from the definition (92) of H that

D1/2

β̃
HD1/2

β̃
= D

β̃
− 1

n
D

β̃
X̃ G̃
−1

X̃
�
D

β̃
,

and, hence,

Tr
(
D1/2

β̃
HD1/2

β̃

)
=

n∑
i=1

(
ρ′′(X̃�i β̃)− ρ′′(X̃�i β̃)2

n
X̃
�
i G̃
−1

X̃ i

)
. (134)

This requires us to analyze G̃
−1

carefully. To this end, recall that the matrix G̃(i)

defined in (83) obeys

G̃(i) = G̃ − 1

n
ρ′′(X̃�β̃)X̃ i X̃

�
i .

Invoking Sherman–Morrison–Woodbury formula (e.g. [31]), we have

G̃
−1 = G̃

−1
(i) −

ρ′′(X̃�i β̃)

n G̃
−1
(i) X̃ i X̃

�
i G̃
−1
(i)

1+ ρ′′(X̃�i β̃)

n X̃
�
i G̃
−1
(i) X̃ i

. (135)

It follows that

X̃
�
i G̃
−1

X̃ i = X̃
�
i G̃
−1
(i) X̃ i −

ρ′′(X̃�i β̃)

n (X�i G̃
−1
(i) X̃ i )

2

1+ ρ′′(X̃�i β̃)

n X̃
�
i G̃
−1
(i) X̃ i

,

which implies that

X̃
�
i G̃
−1

X̃ i =
X̃
�
i G̃
−1
(i) X̃ i

1+ ρ′′(X̃�i β̃)

n X̃
�
i G̃
−1
(i) X̃ i

. (136)

The relations (134) and (136) taken collectively reveal that

1

n
Tr
(
D1/2

β̃
HD1/2

β̃

)
= 1

n

n∑
i=1

ρ′′(X̃ i β̃)

1+ ρ′′(X̃�i β̃)

n X̃
�
i G̃
−1
(i) X̃ i

. (137)

We shall show that the trace above is close to Tr(I−H) up to some factors. For this
purpose we analyze the latter quantity in two different ways. To begin with, observe
that
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Tr(I − H) = Tr

( D1/2

β̃
X̃ G̃
−1

X̃
�
D1/2

β̃

n

)
= Tr(G̃G̃

−1
) = p − 1. (138)

On the other hand, it directly follows from the definition of H and (136) that the i th
diagonal entry of H is given by

Hi,i = 1

1+ ρ′′(X̃�i β̃)

n X̃
�
i G̃
−1
(i) X̃ i

.

Applying this relation, we can compute Tr(I − H) analytically as follows:

Tr(I − H) =
∑
i

ρ′′(X̃�i β̃)

n X̃
�
i G̃
−1
(i) X̃ i

1+ ρ′′(X̃�i β̃)

n X̃
�
i G̃
−1
(i) X̃ i

(139)

=
∑
i

ρ′′(X̃�i β̃)α̃ + ρ′′(X̃�i β̃)

n X̃
�
i G̃
−1
(i) X̃ i − ρ′′(X̃�i β̃)α̃

1+ ρ′′(X̃�i β̃)

n X̃
�
i G̃
−1
(i) X̃ i

=
∑
i

ρ′′(X̃�i β̃)α̃Hi,i +
∑
i

ρ′′(X̃�i β̃)
(
1
n X̃
�
i G̃
−1
(i) X̃ i − α̃

)
1+ ρ′′(X̃�i β̃)

n X̃
�
i G̃
−1
(i) X̃ i

, (140)

where α̃ := 1
nTr

(
G̃
−1)

.

Observe that the first quantity in the right-hand side above is simply α̃Tr
(
D1/2

β̃

HD1/2

β̃

)
. For simplicity, denote

ηi = 1

n
X̃
�
i G̃
−1
(i) X̃ i − α̃. (141)

Note that G̃(i) � 0 onAn and that ρ′′ > 0. Hence the denominator in the second term
in (140) is greater than 1 for all i . Comparing (138) and (140), we deduce that

∣∣∣∣ p − 1

n
− 1

n
Tr
(
D1/2

β̃
HD1/2

β̃

)
α̃

∣∣∣∣ ≤ sup
i
|ηi | · 1

n

∑
i

|ρ′′(X̃�i β̃)| � sup
i
|ηi |

(142)

on An . It thus suffices to control supi |ηi |. The above bounds together with Lemma
(87) and the proposition below complete the proof.
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Proposition 1 Let ηi be as defined in (141). Then there exist universal constants
C1,C2,C3 > 0 such that

P

(
sup
i
|ηi | ≤ C1K 2

n Hn√
n

)
≥ 1− C2n

2 exp
(
−c2H2

n

)
− C3n exp

(
−c3K 2

n

)
− exp (−C4n (1+ o(1))) = 1− o(1),

where Kn, Hn are diverging sequences as specified in (132).

Proof of Proposition 1 Fix any index i . Recall that β̃[−i] is the MLE when the 1st

predictor and i th observation are removed. Also recall the definition of G̃[−i] in (85).
The proof essentially follows three steps. First, note that X̃ i and G̃[−i] are independent.
Hence, an application of the Hanson-Wright inequality [52] yields that

P

(∣∣∣∣1n X̃�i G̃−1[−i] X̃ i − 1

n
Tr
(
G̃
−1
[−i]
)∣∣∣∣ > t

∣∣∣∣ G̃[−i]
)

≤ 2 exp

⎛
⎝−cmin

⎧⎨
⎩ t2

K 4

n2

∥∥G̃−1[−i]∥∥2F ,
t

K 2

n

∥∥G̃−1[−i]∥∥
⎫⎬
⎭
⎞
⎠

≤ 2 exp

⎛
⎝−cmin

⎧⎨
⎩ t2

K 4

n

∥∥G̃−1[−i]∥∥2 ,
t

K 2

n

∥∥G̃−1[−i]∥∥
⎫⎬
⎭
⎞
⎠ .

We choose t = C2
∥∥G̃−1[−i]∥∥Hn/

√
n, where C > 0 is a sufficiently large constant.

Now marginalizing gives

P

(∣∣∣∣1n X̃�i G̃−1[−i] X̃ i − 1

n
Tr
(
G̃
−1
[−i]
)∣∣∣∣ > C2

∥∥G̃−1[−i]∥∥ Hn√
n

)

≤ 2 exp

(
−cmin

{
C4H2

n

K 4 ,
C2√nHn

K 2

})

≤ 2 exp
(
−C ′H2

n

)
,

where C ′ > 0 is a sufficiently large constant. On An , the spectral norm
∥∥G̃−1(i)

∥∥ is
bounded above by λlb for all i . Invoking (87) we obtain that there exist universal
constants C1,C2,C3 > 0 such that

P

(
sup
i

∣∣∣∣1n X̃�i G̃−1[−i] X̃ i − 1

n
Tr
(
G̃
−1
[−i]
)∣∣∣∣ > C1

Hn√
n

)
≤ C2n exp

(
−C3H

2
n

)
. (143)

The next step consists of showing that Tr
(
G̃
−1
[−i]
)
(resp. X̃

�
i G̃
−1
[−i] X̃ i ) and Tr

(
G̃
−1
(i)

)
(resp. X̃

�
i G̃
−1
(i) X̃ i ) are uniformly close across all i . This is established in the following

lemma.
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Lemma 15 Let G̃(i) and G̃[−i] be defined as in (83) and (85), respectively. Then there
exist universal constants C1,C2,C3,C4, c2, c3 > 0 such that

P

(
sup
i

∣∣∣∣1n X̃�i G̃−1(i) X̃ i − 1

n
X̃
�
i G̃
−1
[−i] X̃ i

∣∣∣∣ ≤ C1
K 2
n Hn√
n

)

= 1− C2n
2 exp

(
−c2H2

n

)
− C3n exp

(
−c3K 2

n

)
− exp (−C4n (1+ o(1))) = 1− o(1), (144)

P

(
sup
i

∣∣∣∣1nTr
(
G̃
−1
(i)

)− 1

n
Tr
(
G̃
−1
[−i]
)∣∣∣∣ ≤ C1

K 2
n Hn√
n

)

= 1− C2n
2 exp

(
−c2H2

n

)
− C3n exp

(
−c3K 2

n

)
− exp (−C4n (1+ o(1))) = 1− o(1), (145)

where Kn, Hn are diverging sequences as defined in (132).

This together with (143) yields that

P

(
sup
i

∣∣∣∣1n X̃�i G̃−1(i) X̃ i − 1

n
Tr(G̃

−1
(i) )

∣∣∣∣ > C1
K 2
n Hn√
n

)

≤ C2n
2 exp

(
−c2H2

n

)
+ C3n exp

(
−c3K 2

n

)
+ exp (−C4n (1+ o(1))) .

(146)

The final ingredient is to establish that 1
nTr

(
G̃
−1
(i)

)
and 1

nTr
(
G̃
−1)

are uniformly close
across i .

Lemma 16 Let G̃ and G̃(i) be as defined in (82) and (83), respectively. Then one has

P

(∣∣∣Tr(G̃−1(i)

)− Tr
(
G̃
−1)∣∣∣ ≤ 1

λlb

)
≥ 1− exp (−�(n)) . (147)

This completes the proof. ��
Proof of Lemma 15 For two invertible matrices A and B of the same dimensions, the
difference of their inverses can be written as

A−1 − B−1 = A−1(B − A)B−1.

Applying this identity, we have

G̃
−1
(i) − G̃

−1
[−i] = G̃

−1
(i)

(
G̃[−i] − G̃(i)

)
G̃
−1
[−i].

From the definition of these matrices, it follows directly that

G̃[−i] − G̃(i) = 1

n

∑
j : j �=i

(
ρ′′
(
X̃
�
j β̃[−i]

)− ρ′′
(
X̃
�
j β̃
))

X̃ j X̃
�
j . (148)
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As ρ′′′ is bounded, by the mean-value theorem, it suffices to control the differences

X�j β̃[−i] − X̃
�
j β̃ uniformly across all j . This is established in the following lemma,

the proof of which is deferred to Appendix H.

Lemma 17 Let β̂ be the full modelMLEand β̂ [−i] be theMLEwhen the i th observation
is dropped. Let qi be as described in Lemma 18 and Kn, Hn be as in (132). Then there
exist universal constants C1,C2,C3,C4, c2, c3 > 0 such that

P

(
sup
j �=i

∣∣∣X�j β̂[−i] − X�j β̂

∣∣∣ ≤ C1
K 2
n Hn√
n

)

≥ 1− C2n exp
(
−c2H2

n

)
− C3 exp

(
−c3K 2

n

)
− exp (−C4n (1+ o(1))) = 1− o(1), (149)

P

(
sup
i
|X�i β̂ − proxqiρ(X�i β̂[−i])| ≤ C1

K 2
n Hn√
n

)

≥ 1− C2n exp
(
−c2H2

n

)
− C3 exp

(
−c3K 2

n

)
− exp (−C4n (1+ o(1))) = 1− o(1). (150)

Invoking this lemma, we see that the spectral norm of (148) is bounded above by some
constant times

K 2
n Hn√
n

∥∥∥ ∑
j : j �=i

X̃ j X̃
�
j /n

∥∥∥

with high probability as specified in (149). From Lemma 2, the spectral norm here is
bounded by some constant with probability at least 1− c1 exp(−c2n). These observa-
tions together with (87) and the fact that onAn the minimum eigenvalues of G̃(i) and
G̃[−i] are bounded by λlb yield that

P

(∥∥G̃−1(i) − G̃
−1
[−i]
∥∥ ≤ C1

K 2
n Hn√
n

)
≥ 1− C2n exp

(
−c2H2

n

)
− C3 exp

(
−c3K 2

n

)
− exp (−C4n (1+ o(1))) .

This is true for any i . Hence, taking the union bound we obtain

P

(
sup
i

∥∥G̃−1(i) − G̃
−1
[−i]
∥∥ ≤ C1

K 2
n Hn√
n

)

≥ 1− C2n
2 exp

(
−c2H2

n

)
− C3n exp

(
−c3K 2

n

)
− exp (−C4n (1+ o(1))) .

(151)
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In order to establish the first result, note that

sup
i

1

n

∣∣∣X̃�i G̃−1(i) X̃ i − X̃
�
i G̃
−1
[−i] X̃ i

∣∣∣ ≤ sup
i

‖X̃ i‖2
n

sup
i
‖G̃−1(i) − G̃

−1
[−i]‖.

To obtain the second result, note that

sup
i

∣∣∣∣1nTr(G̃−1(i) )−
1

n
Tr(G̃

−1
[−i])

∣∣∣∣ ≤ p − 1

n
sup
i
‖G̃−1(i) − G̃

−1
[−i]‖.

Therefore, combining (151) and Lemma 2 gives the desired result. ��
Proof of Lemma 16 We restrict ourselves to the eventAn throughout. Recalling (135),
one has

Tr(G̃
−1
(i) )− Tr(G̃

−1
) = ρ′′(X̃�i β̃)

n

X̃
�
i G̃
−2
(i) X̃ i

1+ ρ′′(X̃�i β̃)

n X̃
�
i G̃
−1
(i) X̃ i

.

In addition, on An we have

1

λlb
X̃
�
i G̃
−1
(i) X̃ i − X̃

�
i G̃
−2
(i) X̃ i = 1

λlb
X̃
�
i G̃
−1
(i)

(
G̃(i) − λlb I

)
G̃
−1
(i) X̃ i ≥ 0.

Combining these results and recognizing that ρ′′ > 0, we get

∣∣∣Tr(G̃−1(i) )− Tr(G̃
−1

)

∣∣∣ ≤ ρ′′(X̃�i β̃)

n

1
λlb

X̃
�
i G̃
−1
(i) X̃ i

1+ ρ′′(X̃�i β̃)

n X̃
�
i G̃
−1
(i) X̃ i

≤ 1

λlb
(152)

as claimed. ��

G Proof of Lemma 11

Again, we restrict ourselves to the event An on which G̃ � λlb I . Note that

X̃
�
i G̃
−1

w = 1

n
X̃
�
i G̃
−1

X̃
�
D

β̃
X ·1.

Note that {G̃, X̃} and X ·1 are independent. Conditional on X̃ , the left-hand side is

Gaussian with mean zero and variance 1
n2
X̃
�
i G̃
−1

X̃
�
D2

β̃
X̃ G̃
−1

X̃ i . The variance is

bounded above by
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σ 2
X :=

1

n2
X̃
�
i G̃
−1

X̃
�
D2

β̃
X̃ G̃
−1

X̃ i ≤sup
i

∣∣ρ′′(X̃�i β̃)
∣∣ · 1

n2
X̃
�
i G̃
−1

X̃
�
D

β̃
X̃ G̃
−1

X̃ i

= 1

n
sup
i

∣∣ρ′′(X̃�i β̃)
∣∣ · X̃�i G̃−1 X̃ i � 1

n
‖X̃ i‖2 (153)

In turn, Lemma 2 asserts that n−1‖X̃ i‖2 is bounded by a constantwith high probability.
As a result, applying Gaussian concentration results [60, Theorem 2.1.12] gives

|X̃�i G̃−1w| � Hn

with probability exceeding 1−C exp
(−cH2

n

)
, whereC, c > 0 are universal constants.

In addition, supi |Xi1| � Hn holds with probability exceeding 1−C exp
(−cH2

n

)
.

Putting the above results together, applying the triangle inequality |Xi1− X̃
�
i G̃
−1

w| ≤
|Xi1| + |X̃�i G̃−1w|, and taking the union bound, we obtain

P

(
sup

1≤i≤n
|Xi1 − X̃

�
i G̃
−1

w| � Hn

)
≥ 1− Cn exp

(
−cH2

n

)
= 1− o(1).

H Proof of Lemma 17

The goal of this section is to prove Lemma 17, which relates the full-model MLE β̂

and the MLE β̂[−i]. To this end, we establish the key lemma below.

Lemma 18 Suppose β̂[−i] denote the MLE when the i th observation is dropped. Fur-

ther let G[−i] be as in (84), and define qi and b̂ as follows:

qi = 1

n
X�i G

−1
[−i]X i ;

b̂ = β̂[−i] −
1

n
G−1[−i]X i

(
ρ′
(
proxqiρ

(
X�i β̂[−i]

)))
. (154)

Suppose Kn, Hn are diverging sequences as in (132). Then there exist universal con-
stants C1,C2,C3 > 0 such that

P

(
‖β̂ − b̂‖ ≤ C1

K 2
n Hn

n

)
≥ 1− C2n exp(−c2H2

n )

−C3 exp(−c3K 2
n )− exp(−C4n(1+ o(1))); (155)

P

(
sup
j �=i
∣∣X�j β̂[−i] − X�j b̂

∣∣ ≤ C1
KnHn√

n

)

≥ 1− C2n exp
(
−c2H2

n

)
− C3 exp

(
−c3K 2

n

)
− exp (−C4n (1+ o(1))) . (156)
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The proof ideas are inspired by the leave-one-observation-out approach of [25]. We
however emphasize once more that the adaptation of these ideas to our setup is not
straightforward and crucially hinges on Theorem 4, Lemma 7 and properties of the
effective link function.

Proof of Lemma 18 Invoking techniques similar to that for establishing Lemma 7, it
can be shown that

1

n

n∑
i=1

ρ′′(γ ∗i )X iX�i � λlb I (157)

with probability at least 1− exp(�(n)), where γ ∗i is between X�i b̂ and X�i β̂. Denote
by Bn the event where (157) holds. Throughout this proof, we work on the event
Cn := An ∩ Bn , which has probability 1− exp (−�(n)). As in (107) then,

‖β̂ − b̂‖ ≤ 1

nλlb

∥∥∇�(b̂)
∥∥. (158)

Next, we simplify (158). To this end, recall the defining relation of the proximal
operator

bρ′(proxbρ(z))+ proxbρ(z) = z,

which together with the definitions of b̂ and qi gives

X�i b̂ = proxqiρ
(
X�i β̂[−i]

)
. (159)

Now, let �[−i] denote the negative log-likelihood function when the i th observation is
dropped, and hence ∇�[−i]

(
β̂[−i]

) = 0. Expressing ∇�(b̂) as ∇�(b̂)−∇�[−i]
(
β̂[−i]

)
,

applying the mean value theorem, and using the analysis similar to that in [25, Propo-
sition 3.4], we obtain

1

n
∇�(b̂) = 1

n

∑
j : j �=i

[
ρ′′(γ ∗j )− ρ′′(X�j β̂[−i])

]
X jX�j

(
b̂− β̂[−i]

)
, (160)

where γ ∗j is between X�j b̂ and X�j β̂[−i]. Combining (158) and (160) leads to the upper
bound

‖β̂ − b̂‖ ≤ 1

λlb

∥∥∥∥∥∥
1

n

∑
j : j �=i

X jX�j

∥∥∥∥∥∥ · supj �=i

∣∣∣ρ′′(γ ∗j )− ρ′′
(
X�j β̂[−i]

)∣∣∣ ·
∥∥∥∥1nG−1[−i]X i

∥∥∥∥
·
∣∣∣ρ′ (proxqiρ(X�i β̂[−i])

)∣∣∣ . (161)
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We need to control each term in the right-hand side. To start with, the first term is
bounded by a universal constant with probability 1 − exp(−�(n)) (Lemma 2). For
the second term, since γ ∗j is between X�j b̂ and X�j β̂[−i] and ‖ρ′′′‖∞ <∞, we get

sup
j �=i
∣∣ρ′′(γ ∗j )− ρ′′(X�j β̂[−i])

∣∣ ≤ ‖ρ′′′‖∞‖X�j b̂− X�j β̂[−i]‖ (162)

≤ ‖ρ′′′‖∞
∣∣∣∣1n X�j G−1[−i]X iρ

′(proxqiρ(X�i β̂[−i]
))∣∣∣∣ (163)

≤ ‖ρ′′′‖∞ 1

n
sup
j �=i

∣∣∣X�j G−1[−i]X i

∣∣∣ · ∣∣∣ρ′ (proxqiρ(X�i β̂[−i])
)∣∣∣ . (164)

Given that {X j , G[−i]} and X i are independent for all j �= i , conditional on
{X j , G[−i]} one has

X�j G
−1
[−i]X i ∼ N

(
0, X�j G

−2
[−i]X j

)
.

In addition, the variance satisfies

|X�j G−2[−i]X j | ≤ ‖X j‖2
λ2lb

� n (165)

with probability at least 1− exp(−�(n)). Applying standard Gaussian concentration
results [60, Theorem 2.1.12], we obtain

P

(
1√
p

∣∣∣X�j G−1[−i]X i

∣∣∣ ≥ C1Hn

)
≤ C2 exp

(
−c2H2

n

)
+ exp (−C3n (1+ o(1))) .

(166)

By the union bound

P

(
1√
p
sup
j �=i
∣∣X�j G−1[−i]X i

∣∣ ≤ C1Hn

)
≥ 1− nC2 exp

(
−c2H2

n

)
− exp (−C3n (1+ o(1))) . (167)

Consequently,

sup
j �=i
∣∣ρ′′(γ ∗j )− ρ′′(X�j β̂[−i])

∣∣ � sup
j �=i
‖X�j b̂− X�j β̂[−i]‖

� 1√
n
Hn

∣∣∣ρ′ (proxqiρ(X�i β̂[−i])
)∣∣∣ . (168)

In addition, the third term in the right-hand side of (161) can be upper bounded as well
since
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1

n
‖G−1[−i]X i‖ = 1

n

√
|X�i G−2[−i]X i | � 1√

n
(169)

with high probability.

It remains to bound
∣∣∣ρ′ (proxqiρ(X�i β̂[−i])

)∣∣∣. To do this, we begin by considering
ρ′(proxcρ(Z)) for any constant c > 0 (rather than a random variable qi ). Recall that
for any constant c > 0 and any Z ∼ N (0, σ 2) with finite variance, the random
variable ρ′(proxcρ(Z)) is sub-Gaussian. Conditional on β̂[−i], one has X�i β̂[−i] ∼
N (0, ‖β̂[−i]‖2). This yields

P

(
ρ′
(
proxcρ(X�i β̂[−i])

)
≥ C1Kn

)
≤ C2 E

[
exp

(
− C2

3K
2
n

‖β̂[−i]‖2
)]

≤ C2 exp
(
−C3K

2
n

)
+ C4 exp (−C5n)

(170)

for some constants C1,C2,C3,C4,C5 > 0 since‖β̂[−i]‖ is bounded with high prob-
ability (see Theorem 4).

Note that
∂proxbρ(z)

∂b ≤ 0 by [22, Proposition 6.3]. Hence, in order to move over
from the above concentration result established for a fixed constant c to the random
variables qi , it suffices to establish a uniform lower bound for qi with high probability.
Observe that for each i ,

qi ≥ ‖X i‖2
n

1∥∥G[−i]∥∥ ≥ C∗

with probability 1−exp(−�(n)), whereC∗ is some universal constant. On this event,
one has

ρ′
(
proxqiρ

(
X�i β̂[−i]

))
≤ ρ′

(
proxC∗ρ

(
X�i β̂[−i]

))
.

This taken collectively with (170) yields

P

(
ρ′(proxqiρ(X�i β̂[−i])) ≤ C1Kn

)
≥ P

(
ρ′(proxC∗ρ(X�i β̂[−i])) ≤ C1Kn

)
(171)

≥ 1− C2 exp
(
−C3K

2
n

)
− C4 exp (−C5n) .

(172)

This controls the last term.
To summarize, if {Kn} and {Hn} are diverging sequences satisfying the assumptions

in (132), combining (161) and the bounds for each term in the right-hand side finally
gives (155). On the other hand, combining (167) and (172) yields (156). ��
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With the help of Lemma 18 we are ready to prove Lemma 17. Indeed, observe that

∣∣X�j (β̂[−i] − β̂)
∣∣ ≤ ∣∣X�j (b̂− β̂)

∣∣+ ∣∣X�j (β̂[−i] − b̂)
∣∣,

and hence by combining Lemmas 2 and 18, we establish the first claim (149). The
second claim (150) follows directly from Lemmas 2, 18 and (159).

I Proof of Theorem 7(b)

This section proves that the randomsequence α̃ = Tr
(
G̃
−1)

/n converges in probability
to the constant b∗ defined by the system of Eqs. (25) and (26). To begin with, we claim
that α̃ is close to a set of auxiliary random variables {q̃i } defined below.

Lemma 19 Define q̃i to be

q̃i = 1

n
X̃
�
i G̃
−1
[−i] X̃ i ,

where G̃[−i] is defined in 85.
Then there exist universal constants C1,C2,C3,C4, c2, c3 > 0 such that

P

(
sup
i
|q̃i − α̃| ≤ C1

K 2
n Hn√
n

)

≥ 1− C2n
2 exp

(
c2H

2
n

)
− C3n exp

(
−c3K 2

n

)
− exp (−C4n (1+ o(1))) = 1− o(1),

where Kn, Hn are as in (132).

Proof This result follows directly from Proposition 1 and Eq. (144). ��

A consequence is that proxq̃iρ
(
X�i β̂[−i]

)
becomes close to proxα̃ρ

(
X�i β̂[−i]

)
.

Lemma 20 Let q̃i and α̃ be as defined earlier. Then one has

P

(
sup
i

∣∣∣proxq̃iρ (X�i β̂[−i]
)
− proxα̃ρ

(
X�i β̂[−i]

)∣∣∣ ≤ C1
K 3
n Hn√
n

)

≥ 1− C2n
2 exp

(
−c2H2

n

)
− C3n exp

(
−c3K 2

n

)
− exp (−C4n (1+ o(1))) = 1− o(1), (173)

where Kn, Hn are as in (132).

The key idea behind studying proxα̃ρ

(
X�i β̂[−i]

)
is that it is connected to a random

function δn(·) defined below, which happens to be closely related to the Eq. (26). In
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fact, we will show that δn(α̃) converges in probability to 0; the proof relies on the con-

nection between proxα̃ρ

(
X�i β̂[−i]

)
and the auxiliary quantity proxq̃iρ

(
X�i β̂[−i]

)
.

The formal results is this:

Proposition 2 For any index i , let β̂[−i] be the MLE obtained on dropping the i th
observation. Define δn(x) to be the random function

δn(x) := p

n
− 1+ 1

n

n∑
i=1

1

1+ xρ′′
(
proxxρ

(
X�i β̂[−i]

)) . (174)

Then one has δn(α̃)
P→ 0.

Furthermore, the random function δn(x) converges to a deterministic function�(x)
defined by

�(x) = κ − 1+ EZ

[
1

1+ xρ′′(proxxρ(τ∗Z))

]
, (175)

where Z ∼ N (0, 1), and τ∗ is such that (τ∗, b∗) is the unique solution to (25) and
(26).

Proposition 3 With �(x) as in (175), �(α̃)
P→ 0.

In fact, one can easily verify that

�(x) = κ − E
[
� ′ (τ∗Z; x)

]
, (176)

and hence by Lemma 5, the solution to �(x) = 0 is exactly b∗. As a result, putting
the above claims together, we show that α̃ converges in probability to b∗.

It remains to formally prove the preceding lemmas and propositions, which is the
goal of the rest of this section.

Proof of Lemma 20 By [22, Proposition 6.3], one has

∂proxbρ(z)

∂b
= − ρ′(x)

1+ bρ′′(x)

∣∣∣∣
x=proxbρ(z)

,

which yields

sup
i

∣∣∣proxq̃iρ (X�i β̂[−i]
)
− proxα̃ρ

(
X�i β̂[−i]

)∣∣∣
= sup

i

⎡
⎣
∣∣∣∣∣∣

ρ′(x)
1+ qα̃,iρ

′′(x)

∣∣∣∣
x=proxqα̃,i ρ

(
X�i β̂[−i]

)
∣∣∣∣∣∣ · |q̃i − α̃|

⎤
⎦

≤ sup
i

∣∣∣ρ′ (proxqα̃,i
(X�i β̂[−i])

)∣∣∣ · sup
i
|q̃i − α̃|, (177)

where qα̃,i is between q̃i and α̃. Here, the last inequality holds since qα̃,i , ρ
′′ ≥ 0.
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In addition, just as in the proof of Lemma 18, one can show that qi is bounded below
by some constant C∗ > 0 with probability 1− exp(−�(n)). Since qα̃,i ≥ min{q̃i , α̃},
on the event supi |q̃i − α̃| ≤ C1K 2

n Hn/
√
n, which happens with high probability

(Lemma 19), qα̃,i ≥ Cα for some universal constant Cα > 0. Hence, by an argument
similar to that establishing (172), we have

P

(
sup
i

∣∣∣ρ′ (proxqα̃,i

(
X�i β̂[−i]

))∣∣∣ ≥ C1Kn

)

≤ C2n
2 exp

(
−c2H2

n

)
+ C3n exp

(
−c3K 2

n

)
+ exp (−C4n (1+ o(1))) .

This together with (177) and Lemma 19 concludes the proof. ��
Proof of Proposition 2 To begin with, recall from (138) and (139) that on An ,

p − 1

n
=

n∑
i=1

ρ′′(X̃�i β̃)

n X̃
�
i G̃
−1
(i) X̃ i

1+ ρ′′(X̃�i β̃)

n X̃
�
i G̃
−1
(i) X̃ i

= 1− 1

n

n∑
i=1

1

1+ ρ′′(X̃�i β̃)

n X̃
�
i G̃
−1
(i) X̃ i

.

(178)

Using the fact that
∣∣ 1
1+x − 1

1+y
∣∣ ≤ |x − y| for x, y ≥ 0, we obtain

∣∣∣∣∣∣
1

n

n∑
i=1

1

1+ ρ′′(X̃�i β̃)

n X̃
�
i G̃
−1
(i) X̃ i

− 1

n

n∑
i=1

1

1+ ρ′′(X̃�i β̃)α̃

∣∣∣∣∣∣
≤ 1

n

n∑
i=1

ρ′′(X̃�i β̃)

∣∣∣∣1n X̃�i G̃−1(i) X̃ i − α̃

∣∣∣∣ ≤ ‖ρ′′‖∞ sup
i

∣∣∣∣1n X̃�i G̃−1(i) X̃ i − α̃

∣∣∣∣
= ‖ρ′′‖∞ sup

i
|ηi | ≤ C1

K 2
n Hn√
n

,

with high probability (Proposition 1). This combined with (178) yields

P

(∣∣∣∣∣ p − 1

n
− 1+ 1

n

n∑
i=1

1

1+ ρ′′(X̃�i β̃)α̃

∣∣∣∣∣ ≥ C1
K 2
n Hn√
n

)

≤ C2n
2 exp

(
−c2H2

n

)
+ C3n exp

(
−c3K 2

n

)
+ exp (−C4n (1+ o(1))) .

The above bound concerns 1
n

∑n
i=1 1

1+ρ′′(X̃�i β̃)α̃
, and it remains to relate it to

1
n

∑n
i=1 1

1+ρ′′
(
proxα̃ρ

(
X̃
�
i β̃
))

α̃
. To this end, we first get from the uniform boundedness

of ρ′′′ and Lemma 17 that
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P

(
sup
i

∣∣∣ρ′′(X̃�i β̃)− ρ′′
(
proxq̃iρ(X̃

�
i β̃[−i])

)∣∣∣ ≥ C1
K 2
n Hn√
n

)
≤ C2n exp(−c2H2

n )+ C3 exp(−c3K 2
n )+ exp(−C4n(1+ o(1))). (179)

Note that

∣∣∣∣∣∣
1

n

n∑
i=1

1

1+ ρ′′(X̃�i β̃)α̃
− 1

n

n∑
i=1

1

1+ ρ′′(proxα̃ρ(X̃
�
i β̃[−i]))α̃

∣∣∣∣∣∣
≤ |α̃| sup

i

∣∣∣ρ′′(X̃�i β̃)− ρ′′
(
proxα̃ρ(X̃

�
i β̃[−i])

)∣∣∣
≤ |α̃| sup

i

{∣∣∣ρ′′ (X̃�i β̃
)
− ρ′′

(
proxq̃iρ(X̃

�
i β̃[−i])

)∣∣∣
+
∣∣∣ρ′′ (proxq̃iρ(X̃

�
i β̃[−i])

)
− ρ′′

(
proxα̃ρ(X̃

�
i β̃[−i])

)∣∣∣} .

By the bound (179), an application of Lemma 20, and the fact that α̃ ≤ p/(nλlb) (on
An), we obtain

P

(∣∣∣∣∣ pn − 1+ 1

n

n∑
i=1

1

1+ ρ′′
(
proxα̃ρ(X�i β̂[−i])

)
α̃

∣∣∣∣∣ ≥ C1
K 3
n Hn√
n

)

≤ C2n
2 exp

(− c2H
2
n

)+ C3n exp
(− c3K

2
n

)+ exp
(− C4n(1+ o(1))

)
.

This establishes that δn(α̃)
P→ 0. ��

Proof of Proposition 3 Here we only provide the main steps of the proof. Note that
since 0 < α ≤ p/(nλlb) := B on An , it suffices to show that

sup
x∈[0,B]

|δn(x)−�(x)| P→ 0.

We do this by following three steps. Below, M > 0 is some sufficiently large constant.

1. First we truncate the random function δn(x) and define

δ̃n(x) = p

n
− 1+

n∑
i=1

1

1+ xρ′′
(
proxxρ

(
X�i β̂[−i]1{‖β̂[−i]‖≤M}

)) .

The first step is to show that supx∈[0,B]
∣∣∣δ̃n(x)− δn(x)

∣∣∣ P→ 0. This step can be

established using Theorem 4 and some straightforward analysis.We stress that this
truncation does not arise in [25], and it is required to keep track of the truncation
throughout the rest of the proof.

123



556 P. Sur et al.

2. Show that supx∈[0,B]
∣∣∣δ̃n(x)− E

[
δ̃n(x)

]∣∣∣ P→ 0.

3. Show that supx∈[0,B]
∣∣∣E [δ̃n(x)]−�(x)

∣∣∣ P→ 0.

Steps 2 and 3 can be established by arguments similar to that in [25, Lemma 3.24,3.25],
with neceassary modifications for our setup. We skip the detailed arguments here and
refer the reader to [58]. ��
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